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Abstract
This paper deals with the derivation of the mean-field
limit for multi-agent systems on a large class of sparse
graphs. More specifically, the case of non-exchangeable
multi-agent systems consisting of non-identical agents is
addressed. The analysis does not only involve PDEs and
stochastic analysis but also graph theory through a new
concept of limits of sparse graphs (extended graphons)
that reflect the structure of the connectivities in the net-
work and has critical effects on the collective dynamics.
In this article some of the main restrictive hypothesis in
the previous literature on the connectivities between the
agents (dense graphs) and the cooperation between them
(symmetric interactions) are removed.
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1 INTRODUCTION

We derive in this article the mean-field limit for multi-agent systems posed on a large class of
graphs. More precisely, we consider the dynamics of 𝑁 agents, interacting pairwise through a
complex map of connections between them. The information about this connectivity map is
encompassed through a weighted, a priori non-symmetric graph 𝐺𝑁 where each vertex repre-
sents an agent. Denoting by𝑋𝑖(𝑡) ∈ ℝ𝑑 the state of the 𝑖-th agent, and by𝐾 the interaction kernel,
this leads to the system

⎧⎪⎨⎪⎩
𝑑𝑋𝑖
𝑑𝑡

=

𝑁∑
𝑗=1

𝑤𝑖𝑗 𝐾(𝑋𝑖 − 𝑋𝑗),

𝑋𝑖(0) = 𝑋0
𝑖
,

(1)

where the 𝑤𝑖𝑗 = 𝑤𝑁
𝑖𝑗
≠ 𝑤𝑁

𝑗𝑖
are the weight of the edge (𝑖, 𝑗) of the graph.

While we consider for simplicity deterministic systems like (1), our analysis would extend in a
straightforward manner to stochastic multi-agent systems with additive noise such as

𝑑𝑋𝑖 =

𝑁∑
𝑗=1

𝑤𝑖𝑗 𝐾(𝑋𝑖 − 𝑋𝑗) 𝑑𝑡 + 𝜎𝑁 𝑑𝑊𝑖, (2)

where the𝑊𝑡
𝑖
are independent Wiener processes.

This paper focuses on the analysis of the behavior of the system as𝑁 → ∞, for smooth Lipschitz
kernels 𝐾 but with minimal assumptions on the connectivities 𝑤𝑖𝑗 . We only impose scalings that
naturally extend the classical notion of mean-field scaling: First, the total interaction felt by an
agent should be of order 1, that is,

max
1≤𝑖≤𝑁

𝑁∑
𝑗=1

|𝑤𝑖𝑗| = 𝑂(1), max
1≤𝑗≤𝑁

𝑁∑
𝑖=1

|𝑤𝑖𝑗| = 𝑂(1), as 𝑁 → ∞, (3)

ensuring that complex dynamics emerge at time scales of order 1 as well. Secondly, no single agent
is allowed to have a dominant role, that is,

max
1≤𝑖,𝑗≤𝑁 |𝑤𝑖𝑗| = 𝑜(1), as 𝑁 → ∞, (4)
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MEAN-FIELD LIMIT OF NON-EXCHANGEABLE SYSTEMS 3

which, together with (3), implies that a given agent is influenced by the average of a large number
of other agents, so that we expect some concept of mean-field limit to persist.
System (1) is a canonical example of so-called non-exchangeable or non-interchangeable sys-

tems. This refers to the fact that (1) is not symmetric under permutation: If (𝑋𝑖(𝑡))1≤𝑖≤𝑁 solves
(1) and 𝜎 ∈ 𝑁 is any permutation, then (𝑋𝜎(𝑖)(𝑡))1≤𝑖≤𝑁 is not in general a solution to (1). Instead
the same permutation 𝜎 would need to be applied to the connectivities 𝑤𝑖𝑗 , thus modifying the
system. Another way of formulating this is that agents are not identical because the effect of the
𝑗-th on the 𝑖-th agent may be very different from the effect on the 𝑘-the agent: One could have
𝑤𝑖𝑗 ≫ 1 but 𝑤𝑖𝑘 ≈ 0 for example.
Classically, studies of many-particle systems have often focused on identical agents and

exchangeable systemswhich corresponds to choosing𝑤𝑖𝑗 = 1∕𝑁 in (1). The question of themean-
field limits for exchangeable systems where all agents are identical is now rather well understood
for Lipschitz interaction kernels, with even significant progress on singular kernels; see for exam-
ple the reviews [42, 48, 50]. The case of non-exchangeable systems and non-identical agents had
remained comparatively less explored but recently started to receive a lot of attention because of
their critical importance for many applications and their connections to diverse areas of Mathe-
matics. The analysis of non-exchangeablemulti-agent systems indeed not only involves PDEs and
stochastic analysis but also graph theory. On the other hand, multi-agent systems are also found
in a large number of fields from their classical applications in Physics to the Bio-sciences, Social
Sciences or Economics. In many of those settings, agents naturally appear as non-identical: The
structure of the connectivities in the network has proved to have critical effects on the dynamics,
see among many [61, 77–80, 91, 92], and the role of the network of interactions is often critical.
We present one example of such application in Appendix A which is based on models for the
dynamics of biological neurons for which we briefly refer for example to [24, 37, 44, 65, 75, 86, 93].
The main result of this paper is to incorporate the complex non-interchangeable graph

structures defined by 𝑤𝑖𝑗 into a simple limiting Vlasov equation

𝜕𝑡𝑓(𝑡, 𝑥, 𝜉) + div𝑥

(
𝑓(𝑡, 𝑥, 𝜉) ∫

1

0

𝑤(𝜉, 𝑑𝜁)∫
ℝ𝑑

𝐾(𝑥 − 𝑦) 𝑓(𝑡, 𝑑𝑦, 𝜁)

)
= 0, (5)

through the extended graphon 𝑤(𝜉, 𝑑𝜁).
In (5), 𝑓 describes the probability of finding an agent at position 𝑥 ∈ ℝ𝑑, in a certain state of

interaction with the network 𝜉 ∈ [0, 1], at time 𝑡 > 0. This means that the role of an agent can be
represented by adding an extra one-dimensional variable. In this way, we associate to the discrete
connectivities 𝑤𝑖𝑗 a function 𝑤, or some more general object, which accounts for the effect of the
architecture of the complex original system (1) as the number 𝑁 of agents is large. This type of
graphon-like representation had previously been explored in particular in [20–22, 54, 66, 67] or
in [41, 53]. However those results required more stringent assumptions on the connectivities, so
that for example [20–22, 54] only apply to dense graphs or symmetric interactions, whilst [41, 53]
allow for some sparse graphs, all of them requiring an a priori knowledge on how weights are
generated as to discretize a prescribed limiting object. Of course, this way of prescribing weights
provides some additional convergence, which is essential in these results. The case of sparse ran-
dom graphs such as the famous Erdös-Rényi graphs, has also been treated for example in [25,
27, 67]. In these references one finds the common assumption that𝑁𝑝𝑁 → ∞, where 𝑝𝑁 ∈ (0, 1)

represents the probability of drawing an edge. This condition characterizes the generalizedmean-
field scaling (3)–(4) on this class of sparse random graphs. Some even sparser Erdös–Rényi graphs
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4 JABIN et al.

with𝑁𝑝𝑁 = 𝑂(1) have also been handled in [59, 71], but this time they do not satisfy the general-
ized mean-field scaling (3)–(4) and lead instead to diffusive systems. While graphons are capable
of handling limits of some sparse graphs [7, 8], this usually requires some sort of renormalization
of 𝑤𝑖𝑗 .
One of the major contributions of the present article is to offer a unified framework to derive

the mean-field limit without any assumptions, structural or not, outside of the extended mean-
field scaling provided by the assumptions (3)–(4). This comes with considerable difficulties and
impose a completely new strategy to obtain the limit equation.

1.1 Mean-field limits for identical weights

Before going further in the technical aspects of our work, we recall here the main notions for the
idea of classical mean-field limit in exchangeable systems, corresponding to the simple case𝑤𝑖𝑗 =

�̄�∕𝑁,

⎧⎪⎨⎪⎩
𝑑𝑋𝑖
𝑑𝑡

=
�̄�

𝑁

𝑁∑
𝑗=1

𝐾(𝑋𝑖 − 𝑋𝑗),

𝑋𝑖(0) = 𝑋0
𝑖
.

(6)

A critical question for any multi-agent system is how to choose initial data for (6), since it is not
feasible in almost any applications to individually identify or measure every single 𝑋0

𝑖
. Classi-

cal assumptions rely on the notion of molecular chaos by imposing that the 𝑋0
𝑖
be independent

and identically distributed (i.i.d.) random variables (or almost i.i.d. in some appropriate sense)
according to an initial probability distribution 𝑓0 ∈ (ℝ𝑑).
This leads to the key notion of propagation of chaos, which consists in proving that the 𝑋𝑖(𝑡)

solving (6) still remain approximately i.i.d. (again in some appropriatemeasure). For exchangeable
systems such as (6), propagation of chaos often then directly implies that the limit as 𝑁 → ∞ of
the 1-particle distribution of the system solves the mean-field equation

𝜕𝑡𝑓(𝑡, 𝑥) + div𝑥

(
�̄� 𝑓(𝑡, 𝑥) ∫

ℝ𝑑

𝐾(𝑥 − 𝑦) 𝑓(𝑡, 𝑑𝑦)

)
= 0. (7)

We refer to the seminal results in [13, 35, 70] and later [13, 25, 27, 35, 42, 48, 50, 53, 59, 67, 70, 71,
85, 93] for the derivation of (7) for 𝐾 ∈ 𝑊1,∞(ℝ𝑑). As mentioned earlier, the case of non Lips-
chitz kernels corresponds to many realistic applications, it is much more difficult and still poorly
understood to some degree [13, 43, 49, 51, 81, 82, 85]. An extensive discussion would however carry
us too far from the main goals of this article and we only briefly refer again to [42, 48, 50].
A useful notion for system (6) is the so-called empirical measure which is given by,

𝜇𝑁(𝑡, 𝑥) ∶=
1

𝑁

𝑁∑
𝑖=1

𝛿𝑋𝑖(𝑡)(𝑥),

for every 𝑡 ≥ 0. In the deterministic case, the empirical measure is itself already a solution in
distributional sense to the mean-field equation (7), which offers a straightforward approach to
deriving the mean-field limit as 𝑁 → ∞, for Lipschitz kernels 𝐾, through a stability analysis of
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MEAN-FIELD LIMIT OF NON-EXCHANGEABLE SYSTEMS 5

Equation (7) in the space ofmeasures. Specifically, the empirical measure offers a very simple way
to formulate and understand themean-field limit in terms of theweak convergence of the random
measure 𝜇𝑁 to the deterministic limit 𝑓. Classical results for Lipschitz kernels for example imply
that

‖𝜇𝑁 − 𝑓‖𝑊−1,1 ≤ ‖𝜇0𝑁 − 𝑓‖𝑊−1,1 𝑒𝑡 �̄�‖∇𝐾‖𝐿∞ .
Some major differences are immediately apparent for non-exchangeable systems like (1). First
of all, because agents are non-identical, it may not be realistic to assume that they are initially
identically distributed.Wewill still assume that the𝑋0

𝑖
are independent though as this is essential

for the reduction in complexity leading to (7). Instead of propagation of chaos, we consequently
have to deal with the weaker notion of propagation of independence.
It is possible to extend some of the classical approaches to prove this propagation of indepen-

dence (as we do in the proof later). Unfortunately propagation of independence no longer directly
implies the limit (7) for general non-exchangeable systems, creating major difficulties. The one
exception occurs in the special case where the degree of each node of the graph is independent of
𝑖, that is,

𝑁∑
𝑗=1

𝑤𝑖𝑗 = �̄�,

for all 𝑖 = 1, … ,𝑁. In that setting, it is possible to still derive the classical mean-field limit (7); see
[31] for i.i.d initial positions𝑋0

𝑖
, and to [26] for the stability for this initial distribution. For general

connectivities 𝑤𝑖𝑗 however, new ideas and new methods seem to be needed.

1.2 The use of graphons for multi-agent systems

Graphons offer a non-parametricmethod ofmodeling and estimating large networks and are con-
structed as limits of sequences of dense graphs. There now exists a large literature dedicated to
graphons for which we refer to the seminal [9–12, 62].
To give a rough idea of how graphons play a critical role in non-exchangeable systems, consider

a sequences of dense graphs𝐺𝑁 with nodes indexed from 1 to𝑁 and adjacencymatrix (𝑤𝑁
𝑖𝑗
)1≤𝑖,𝑗≤𝑁

with the key assumption that

𝑤𝑁
𝑖𝑗
=
�̄�𝑁
𝑖𝑗

𝑁
with max

1≤𝑖,𝑗≤𝑁 �̄�
𝑁
𝑖𝑗
= 𝑂(1), as 𝑁 → ∞. (8)

For a fixed 𝑁, it is straightforward to define the graphon over [0, 1]2

𝑤𝑁(𝜉, 𝜁) =

𝑁∑
𝑖,𝑗=1

𝑁𝑤𝑁
𝑖𝑗
𝕀
[
𝑖−1

𝑁
,
𝑖

𝑁
)
(𝜉) 𝕀

[
𝑗−1

𝑁
,
𝑗

𝑁
)
(𝜁). (9)

One directly observes that 𝑤𝑁 is uniformly bounded in 𝐿∞([0, 1]2) but a fundamental prop-
erty behind graphons is that 𝑤𝑁 can be made compact in the appropriate distance after
re-arrangements. More precisely, there exists a measure-preserving map 𝜙𝑁 on [0, 1] such that
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6 JABIN et al.

the rearranged object 𝑤𝑁(𝜙𝑁(𝜉), 𝜙𝑁(𝜁)) is compact in the norms of operators from 𝐿∞([0, 1]) to
𝐿1([0, 1]); this norm is equivalent to the so-called cut metric, see [62]. Identifying 𝑤 with its asso-
ciated adjacency operator 𝜙 ∈ 𝐿∞([0, 1]) ↦ 𝑤(𝜙) = ∫ 1

0
𝜙(𝜁)𝑤(⋅, 𝜁) 𝑑𝜁 ∈ 𝐿1([0, 1]), its operator

norm ‖ ⋅ ‖𝐿∞→𝐿1 is defined by

‖𝑤‖𝐿∞→𝐿1 = sup‖𝜙‖𝐿∞≤1
‖𝑤(𝜙)‖𝐿1 = sup‖𝜙‖𝐿∞ ,‖𝜓‖𝐿∞≤1∫[0, 1]2 𝜓(𝜉) 𝜙(𝜁)𝑤(𝜉, 𝜁) 𝑑𝜉 𝑑𝜁.

The previous compactness property of 𝑤𝑁 in the operator norm under the assumption that 𝑤𝑁

are uniformly bounded in 𝐿∞([0, 1]2)was initially established in [63] using a weak version of the
Szemerédi Regularity Lemma [87] and a martingale argument.
This turns out to be a key property for the purpose of deriving themean-field limit. For example,

it provides a natural way to obtain weak stability for Equation (5). Namely, consider a sequence
of weak solutions 𝑓𝑁 to (5) with weights 𝑤𝑁 , where 𝑤𝑁 are uniformly bounded in 𝐿∞([0, 1]2)
and 𝑓𝑁 are uniformly bounded in 𝐿∞([0, 𝑡∗] × [0, 1], 𝑊1,1 ∩ 𝑊1,∞(ℝ𝑑)), for all 𝑡∗ > 0. Assume
further that 𝑓 is any other solution to (5) with weights 𝑤 lying in the same regularity class as
above. We refer to Proposition 4.11 for the precise well-posedness result of (5). Then, we can infer
the stability estimate

𝑑

𝑑𝑡 ∫
1

0
∫
ℝ𝑑

|𝑓𝑁 − 𝑓|𝑑𝑥 𝑑𝜉 ≤ 𝐶1 ∫
1

0
∫
ℝ𝑑

|𝑓𝑁 − 𝑓|𝑑𝑥 𝑑𝜉 + 𝐶2 ‖𝑤𝑁 − 𝑤‖𝐿∞→𝐿1 , (10)

where 𝐶1, 𝐶2 are constants depending on the norms of 𝑓, the uniform bound of the norm of 𝑤𝑁

and the 𝐿1 and Lipschitz norms of 𝐾. This estimate can easily be derived formally and how to
obtain it rigorously goes beyond the limited technical scope of this introduction. We just mention
that, since 𝐾 is Lipschitz, (10) can also follow from the notion of solutions in Proposition 4.11 as
long as 𝑓𝑁 and 𝑓 are smooth in 𝑡 and 𝑥: if 𝑓𝑁, 𝑓 ∈ 𝑊1,∞

𝑡,𝑥 𝐿∞
𝜉
for example, then we can use any

𝜒(𝑓𝑁 − 𝑓) for 𝜒 smooth as a test function on (5).
Consequently, using the above theory of dense graph limits, one can set themeasure-preserving

maps 𝜙𝑁 on [0, 1] so that the re-arranged objects𝑤𝑁(𝜙𝑁(𝜉), 𝜙𝑁(𝜁)) converge (up to subsequence)
in the operator norm, and also set 𝑤 to be the obtained limit. By doing so, the second term in the
right hand side of (10) converges to zero and, assuming well-prepared initial data, we can pass
to the limit as𝑁 → ∞ in 𝑓𝑁(𝑡, 𝑥, 𝜙𝑁(𝜉)) and obtain a solution 𝑓(𝑡, 𝑥, 𝜉) to (5). As a consequence,
we can determine the limit of the 1-particle distribution given by ∫ 1

0
𝑓𝑁(𝑡, 𝑥, 𝜉) 𝑑𝜉:

∫
1

0

𝑓𝑁(𝑡, 𝑥, 𝜉) 𝑑𝜉 = ∫
1

0

𝑓𝑁(𝑡, 𝑥, 𝜙𝑁(𝜉)) 𝑑𝜉 → ∫
1

0

𝑓(𝑡, 𝑥, 𝜉) 𝑑𝜉, as 𝑁 → ∞.

We refer to [20–22, 54] in particular for a complete analysis that this brief sketch cannot do justice
to. An alternative and more primitive approach to derive macroscopic limits for (1) was obtained
in [66], again for graphons 𝑤 ∈ 𝐿∞([0, 1]2) and Lipschitz kernesl 𝐾, in terms of the graph-limit
equation

𝜕𝑡𝑋(𝑡, 𝜉) = ∫
1

0

𝑤(𝜉, 𝜁) 𝐾(𝑋(𝑡, 𝜉) − 𝑋(𝑡, 𝜁)) 𝑑𝜁. (11)
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MEAN-FIELD LIMIT OF NON-EXCHANGEABLE SYSTEMS 7

Here,𝑋 ∈ 𝐶1(ℝ+, 𝐿
∞([0, 1]) can be interpreted as a time-evolving parametrization of the contin-

uumof agents by a continuous index 𝜉 ∈ [0, 1].Whilst a large portion of the literature sticks to this
simpler formulation, we remark that (11) corresponds to a special class of solutions to (5) having
the form 𝑓(𝑡, 𝑥, 𝜉) = 𝛿𝑋(𝑡,𝜉)(𝑥), but clearly not all solutions of (5) come from solutions to (11).
The critical issue to implement a similar stability estimate like (10) in our case is that our

assumptions (3)–(4) of course cannot ensure that the weights 𝑤𝑖𝑗 satisfy (8). This concerns both
dense and sparse graphs: sparse graph sequences in general will not satisfy (8), but also many
dense graph sequences may fail to satisfy (8). As we noted above, one may still use graphons to
characterize limits of some sparse graph sequences. For example, for sparse deterministic graphs
[7, Theorem 2.8] shows that any 𝐶-upper 𝐿𝑝 regular sequence of weighted graphs with 𝑝 > 1 con-
verges to some 𝑤 ∈ 𝐿𝑝([0, 1]) in the cut distance. For sparse random graphs, [7, Theorem 2.14,
Corollary 2.15] derives a general convergence result of the sequence of 𝑤-random sparse graphs
generated by any𝑤 ∈ 𝐿1([0, 1]) toward𝑤 itself in the cut distance. In both cases, a suitable renor-
malization on the graphon is needed. One fundamental advantage of the theory developed in
this paper is that it applies to all sparse graphs which satisfy (3)–(4). However, our analysis and
motivation are not limited to extend previous results to sparse graph sequences.
Various extensions of graphons have been proposed to handle less stringent assumptions

than (8).Wemention in particular the aforementioned extension to 𝐿𝑝 graphons in [7, 8], themore
general operator-based extension in [3] based on graphops, and the measure-theoretic extension
in [55] based on s-graphons. Each of the three classes of continuum objects contain the family
of finite graphs, and they can be endowed with a compact metric space structure under a certain
topology, similarly to what it was done for graphons. We emphasize that the above assumption (3)
represents a scaling of weights 𝑤𝑖𝑗 and only provides uniform bounds for 𝑤𝑁 in the mixed spaces
𝐿∞
𝜉
𝜁 = 𝐿∞

𝜉
([0, 1], 𝜁([0, 1]) and 𝐿∞𝜁 𝜉 = 𝐿∞

𝜁
([0, 1], 𝜉([0, 1]). The scaling of weights in

𝐿∞
𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 corresponds to a continuous versions of the same discrete version (3) of the

scaling and suggests defining a new class of continuum objects which we shall call extended
graphons, see next section and Definition 4.6 below for further details. A similarly scaled exten-
sion was developed in [55], based on digraph measures or bounded everywhere defined families
of measures, and is discussed more at length after Theorem 1.1. Closely related is also the scaling
in [64], where the author considered limits of random graphs sampled from graphons not neces-
sarily bounded but belonging to the mixed space 𝐿∞

𝜉
([0, 1], 𝐿2

𝜁
([0, 1])). In contrast with classical

graphons, our measure-valued definition of extended graphons reflects, in part, the sparsity of the
network (as they are intimately related to graphops, s-graphons, and digraph measures), but also,
the microscopic inhomogeneity of the network. A fundamental example of this lies in constant
graphons, which are associated with homogeneous graphs. We refer to Section 2.5 for some exam-
ples sparse and inhomogeneous graph sequenceswhich converge to extended graphons under our
notion of convergence.
The goal of this paper is not to provide a complete classification of the existing theories of graph

limits. However, the above classes of objects can be compared, and so has been done in more
dedicated literature, for example, [3, 55] and also [41, 53]. Without any intention of comparing
their topologies, the previous classes of objects are related as sketched in Figure 1, at least when
restricted to symmetric weights. We note that extended graphons account for an intermediate
degree of sparsity as they occupy an intermediate position between the class of graphons and
graphops. This fact will become clearer later in Section 4, and more particularly in the operator
representation of extended graphons in Lemma 4.7. However, we do emphasize the topology that
we use on those extended graphons is very distinct from other known objects.
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8 JABIN et al.

graphons [62]

s-graphons [55]

graphops [3]

(symmetric) extended graphons

(symmetric) digraph measures [53]

F IGURE 1 Comparison of the various graph limit theories.

1.3 Our new result

The main contribution of this paper is to provide the mean-field limit with only assumptions (3)–
(4). This first requires a careful definition of the space for limiting kernel which we call extended
graphons and we denote by 𝐿∞

𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 ; namely 𝑤 ∈ 𝐿∞

𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 iff

𝑤(𝜉, 𝑑𝜁) ∈ 𝐿∞([0, 1], ([0, 1])), 𝑤(𝑑𝜉, 𝜁) ∈ 𝐿∞([0, 1], ([0, 1])), (12)

where we define the space 𝐿∞([0, 1], ([0, 1])) as the topological dual to the Banach
space 𝐿1([0, 1], 𝐶([0, 1])), endowed with the corresponding weak-* topology.
We are now ready to state our main result,

Theorem 1.1. Assume that the interaction kernel 𝐾 belongs to𝑊1,1 ∩𝑊1,∞(ℝ𝑑) and consider a
sequence (𝑋𝑖(𝑡))1≤𝑖≤𝑁 , solving the multi-agent system (1) for connection weights satisfying only (3)–
(4). Assumemoreover that the initial data𝑋0

𝑖
are independent random variables, but not necessarily

identically distributed, and denote their laws by 𝑓0
𝑖
. Finally assume that

sup
𝑁∈ℕ

sup
1≤𝑖≤𝑁 𝔼[|𝑋0

𝑖
|2] < ∞, sup

𝑁∈ℕ
sup
1≤𝑖≤𝑁 ‖𝑓0

𝑖
‖𝑊1,1∩𝑊1,∞(ℝ𝑑) < ∞.

Then, there exist 𝑤 ∈ 𝐿∞
𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 and 𝑓 ∈ 𝐿∞([0, 𝑡∗] × [0, 1], 𝑊

1,1 ∩ 𝑊1,∞(ℝ𝑑)), for any
𝑡∗ > 0, such that 𝑓 solves (5) with 𝑤 and, up to the extraction of a subsequence,

sup
0≤𝑡≤𝑇 𝔼𝑊1

(
∫

1

0

𝑓(𝑡, ⋅, 𝜉) 𝑑𝜉, 𝜇𝑁(𝑡, ⋅)

)
→ 0,

as 𝑁 → ∞, where 𝑊1 is the usual Wasserstein distance acting on the subset of (ℝ𝑑) with finite
first order moments, and 𝜇𝑁(𝑡, 𝑥) ∶=

1

𝑁

∑𝑁

𝑖=1 𝛿𝑋𝑖(𝑡)(𝑥) are the empirical measures associated to
(𝑋𝑖(𝑡))1≤𝑖≤𝑁 .
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MEAN-FIELD LIMIT OF NON-EXCHANGEABLE SYSTEMS 9

Compared to the existing literature, Theorem 1.1 is the only result so far capable of handling the
mean-field limit where we only assume assumptions (3)–(4) on the connections 𝑤𝑖𝑗 without any
other structural assumptions. Asmentioned earlier in the introduction, when the graph has some
specific structure, Erdös-Rényi for example, other approaches exist that only require the scal-
ing (3)–(4) [25, 27, 59, 67, 71]. We do not obtain classical graphons since the limiting kernel𝑤 only
belongs to 𝐿∞

𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 , which is a natural space corresponding to the scaling in (3). As men-

tioned above, a space with a similar scaling is the space of digraph measures 𝐵([0, 1],([0, 1]).
This space was inspired in the s-graphons [55], specifically introduced to handle sparse graphs,
and itwas used in [53] formean-field limits. There are a fewkey differenceswith the present analy-
sis, as digraphmeasures𝐵([0, 1],([0, 1]) consists of everywhere defined in 𝜉 boundedmeasures
in 𝜁 while our extended graphons in 𝐿∞

𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 are only almost everywhere defined in 𝜉 (or

in 𝜁). The use of extended graphons offers several advantages when passing to the limit. In par-
ticular, in comparison [53] appears to require an improved continuous dependence in 𝜉 of the
digraph measures that further restricts the type of connectivities that can be used with respect
to (3)–(4).
But our notion of extended graphons in 𝐿∞

𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 does lead to some major issues, as it

does not seem possible to pass to the limit in Equation (5) directly. That imposes a new strategy
briefly outlined in the sketch of proof in the next subsection. Some of that technical difficulty
can be glimpsed from the fact that it is not yet clear in which sense Equation (5) is posed with
only 𝑤 ∈ 𝐿∞

𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 . The main issue is the non-linear term of course since 𝑓 is only essen-

tially bounded in 𝜉 with no additional regularity, and only a.e. defined. More specifically, it is not
immediately obvious how to make sense of terms like

𝜉 ∈ [0, 1] ↦ ∫
1

0

𝜙(𝜁)𝑤(𝜉, 𝑑𝜁),

for 𝜙 ∈ 𝐿∞([0, 1]). This is where the proper definition of 𝐿∞
𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 is needed and one

reason why we require 𝑤 to belong both to 𝐿∞
𝜉
𝜁 and to 𝐿∞𝜁 𝜉 (which would be automatic

if 𝑤 was symmetric). A careful analysis then allows proving that the above function is correctly
defined in 𝐿∞([0, 1]) with

‖‖‖‖‖∫
1

0

𝜙(𝜁)𝑤(𝜉, 𝑑𝜁)
‖‖‖‖‖𝐿∞

𝜉

≤ ‖𝑤‖𝐿∞
𝜉
𝜁∩𝐿

∞
𝜁
𝜉

‖𝜙‖𝐿∞,
as we prove later in Lemma 4.7. Note that the above also allow identifying any 𝑤 ∈ 𝐿∞

𝜉
𝜁 ∩

𝐿∞
𝜁
𝜉 with a bounded linear operator 𝐿∞([0, 1]) → 𝐿∞([0, 1]), and therefore this explains the

above-mentioned relation in Figure 1 between extended graphons and graphops.
We also note that our proofs could imply an evenmore general formulation of Theorem 1.1. For

example the assumptions 𝑓0
𝑖
∈ 𝐿1 ∩ 𝐿∞(ℝ𝑑) would be enough, and it should even be possible to

further relax some of the assumptions on the graphs with

1

𝑁

𝑁∑
𝑖=1

(
𝑁∑
𝑗=1

|𝑤𝑖𝑗|)𝑝

= 𝑂(1),
1

𝑁

𝑁∑
𝑖=1

sup
1≤𝑗≤𝑁 |𝑤𝑖𝑗|1∕𝑝 = 𝑜(1), as 𝑁 → ∞,

for some 𝑝 > 1, instead of (3)–(4).
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10 JABIN et al.

As in classical mean-field limits, independence of initial data is the key to the reduction of com-
plexity provided by Theorem 1.1.We assumed for simplicity that the𝑋0

𝑖
were fully independent but

it would be straightforward to relax this condition by having them approximately independent.
Theorem 1.1 obtains the limit up to the extraction of a subsequence in 𝑁, since it makes no

assumptions on the convergence of the initial data and it then amounts to a compactness result.
Nevertheless, it is possible to derive the convergence of the whole sequence but the formulation
is trickier than usual because of the role played by the connectivities 𝑤𝑖𝑗 . The first necessary
assumption is naturally the convergence of the full sequence of empirical measures: There exists
𝑓0 ∈ 𝑊1,∞(ℝ𝑑) such that

𝔼𝑊1

(
𝑓0, 𝜇0𝑁

)
→ 0, as 𝑁 → ∞. (13)

Alternatively, since 𝑋0
𝑖
are independent, one may assume convergence of the 1-particle distribu-

tion

𝑊1

(
𝑓0,

1

𝑁

𝑁∑
𝑖=1

𝑓0
𝑖

)
→ 0, as 𝑁 → ∞.

However (13) is not enough and some additional convergence of the 𝑤𝑖𝑗 is also required.
Theorem 1.1 opens up new avenues to the analysis but still leaves some important questions

unresolved. The main and obvious issue concerns the Lipschitz assumption on the kernel𝐾. This
is a critical issue for many applications which involve some form of singular interactions. Among
several examples, we mention the integrate and fire system for biological neurons that we briefly
describe in Appendix A. Integrate and fire models only very loosely fit within the multi-agent
framework that we focus on in this paper so that extending the present analysis to integrate and
fire model would be a highly non trivial extension.
The Lipschitz regularity of𝐾 plays a critical role in the first step of our analysis when propagat-

ing independence. It does not appear as essential in the next, more complex steps of our proofs.
Replacing the classical trajectory methods to obtain propagation of independence could allow
obtaining an equivalent of Theorem 1.1 with less stringent assumptions on 𝐾.

2 NOTATIONS, BASIC DEFINITIONS, EXAMPLES AND SKETCH OF
THE PROOF

2.1 Notations

We denote by(𝐸) the space of finite Radon measures on 𝐸, where here the underlying space 𝐸
could beℝ𝑑, the interval [0, 1], or also some product of those spaces likeℝ𝑑 × [0, 1] or [0, 1]2. The
space (𝐸) denotes the subspace of probability measures on 𝐸, [89] that is measures 𝜇 ∈ (𝐸)

that are non-negative, with mass 1.
For a given measure 𝜇, we denote by 𝜇(𝑥) the abstract notion and by 𝜇(𝑑𝑥) when integrating

against 𝜇. For example, the Dirac mass at 0 is defined by 𝜇(𝑥) = 𝛿0(𝑥) and we write

∫
𝐸

𝜙(𝑥) 𝜇(𝑑𝑥) = ∫
𝐸

𝜙(𝑥) 𝛿0(𝑑𝑥) = 𝜙(0),

for all continuous function 𝜙.
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MEAN-FIELD LIMIT OF NON-EXCHANGEABLE SYSTEMS 11

This notation offers a convenient way of representing marginals for measures of several vari-
ables. For example, if 𝜇 ∈ (𝐸 × 𝐸), then 𝜈1(𝑥) = ∫

𝐸
𝜇(𝑥, 𝑑𝑦) simply denotes the first marginal

of 𝜇, that is,

𝜈1(𝑂) = 𝜇(𝑂 × 𝐸),

for any measurable subset 𝑂 ⊂ 𝐸, while 𝜈2(𝑦) = ∫
𝐸
𝜇(𝑑𝑥, 𝑦) represents the second marginal of 𝜇.

We recall that (𝐸) is the topological dual of 𝐶0(𝐸), the space of continuous functions with
vanishing limit at infinity (more precisely, 𝐶0(ℝ𝑑) for 𝐸 = ℝ𝑑 and 𝐶([0, 1]) for 𝐸 = [0, 1]).
Unless otherwise specified, we always use the corresponding implied weak-* topology on(𝐸).
Specifically, we have that 𝜇𝑛 → 𝜇 for the weak-* topology if, and only if,

∫
𝐸

𝜙(𝑥) 𝜇𝑛(𝑑𝑥) → ∫
𝐸

𝜙(𝑥) 𝜇(𝑑𝑥),

for all 𝜙 ∈ 𝐶0(𝐸). We also recall that, by the the Banach–Alaoglu theorem, any ball of finite radius
of(𝐸) is precompact for this topology. If 𝐸 is compact, for example, 𝐸 = [0, 1], then (𝐸) is a
compact metric space for the weak-* topology.

2.2 The space 𝑳∞([𝟎, 𝟏], ([𝟎, 𝟏])

We define the space 𝐿∞([0, 1], ([0, 1])) as the topological dual of the Bochner space
𝐿1([0, 1], 𝐶([0, 1])). So defined 𝐿∞([0, 1], ([0, 1])) is not a Bochner space because([0, 1])

fails the Radon–Nikodym property [6, 33]. However, by a variant of the Riesz representation
theorem operating in the absence of the Radon–Nikodym property [47] we have that the dual
space 𝐿∞([0, 1], ([0, 1])) amounts to a weak-* Bochner space. Specifically, objects 𝑤 ∈

𝐿∞([0, 1], ([0, 1])) are alternatively identified with maps 𝜉 ∈ [0, 1]⟼ 𝑤(𝜉, 𝜁) ∈ ([0, 1])

which are weakly-* measurables and such that there exists 𝐶 > 0 such that

‖‖‖‖‖∫
1

0

𝜙(𝜁)𝑤(⋅, 𝑑𝜁)
‖‖‖‖‖𝐿∞([0, 1]) ≤ 𝐶 ‖𝜙‖𝐶([0, 1]),

for all 𝜙 ∈ 𝐶([0, 1]). We refer to Definition 4.5 for further details. The best constant 𝐶 above
defines the norm on the weak-* Bochner space 𝐿∞([0, 1], ([0, 1])) and, by the above duality
theorem, it is equivalent to the norm of 𝐿∞([0, 1], ([0, 1])) as a dual space. The corresponding
duality reads

⟨𝑤, 𝜙⟩ = ∫
[0, 1]2

𝜙(𝜉, 𝜁)𝑤(𝜉, 𝑑𝜁),

for all 𝑤 ∈ 𝐿∞([0, 1], ([0, 1])) and all 𝜙 ∈ 𝐿1([0, 1], 𝐶([0, 1])). Except otherwise specified,
we always imbue 𝐿∞([0, 1], ([0, 1]))with its weak-* topology as a dual space. By the Banach–
Alaouglu theorem, any ball of finite radius of 𝐿∞([0, 1], ([0, 1])) is again precompact in the
weak-* topology.
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12 JABIN et al.

We recall that 𝐿1([0, 1], 𝐶([0, 1])) is a separable, Banach space. Moreover, the following
inclusions

𝐶∞([0, 1]2) ⊂ 𝐶([0, 1]2) ⊂ 𝐿1([0, 1], 𝐶([0, 1])),

are dense, which directly implies that 𝐿∞([0, 1], ([0, 1])) can be identified with a subspace of
([0, 1]2) (and therefore of distributions′([0, 1]2)). This leads to the inclusions:

𝐿∞([0, 1],([0, 1])) ⊂ ([0, 1]2) ⊂ ′([0, 1]2).

Specifically, a distribution 𝑤 ∈ ′([0, 1]2) belongs to 𝐿∞([0, 1], ([0, 1])) if, and only if, there
exists some 𝐶 > 0 such that

∫
𝐸2
𝜙(𝜉, 𝜁)𝑤(𝜉, 𝑑𝜁) 𝑑𝜉 ≤ 𝐶 ‖𝜙‖𝐿1([0, 1], 𝐶0([0, 1])),

for all 𝜙 ∈ 𝐶∞([0, 1]2), the best 𝐶 being the norm of 𝐿∞([0, 1], ([0, 1])) as a dual space.
Since the weak-* topology on a dual space is metrizable when induced on balls, then we

have that 𝑤𝑛 → 𝑤 for the weak-* topology of 𝐿∞([0, 1], ([0, 1])) if, and only if, 𝑤𝑛 → 𝑤 in
the sense of distributions and sup𝑛 ‖𝑤𝑛‖𝐿∞([0, 1], ([0, 1])) < ∞. This also directly implies that
𝐶∞([0, 1]2) functions are dense in 𝐿∞([0, 1], ([0, 1])), so that this space is separable for the
weak-* topology.
Similarly, the space 𝐿∞([0, 1], 𝐿2[0, 1]) can be defined either through duality with

𝐿1([0, 1], 𝐿2([0, 1])) or as a Bochner space. Since this time 𝐿2([0, 1]) does verify the Radon–
Nikodym property, the classical version of the Riesz representation theorem [33] ensure that both
approaches coincide.

2.3 The space 𝑳∞
𝝃
𝜻 ∩ 𝑳

∞

𝜻
𝝃 and examples

Depending on the order of variables, we can actually define two spaces 𝐿∞
𝜉
𝜁 ∶=

𝐿∞
𝜉
([0, 1], 𝜁([0, 1]]) and 𝐿∞𝜁 𝜉 ∶= 𝐿∞

𝜁
([0, 1], 𝜉([0, 1]]). As above, both can be regarded

as subspaces of distributions′([0, 1]2) through the dualities

⟨𝑤1, 𝜙⟩ ∶= ∫
[0, 1]

𝜙(𝜉, 𝜁)𝑤1(𝜉, 𝑑𝜁), ⟨𝑤2, 𝜙⟩ ∶= ∫
[0, 1]

𝜙(𝜉, 𝜁)𝑤2(𝑑𝜉, 𝜁),

for every𝑤1 ∈ 𝐿∞
𝜉
𝜁 ,𝑤2 ∈ 𝐿∞

𝜁
𝜉 and all 𝜙 ∈ 𝐶∞([0, 1]2). As subspaces of distributions we can

easily define the intersection𝐿∞
𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 with the corresponding union of the two topologies.

Equivalently, this could be defined as the topological dual of 𝐿1
𝜉
𝐶𝜁 + 𝐿1

𝜁
𝐶𝜉 , with the corresponding

weak-* topology. The induced norm on 𝐿∞
𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 is simply

‖𝑤‖𝐿∞
𝜉
𝜁∩𝐿

∞
𝜁
𝜉

= max{‖𝑤‖𝐿∞
𝜉
𝜁

, ‖𝑤‖𝐿∞
𝜁
𝜉

}.

We again have that 𝑤𝑛 → 𝑤 for the weak-* topology of 𝐿∞
𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 if, and only if, 𝑤𝑛 → 𝑤

in the sense of distributions and sup𝑛 ‖𝑤𝑛‖𝐿∞
𝜉
𝜁∩𝐿

∞
𝜁
𝜉

< ∞. As before 𝐿∞
𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 is also
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MEAN-FIELD LIMIT OF NON-EXCHANGEABLE SYSTEMS 13

separable and 𝐶∞([0, 1]) functions are dense for the weak-* topology. Again, any ball of finite
radius of𝐿∞

𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 is precompact for the sameweak-* topology. The space𝐿∞𝜉 𝜁 ∩ 𝐿

∞
𝜁
𝜉

will also be introduced later inDefinition 4.6 under the name of extended graphons, andwill serve
as a new graph limit theory.
An elementary but illuminating example of elements in 𝐿∞

𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 consists in consider-

ing just 𝑤 = 𝛿(𝜉 − 𝜁). Obviously this kernel can be regarded in three different equivalent ways.
First, as an element in 𝐿∞

𝜉
𝜁 , that is, a parametrized family 𝜉 ∈ [0, 1] ↦ 𝛿𝜉(𝜁) ∈ ([0, 1])

of measures in 𝜁. Second, as an element in 𝐿∞
𝜁
𝜉 , that is, a parametrized family 𝜁 ∈ [0, 1] ↦

𝛿𝜁(𝜉) ∈ ([0, 1]) of measures in 𝜉. Finally, as the measure in([0, 1]2) supported on the diag-
onal of [0, 1]2. The definitions above provide a simple framework where we can simply switch
between each interpretation as desired.
A more interesting example consists in considering 𝑤 = 𝛿(Φ(𝜉) − 𝜁) where Φ ∶ [0, 1]⟶

[0, 1] is any one-to-one, measure-preserving map. We build on this example to provide an illus-
tration of a non-trivial limiting kernel for our main result. As above, this kernel can be seen in
three different ways. First, it is clearly a parametrized family 𝜉 ∈ [0, 1] ↦ 𝛿Φ(𝜉)(𝜁) ∈ ([0, 1])

of measures in 𝜁. More precisely,

∫
[0, 1]

𝜙(𝜁)𝑤(𝜉, 𝑑𝜁) = 𝜙(Φ(𝜉))

for all 𝜙 ∈ 𝐶([0, 1]), which yields obviously a measurable function in 𝜉, and therefore 𝑤 defines
an element in 𝐿∞

𝜉
𝜁 . Of course, the above embedding allows regarding 𝑤 as a measure in

([0, 1]2), that is,

∫
[0, 1]

𝜑(𝜉, 𝜁)𝑤(𝑑𝜉, 𝑑𝜁) = ∫
[0, 1]

𝜑(𝜉, Φ(𝜉)) 𝑑𝜉 = ∫
[0, 1]

𝜑(Φ−1(𝜁), 𝜁) 𝑑𝜁,

for all 𝜑 ∈ 𝐶([0, 1]2), where in the last equality we have made the change of variables 𝜁 = Φ(𝜉) as
Φ is one-to-one and measure-preserving. This allows regarding 𝑤 also as a a parametrized family
𝜁 ∈ [0, 1] ↦ 𝛿Φ−1(𝜁)(𝜉) ∈ ([0, 1]) of measures in 𝜉, that is,

∫
[0, 1]

𝜙(𝜉)𝑤(𝑑𝜉, 𝜁) = 𝜙(Φ−1(𝜁)),

for all 𝜙 ∈ 𝐶([0, 1]). Of course, they all represent the same object as for all 𝜑 ∈ 𝐶([0, 1]2)we have

∫
[0, 1]2

𝜑(𝜉, 𝜁)𝑤(𝜉, 𝑑𝜁) 𝑑𝜉 = ∫
[0, 1]2

𝜑(𝜉, 𝜁)𝑤(𝑑𝜉, 𝑑𝜁) = ∫
[0, 1]2

𝜑(𝜉, 𝜁)𝑤(𝑑𝜉, 𝜁) 𝑑𝜁.

2.4 Further comments on our extended graphons

There are compelling reasons why extended graphons 𝑤 ∈ 𝐿∞
𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 appear to be the

correct scale for the type of complex structures of connectivities that we are interested in.
We first point out that our extended graphons occupy an intermediary place in the current

hierarchy of graphon-like objects, see Figure 1. Obviously they are more general than classical
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14 JABIN et al.

graphons since they are not necessarily bounded, that is, 𝑤 ∉ 𝐿∞
𝜉,𝜁

= 𝐿∞([0, 1]2) in general.
However as mentioned above, the analysis will show later that any𝑤 ∈ 𝐿∞

𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 can also

be seen as the kernel of a bounded operator from 𝐿∞([0, 1]) → 𝐿∞([0, 1]); instead of an operator
𝐿∞([0, 1]) → 𝐿1([0, 1]) for graphops. As such extended graphons appear as intermediary objects
between classical graphons and other extensions such as graphops, s-graphons and digraph
measures, see Figure 1.
However the topology that we consider in our analysis for this space 𝐿∞

𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 is one

of the major differences with respect to the existing literature. The proper convergence for our
large-graph limit cannot hold in the classical cut distance, or any direct extensions such as the
topology of bounded linear operators 𝐿∞([0, 1]) → 𝐿∞([0, 1]), which we have defined earlier,
to the best of our knowledge. This is clear from the stability estimate (10) for graphons, which
inevitably breaks for unbounded graphons. Instead the key notion of convergence that we use is
based on a new countable family of observables that mixes the connection kernel and the initial
laws on each agent. Specifically, the observables can be defined as follows

𝜏(𝑇, (𝑤𝑖𝑗)1≤𝑖,𝑗≤𝑁, (𝑓0𝑖 )1≤𝑖≤𝑁)(0, 𝑥1, … , 𝑥|𝑇|) = 1

𝑁

𝑁∑
𝑖1,…,𝑖|𝑇|=1

∏
(𝑘,𝑙)∈𝐸(𝑇)

𝑤𝑖𝑘 𝑖𝑙

∏
𝑚∈𝑉(𝑇)

𝑓0
𝑖𝑚
(𝑥𝑚), (14)

and they are indexed by finite trees 𝑇, where 𝑓0
𝑖
denotes the initial law of the variable 𝑋0

𝑖
.

Those observables have a corresponding representation at the limit when the discrete weights
(𝑤𝑖𝑗)1≤𝑖,𝑗≤𝑁 and laws 𝑓0

𝑖
(𝑥) are replaced by kernels 𝑤(𝜉, 𝜁) and initial data 𝑓0(𝑥, 𝜉) through the

definition,

𝜏(𝑇, 𝑤, 𝑓)(0, 𝑥1, … , 𝑥|𝑇|) = ∫
[0, 1]|𝑇|

∏
(𝑘,𝑙)∈𝐸(𝑇)

𝑤(𝜉𝑘, 𝜉𝑙)
∏

𝑚∈𝑉(𝑇)

𝑓0(𝑥𝑚, 𝜉𝑚) 𝑑𝜉1 …𝑑𝜉|𝑇|. (15)

Those definitions allowdefining precisely the convergence in Theorem 1.1: If we have the strong
convergence in 𝐿2(ℝ𝑑|𝑇|) of the observables 𝜏(𝑇, (𝑤𝑖𝑗)1≤𝑖,𝑗≤𝑁, (𝑓0𝑖 )1≤𝑖≤𝑁) → 𝜏(𝑇,𝑤, 𝑓0(𝜉, 𝑥)) as
𝑁 → ∞, for all trees 𝑇, then the dynamics of the 𝑋𝑖 can effectively be represented at the limit
by the solution 𝑓 to (5),

1

𝑁

∑
𝑖

𝛿𝑋𝑖(𝑡)(𝑥) → ∫
1

0

𝑓(𝑡, 𝑥, 𝑑𝜉).

As it can be seen in the sketch of proof below, the observables 𝜏(𝑇, (𝑤𝑖𝑗)1≤𝑖,𝑗≤𝑁, (𝑓0𝑖 )1≤𝑖≤𝑁) indeed
play a critical role in our analysis as they entirely control the dynamics.
Note that since 𝑓0

𝑖
(𝑥) and 𝑓0(𝑥, 𝜉) are normalized probability measures with respect to the

variable 𝑥, then by integrating the observables (14)–(15) on the spacial variables we are led to the
well-known notion of moments on a graph, that is,

∫
ℝ𝑑|𝑇| 𝜏(𝑇, (𝑤𝑖𝑗)1≤𝑖,𝑗≤𝑁, (𝑓0𝑖 )1≤𝑖≤𝑁)(0, 𝑥1, … , 𝑥|𝑇|) 𝑑𝑥1 … , 𝑑𝑥|𝑇| = 𝜏(𝑇, (𝑤𝑖𝑗)1≤𝑖,𝑗≤𝑁),

together with its continuum version

∫
ℝ𝑑|𝑇| 𝜏(𝑇, 𝑤, 𝑓)(0, 𝑥1, … , 𝑥|𝑇|) 𝑑𝑥1 … , 𝑑𝑥|𝑇| = 𝜏(𝑇,𝑤),
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MEAN-FIELD LIMIT OF NON-EXCHANGEABLE SYSTEMS 15

where 𝜏(𝑇, (𝑤𝑖𝑗)1≤𝑖,𝑗≤𝑁) is the homomorphism density of the finite tree 𝑇 in the finite graph
(𝑤𝑖𝑗)1≤𝑖,𝑗≤𝑁 , and 𝜏(𝑇, 𝑤) is its continuum version, which are also used in the classical theory
of graphons. In particular, under the above-mentioned convergence of the observables, we also
have 𝜏(𝑇, (𝑤𝑖𝑗)1≤𝑖,𝑗≤𝑁) → 𝜏(𝑇,𝑤) as 𝑁 → ∞ for all finite tree 𝑇. In a first major difference to
graphons though, when 𝑤 ∈ 𝐿∞

𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 is an extended graphons we can only define the

associated observables 𝜏(𝑇, 𝑤, 𝑓) and the homomorphism density 𝜏(𝑇, 𝑤) for trees 𝑇 and not any
arbitrary graph.
A second critical difference is that our notion of observables completely entangles the kernel

with the initial conditions. In particular our main theorem does not provide independent conver-
gence of the extended graphons and the initial data. In other words (see the example below as
well), we could have that for some initial data 𝑓0

𝑖
(𝑥) and some connections 𝑤𝑖𝑗 , one has that

𝜏(𝑇, (𝑤𝑖𝑗)1≤𝑖,𝑗≤𝑁, (𝑓0𝑖 )1≤𝑖≤𝑁) → 𝜏(𝑇,𝑤, 𝑓0) for some limiting 𝑤(𝜉, 𝑑𝜁) and 𝑓0(𝑥, 𝜉). If one then
considers different initial data𝑓0

𝑖
(𝑥) but for the same connections𝑤𝑖𝑗, there is no particular reason

why we would be able to use the same limiting kernel: We may need to derive a different limiting
kernel �̃�(𝜉, 𝑑𝜁) together with a different limiting initial law 𝑓0(𝑥, 𝜉) to maintain the convergence
𝜏(𝑇, (𝑤𝑖𝑗)1≤𝑖,𝑗≤𝑁, (𝑓0𝑖 )1≤𝑖≤𝑁) → 𝜏(𝑇, �̃�, 𝑓0).
While our main theorem ensures that there always exists a limiting representation, it is not

necessarily unique. We can for instance find different kernels𝑤(𝜉, 𝑑𝜁) ≠ �̃�(𝜉, 𝑑𝜁) and initial data
𝑓0(𝑥, 𝜉) ≠ 𝑓0(𝑥, 𝜉) such that 𝜏(𝑇, 𝑤, 𝑓0) = 𝜏(𝑇, �̃�, 𝑓0); see the example below again.
All of this makes the notion of convergence that is developed in the present paper very differ-

ent frommost of mean-field limit results based on graphons or graphon-like objects. Because our
result applies to any connectionswith only the bounds (3)–(4)without any additional convergence
assumptions, it is unclear whether it would even be possible to identify a specific topology on the
connections 𝑤𝑖𝑗 or kernels 𝑤 without mixing them with the initial data. Another fundamental
question is whether our class 𝐿∞

𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 is optimal for detecting the sparse connectivity

and the microscopic inhomogeneity of networks, and again we believe that it will depend on
the properties of the network and its connectivities to be studied. Note our main Theorem 1.1
operates up to the choice of a subsequence, that is, once a suitable subsequence of graphs is a
selected so that the observables 𝜏(𝑇, (𝑤𝑖𝑗)1≤𝑖,𝑗≤𝑁, (𝑓0𝑖 )1≤𝑖≤𝑁) (and therefore the homomorphism
densities 𝜏(𝑇, (𝑤𝑖𝑗)1≤𝑖,𝑗≤𝑁)) converge. Therefore, a natural question is to understand how big
is the set of all possible accumulations points via this procedure. We want to clarify that any
𝑤 ∈ 𝐿∞

𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 can be recovered in this way, which suggests that the class of extended

graphons is optimal for that purpose. More specifically, and as established in Lemma 4.12, for any
𝑤 ∈ 𝐿∞

𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 , there exists 𝑤𝑁 ∈ 𝐿∞

𝜉,𝜁
uniformly bounded in 𝐿∞

𝜉
𝐿1
𝜁
∩ 𝐿∞

𝜁
𝐿1
𝜉
, converging to

𝑤 in 𝐿1
𝜉
𝐻−1
𝜁

∩ 𝐿1
𝜁
𝐻−1
𝜉
. This finding is subsequently utilized in Lemmas 5.3 and 5.4 to establish the

convergence of 𝜏(𝑇, 𝑤𝑁) to 𝜏(𝑇, 𝑤). Certainly, if 𝑤𝑁 is further uniformly bounded in 𝐿∞
𝜉,𝜁

(which
is compatible with weights satisfying the scaling (8)), then 𝜏(𝑇, 𝑤𝑁) → 𝜏(𝑇,𝑤) for some𝑤 ∈ 𝐿∞

𝜉,𝜁
,

thus retrieving the classical result of Lovász–Szegedy [62, 63].
Several other open questions concern the new system of observables that we introduce in (15).

Those are conjectured to naturally extend the notion of marginals, and hierarchy of marginals
to non-exchangeable systems. The structure of the hierarchy of observables (15) remains rather
poorly understood however. A first example is the range of possible functions that one can reach
through (15): What would be the conditions on a sequence 𝛼𝑇(𝑥1, … , 𝑥|𝑇|) indexed by trees 𝑇 so
that we can find 𝑤 ∈ 𝐿∞

𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 and 𝑓 ∈ 𝐿∞(ℝ𝑑 × [0, 1]), such that

𝜏(𝑇, 𝑤, 𝑓) = 𝛼(𝑇), ∀ 𝑇?
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16 JABIN et al.

2.5 Example of convergence

To illustrate those remarks, we discuss in some depth a natural example of connection weights,
based on a sparse graph. Choose 1 ≪ 𝑀 ≪ 𝑁 (with𝑁 multiple of𝑀 for simplicity), and separate
{1, … ,𝑁} into𝑁∕𝑀 subsets 𝐸𝑁1 , … , 𝐸𝑁

𝑁∕𝑀
, with size |𝐸𝑁

𝑘
| = 𝑀 for each 𝑘 ≤ 𝑁∕𝑀. In other words,

we separate our agents into 𝑁∕𝑀 distinct subpopulations.
Introduce further a permutation 𝜙 ∈ 𝑁∕𝑀 which lets us define

𝑤𝑖𝑗 =

{ 1

𝑀
if 𝑖 ∈ 𝐸𝑁

𝑘
and 𝑗 ∈ 𝐸𝑁

𝜙(𝑘)
for some 𝑘,

0, otherwise.

This choice of connection has a very simple interpretation. Agents are divided in 𝑁∕𝑀 distinct
classes or layers 𝐸𝑁

𝑘
, 𝑘 = 1,… ,𝑁∕𝑀. Each agent 𝑖 in a class 𝐸𝑁

𝑘
is connected with exactly𝑀 other

agents that all belong to the class 𝐸𝑁
𝜙(𝑘)

.
We note that the adjacency matrix 𝑤𝑖𝑗 is sparse as we have exactly 𝑁 ⋅ 𝑀 non-zero entries

among a total of 𝑁2. Because 𝑀 is much smaller than 𝑁 this does lead to a sparse graph of
connections. Note also that those connections satisfy (3)–(4) as long as 𝑀 ≫ 1. In particular if
𝑖 ∈ 𝐸𝑁

𝑘

𝑁∑
𝑗=1

|𝑤𝑖𝑗| = ∑
𝑗∈𝐸𝑁

𝜙(𝑘)

1

𝑀
=

|𝐸𝑁
𝜙(𝑘)

|
𝑀

= 1,

and also similarly
∑𝑁

𝑖=1 |𝑤𝑖𝑗| = 1 since𝜙 is a permutation.We also observe that this weights satisfy
the assumptions in [26]. Therefore, if the 𝑋0

𝑖
are initially i.i.d., then we can derive the mean-field

limit to the classical Vlasov equation, that is, we can choose as a limiting kernel𝑤 = 1. This is not
possible in general if the 𝑋0

𝑖
are not i.i.d., and this example will provide an excellent illustration

that the choice of the limiting kernel may have to depend on the initial laws.
Let us introduce the usual graphon representation of 𝑤𝑁

𝑤𝑁(𝜉, 𝜁) =

𝑁∑
𝑖,𝑗=1

𝑁𝑤𝑖𝑗 𝕀[ 𝑖−1
𝑁
,
𝑖

𝑁
)
(𝜉) 𝕀

[
𝑗−1

𝑁
,
𝑗

𝑁
)
(𝜁).

To derive a more explicit formula for𝑤𝑁 , it is useful to have a good labeling of the indices on each
class 𝐸𝑁

𝑘
. Of course, for any 𝑘 = 1,… ,𝑁, we can list the indices in 𝐸𝑁

𝑘
consecutively by

𝐸𝑁
𝑘
= {(𝜎(𝑘) − 1)𝑀 + 1,… , 𝜎(𝑘)𝑀},

where 𝜎 ∈ 𝑁∕𝑀 is some permutation. Introduce now the approximation of the Dirac mass at
scale𝑀∕𝑁,

𝛿𝑀

𝑁

(𝜉) =
𝑁

𝑀
𝕀
𝜉∈[0,

𝑀

𝑁
)
,

and let us extend the discrete permutation 𝜙 to the step function 𝜙𝑁 ∶ [0, 1]⟶ [0, 1] with

𝜙𝑁(𝜉) = (𝜙(𝜎(𝑘)) − 1)
𝑀

𝑁
, if 𝜉 ∈

[
(𝜎(𝑘) − 1)

𝑀

𝑁
, 𝜎(𝑘)

𝑀

𝑁

)
,

 10970312, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22235 by U

niversidad D
e G

ranada, W
iley O

nline L
ibrary on [25/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



MEAN-FIELD LIMIT OF NON-EXCHANGEABLE SYSTEMS 17

for all 𝑘 = 1,… ,
𝑁

𝑀
. We then have the simple expression

𝑤𝑁(𝜉, 𝜁) = 𝛿𝑀

𝑁

(𝜁 − 𝜙𝑁(𝜉)).

Let us note immediately that the classical Lovasz–Szegedy theory based on graphons cannot
apply here. First, we of course have that ‖𝑤𝑁‖𝐿∞ =

𝑁

𝑀
→ ∞. Moreover, we cannot have conver-

gence of 𝑤𝑁 in the cut distance as it is not a Cauchy sequence for this topology. Consider 𝑤𝑁 and
𝑤𝑁′ (with corresponding𝑀 and𝑀′) with 𝑁

𝑀
≫

𝑁′

𝑀′
. Choose 𝜓(𝜉) = 𝕀

𝜉∈[(𝜙(𝜎(1))−1)
𝑀

𝑁
, 𝜙(𝜎(1))

𝑀

𝑁
)
and

note that

∫
1

0

𝑤𝑁(𝜉, 𝜁) 𝜓(𝜁) 𝑑𝜁 =
𝑁

𝑀
𝕀
𝜉∈[(𝜎(1)−1)

𝑀

𝑁
, 𝜎(1)

𝑀

𝑁
)
.

Therefore, we have

‖‖‖‖‖∫
1

0

𝑤𝑁(𝜉, 𝜁) 𝜓(𝜁) 𝑑𝜁
‖‖‖‖‖𝐿1 = 1.

However, using that 𝑤𝑁′ ∈ 𝐿∞
𝜉,𝜁

(and also any rearranged version) we also have

‖‖‖‖∫ 𝑤𝑁′(Φ(𝜉), Φ(𝜁)) 𝜓(𝜁) 𝑑𝜁
‖‖‖‖𝐿1 ≤ ‖𝑤𝑁′‖𝐿∞ ‖𝜓‖𝐿1 = 𝑁′

𝑀′

𝑀

𝑁
,

for any measure-preserving map Φ ∶ [0, 1]⟶ [0, 1]. Altogether implies the control on the cut
distance

inf
Φ

‖𝑤𝑁(𝜉, 𝜁) − 𝑤𝑁′(Φ(𝜉), Φ(𝜁))‖𝐿∞→𝐿1 ≥ 1 −
𝑁′

𝑀′

𝑀

𝑁
,

where the infimimum ranges over all measure-preserving maps of [0, 1]. Of course, since 𝑁

𝑀
≫

𝑁′

𝑀′
, the above lower bound that does not converge to 0 as𝑁′ → ∞. Because𝑤𝑁 is purely determin-

istic, there is also no renormalization that would preserve the dynamics and provide convergence
in the cut distance.
This expression of 𝑤𝑁 of course amounts to a discretization of

�̄�𝑁(𝜉, 𝜁) = 𝛿𝜙𝑁(𝜉)(𝜁),

where we observe that 𝜙𝑁 is a a.e. defined measure-preserving map on [0, 1]. At this point, it
is tempting to conjecture that, after re-indexing such that 𝜙𝑁 is compact and extracting a sub-
sequence such that 𝜙𝑁 → �̄�, the limiting dynamics should follow the limiting kernel �̄�(𝜉, 𝜁) =
𝛿�̄�(𝜉)(𝜁). But this is not correct per se. Instead, in such an example, it is not possible to determine
the limiting kernel without some further information on the laws 𝑓0

𝑖
(𝑥) of the initial positions

𝑋0
𝑖
. To keep this example reasonably simple, we assume that we only have at most𝑁∕𝑀 different

laws 𝑓𝑘 with 𝑘 = 1,… ,
𝑁

𝑀
, and that the 𝑋0

𝑖
are actually i.i.d. for 𝑖 ∈ 𝐸𝑁

𝑘
according to the law 𝑓𝑘(𝑥).

To determine the limiting kernel, our analysis requires to find the limit of every observable
defined in the previous subsection. Let us hence write explicitly some of them. First we perform
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18 JABIN et al.

the obvious graphon extension of the initial law defined by

𝑓𝑁(𝑥, 𝜉) =

𝑁∕𝑀∑
𝑘=1

𝑓𝑘(𝑥) 𝕀𝜉∈[(𝜎(𝑘)−1) 𝑀
𝑁
, 𝜎(𝑘)

𝑀

𝑁
)
.

The first observable, corresponding to the unique tree 𝑇1 ∈ 𝖳1 with just one vertex is simply

𝜏(𝑇1, (𝑤𝑖𝑗)1≤𝑖,𝑗≤𝑁, (𝑓0𝑖 )1≤𝑖≤𝑁) = ∫
1

0

𝑓𝑁(𝑥, 𝜉) 𝑑𝜉 =
𝑀

𝑁

𝑁∕𝑀∑
𝑘=1

𝑓𝑘(𝑥).

One can readily check that the observable for the unique tree 𝑇 ∈ 𝖳2 with two vertices is

𝜏(𝑇2, (𝑤𝑖𝑗)1≤𝑖,𝑗≤𝑁, (𝑓0𝑖 )1≤𝑖≤𝑁) = ∫
1

0

𝑓𝑁(𝑥1, 𝜉) 𝑓𝑁(𝑥2, 𝜙𝑁(𝜉)) 𝑑𝜉.

Other observables are built in a similar manner. We provide below some more examples. For
instance, the tree 𝑇𝑘+1 ∈ 𝖳𝑘+1 with one root and 𝑘 leaves yields

𝜏(𝑇𝑘+1, (𝑤𝑖𝑗)1≤𝑖,𝑗≤𝑁, (𝑓0𝑖 )1≤𝑖≤𝑁) = ∫
1

0

𝑓𝑁(𝑥1, 𝜉)

𝑘∏
𝑖=1

𝑓𝑁(𝑥𝑖+1, 𝜙𝑁(𝜉)) 𝑑𝜉.

The tree 𝑇2𝑘+1 ∈ 𝖳2𝑘+1 with one root connected to 𝑘 vertices, each of them with one leaf, instead
produces the observable

𝜏(𝑇2𝑘+1, (𝑤𝑖𝑗)1≤𝑖,𝑗≤𝑁, (𝑓0𝑖 )1≤𝑖≤𝑁) = ∫
1

0

𝑓𝑁(𝑥1, 𝜉)

𝑘∏
𝑖=1

𝑓𝑁(𝑥2𝑖, 𝜙𝑁(𝜉)) 𝑓𝑁(𝑥2𝑖+1, 𝜙𝑁(𝜙𝑁(𝜉)) 𝑑𝜉.

As one can readily see, a sufficient condition to obtain 𝛿�̄�(𝜉)(𝜁) as a limiting kernel is to have both
𝜙𝑁 converges strongly to �̄� and 𝑓𝑁 converging strongly to some 𝑓. We are allowed to reindex (or
use a measure-preserving map) but it has to be the same map for both. We will in fact obtain later
a lemma that guarantees that this is possible (and in fact up to a countable number of functions).
However, we stress again that the limiting kernel is not unique in general. Hence, even when 𝜙𝑁
and 𝑓𝑁 are jointly compact, wemay have other, different, and simpler acceptable limiting kernels.
A trivial example was mentioned at the beginning of this subsection: if 𝑓𝑁 does not depend on 𝜉
then we may take �̄� = 1.
We expect that the simplest limiting kernel depends on the decomposition in cycles of 𝜙𝑁 and

how 𝑓𝑁 behaves on each cycle. Performing a full analysis is well beyond the scope of this example
though. For this reason, let us further simplify things by assuming that 𝜙 has exactly one cycle of
full length with simply: 𝜙(𝑘) = 𝑘 + 1 for 𝑘 < 𝑁

𝑀
, with 𝜙( 𝑁

𝑀
) = 1. Furthermore, let us assume that

𝜎 = 𝐼𝑑, that dimension 𝑑 = 1 and 𝑓𝑘(𝑥) = 𝑓(𝑥 − 𝑘
𝑀

𝑁
) for some smooth 𝑓. With these choices,

one can check that

𝑓𝑁(𝑥, 𝜉) = 𝑓(𝑥 − [𝜉]𝑁), 𝜙𝑁(𝜉) = [𝜉]𝑁

where [𝜉]𝑁 =
𝑀

𝑁
⌈𝑁
𝑀
𝜉⌉ and ⌈⋅⌉ is the ceiling function. Since 𝑓 is smooth, we have that
𝑓𝑁(𝑥, 𝜉) = 𝑓(𝑥 − 𝜉) + 𝑂

(
𝑀

𝑁

)
, 𝜙𝑁(𝜉) = 𝜉 + 𝑂

(
𝑀

𝑁

)
.
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MEAN-FIELD LIMIT OF NON-EXCHANGEABLE SYSTEMS 19

Hence, it is obvious that the limiting dynamics can be represented by choosing �̄� = 𝛿(𝜉 − 𝜁) and
𝑓(𝑥, 𝜉) = 𝑓(𝑥 − 𝜉). But of course, even here, the representation is not unique: any composition
by a measure-preserving map would still work.
However, we can prove in that special case that the limiting dynamics cannot be represented

by some �̄� ∈ 𝐿∞
𝜉,𝜁
. Assume that there is one such �̄� and 𝑓 such that 𝜏(𝑇, �̄�, 𝑓) = �̄�(𝑇) for all tree

𝑇. To be specific, assume that �̄� obeys the mean-field scaling, that is,

sup
𝜉∈[0, 1]∫

1

0

|�̄�(𝜉, 𝜁)|𝑑𝜁 ≤ 1, sup
𝜁∈[0, 1]∫

1

0

|�̄�(𝜉, 𝜁)|𝑑𝜉 ≤ 1.

Assume moreover that the function

𝑥 ∈ ℝ⟼ ∫
1

0

|𝑓(𝑥 − 𝜉)|2 𝑑𝜉,
does not take only a finitely many values. We can easily calculate the limiting observables for any
tree 𝑇

𝜏(𝑇,𝑤𝑁, 𝑓𝑁) → �̄�(𝑇) ∶= ∫
1

0

|𝑇|∏
𝑖=1

𝑓(𝑥𝑖 − 𝜉) 𝑑𝜉.

This is of course a very remarkable formula as it depends only on |𝑇|.
Consider the tree𝑇3 ∈ 𝖳3 with two leaves attached to its root. Sincewe have ∫ℝ 𝑓(𝑥1, 𝜉1) 𝑑𝑥 = 1

for all 𝜉1 ∈ [0, 1], then we can calculate

∫
ℝ2

𝜏(𝑇3, �̄�, 𝑓)(𝑥1, 𝑥, 𝑥) 𝑑𝑥1 𝑑𝑥 = ∫
ℝ
∫
[0, 1]3

�̄�(𝜉1, 𝜉2) �̄�(𝜉1, 𝜉3) 𝑓(𝑥, 𝜉2) 𝑓(𝑥, 𝜉3) 𝑑𝜉1 𝑑𝜉2 𝑑𝜉3 𝑑𝑥

= ∫
ℝ
∫

1

0

|𝑊(𝑓)(𝑥, 𝜉)|2 𝑑𝑥 𝑑𝜉,
where𝑊 ∶ 𝐿2(ℝ × [0, 1])⟶ 𝐿2(ℝ × [0, 1]) is the linear operator defined by

𝑊(𝑔)(𝑥, 𝜉) ∶= ∫
1

0

�̄�(𝜉, 𝜁) 𝑔(𝑥, 𝜁) 𝑑𝜁.

Consider next the tree 𝑇4 ∈ 𝖳4 where we add one leaf to 𝑇3 connected to one leaf (say node 2) of
𝑇3 (which is then no more a leaf of course). Calculate again,

∫
ℝ3

𝜏(𝑇4, �̄�, 𝑓)(𝑥1, 𝑥2, 𝑥, 𝑥) 𝑑𝑥1 𝑑𝑥2 𝑑𝑥

= ∫
ℝ
∫
[0, 1]4

�̄�(𝜉1, 𝜉2) �̄�(𝜉2, 𝜉4) �̄�(𝜉1, 𝜉3) 𝑓(𝑥, 𝜉3) 𝑓(𝑥, 𝜉4) 𝑑𝜉1 𝑑𝜉2 𝑑𝜉3 𝑑𝜉4 𝑑𝑥

= ∫
ℝ
∫

1

0

𝑊(𝑓)(𝑥, 𝜉)𝑊2(𝑓)(𝑥, 𝜉) 𝑑𝑥 𝑑𝜉.
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20 JABIN et al.

Now observe that by the above shape 𝜏(𝑇, �̄�, 𝑓) = �̄�(𝑇) of the limiting observables, we have

∫
ℝ3

𝜏(𝑇4, �̄�, 𝑓)(𝑥1, 𝑥2, 𝑥, 𝑥) 𝑑𝑥1 𝑑𝑥2 𝑑𝑥 = ∫
ℝ

�̄�(𝑇3)(𝑥1, 𝑥, 𝑥) 𝑑𝑥1 𝑑𝑥,

that is,

∫
ℝ
∫

1

0

𝑊(𝑓)(𝑥, 𝜉)𝑊2(𝑓)(𝑥, 𝜉) 𝑑𝑥 𝑑𝜉 = ∫
ℝ
∫

1

0

|𝑊(𝑓)(𝑥, 𝜉)|2 𝑑𝑥 𝑑𝜉.
Note that thanks to the mean-field scaling on �̄�, we have

∫
ℝ
∫

1

0

|𝑊2(𝑓)(𝑥, 𝜉)|2 𝑑𝑥 𝑑𝜉 ≤ ∫
ℝ
∫

1

0

|𝑊(𝑓)(𝑥, 𝜉)|2 𝑑𝑥 𝑑𝜉,
since we have that by Cauchy–Schwartz

|𝑊2(𝑓)(𝑥, 𝜉)|2 = (
∫

1

0

�̄�(𝜉, 𝜁)𝑊(𝑓)(𝑥, 𝜉) 𝑑𝜁

)2

≤ ∫
1

0

�̄�(𝜉, 𝜁) 𝑑𝜁 ∫
1

0

�̄�(𝜉, 𝜁) |𝑊(𝑓)(𝑥, 𝜁)|2 𝑑𝜁
≤ ∫

1

0

�̄�(𝜉, 𝜁) |𝑊(𝑓)(𝑥, 𝜁)|2 𝑑𝜁,
from the mean-field scaling. Therefore as claimed,

∫
ℝ
∫

1

0

|𝑊2(𝑓)(𝑥, 𝜉)|2 𝑑𝑥 𝑑𝜉 ≤ ∫
ℝ
∫

1

0
∫

1

0

�̄�(𝜉, 𝜁) |𝑊(𝑓)(𝑥, 𝜁)|2 𝑑𝑥 𝑑𝜉 𝑑𝜁
≤ ∫

ℝ
∫

1

0

|𝑊(𝑓)(𝑥, 𝜁)|2 𝑑𝑥 𝑑𝜁,
still from the mean-field scaling.
This equality, together with another Cauchy–Schwartz inequality, lead to

∫
ℝ
∫

1

0

𝑊(𝑓)(𝑥, 𝜉)𝑊2(𝑓)(𝑥, 𝜉) 𝑑𝑥 𝑑𝜉

≤ ‖𝑊(𝑓)‖𝐿2‖𝑊2(𝑓)‖𝐿2 ≤ ‖𝑊(𝑓)‖2
𝐿2
= ∫

ℝ
∫

1

0

|𝑊(𝑓)(𝑥, 𝜉)|2 𝑑𝑥 𝑑𝜉.
The identity above corresponds to equality in the Cauchy–Schwartz inequality, which implies that
𝑊(𝑓) and𝑊2(𝑓)must be linearly dependent: there must exist 𝜆 ∈ ℝ such that𝑊2(𝑓) = 𝜆𝑊(𝑓).
Furthermore the last inequality above also implies that 𝜆 = 1.
Once this is proved, we can keep adding leaves and with the same method, we can prove that

𝑊(𝑓)𝑘(𝑥, 𝜉) = 𝑊(𝑊(𝑓)𝑘)(𝑥, 𝜉) = ∫
1

0

�̄�(𝜉, 𝜁)𝑊(𝑓)𝑘(𝑥, 𝜁) 𝑑𝜁.
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MEAN-FIELD LIMIT OF NON-EXCHANGEABLE SYSTEMS 21

The density of polynomials in continuous functions shows that in fact

𝜒(𝑊(𝑓)(𝑥, 𝜉)) = 𝑊(𝜒(𝑊(𝑓)))(𝑥, 𝜉) = ∫
1

0

�̄�(𝜉, 𝜁) 𝜒(𝑊(𝑓)(𝑥, 𝜁)) 𝑑𝜁,

for any continuous function 𝜒.
This unique fact implies an extremely simple structure on𝑊(𝑓) and �̄� if �̄� ∈ 𝐿∞

𝜉,𝜁
. It is straight-

forward to show that𝑊(𝑓) can only take a finite number of values: there exists level sets 𝐿𝑘 such
that

𝑊(𝑓)(𝑥, 𝜉) =

𝐾∑
𝑘=1

𝛼𝑘 𝕀(𝑥,𝜉)∈𝐿𝑘 .

Moreover �̄� needs to be decomposed along, because we must have for all 𝑥 and 𝜉 that

𝕀(𝑥,𝜉)∈𝐿𝑘 = ∫
1

0

�̄�(𝜉, 𝜁) 𝕀(𝑥,𝜁)∈𝐿𝑘 𝑑𝜁. (16)

Indeed, assume by contradiction that 𝑊(𝑓) takes infinitely many values. By taking appropriate
functions 𝜒, this implies that we have an infinite number (at least countable) of sets 𝐿𝑘 such that
for every 𝑘

𝕀(𝑥,𝜉)∈𝐿𝑘 = ∫
1

0

�̄�(𝜉, 𝜁) 𝕀(𝑥,𝜁)∈𝐿𝑘 𝑑𝜁.

However for any fixed 𝑥, we can only have a limited number of 𝐿𝑘 such that there exists 𝜉 with
(𝑥, 𝜉) ∈ 𝐿𝑘. Denote by �̄�𝑘(𝑥) the corresponding section: �̄�𝑘(𝑥) = {𝜉, (𝑥, 𝜉) ∈ 𝐿𝑘}. Observe that

∫
1

0

�̄�(𝜉, 𝜁) 𝕀(𝑥,𝜁)∈𝐿𝑘 𝑑𝜁 ≤ ‖�̄�‖𝐿∞ |�̄�𝑘(𝑥)|.
Therefore, if |�̄�𝑘(𝑥)| > 0, then we need to have that |�̄�𝑘(𝑥)| ≥ ‖�̄�‖−1𝐿∞ so that at most ‖�̄�‖−1𝐿∞ num-
ber of �̄�𝑘 sets can be of positive measure. Since we are on a compact support, a straightforward
covering lemma then shows that we cannot have an infinite number of 𝐿𝑘 sets.
Observe that, in addition, we have that

∫
ℝ
∫

1

0

𝑊∗(𝑊(𝑓))(𝑥, 𝜉)𝑊(𝑓)(𝑥, 𝜉) 𝑑𝑥 𝑑𝜉 = ∫
ℝ
∫

1

0

𝑊(𝑓)(𝑥, 𝜉)𝑊2(𝑓)(𝑥, 𝜉) 𝑑𝑥 𝑑𝜉,

with𝑊∗ defined by the formal adjoint

𝑊∗(𝑔)(𝑥, 𝜉) ∶= ∫
1

0

�̄�(𝜁, 𝜉) 𝑔(𝑥, 𝜁) 𝑑𝜁.

We hence have from the argument above that

∫
ℝ
∫

1

0

𝑊∗(𝑊(𝑓))(𝑥, 𝜉)𝑊(𝑓)(𝑥, 𝜉) 𝑑𝑥 𝑑𝜉 = ∫
ℝ
∫

1

0

|𝑊(𝑓)(𝑥, 𝜉)|2 𝑑𝑥 𝑑𝜉.
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22 JABIN et al.

Again the same mean-field scaling implies that

∫
ℝ
∫

1

0

|𝑊∗(𝑊(𝑓))(𝑥, 𝜉)|2 𝑑𝑥 𝑑𝜉 ≤ ∫
ℝ
∫

1

0

|𝑊(𝑓)(𝑥, 𝜉)|2 𝑑𝑥 𝑑𝜉,
so we again have a case of equality in Cauchy–Schwartz and that proves that𝑊∗(𝑊(𝑓)) = 𝑊(𝑓),
or

𝕀(𝑥,𝜉)∈𝐿𝑘 = ∫
1

0

�̄�(𝜁, 𝜉) 𝕀(𝑥,𝜁)∈𝐿𝑘 𝑑𝜁. (17)

Of course, this shows that the mean-field scaling also has to be an equality

∫
1

0

�̄�(𝜉, 𝜁) 𝑑𝜁 = 1, ∫
1

0

�̄�(𝜉, 𝜁) 𝑑𝜉 = 1.

For any 𝑥, we recall that �̄�𝑘(𝑥) is the corresponding section: �̄�𝑘(𝑥) = {𝜉, (𝑥, 𝜉) ∈ 𝐿𝑘}. The iden-
tities (16)–(17) imply that if 𝜉 ∈ �̄�𝑘(𝑥) then supp �̄�(𝜉, ⋅) ⊂ �̄�𝑘(𝑥) and reciprocally supp �̄�(., 𝜁) ⊂
�̄�𝑘(𝑥) if 𝜁 ∈ �̄�𝑘(𝑥).
This has some surprising consequences on the structure of the �̄�𝑘(𝑥). For example, if 𝑀 =

�̄�𝑙(𝑦) ⧵ �̄�𝑘(𝑥), then for each 𝜉 ∈ 𝑀, since 𝜉 ∈ �̄�𝑙(𝑦) but 𝜉 ∉ �̄�𝑘(𝑥)

∫
1

0

�̄�(𝜉, 𝜁) 𝕀𝜁∈𝑀 𝑑𝜁 = ∫
1

0

�̄�(𝜉, 𝜁) 𝕀𝜁∈�̄�𝑙(𝑦) 𝑑𝜁 − ∫
1

0

�̄�(𝜉, 𝜁) 𝕀𝜁∈�̄�−𝑙(𝑦)∩�̄�𝑘(𝑥) 𝑑𝜁 = 1 − 0 = 1.

Because �̄� ∈ 𝐿∞
𝜉,𝜁
, a similar calculation as for proving that there is a finite number of level sets

implies that, if �̄�𝑙(𝑦) ∩ �̄�𝑘(𝑥) ≠ ∅

|�̄�𝑙(𝑦) ⧵ �̄�𝑘(𝑥)| ≥ 1‖�̄�‖𝐿∞ ,
and of course, individually, we have also for any 𝑥 and 𝑘 that

|�̄�𝑘(𝑥)| ≥ 1‖�̄�‖𝐿∞ .
Because the measure of [0, 1] is finite, we can deduce that we can only have a finite number
of different �̄�𝑘(𝑥): there exists 𝑀1,… ,𝑀𝐿 ⊂ [0, 1] such that for any 𝑥 and 𝑘, there exists 𝑙 with
�̄�𝑘(𝑥) = 𝑀𝑙. This is a variant of the famous Vitali’s covering lemma.
Note that for example

∫
1

0

|𝑊(𝑓)(𝑥, 𝜉)|2 𝑑𝜉 = 𝐾∑
𝑘=1

𝛼2
𝑘
|�̄�𝑘(𝑥)|.

Since �̄�𝑘(𝑥) has only a finite number of possibilities, this finally implies that the integral above
can only take a finite number of values. But this integral is derived from 𝜏(𝑇3, �̄�, 𝑓) and it has to
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MEAN-FIELD LIMIT OF NON-EXCHANGEABLE SYSTEMS 23

be equal to the corresponding quantity derived from �̄�(𝑇3) which is

∫
1

0

|𝑓(𝑥 − 𝜉)|2 𝑑𝜉.
This provides the contradiction sincewe assumed that the above quantity takes an infinite number
of values as a function in 𝑥.
This example shows that it can be very complicated to determine what are the possible limiting

kernels even knowing explicitly the limiting observables (and even with simple formulas such as
here). One major issue is that we have much less observables than for classical graphon theory
where one can work with homomorphism densities 𝜏(𝐺,𝑤𝑁) for any graph 𝐺 and not only trees.
This means that several additional transforms can leave the observables invariant. As a matter

of fact, one can for example change �̄�(𝜉, 𝜁) into �̄�(Φ(𝜉), Φ(𝜁)) and 𝑓(𝑥, 𝜉) into 𝑓(𝑥, Φ(𝜉)) 𝐽(𝜉),
where 𝐽 is the Jacobian of the transform Φ. In particular, we are not necessarily limited here to
measure-preserving transformsΦ. This can lead to all sort of complicated phenomena, where it is
sometimes possible to “split” Dirac masses for instance. It is one of the reasons why the analysis
above is so intricate in spite of the simplicity of the choices.

2.6 Sketch of the proof

We briefly explain here some of the main ideas and steps that are used in the proof of the main
Theorem 1.1.
⋄ Step 1: Propagation of independence.
This is done in Section 3 by introducing the independent system of coupled PDEs (20), restated

here

⎧⎪⎨⎪⎩
𝜕𝑡𝑓𝑖 + div𝑥

(
𝑓𝑖(𝑡, 𝑥)

𝑁∑
𝑗=1

𝑤𝑖𝑗 ∫
ℝ𝑑

𝐾(𝑥 − 𝑦) 𝑓𝑗(𝑡, 𝑑𝑦)

)
= 0,

𝑓𝑖(𝑡 = 0) = 𝑓0
𝑖
,

(18)

and it proves (cf. Proposition 3.2) that 𝑓𝑖(𝑡, 𝑥) are correct approximations for the law of𝑋𝑖(𝑡) under
the assumption (4). Asmentioned earlier, this relies on a straightforward extension to the classical
trajectorial methods for mean-field limits, see [88].
For general connectivities 𝑤𝑖𝑗 , this is only the very beginning as it does not allow directly

obtaining the limit of the corresponding 1-particle distribution given by

1

𝑁

𝑁∑
𝑖=1

𝑓𝑖(𝑡, 𝑥).

The one exception concerns the special case where
∑𝑁

𝑗=1 𝑤𝑖𝑗 = �̄� is independent of 𝑖. If moreover
all 𝑓0

𝑖
are equal to 𝑓0, then it can be seen that 𝑓𝑖 = 𝑓 solves (18) provided that 𝑓 is a solution to

the classical mean-field limit.
⋄ Step 2: Introducing extended graphons.
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24 JABIN et al.

The next step in our proof is to define our extended empirical graphons for a fixed 𝑁, which is
still done through the equivalent of formula (9), namely

𝑤𝑁(𝜉, 𝜁) =

𝑁∑
𝑖,𝑗=1

𝑁𝑤𝑖𝑗 𝕀[ 𝑖−1
𝑁
,
𝑖

𝑁
)
(𝜉) 𝕀

[
𝑗−1

𝑁
,
𝑗

𝑁
)
(𝜁),

𝑓𝑁(𝑡, 𝑥, 𝜉) =

𝑁∑
𝑖=1

𝑓𝑖(𝑡, 𝑥) 𝕀[ 𝑖−1
𝑁

𝑖

𝑁
)
(𝜉).

It is straightforward to check that, since the 𝑓𝑖 solve (18), then 𝑤𝑁 and 𝑓𝑁 solve the limiting
equation (5), namely we have

𝜕𝑡𝑓𝑁(𝑡, 𝑥, 𝜉) + div𝑥

(
𝑓𝑁(𝑡, 𝑥, 𝜉) ∫

1

0

𝑤𝑁(𝜉, 𝜁)∫
ℝ𝑑

𝐾(𝑥 − 𝑦) 𝑓𝑁(𝑡, 𝑦, 𝜁) 𝑑𝑦 𝑑𝜁

)
= 0.

This is performed at the beginning of Section 4 together with the study of some basic proper-
ties of our extended graphons under the only scaling 𝑤𝑁 ∈ 𝐿∞

𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 , which include the

aforementioned ‖‖‖‖‖∫
1

0

𝜙(𝜁)𝑤(𝜉, 𝑑𝜁)
‖‖‖‖‖𝐿∞

𝜉

≤ ‖𝑤‖𝐿∞
𝜉
𝜁∩𝐿

∞
𝜁
𝜉

‖𝜙‖𝐿∞.
For a fixed 𝑤 ∈ 𝐿∞

𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 , this allows for example obtaining the existence and unique-

ness of a solution 𝑓 ∈ 𝐿∞([0, 𝑇] × [0, 1], 𝑊1,∞(ℝ𝑑)) to (5), see Proposition 4.11. However, we are
unfortunately incapable of passing to the limit directly in the above equation for 𝑓𝑁 to derive (5).
Themain obstruction is the lack of compactness in 𝜉 on𝑓𝑁 combinedwith the veryweak topology
in 𝐿∞

𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 .

⋄ Step 3: Introducing and studying the new observables.
The latter difficulty is what leads to the introduction of the observables, that can be defined at

any time 𝑡 through the formula (15) that we repeat here,

𝜏(𝑇, 𝑤𝑁, 𝑓𝑁)(𝑡, 𝑥1, … , 𝑥|𝑇|) = ∫
[0, 1]|𝑇|

∏
(𝑘,𝑙)∈𝐸(𝑇)

𝑤𝑁(𝜉𝑘, 𝜉𝑙)
∏

𝑚∈𝑉(𝑇)

𝑓𝑁(𝑡, 𝑥𝑚, 𝜉𝑚) 𝑑𝜉1 …𝑑𝜉|𝑇|.
Those observables include the 1-particle distribution which simply corresponds to choosing the
tree 𝑇 = 𝑇1 with only one vertex:

𝜏(𝑇1, 𝑤𝑁, 𝑓𝑁)(𝑡, 𝑥) =
1

𝑁

𝑁∑
𝑖=1

𝑓𝑖(𝑡, 𝑥).

The fact that the 𝜏(𝑇, 𝑤𝑁, 𝑓𝑁) are well defined follows from the basic analysis of our extended
graphons in the previous point.
A critical point is that those observables solve an independent hierarchy of equations, which

reads

𝜕𝑡𝜏(𝑇, 𝑤𝑁, 𝑓𝑁) +

|𝑇|∑
𝑖=1

div𝑥𝑖

(
∫
ℝ𝑑

𝐾(𝑥𝑖 − 𝑧) 𝜏(𝑇 + 𝑖, 𝑤𝑁, 𝑓𝑁)(𝑡, 𝑥1, … , 𝑥|𝑇|, 𝑧) 𝑑𝑧
)
= 0,
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MEAN-FIELD LIMIT OF NON-EXCHANGEABLE SYSTEMS 25

where 𝑇 + 𝑖 denotes the tree obtained from 𝑇 by adding a leaf on the 𝑖-th vertex.
It turns out that we can pass to the limit in the above hierarchy and even obtain the uniqueness

of solutions upon appropriate assumptions on the 𝜏(𝑇, 𝑤𝑁, 𝑓𝑁) as per Theorem 4.23. The analysis
is performed in the second part of Section 4 and is one of the major contribution of the paper.
Independently to the proof in this paper, we mention the very recent [58] that obtains unique-

ness on the classical exchangeable BBGKY or Vlasov hierarchies. The basic idea in that proof
is reminiscent of the strategy that we develop here for Theorem 4.23, even if [58] uses relative
entropies while we base our estimates on 𝐿2 bounds.
⋄ Step 4: Identifying the limit.
Theorem 4.23 allows passing to the limit in all 𝜏(𝑇, 𝑤𝑁, 𝑓𝑁), after extracting a sub-sequence, to

some hierarchy of ℎ𝑇 . It remains to identify the ℎ𝑇 by finding 𝑤 and 𝑓0 such that if 𝑓 solves the
limiting equation (5) with 𝑤 and 𝑓0 as initial data then we have the representation

𝜏(𝑇, 𝑤, 𝑓) = ℎ𝑇.

This is done in Section 5 in Theorem 5.1 and relies on a modified regularity lemma for graphons
stated in Lemma. 5.7. This also requires the definition of the 𝜏(𝑇, 𝑤, 𝑓) in general with only 𝑓 ∈

𝐿∞([0, 𝑇] × [0, 1], 𝑊1,∞(ℝ𝑑)) and 𝑤 ∈ 𝐿∞
𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 , which is based on an abstract algebra

that encompasses the sequence of operations on the tree that are performed to produce 𝜏(𝑇, 𝑤, 𝑓).
Putting all estimates together finally allows to conclude.
As one can see, this does not prove the convergence of 𝑓𝑁 to 𝑓 in any direct sense. Instead it

only shows the convergence of all 𝜏(𝑇, 𝑤𝑁, 𝑓𝑁) to the 𝜏(𝑇, 𝑤, 𝑓). It implies the claimed result by
taking 𝑇 = 𝑇1 the trivial tree with only one node and no edge, which in particular yields

∫
1

0

𝑓𝑁(𝑡, 𝑥, 𝜉) 𝑑𝜉 =
1

𝑁

𝑁∑
𝑖=1

𝑓𝑖(𝑡, 𝑥) → ∫
1

0

𝑓(𝑡, 𝑥, 𝜉) 𝑑𝜉.

3 A GENERALIZEDMcKean SDE AND PROPAGATION OF
INDEPENDENCE

The aim of this section is to show that independence of events is propagated in our system (1) in an
appropriate sense. It will be the equivalent of the aforementioned classical concept of propagation
of chaos (for uniformweights𝑤𝑖𝑗 =

1

𝑁
), but it is not and it requires a careful extension of the usual

arguments. To that end,we shall propose an extension of the classical [88]McKean SDE associated
with the particles system to our current case with non-uniform weights.

Lemma 3.1 (McKean SDE). Consider the nonlinear system of SDE for (�̄�1, … , �̄�𝑁) given by

⎧⎪⎨⎪⎩
𝑑�̄�𝑖
𝑑𝑡

=

𝑁∑
𝑗=1

𝑤𝑖𝑗 ∫
ℝ𝑑

𝐾(�̄�𝑖 − 𝑦)𝑓𝑗(𝑡, 𝑑𝑦),

�̄�𝑖(𝑡 = 0) = �̄�0
𝑖
,

(19)

where 𝐾 ∈ 𝑊1,∞ and we denote 𝑓𝑖(𝑡, ⋅) = Law(�̄�𝑖(𝑡)). Then, for any random initial data
(�̄�0

1 , … , �̄�0
𝑁) such that 𝔼[|�̄�0

𝑖
|] < ∞ there is existence and uniqueness, trajectorial and in law of

solutions of (19). In addition, if �̄�0
𝑖
are independent then �̄�𝑖(𝑡) are also independent for each 𝑡 ∈ ℝ+.
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26 JABIN et al.

The proof is an elementary extension of the classical case with uniform weights, see [88, Theo-
rem 1.1]. We notice that the independence of initial data is crucial in the previous result. However,
�̄�0
𝑖
are not necessarily identically distributed, although we could have also assumed so. Unfortu-

nately, notice that the presence of non-uniform weights makes particles non-exchangeable and
there is a rupture of symmetry. Thus, the necessity for the use of the different laws 𝑓𝑗 in the SDE
is justified. This was not the case for uniformweights, where symmetry is propagated and for each
�̄�𝑖 the McKean SDE can be closed in terms of its law 𝑓𝑖 itself.

Proposition 3.2 (Propagation of independence). Let (𝑋1, … , 𝑋𝑁) be solution to (1) with 𝐾 ∈ 𝑊1,∞

and consider the associated laws 𝑓𝑖(𝑡, ⋅) = Law(𝑋𝑖(𝑡)). Assume that 𝑋0
𝑖
are independent random

variables such that 𝔼[|𝑋0
𝑖
|2] < ∞, and the following uniform estimates hold

sup
1≤𝑖≤𝑁

√
𝔼|𝑋0

𝑖
|2 ≤ 𝑀, sup

1≤𝑖≤𝑁
𝑁∑
𝑗=1

|𝑤𝑖𝑗| ≤ 𝐶,

for every𝑁 ∈ ℕ and appropriate𝑀,𝐶 ∈ ℝ+. Consider the solution 𝑓𝑖 to the coupled PDE system

⎧⎪⎨⎪⎩
𝜕𝑡𝑓𝑖 + div𝑥

(
𝑓𝑖(𝑡, 𝑥)

𝑁∑
𝑗=1

𝑤𝑖𝑗 ∫
ℝ𝑑

𝐾(𝑥 − 𝑦) 𝑓𝑗(𝑡, 𝑑𝑦)

)
= 0,

𝑓𝑖(0, 𝑥) = 𝑓𝑖(0, 𝑥).

(20)

Then, the following estimate holds

sup
1≤𝑖≤𝑁𝑊1(𝑓𝑖(𝑡, ⋅), 𝑓𝑖(𝑡, ⋅)) ≤ 𝐶1(𝑡) sup

1≤𝑖,𝑗≤𝑁 |𝑤𝑖𝑗|1∕2, (21)

for every 𝑡 ∈ ℝ+, where 𝑊1 is the 1-Wasserstein distance. We also have a direct control on the
empirical measure of the system, namely

𝔼𝑊1

(
1

𝑁

𝑁∑
𝑖=1

𝛿𝑋𝑖(𝑡),
1

𝑁

𝑁∑
𝑖=1

𝑓𝑖(𝑡, ⋅)

)
≤ �̃� 𝐶2(𝑡)

𝑁𝜃
+ 𝐶1(𝑡) sup

1≤𝑖,𝑗≤𝑁 |𝑤𝑖𝑗|1∕2, (22)

for every 𝑡 ∈ ℝ+ and appropriate constants �̃�, 𝜃 > 0 depending only on the dimension 𝑑. In addition,
𝐶1(𝑡) and 𝐶2(𝑡) depend on𝑀,𝐶, ‖𝐾‖𝑊1,∞ and 𝑡, and they can be made explicit by

𝐶1(𝑡) ∶=

√
2

𝐶
(𝑒2𝐶 𝑡 ‖𝐾‖𝑊1,∞ − 1),

𝐶2(𝑡) ∶= (2𝑀2 + 2𝐶2‖𝐾‖𝐿∞𝑡2)1∕2.
We notice that if weights relax uniformly to zero, that is, lim𝑁→∞ sup1≤𝑖,𝑗,≤𝑁 |𝑤𝑖𝑗|1∕2 = 0, then

the above estimate (21) guarantees that the creation of correlation between particles of system
(1) is weak and relax to zero as 𝑁 → ∞. Indeed, the relaxation rate extends the usual 𝑁−1∕2 of
the classical propagation of chaos for uniformweights𝑤𝑖𝑗 =

1

𝑁
, and the laws 𝑓𝑖 of each particle is

approximated by the independent laws 𝑓𝑖 in theMcKean SDE (19) in themean field limit𝑁 → ∞,
see [88, Theorem 1.4].
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MEAN-FIELD LIMIT OF NON-EXCHANGEABLE SYSTEMS 27

Proof. Let (�̄�1, … , �̄�𝑁) be the unique solution to (19) with initial data �̄�0
𝑖
= 𝑋0

𝑖
, according to

Lemma 3.1. We note first that we can simply propagate the second moments,

𝔼|𝑋𝑖|2 ≤ 𝔼(|𝑋0
𝑖
| + 𝐶 ‖𝐾‖𝐿∞ 𝑡)2 ≤ 𝐶2(𝑡)

2.

In addition, let us denote the laws 𝑓𝑖(𝑡, ⋅) = Law(�̄�𝑖(𝑡)) and consider the sub-𝜎-algebras generated
by �̄�𝑖 , that is, 𝑖(𝑡) = 𝜎(�̄�𝑖(𝑡)), for each 𝑡 ∈ ℝ+ and 𝑖 = 1, … ,𝑁. Since the variables �̄�𝑖 and �̄�𝑗 are
independent by Lemma 3.1, for any 𝑗 = 1,… ,𝑁 with 𝑗 ≠ 𝑖, then we have

∫
ℝ𝑑

𝐾(�̄�𝑖 − 𝑦) 𝑓𝑗(𝑡, 𝑑𝑦) = 𝔼𝑖[𝐾(�̄�𝑖 − �̄�𝑗)],

where 𝔼𝑖 = 𝔼𝑖[ ⋅ |𝑖(𝑡)] denotes the conditional expectation given 𝑖(𝑡). Therefore, taking the
difference in Equations (1) and (19) we obtain the SDE

𝑑

𝑑𝑡
(𝑋𝑖 − �̄�𝑖) =

𝑁∑
𝑗=1

𝑤𝑖𝑗 (𝐾(𝑋𝑖 − 𝑋𝑗) − 𝔼𝑖[𝐾(�̄�𝑖 − �̄�𝑗)])

=

𝑁∑
𝑗=1

𝑤𝑖𝑗 (𝐾(𝑋𝑖 − 𝑋𝑗) − 𝐾(�̄�𝑖 − �̄�𝑗)) +

𝑁∑
𝑗=1

𝑤𝑖𝑗 (𝐾(�̄�𝑖 − �̄�𝑗) − 𝔼𝑖[𝐾(�̄�𝑖 − �̄�𝑗)]),

for every 𝑡 ∈ ℝ+. Hence, taking total expectation and using the Lipschitz continuity of𝐾 we have
that

𝑑

𝑑𝑡
𝔼 |𝑋𝑖 − �̄�𝑖| ≤ 2𝐶[𝐾]Lip sup

1≤𝑗≤𝑁 𝔼 |𝑋𝑗 − �̄�𝑗| + 𝔼

[||||||
𝑁∑
𝑗=1

𝑤𝑖𝑗 (𝐾(�̄�𝑖 − �̄�𝑗) − 𝔼𝑖[𝐾(�̄�𝑖 − �̄�𝑗)])

||||||
]
.

(23)
We remark that all the expectations are finite by the assumption on 𝑋0

𝑖
. Our goal now is to derive

a bound from (23). Notice that the key point is to control the relaxation of the second term of
the right hand side as 𝑁 → ∞ in terms of weights 𝑤𝑖𝑗 . Such a step is reminiscent of the classical
propagation of chaoswith uniformweights𝑤𝑖𝑗 =

1

𝑁
, see [88, Theorem 1.4]. However, the presence

of non-uniform weights makes the argument more subtle. By Jensen’s inequality we shall control
the second order moment instead. Indeed, expanding the square we obtain that

𝔼
⎡⎢⎢⎣
||||||
𝑁∑
𝑗=1

𝑤𝑖𝑗(𝐾(�̄�𝑖 − �̄�𝑗) − 𝔼𝑖[𝐾(�̄�𝑖 − �̄�𝑗)])

||||||
2⎤⎥⎥⎦

=

𝑁∑
𝑗,𝑘=1

𝑤𝑖𝑗 𝑤𝑖𝑘 𝔼

[
(𝐾(�̄�𝑖 − �̄�𝑗) − 𝔼𝑖[𝐾(�̄�𝑖 − �̄�𝑗)]) ⋅ (𝐾(�̄�𝑖 − �̄�𝑘) − 𝔼𝑖[𝐾(�̄�𝑖 − �̄�𝑘)])

]
.

Since 𝐾(0) = 0, then only the terms with 𝑗 ≠ 𝑖 and 𝑘 ≠ 𝑖 persist in the above sum. We shall
prove that all the terms with 𝑗 ≠ 𝑘 also disappear. This will be a consequence of the statistical
independence of �̄�𝑖 . Indeed, take 𝑗 ≠ 𝑘 in the sum and notice that (�̄�𝑖, �̄�𝑗, �̄�𝑘) are independent.
Therefore,
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28 JABIN et al.

𝔼

[
(𝐾(�̄�𝑖 − �̄�𝑗) − 𝔼𝑖[𝐾(�̄�𝑖 − �̄�𝑗)]) ⋅ (𝐾(�̄�𝑖 − �̄�𝑘) − 𝔼𝑖[𝐾(�̄�𝑖 − �̄�𝑘)])

]
= 𝔼

{
𝔼𝑖

[
(𝐾(�̄�𝑖 − �̄�𝑗) − 𝔼𝑖[𝐾(�̄�𝑖 − �̄�𝑗)])

]
𝔼𝑖

[
(𝐾(�̄�𝑖 − �̄�𝑘) − 𝔼𝑖[𝐾(�̄�𝑖 − �̄�𝑘)])

]}
= 0.

Here, we have used again the law of total expectation 𝔼 = 𝔼𝔼𝑖 and the fact that the ran-
dom variables 𝐾(�̄�𝑖 − �̄�𝑗) − 𝔼𝑖[𝐾(�̄�𝑖 − �̄�𝑗)] and 𝐾(�̄�𝑖 − �̄�𝑘) − 𝔼𝑖[𝐾(�̄�𝑖 − �̄�𝑘)] are conditionally
independent given 𝑖 . This means that only the terms 𝑗 = 𝑘 persist in the sum and

𝔼
⎡⎢⎢⎣
||||||
𝑁∑
𝑗=1

𝑤𝑖𝑗 (𝐾(�̄�𝑖 − �̄�𝑗) − 𝔼𝑖[𝐾(�̄�𝑖 − �̄�𝑗)])

||||||
2⎤⎥⎥⎦ = 2

𝑁∑
𝑗=1

𝑤2
𝑖𝑗
|𝐾(�̄�𝑖 − �̄�𝑗) − 𝔼𝑖[𝐾(�̄�𝑖 − �̄�𝑗)]|2

≤ 8𝐶 ‖𝐾‖2𝐿∞ sup
1≤𝑗≤𝑁 |𝑤𝑖𝑗|,

for each 𝑖 = 1, … ,𝑁 and 𝑡 ∈ ℝ+. Finally, putting everything together into (23), using Grönwall’s
inequality and noting that𝔼[|𝑋𝑖(0) − �̄�𝑖(0)|] = 0 (by definition), we obtain the following estimate

sup
1≤𝑖≤𝑁 𝔼 |𝑋𝑖 − �̄�𝑖| ≤ 𝐶1(𝑡) sup

1≤𝑖,𝑗≤𝑁 |𝑤𝑖𝑗|1∕2,
for every 𝑡 ∈ ℝ+.
To conclude the proof, it only remains to check that 𝑓𝑖 = Law(�̄�𝑖) are precisely the solution to

the PDE system (20), and that the above error estimate for the processes implies the correspond-
ing 𝑊1 error bounds (21) and (22) for the laws. Let us assume the former and let us prove the
later first. Since 𝑓𝑖(𝑡, ⋅) = Law(�̄�𝑖(𝑡)), this directly implies (21), since

𝑊1(𝑓𝑖(𝑡, ⋅), 𝑓𝑖(𝑡, ⋅)) = sup‖∇𝜙‖𝐿∞≤1∫ℝ𝑑

𝜙(𝑥) (𝑓𝑖 − 𝑓𝑖)(𝑡, 𝑑𝑥)

= sup‖∇𝜙‖𝐿∞≤1
𝔼[𝜙(𝑋𝑖(𝑡)) − 𝜙(�̄�𝑖(𝑡))] ≤ 𝔼 |𝑋𝑖(𝑡) − �̄�𝑖(𝑡)|.

Similarly, denoting the two empirical measures

𝜇𝑁(𝑡, 𝑑𝑥) ∶=
1

𝑁

𝑁∑
𝑖=1

𝛿𝑋𝑖(𝑡)(𝑑𝑥), �̄�𝑁(𝑡, 𝑑𝑥) ∶=
1

𝑁

𝑁∑
𝑖=1

𝛿�̄�𝑖(𝑡)(𝑑𝑥),

we have that

𝔼𝑊1(𝜇𝑁(𝑡, ⋅), �̄�𝑁(𝑡, ⋅)) = 𝔼

[
sup‖∇𝜙‖𝐿∞≤1

1

𝑁

𝑁∑
𝑖=1

(𝜙(𝑋𝑖(𝑡)) − 𝜙(�̄�𝑖(𝑡)))

]

≤ 𝔼

[
1

𝑁

𝑁∑
𝑖=1

|𝑋𝑖(𝑡) − �̄�𝑖(𝑡)|] ≤ sup
1≤𝑖≤𝑁 𝔼|𝑋𝑖(𝑡) − �̄�𝑖(𝑡)|.
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MEAN-FIELD LIMIT OF NON-EXCHANGEABLE SYSTEMS 29

Furthermore, by the independence of the �̄�𝑖 , we have, through a straightforward extension of
the proofs in [34] or [5] (see also Theorem 1 in [38]) which consider the exchangeable case that
for some �̃�, 𝜃 > 0,

𝔼𝑊1

(
�̄�𝑁(𝑡, ⋅),

1

𝑁

𝑁∑
𝑖=1

𝑓𝑖(𝑡, ⋅)

)
≤ �̃�

𝑁𝜃
sup
1≤𝑖≤𝑁 𝔼[|𝑋𝑖(𝑡)|2]1∕2 ≤ �̃� 𝐶2(𝑡)

𝑁𝜃
,

provided for example that the second moments 𝔼|�̄�𝑖|2 are bounded uniformly in 𝑁, which
we proved earlier. Combining the above estimates and using the triangle inequality allows
deducing (22).
Finally, for completeness we show that the laws 𝑓𝑖(𝑡, ⋅) = Law(�̄�𝑖(𝑡)) verify (20). Set any 𝜑 ∈

𝐶1𝑐 (ℝ
2𝑑). Then, we have

𝑑

𝑑𝑡 ∫ℝ𝑑

𝜑(𝑥𝑖)𝑓𝑖(𝑡, 𝑥) 𝑑𝑥 =
𝑑

𝑑𝑡
𝔼[𝜑(�̄�𝑖)] = 𝔼

[
∇𝜑(�̄�𝑖) ⋅

𝑑�̄�𝑖
𝑑𝑡

]
=

𝑁∑
𝑗=1

𝑤𝑖𝑗 𝔼
[
∇𝜑(�̄�𝑖) ⋅ 𝔼𝑖[𝐾(�̄�𝑖 − �̄�𝑗)]

]
.

We notice that 𝔼𝑖[𝐾(�̄�𝑖 − �̄�𝑗)] = ∫
ℝ𝑑 𝐾(�̄�𝑖 − 𝑦) 𝑓𝑗(𝑡, 𝑑𝑦), by independence of �̄�𝑖 and �̄�𝑗 . Then, we

have

𝔼[∇𝜑(�̄�𝑖) ⋅ 𝔼𝑖[𝐾(�̄�𝑖 − �̄�𝑗)]] = 𝔼

[
∇𝜑(�̄�𝑖) ⋅ ∫

ℝ𝑑

𝐾(�̄�𝑖 − 𝑦) 𝑓𝑗(𝑡, 𝑑𝑦)

]
= ∫

ℝ2𝑑

∇𝜑(𝑥) ⋅ 𝐾(𝑥 − 𝑦) 𝑓𝑖(𝑡, 𝑑𝑥) 𝑓𝑗(𝑡, 𝑑𝑦).

Putting everything together and noticing that𝜑 is arbitrary, we deduce that𝑓𝑖 verifies (20) inweak
form, for each 𝑖 = 1, … ,𝑁. □

The above result is only the beginning to prove our main result because deriving the system
(20) is not enough to conclude. Indeed, so far we have only replaced a coupled system of ODEs by
a couple system of PDEs. We do not even have any compactness with respect to 𝑁. There is one
big exception:

Remark 3.3 (Exchangeable case). Assume that
∑𝑁

𝑗=1 𝑤𝑖𝑗 = �̄� and𝑓0
𝑖
= 𝑓0 for every 𝑖 = 1, … ,𝑁 and

some �̄� ∈ ℝ and 𝑓0 ∈ (ℝ𝑑). Then, there is usual propagation of chaos. Specifically, we have that
𝑓𝑖(𝑡, 𝑥) = 𝑓(𝑡, 𝑥) for every 𝑖 = 1, … ,𝑁, where 𝑓 solves the usual Vlasov equation:

𝜕𝑡𝑓 + �̄� div𝑥

(
𝑓(𝑡, 𝑥) ∫

ℝ𝑑

𝐾(𝑥 − 𝑦) 𝑓(𝑡, 𝑑𝑦)

)
= 0.

4 A NEWHIERARCHY

Tomake some of the calculations in this section rigorous, let us introduce a variant of the original
system (20) for the 𝑓𝑖(𝑡, ⋅) ∶= Law(�̄�𝑖(𝑡)) which includes an artificial diffusion term:

𝜕𝑡𝑓𝑖 + div𝑥

(
𝑓𝑖(𝑡, 𝑥)

𝑁∑
𝑗=1

𝑤𝑖𝑗 ∫
ℝ𝑑

𝐾(𝑥 − 𝑦) 𝑓𝑗(𝑡, 𝑑𝑦)

)
= 𝜈 Δ𝑥𝑓𝑖. (24)
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30 JABIN et al.

With identical arguments as in Proposition 3.2 introducing a Wiener process in the McKean pro-
cess (19) with variance 2 𝜈 𝑡 we can deduce (24). More specifically, this can be done starting from
system (1) with a noise 𝑑𝑊𝑖 , where the𝑊𝑖 are 𝑁 independent Wiener processes

𝑑𝑋𝑖 =

𝑁∑
𝑗=1

𝑤𝑖𝑗 𝐾(𝑋𝑖 − 𝑋𝑗) 𝑑𝑡 +
√
2𝜈 𝑑𝑊𝑖.

Of course (20) is just a special case of (24) with 𝜈 = 0. As in the casewithout diffusion, in (24) there
is an abrupt rupture of symmetry caused by the presence of potentially heterogeneous weights
𝑤𝑖𝑗 . Indeed, even for identical initial data 𝑓0𝑖 , the intrinsic dynamics instantaneously yields non-
exchangeable distributions 𝑓𝑖(𝑡) for any 𝑡 > 0. This prevent us from reducing the system (24) of
𝑁 coupled PDEs to a single Vlasov–McKean type PDEs in the usual way as in the classical setting
with uniformweights. In addition, there is no realistic hope to identify the limit of each individual
𝑓𝑖 as𝑁 → ∞. However, wemay still be able to study the limit of appropriate averaged statistics. In
this section,we shall introduce a natural family of observables thatwill allow determining a closed
averaged description of (24) in terms of an infinite hierarchy of PDEs. For such a novel hierarchy
we study uniqueness and stability under the presence of artificial diffusion (𝜈 > 0). Although an
analogous result is still open for the hierarchy in the absence of artificial diffusion (𝜈 = 0), we
shall prove that the stability can still be recovered for the full initial system (20) under appropriate
regularity of the initial data.

4.1 Hierarchy of observables indexed by trees

For simplicity of the presentation, in this part we shall restrict to the starting case (20) without
artificial diffusion (𝜈 = 0). Associated with any solution of (20) we shall define an infinite family
of observables indexed by the set of trees containing an averaged information of 𝑓𝑖 and 𝑤𝑖𝑗 . The
role of trees is suggested by the construction and will become apparent in a moment. For clarity,
we recall some necessary notation of graph theory that will be used throughout the paper.

Definition 4.1 (Graphs and trees).

(i) A (simple) graph is a pair 𝐺 = (𝑉, 𝐸)where 𝑉 is a finite set (vertices) and 𝐸 ⊆ {(𝑖, 𝑗) ∈ 𝑉 ×

𝑉 ∶ 𝑖 ≠ 𝑗} is a subset (edges). A graph𝐺 = (𝑉, 𝐸) is called aweighted graph if it is endowed
with a (weight) function𝑊 ∶ 𝑉 × 𝑉 → ℝ such that 𝐸 = {(𝑖, 𝑗) ∈ 𝑉 × 𝑉 ∶ 𝑊(𝑖, 𝑗) ≠ 0}. The
amount of vertices (or order) will be denoted by |𝐺| ∶= #𝑉.

(ii) A tree is a graph 𝑇 = (𝑉, 𝐸) so that any couple of different vertices 𝑖, 𝑗 ∈ 𝑉 are connected by
exactly one path (concatenation of edges) and each vertex 𝑖 ∈ 𝑉 cannot be connected with
itself.

(iii) We define the family 𝖳𝑛 of labeled trees of order 𝑛 by the following recursive formula

𝖳1 ∶= {𝑇1},

𝖳𝑛+1 ∶= {𝑇 + 𝑖 ∶ 𝑇 ∈ 𝖳𝑛, 𝑖 ∈ {1, … , 𝑛}}, 𝑛 ∈ ℤ+
0 ,

where 𝑇1 is the only tree with one vertex {1}. Here, for any tree 𝑇 with vertices {1, … , 𝑛}

and any such vertex 𝑖, we will denote by 𝑇 + 𝑖 to the new tree with vertices {1, … , 𝑛 + 1}
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MEAN-FIELD LIMIT OF NON-EXCHANGEABLE SYSTEMS 31

after adding the leaf 𝑛 + 1 at node 𝑖. The family of all labeled trees of arbitrary order is then
defined by 𝖳 ∶= ∪∞𝑛=1𝖳𝑛. Note that, in particular, 𝖳 contains all possible trees modulo graph
isomorphism.

Remark 4.2 (Directed graphs and directed trees). Our graphs 𝐺 = (𝑉, 𝐸) are a priori assumed
directed so that (𝑖, 𝑗) ∈ 𝐸 and (𝑗, 𝑖) ∈ 𝐸 do not in general represent the same edge. Since we work
with labeled trees, those are imbued with a natural orientation starting from the root.

With this notation, we introduce our family of observables {𝑇
𝑁 ∶ 𝑇 ∈ 𝖳} as follows.

Definition 4.3 (Observables). Consider any solution (𝑓𝑖)𝑖=1,…,𝑁 of (20) withweights (𝑤𝑖𝑗)𝑖,𝑗=1,…,𝑁 .
Then, we define the family of time-dependent Radon measures:

𝑇
𝑁(𝑡, 𝑥1, … , 𝑥|𝑇|) ∶= 1

𝑁

𝑁∑
𝑖1,…,𝑖|𝑇|=1

∏
(𝑘,𝑙)∈𝐸(𝑇)

𝑤𝑖𝑘𝑖𝑙

∏
𝑚∈𝑉(𝑇)

𝑓𝑖𝑚(𝑡, 𝑥𝑚), (25)

for any 𝑡 ≥ 0, every (𝑥1, … , 𝑥|𝑇|) ∈ ℝ𝑑|𝑇| and each tree 𝑇 ∈ 𝖳.

Let us note that 𝑇
𝑁(𝑡, ⋅) ∈ (ℝ𝑑|𝑇|) are finite Radon measures for each 𝑡 ≥ 0. Unfortunately,

the heterogeneity of weights still implies that 𝑇
𝑁 are not symmetric. In the next section we

shall show that they indeed satisfy an appropriate hierarchy of PDEs containing an averaged
information of (20). Just to illustrate the underlying idea, let us explore some examples. First,
consider the only existing tree 𝑇1 ∈ 𝖳1 of order 1 and note that (25) simply reduces to 𝑇1

𝑁 (𝑡, 𝑥) =
1

𝑁

∑𝑁

𝑖=1 𝑓𝑖(𝑡, 𝑥). Summing in (20) over 𝑖 = 1, … ,𝑁 yields

𝜕𝑡𝑇1
𝑁 (𝑡, 𝑥) + div𝑥

(
∫
ℝ𝑑

𝐾(𝑥 − 𝑦)
1

𝑁

𝑁∑
𝑖,𝑗=1

𝑤𝑖𝑗 𝑓𝑖(𝑡, 𝑥) 𝑓𝑗(𝑡, 𝑑𝑦)

)
= 0, (26)

which cannot be closed in terms of 𝑇1
𝑁 only. In fact, setting the only existing tree 𝑇2 ∈ 𝖳2 of

order 2 allows identifying the new observable𝑇2
𝑁 (𝑡, 𝑥, 𝑦) =

1

𝑁

∑𝑁

𝑖,𝑗=1 𝑤𝑖𝑗𝑓𝑖(𝑡, 𝑥)𝑓𝑗(𝑡, 𝑦) inside the
divergence of (26). In other words, (26) can be readily written as

𝜕𝑡𝑇1
𝑁 (𝑡, 𝑥) + div𝑥

(
∫
ℝ𝑑

𝐾(𝑥 − 𝑦)𝑇2
𝑁 (𝑡, 𝑥, 𝑑𝑦)

)
= 0. (27)

Since (27) requires a priori knowledge of 𝑇2
𝑁 we may seek for an equation of such a new

observable. Indeed, from (20) we obtain again that

𝜕𝑡𝑇2
𝑁 (𝑡, 𝑥, 𝑦) + div𝑥

(
∫
ℝ𝑑

𝐾(𝑥 − 𝑧)
1

𝑁

𝑁∑
𝑖,𝑗,𝑘=1

𝑤𝑖𝑗𝑤𝑖𝑘𝑓𝑖(𝑡, 𝑥)𝑓𝑗(𝑡, 𝑦)𝑓𝑘(𝑡, 𝑑𝑧)

)

+ div𝑦

(
∫
ℝ𝑑

𝐾(𝑦 − 𝑧)
1

𝑁

𝑁∑
𝑖,𝑗,𝑘=1

𝑤𝑖𝑗𝑤𝑗𝑘𝑓𝑖(𝑡, 𝑥)𝑓𝑗(𝑡, 𝑦)𝑓𝑘(𝑡, 𝑑𝑧)

)
= 0.

(28)
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32 JABIN et al.

1

32

(a) Tree T 1
3 ∈ T3

1

2

3

(b) Tree T 2
3 ∈ T3

F IGURE 2 Trees in 𝖳3.

Note that in this case two different divergence terms appear. Accordingly, note that 𝖳3 also con-
tains two possible trees 𝑇13 = 𝑇2 + 1 and 𝑇23 = 𝑇2 + 2 which respectively arise by adding the new
leaf 3 at either of the vertices 1 and 2 of 𝑇2 ∈ 𝖳2 (see Figure 2)
By construction

𝑇13
𝑁 (𝑡, 𝑥, 𝑦, 𝑥) =

1

𝑁

𝑁∑
𝑖,𝑗,𝑘=1

𝑤𝑖𝑗𝑤𝑖𝑘𝑓𝑖(𝑡, 𝑥)𝑓𝑗(𝑡, 𝑦)𝑓𝑘(𝑡, 𝑧),

𝑇23
𝑁 (𝑡, 𝑥, 𝑦, 𝑥) =

1

𝑁

𝑁∑
𝑖,𝑗,𝑘=1

𝑤𝑖𝑗𝑤𝑗𝑘𝑓𝑖(𝑡, 𝑥)𝑓𝑗(𝑡, 𝑦)𝑓𝑘(𝑡, 𝑧).

Again,we identify the above observables in the divergences of (28), so that the latter can be restated
as

𝜕𝑡𝑇2
𝑁 (𝑡, 𝑥, 𝑦) + div𝑥

(
∫
ℝ𝑑

𝐾(𝑥 − 𝑧)𝑇13
𝑁 (𝑡, 𝑥, 𝑦, 𝑑𝑧)

)
+ div𝑦

(
∫
ℝ𝑑

𝐾(𝑦 − 𝑧)𝑇23
𝑁 (𝑡, 𝑥, 𝑦, 𝑑𝑧)

)
= 0.

(29)
It is now apparent that an analogous recursive argument would lead to similar equations like (27)
and (29) involving observables indexed by all other higher order trees. In the following section we
will make this argument rigorous and will recover the full hierarchy of equations for the observ-
ables𝑇

𝑁 with 𝑇 ∈ 𝖳. To do so, we shall rely on a more general formulation of the system (20) and
the observables 𝑇

𝑁 in (25) inspired in the treatment of graphons which is formally independent
of the decomposition into agents.

4.2 A graphon-like representation of the system and its hierarchy

Let us remark that in the limit 𝑁 → ∞ we must control two different processes simultaneously:
a many-particles limit and a large-graph limit. Unfortunately, the explicit dependence on the
discrete labels 𝑖 = 1, … ,𝑁 of agents still persists both in the expression of the observables in Defi-
nition 4.3 and in the systems (20) and (24)with andwithout artificial diffusion. This is reminiscent
of the theory of graphons (cf. [62, 63]). Specifically, graphons have proved a suitable tool to identify
the limit of dense graph limits by replacing discrete indices by continuous ones. Accordingly, we
expect to recover integrals as 𝑁 → ∞ that replace the various finite sums over particles’ labels.
However, for our graphs, we need to develop an appropriate extension of the theory of graphons
that allows for the joint treatment of the large-graph limit for non necessarily dense graphs and
the many-particles limit.
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MEAN-FIELD LIMIT OF NON-EXCHANGEABLE SYSTEMS 33

Definition 4.4 (Empirical graphons). Consider weights (𝑤𝑖𝑗)𝑖,𝑗=1,…,𝑁 ⊆ ℝ and probability
distributions (𝑓𝑖)𝑖=1,…,𝑁 ⊆ (ℝ𝑑). Then, we define 𝑤𝑁 and 𝑓𝑁 as follows

𝑤𝑁(𝜉, 𝜁) ∶=

𝑁∑
𝑖,𝑗=1

𝑁 𝑤𝑖𝑗 𝕀[ 𝑖−1
𝑁
,
𝑖

𝑁
)
(𝜉) 𝕀

[
𝑗−1

𝑁
,
𝑗

𝑁
)
(𝜁), 𝜉, 𝜁 ∈ [0, 1],

𝑓𝑁(𝑥, 𝜉) ∶=

𝑁∑
𝑖=1

𝑓𝑖(𝑥) 𝕀[ 𝑖−1
𝑁
,
𝑖

𝑁
)
(𝜉), 𝑥 ∈ ℝ𝑑, 𝜉 ∈ [0, 1].

(30)

Note that Definition 4.4 allows representing discrete weights (𝑤𝑖𝑗)𝑖,𝑗=1,…,𝑁 as scalar functions of
two continuous variables 𝜉, 𝜂 ∈ [0, 1]. Similarly, distributions (𝑓𝑖)𝑖=1,…,𝑁 can be represented as a
family of probabilitymeasures in(ℝ𝑑) parametrized by the continuous variable 𝜉 ∈ [0, 1]. Using
such a notation, we can rewrite the coupled system of PDEs (20) and (24) with and without arti-
ficial diffusion in a more compact form that forgets labels of the specific individuals. Specifically,
we equivalently obtain

𝜕𝑡𝑓𝑁(𝑡, 𝑥, 𝜉) + div𝑥

(
𝑓𝑁(𝑡, 𝑥, 𝜉) ∫

1

0
∫
ℝ𝑑

𝑤𝑁(𝜉, 𝜁) 𝐾(𝑥 − 𝑦) 𝑓𝑁(𝑡, 𝑦, 𝜁) 𝑑𝑦 𝑑𝜁

)
= 0, (31)

𝜕𝑡𝑓𝑁(𝑡, 𝑥, 𝜉) + div𝑥

(
𝑓𝑁(𝑡, 𝑥, 𝜉) ∫

1

0
∫
ℝ𝑑

𝑤𝑁(𝜉, 𝜁) 𝐾(𝑥 − 𝑦) 𝑓𝑁(𝑡, 𝑦, 𝜁) 𝑑𝑦 𝑑𝜁

)
= 𝜈Δ𝑥𝑓𝑁(𝑡, 𝑥, 𝜉),

(32)

in the sense of distributions. Our ultimate goal will be to identify the limit of the above systems
as 𝑁 → ∞. For later use, we specify minimal assumptions on the space which will contain the
limiting structures.

Definition 4.5. We define the weak-* Bochner space 𝐿∞
𝜉
𝜁 as the topological dual of 𝐿1𝜉𝐶𝜁 ;

namely those elements consist of the weak-* measurable essentially bounded maps 𝜉 ∈ [0, 1] ↦

𝑤(𝜉, 𝑑𝜁) ∈ ([0, 1]) which make the following seminorm finite

‖𝑤‖𝐿∞
𝜉
𝜁

∶= sup‖𝜙‖𝐶([0, 1])≤1 ess sup𝜉∈[0, 1]

|||||∫
1

0

𝜙(𝜁)𝑤(𝜉, 𝑑𝜁)
|||||.

Similarly, we define 𝐿∞
𝜁
𝜉 , or more generally 𝐿∞𝜉 𝐵

∗
𝜁
for any dual Banach space 𝐵∗.

As usual, we will identify 𝐿∞
𝜉
𝜁 with its Kolmogorov quotient under the above semi-norm‖ ⋅ ‖𝐿∞

𝜉
𝜁

, which is a Banach space. Specifically, we shall identify elements 𝑤1 ≈ 𝑤2 when for
any 𝜙 ∈ 𝐶([0, 1]) the scalar functions 𝜉 ∈ [0, 1] ↦ ∫

ℝ𝑑 𝜙(𝜁)𝑤𝑖(𝜉, 𝑑𝜁) are equal almost every-
where for 𝑖 = 1, 2. As mentioned above, the main feature of such a Banach space is its duality
representation 𝐿∞

𝜉
𝜁 ≡ (𝐿1

𝜉
𝐶𝜁)

∗, where 𝐿1
𝜉
𝐶𝜁 stands for the (strong) Bochner space, see [47].

Although this property is desirable, the weak-* Bochner spaces raise several analytical difficul-
ties. For instance, strong-measurability of the representatives is not granted because ([0, 1])

fails the Radon–Nikodym property. Fortunately, in our special case 𝐶([0, 1]) is separable so that,
at least, 𝜉 ∈ [0, 1] ↦ ‖𝑤(𝜉, ⋅)‖([0, 1]) is measurable and essentially bounded. For the same rea-
son, the above equivalence relation ≈ reduces to the usual a.e. identity of functions. Therefore, a
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34 JABIN et al.

simpler expression of the norm in the separable case is available:

‖𝑤‖𝐿∞
𝜉
𝜁

= ess sup
𝜉∈[0, 1]

‖𝑤(𝜉, ⋅)‖([0, 1]).

Definition 4.6. We shall say that 𝑤 ∈ 𝐿∞
𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 is an (extended) graphon.

For our purpose we will need to integrate extended graphons against functions 𝜙 that are
only in 𝐿∞. This leads to the straightforward issue as to whether 𝜉 ∈ [0, 1] ↦ ∫ 1

0
𝜙(𝜁)𝑤(𝜉, 𝑑𝜁)

can be well defined if 𝜙 ∈ 𝐿∞([0, 1]). In fact if we only had 𝑤 ∈ 𝐿∞
𝜉
𝜁 , then the above inte-

gral would be highly sensitive to modifying 𝜙(𝜁) over the atoms of 𝑤(𝜉, 𝑑𝜁), preventing any
straightforward definition.
The key point for our investigations is that our extended graphons belongs to both 𝐿∞

𝜉
𝜁 and

𝐿∞
𝜁
𝜉 . This yields two weakly-star measurable and bounded families of measures 𝜉 ∈ [0, 1] ↦

𝑤(𝜉, 𝑑𝜁) ∈ ([0, 1]) and 𝜁 ∈ [0, 1] ↦ 𝑤(𝑑𝜉, 𝜁) ∈ ([0, 1]) that induce the same bi-variatemea-
sure 𝑤(𝜉, 𝑑𝜁) 𝑑𝜉 = 𝑤(𝑑𝜉, 𝜁) 𝑑𝜁 ∈ ([0, 1]2). This implies that 𝑤 is a transition kernel in the full
sense and the following continuity of the associated linear operator on 𝐿∞ holds true.

Lemma4.7 (Operator representation of kernels).Consider the following bounded bilinear operator

(𝐿∞
𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉) × 𝐶𝜁 ⟶ 𝐿∞

𝜉
,

(𝑤, 𝜙) ⟼ ∫ 1

0
𝜙(𝜁)𝑤(⋅, 𝑑𝜁).

This operator extends into a bounded operator from (𝐿∞
𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉) × 𝐿

∞
𝜁
to 𝐿∞

𝜉
. Specifically, we

have the following estimates

‖‖‖‖‖∫
1

0

𝜙(𝜁)𝑤(𝜉, 𝑑𝜁)
‖‖‖‖‖𝐿1

𝜉

≤ ‖𝑤‖𝐿∞
𝜁
𝜉

‖𝜙‖𝐿1 ,
‖‖‖‖‖∫

1

0

𝜙(𝜁)𝑤(𝜉, 𝑑𝜁)
‖‖‖‖‖𝐿∞

𝜉

≤ ‖𝑤‖𝐿∞
𝜉
𝜁

‖𝜙‖𝐿∞,
(33)

for any 𝑤 ∈ 𝐿∞
𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 and 𝜙 ∈ 𝐿∞. Moreover, the following continuity property holds: if

𝑤𝑛

∗
⇀ 𝑤 weakly-star in 𝐿∞

𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 , 𝜙𝑛 → 𝜙 strongly in 𝐿1 and the 𝜙𝑛 are uniformly bounded

in 𝐿∞, then

∫
1

0

𝜙𝑛(𝜁)𝑤𝑛(⋅, 𝑑𝜁) → ∫
1

0

𝜙(𝜁)𝑤(⋅, 𝑑𝜁), (34)

weakly-star in 𝐿∞.

The proof of Lemma 4.7 relies on a careful but straightforward density argument, which we
provide in Appendix B. Lemma 4.7 immediately implies the following version with test functions
𝜙 depending on 𝑥.
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MEAN-FIELD LIMIT OF NON-EXCHANGEABLE SYSTEMS 35

Lemma 4.8. Consider the following bounded bilinear operator

(𝐿∞
𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉) × 𝐶𝜁𝐵

∗
𝑥 ⟶ 𝐿∞

𝜉
𝐵∗𝑥,

(𝑤, 𝜙) ⟼ ∫ 1

0
𝜙(⋅, 𝜁)𝑤(⋅, 𝑑𝜁),

where 𝐵∗𝑥 stands for any Banach space. Then it is also bounded from (𝐿∞
𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉) × 𝐿

∞
𝜁
𝐵∗𝑥

to 𝐿∞
𝜉
𝐵∗𝑥 , and from (𝐿∞

𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉) × 𝐿

∞
𝜁
𝐵∗𝑥 (with 𝐿∞𝜁 𝐵

∗
𝑥 endowed with the 𝐿1𝜁𝐵

∗
𝑥 norm) to 𝐿1𝜉𝐵

∗
𝑥 .

Specifically, we have the following estimates‖‖‖‖‖∫
1

0

𝜙(𝑥, 𝜁)𝑤(𝜉, 𝑑𝜁)
‖‖‖‖‖𝐿1

𝜉
𝐵∗𝑥

≤ ‖𝑤‖𝐿∞
𝜁
𝜉

‖𝜙‖𝐿1
𝜁
𝐵∗𝑥
,

‖‖‖‖‖∫
1

0

𝜙(𝑥, 𝜁)𝑤(𝜉, 𝑑𝜁)
‖‖‖‖‖𝐿∞

𝜉
𝐵∗𝑥

≤ ‖𝑤‖𝐿∞
𝜉
𝜁

‖𝜙‖𝐿∞
𝜁
𝐵∗𝑥
,

(35)

for any 𝑤 ∈ 𝐿∞
𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 and 𝜙 ∈ 𝐿∞

𝜁
𝐵∗𝑥 ,

Note that 𝑤𝑁 and 𝑓𝑁 in Definition 4.4 must belong to the previous spaces. Then, the study
of the limit of those structures as 𝑁 → ∞ and the identification of the limiting equations of (31)
and (32) is in order. Namely, we expect to obtain𝑤 ∈ 𝐿∞

𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 and 𝑓 ∈ 𝐿∞([0, 𝑡∗], 𝐿

∞
𝜉
𝐿1𝑥)

with 𝑡∗ > 0 verifying either of the following equations (with or without artificial diffusion) in a
weak sense:

𝜕𝑡𝑓(𝑡, 𝑥, 𝜉) + div𝑥

(
𝑓(𝑡, 𝑥, 𝜉) ∫

1

0

𝑤(𝜉, 𝑑𝜁)∫
ℝ𝑑

𝐾(𝑥 − 𝑦) 𝑓(𝑡, 𝑦, 𝜁) 𝑑𝑦

)
= 0, (36)

𝜕𝑡𝑓(𝑡, 𝑥, 𝜉) + div𝑥

(
𝑓(𝑡, 𝑥, 𝜉) ∫

1

0

𝑤(𝜉, 𝑑𝜁)∫
ℝ𝑑

𝐾(𝑥 − 𝑦) 𝑓(𝑡, 𝑦, 𝜁) 𝑑𝑦

)
= 𝜈Δ𝑥𝑓(𝑡, 𝑥, 𝜉). (37)

In (36) and (37), we recognize a nonlinear drift, which is fibered as there is no transport on the
variable 𝜉. For later use, we define formally the associated velocity field.

Definition 4.9 (Velocity field). Consider any 𝑤 ∈ 𝐿∞
𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 , 𝑓 ∈ 𝐿∞

𝑡,𝜉
𝐿1𝑥 and 𝐾 ∈ 𝐿∞.

Let us set 𝜙𝑓(𝑡, 𝑥, 𝜁) ∶= ∫
ℝ𝑑 𝐾(𝑥 − 𝑦)𝑓(𝑡, 𝑦, 𝜁) 𝑑𝑦 which is well defined in 𝐿∞

𝜉,𝑡,𝑥
by the usual

convolution estimates. We define the associated velocity field [𝑓] as follows,

𝑓(𝑡, 𝑥, 𝜉) ∶ = ∫
1

0

𝑤(𝜉, 𝑑𝜁) 𝜙𝑓(𝑡, 𝑥, 𝜁) = ∫
1

0

𝑤(𝜉, 𝑑𝜁)∫
ℝ𝑑

𝐾(𝑥 − 𝑦) 𝑓(𝑡, 𝜁, 𝑦) 𝑑𝑦,

(𝜉, 𝑥) ∈ [0, 1] × ℝ𝑑, 𝑡 ≥ 0,

which is well defined in 𝐿∞
𝑡,𝜉,𝑥

by Lemma 4.8.

We may then define the weak solutions to (36)–(37) in the usual way.

Definition 4.10 (Weak solutions). Consider any pair consisting of a 𝑤 ∈ 𝐿∞
𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 and

any 𝑓 ∈ 𝐿∞([0, 𝑡∗], 𝐿
∞
𝜉
𝐿1𝑥). We say that (𝑤, 𝑓) is a weak solution of (37) for some 𝐾 ∈ 𝐿∞ and for

 10970312, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22235 by U

niversidad D
e G

ranada, W
iley O

nline L
ibrary on [25/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



36 JABIN et al.

any 𝜈 ≥ 0 if the following weak formulation is verified

∫
𝑡∗

0
∫

1

0
∫
ℝ𝑑

𝜕𝑡𝜑(𝑡, 𝑥, 𝜉) 𝑓(𝑡, 𝑥, 𝜉) 𝑑𝑥 𝑑𝜉 𝑑𝑡

+ ∫
𝑡∗

0
∫

1

0
∫
ℝ𝑑

∇𝑥𝜑(𝑡, 𝑥, 𝜉) ⋅ 𝑓(𝑡, 𝑥, 𝜉) 𝑓(𝑡, 𝑥, 𝜉) 𝑑𝑥 𝑑𝜉 𝑑𝑡

+ 𝜈 ∫
𝑡∗

0
∫

1

0
∫
ℝ𝑑

Δ𝑥𝜑(𝑡, 𝑥, 𝜉) 𝑓(𝑡, 𝑥, 𝜉) 𝑑𝑥 𝑑𝜉 𝑑𝑡 = 0,

(38)

for any 𝜑 ∈ 𝐶2𝑐 ((0, 𝑡∗) × [0, 1] × ℝ
𝑑).

We have the following result about the existence of weak solutions.

Proposition 4.11. Consider any𝐾 ∈ 𝐿1 ∩ 𝐿∞ with div 𝐾 ∈ 𝐿1, any𝑤 ∈ 𝐿∞
𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 and any

𝑓0 ∈ 𝐿∞([0, 1], 𝑊1,1 ∩ 𝑊1,∞(ℝ𝑑)). Then for any 𝜈 ≥ 0, there exists𝑓 ∈ 𝐿∞([0, 𝑡∗] × [0, 1], 𝑊
1,1 ∩

𝑊1,∞(ℝ𝑑)) such that (𝑤, 𝑓) is a weak solution to (37) (or (36) if 𝜈 = 0) for every 𝑡∗ > 0 as per
Definition 4.10.

The proof is given in Appendix B and follows a straightforward fixed point argument from
classical a priori estimates for advection-diffusion equations.We also note that itwould be possible
to obtain an evenmore existence result with 𝑓 only a measure; for example, through the pathwise
approaches developed in [83, Chapter 10].
We finish this short analysis of the space 𝐿∞

𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 by noting the following density result

Lemma 4.12. For any𝑤 ∈ 𝐿∞
𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 , there exists𝑤𝑛 ∈ 𝐿∞

𝜉,𝜁
, uniformly bounded in 𝐿∞

𝜉
𝐿1
𝜁
∩

𝐿∞
𝜁
𝐿1
𝜉
, converging to 𝑤 in 𝐿1

𝜉
𝐻−1
𝜁

∩ 𝐿1
𝜁
𝐻−1
𝜉
.

We also provide the proof of Lemma 4.12 in Appendix B.
Unfortunately we do not know how to pass to the limit directly in Equations (31) or (32), as

we lack some compactness in the 𝜉 variable either for 𝑤𝑁 or for 𝑓𝑁 . Indeed, from our uniform
bounds, we could extract converging subsequences𝑤𝑁

∗
⇀ 𝑤 and 𝑓𝑁

∗
⇀ 𝑓 respectively in 𝐿∞

𝜉
𝜁 ∩

𝐿∞
𝜁
𝜉 and 𝐿∞𝑡,𝜉(𝐿

1
𝑥 ∩𝑊

1,∞
𝑥 ). But this gives only weak convergence on 𝑤𝑁 and weak convergence

in 𝜉 on 𝑓𝑁 whereas Lemma 4.7 for example requires some strong convergence on 𝑓𝑁 . To further
emphasize the point, the existence result that we just stated does rely on strong convergence of 𝑓
through the contraction argument.
To bypass this issue, we will look at an analogous family of observables providing an averaged

information of the system, since it is much easier to obtain compactness on those observables as
we will see in the next section. Inspired in Definition 4.3 we set the following operator acting on
abstract elements 𝑤 ∈ 𝐿∞

𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 and 𝑓 ∈ 𝐿∞

𝜉
𝐿1𝑥.

Definition 4.13 (𝜏 operator). Consider any 𝑤 ∈ 𝐿∞
𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 and any 𝑓 ∈ 𝐿∞

𝜉
𝐿1𝑥. Then, we

(formally) define the operator

𝜏(𝑇, 𝑤, 𝑓)(𝑥1, … , 𝑥|𝑇|) ∶= ∫
[0, 1]|𝑇|

∏
(𝑘,𝑙)∈𝐸(𝑇)

𝑤(𝜉𝑘, 𝜉𝑙)
∏

𝑚∈𝑉(𝑇)

𝑓(𝑥𝑚, 𝜉𝑚) 𝑑𝜉1 …𝑑𝜉|𝑇|, (39)
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MEAN-FIELD LIMIT OF NON-EXCHANGEABLE SYSTEMS 37

for every tree 𝑇 ∈ 𝖳. Time dependence can be included when 𝑓 also depends on 𝑡.

This notation allows removing again the explicit discrete indices for the agents’ labels in Defini-
tion 4.3 of the observables𝑇

𝑁 . Specifically, note that the latter enjoy the following more universal
representation

𝑇
𝑁 = 𝜏(𝑇,𝑤𝑁, 𝑓𝑁), 𝑇 ∈ 𝖳.

We also note that, at the present, it is not clear why 𝜏(𝑇, 𝑤, 𝑓) given by (39) is well defined with
only 𝑤 ∈ 𝐿∞

𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 and 𝑓 ∈ 𝐿∞

𝜉
𝐿1𝑥. This requires more work and will be performed in the

next section (cf. Definition 5.5). Instead, for themoment it is enough to observe that 𝜏(𝑇, 𝑤𝑁, 𝑓𝑁) is
indeed well defined, and more generally, 𝜏(𝑇, 𝑤, 𝑓) is also well defined as soon as𝑤 has a density,
that is, 𝑤 ∈ 𝐿∞

𝜉
𝐿1
𝜁
∩ 𝐿∞

𝜁
𝐿1
𝜉
. Moreover, we can then obtain uniform bounds in terms of only the

𝐿∞
𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 norms as follows.

Lemma 4.14 (Homomorphism densities). Consider any 𝑤 ∈ 𝐿∞
𝜉
𝐿1
𝜁
∩ 𝐿∞

𝜁
𝐿1
𝜉
and define

𝜏(𝑇, 𝑤) ∶= ∫
[0, 1]|𝑇|

∏
(𝑘,𝑙)∈𝐸(𝑇)

𝑤(𝜉𝑘, 𝜉𝑙) 𝑑𝜉1 …𝑑𝜉|𝑇|, 𝑇 ∈ 𝖳. (40)

Then, 𝜏(𝑇, 𝑤) is finite and the following relation holds true

|𝜏(𝑇, 𝑤)| ≤ ‖𝑤‖|𝑇|−1
𝐿∞
𝜉
𝜁

. (41)

Proof. We argue by induction. First, note the only tree 𝑇1 ∈ 𝖳1 actually consists of only one vertex
and no edges. Then, we trivially obtain that

∏
(𝑘,𝑙)∈𝐸(𝑇1)

|𝑤(𝜉𝑘, 𝜉𝑙)| = 1 so that 𝜏(𝑇1, |𝑤|) = 1. By
the induction hypothesis, let us assume now that we have

𝜏(|𝑇𝑛|, 𝑤) ≤ ‖𝑤‖|𝑇𝑛|−1
𝐿∞
𝜉
𝜁

,

for any 𝑇𝑛 ∈ 𝖳𝑛. Consider any 𝑇𝑛+1 ∈ 𝖳𝑛+1 and find a tree 𝑇𝑛 ∈ 𝖳𝑛 and a vertex 𝑖 ∈ {1, … , 𝑛} so
that we can write 𝑇𝑛+1 = 𝑇𝑛 + 𝑖. Hence, we obtain

𝜏(𝑇𝑛+1, |𝑤|) = ∫
[0, 1]𝑛+1

∏
(𝑘,𝑙)∈𝐸(𝑇𝑛+1)

|𝑤(𝜉𝑘, 𝜉𝑙)|𝑑𝜉1 … 𝑑𝜉𝑛+1

= ∫
[0, 1]𝑛

(
∫

1

0

|𝑤(𝜉𝑖, 𝜉𝑛+1)|𝑑𝜉𝑛+1) ∏
(𝑘,𝑙)∈𝐸(𝑇𝑛)

|𝑤(𝜉𝑘, 𝜉𝑙)|𝑑𝜉1 … 𝑑𝜉𝑛,

where we have used that 𝜉𝑛+1 does not appears in the above product over edges of 𝑇𝑛. Hence, by
our hypothesis on 𝑤 and by definition (40) of 𝜏(𝑇𝑛, |𝑤|) we obtain

𝜏(𝑇𝑛+1, |𝑤|) ≤ ‖𝑤‖𝐿∞
𝜉
𝜁

𝜏(𝑇𝑛, |𝑤|).
We then conclude by applying the induction hypothesis to 𝜏(𝑇𝑛, |𝑤|). □

We can obtain as a straightforward consequence of Lemma 4.14,
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38 JABIN et al.

Lemma 4.15. Consider any 𝑤 ∈ 𝐿∞
𝜉
𝐿1
𝜁
∩ 𝐿∞

𝜁
𝐿1
𝜉
, any 𝑓 ∈ 𝐿∞

𝜉
𝐿1𝑥 and 𝑇 ∈ 𝖳. Then 𝜏(𝑇, 𝑤, 𝑓) ∈

𝐿1(ℝ𝑑|𝑇|) and the following estimate is fulfilled
‖𝜏(𝑇, 𝑤, 𝑓)‖𝐿1(ℝ𝑑|𝑇|) ≤ ‖𝑤‖|𝑇|−1

𝐿∞
𝜉
𝜁∩𝐿

∞
𝜁
𝜉

‖𝑓‖|𝑇|
𝐿∞
𝜉
𝐿1𝑥
.

A similar result holds when the space 𝐿∞
𝜉
𝐿1𝑥 for 𝑓 is replaced by any other function Banach space

stable under tensorization and admitting a Minkowski integral inequality, but maintaining 𝑤 ∈

𝐿∞
𝜉
𝐿1
𝜁
∩ 𝐿∞

𝜁
𝐿1
𝜉
. In particular, if 𝑓 ∈ 𝐿∞

𝜉
𝑊

𝑘,𝑝
𝑥 for some 𝑘 ≥ 0 and 𝑝 ∈ [1,∞], then 𝜏(𝑇, 𝑤, 𝑓) ∈

𝑊𝑘,𝑝(ℝ𝑑|𝑇|) and
‖𝜏(𝑇, 𝑤, 𝑓)‖𝑊𝑘,𝑝(ℝ𝑑|𝑇|) ≤ ‖𝑤‖|𝑇|−1

𝐿∞
𝜉
𝜁∩𝐿

∞
𝜁
𝜉

‖𝑓‖|𝑇|
𝐿∞
𝜉
𝑊

𝑘,𝑝
𝑥

.

Formula (40) for 𝜏(𝑇, 𝑤) in Lemma 4.15 is reminiscent of the usual extension of the homomor-
phism density for bounded graphons𝑤 ∈ 𝐿∞([0, 1]2) [62, 63]. However, our theory must account
for eventually unbounded graphons so that a more delicate treatment is required. Namely, note
that in (40) we have restricted to trees 𝑇 ∈ 𝖳 and graphons𝑤 ∈ 𝐿∞

𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 . Indeed, in such

a class of graphons, if 𝑇 is replaced by a generic graph 𝐺, then the above proof breaks down due
to the eventual presence of cycles in the graph. This leads to eventual infinite values of 𝜏(𝐺,𝑤).
We note that we prove in Section 5 that the operator 𝜏(𝑇, 𝑤, 𝑓) can be rigorously defined for

any 𝑤 ∈ 𝐿∞
𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 . We refer more precisely to Definition 5.5 and in the present context

to Lemma 5.3 which implies that if 𝑤𝑛 ∈ 𝐿∞
𝜉
𝐿1
𝜁
∩ 𝐿∞

𝜁
𝐿1
𝜉
converges to 𝑤 in 𝐿1

𝜉
𝐻−1
𝜁

∩ 𝐿1
𝜁
𝐻−1
𝜉

then
𝜏(𝑇, 𝑤, 𝑓) can be obtained as

𝜏(𝑇, 𝑤, 𝑓) = lim
𝑛→∞

𝜏(𝑇,𝑤𝑛, 𝑓).

Of course Lemma 4.12 exactly allows constructing an appropriate sequence of 𝑤𝑛. But deriving
the limit of 𝜏(𝑇, 𝑤𝑛, 𝑓𝑛) as above requires the precise construction of an algebra describing the
sequence of operations involved in obtaining 𝜏(𝑇, 𝑤, 𝑓). This algebra plays a key role in Section 5
and, for this reason, the corresponding results are stated there.
Assuming for the time being that type of property holds, it implies an immediate extension of

Lemma 4.15 to more generic kernels.

Corollary 4.16. Consider any 𝑤 ∈ 𝐿∞
𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 , any 𝑓 ∈ 𝐿∞

𝜉
𝑊

𝑘,𝑝
𝑥 for any 𝑘 ≥ 0, 𝑝 ∈ [1, ∞],

and 𝑇 ∈ 𝖳. Then 𝜏(𝑇, 𝑤, 𝑓) ∈ 𝑊𝑘,𝑝(ℝ𝑑|𝑇|)
‖𝜏(𝑇, 𝑤, 𝑓)‖𝑊𝑘,𝑝(ℝ𝑑|𝑇|) ≤ ‖𝑤‖|𝑇|−1

𝐿∞
𝜉
𝜁∩𝐿

∞
𝜁
𝜉

‖𝑓‖|𝑇|
𝐿∞
𝜉
𝑊

𝑘,𝑝
𝑥

.

In the following result, we derive the full hierarchy of observables presented in the previous
section under our graphon representation. Specifically, we now provide the system solved by
𝜏(𝑇, 𝑤, 𝑓) whenever (𝑤, 𝑓) is a weak solution to either (36) or (37) in the sense of Definition 4.10.

Proposition 4.17. Consider any 𝑤 ∈ 𝐿∞
𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 and 𝑓 ∈ 𝐿∞([0, 𝑡∗], 𝐿

∞
𝜉
𝐿1𝑥) so that (𝑤, 𝑓)

is a weak solution to (37) in the sense of Definition 4.10 for some 𝐾 ∈ 𝐿∞ and for any 𝜈 ≥ 0. Then,
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MEAN-FIELD LIMIT OF NON-EXCHANGEABLE SYSTEMS 39

𝜏(𝑇, 𝑤, 𝑓) solves the generalized, linear, non-exchangeable Vlasov hierarchy

𝜕𝑡𝜏(𝑇, 𝑤, 𝑓) +

|𝑇|∑
𝑖=1

div𝑥𝑖

(
∫
ℝ𝑑

𝐾(𝑥𝑖 − 𝑧) 𝜏(𝑇 + 𝑖, 𝑤, 𝑓)(𝑡, 𝑥1, … , 𝑥|𝑇|, 𝑧) 𝑑𝑧
)
= 𝜈

|𝑇|∑
𝑖=1

Δ𝑥𝑖 𝜏(𝑇, 𝑤, 𝑓),

(42)
for any tree 𝑇 ∈ 𝖳 in the sense of distributions.

Proof. First of all, we notice that from the properties of𝑤 and 𝑓we can guarantee that 𝜏(𝑇, 𝑤, 𝑓) ∈
𝐿∞([0, 𝑡∗], 𝐿

1(ℝ𝑑|𝑇|)) thanks to Corollary 4.16. Since 𝐾 ∈ 𝐿∞, then there is no issue to define the
various terms in the equation and justify our various calculations in the distributional sense. For
simplicity of the presentation, we avoid using weak formulations here but a straightforward adap-
tation yields the rigorous argument. Also, we shall shorten notation by denoting 𝜏(𝑇) ≡ 𝜏(𝑇, 𝑤, 𝑓),
for any 𝑇 ∈ 𝖳, when there is no confusion. First, we differentiate 𝜏(𝑇, 𝑤, 𝑓) in time

𝜕𝑡𝜏(𝑇) =

|𝑇|∑
𝑛=1

∫
[0, 1]|𝑇|

∏
(𝑘,𝑙)∈𝐸(𝑇)

𝑤(𝜉𝑘, 𝜉𝑙) 𝜕𝑡𝑓(𝑡, 𝑥𝑛, 𝜉𝑛)
∏
𝑚≠𝑛

𝑓(𝑡, 𝑥𝑚, 𝜉𝑚) 𝑑𝜉1 …𝑑𝜉|𝑇|.
Using (37) on 𝑓(𝑡, 𝑥𝑛, 𝜉𝑛) yields

𝜕𝑡𝜏(𝑇) = −

|𝑇|∑
𝑛=1

∫
[0,1]

|𝑇|
∏

(𝑘,𝑙)∈𝐸(𝑇)

𝑤(𝜉𝑘, 𝜉𝑙)di𝑣𝑥𝑛

(
∫

1

0
∫
ℝ𝑑

𝐾(𝑥𝑛−𝑦)𝑤(𝜉𝑛, 𝜁)𝑓(𝑡, 𝑥𝑛, 𝜉𝑛)𝑓(𝑡, 𝑦, 𝜁)dyd𝜁

)

×
∏
𝑚≠𝑛

𝑓(𝑡, 𝑥𝑚, 𝜉𝑚)𝑑𝜉1 ⋯𝑑𝜉|𝑇|

+𝜈

|𝑇|∑
𝑛=1

∫
[0,1]

|𝑇|
∏

(𝑘,𝑙)∈𝐸(𝑇)

𝑤(𝜉𝑘, 𝜉𝑙)Δ𝑥𝑛𝑓(𝑡, 𝑥𝑛, 𝜉𝑛)
∏
𝑚≠𝑛

𝑓(𝑡, 𝑥𝑚, 𝜉𝑚)𝑑𝜉1 ⋯𝑑𝜉|𝑇|

= −

|𝑇|∑
𝑛=1

di𝑣𝑥𝑛

(
∫
[0,1]

|𝑇|
∏

(𝑘,𝑙)∈𝐸(𝑇)

𝑤(𝜉𝑘, 𝜉𝑙)∫
1

0
∫
ℝ𝑑

𝐾(𝑥𝑛 − 𝑦)𝑤(𝜉𝑛, 𝜁)𝑓(𝑡, 𝑥𝑛, 𝜉𝑛)𝑓(𝑡, 𝑦, 𝜁)dyd𝜁

×
∏
𝑚≠𝑛

𝑓(𝑡, 𝑥𝑚, 𝜉𝑚)𝑑𝜉1 ⋯𝑑𝜉|𝑇|
)
+ 𝜈

|𝑇|∑
𝑛=1

Δ𝑥𝑛𝜏(𝑇),

where in the last line we have used that no other 𝑓(𝑡, 𝑥𝑚, 𝜉𝑚) depends on 𝑥𝑛 as we exclude𝑚 = 𝑛

from the product. Hence, we find

𝜕𝑡𝜏(𝑇) = −

|𝑇|∑
𝑛=1

div𝑥𝑛 ∫
ℝ𝑑

𝐾(𝑥𝑛 − 𝑧)∫
[0, 1]|𝑇| ∫

1

0

(
𝑤(𝜉𝑛, 𝜁)

∏
(𝑘,𝑙)∈𝐸(𝑇)

𝑤(𝜉𝑘, 𝜉𝑙)

× 𝑓(𝑡, 𝑧, 𝜁)
∏
𝑚≠𝑛

𝑓(𝑡, 𝑥𝑚, 𝜉𝑚)

)
𝑑𝜁 𝑑𝜉1 … 𝑑𝜉|𝑇| 𝑑𝑧 + 𝜈

|𝑇|∑
𝑛=1

Δ𝑥𝑛𝜏(𝑇).

We recall that for any 𝑛 = 1,… , |𝑇| the tree 𝑇 + 𝑛 contains exactly the same edges as 𝑇 plus a
new edge from the vertex 𝑛 to the new vertex |𝑇| + 1. Thus, recalling that we only consider edges
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40 JABIN et al.

(𝑘, 𝑙) ∈ 𝐸(𝑇 + 𝑛) that run from the root to the leaves, we have that

𝜏(𝑇 + 𝑛) = ∫
[0, 1]|𝑇|+1 𝑤(𝜉𝑛, 𝜉|𝑇|+1)

∏
(𝑘,𝑙)∈𝐸(𝑇)

𝑤(𝜉𝑘, 𝜉𝑙) 𝑓(𝑡, 𝑥|𝑇|+1, 𝜉|𝑇|+1) ∏
𝑚∈𝑉(𝑇)

𝑓(𝑡, 𝑥𝑚, 𝜉𝑚) 𝑑𝜉1 … 𝑑𝜉|𝑇|+1.
Changing variables 𝜉|𝑇|+1 with 𝜁 and 𝑥|𝑇|+1 with 𝑧, we arrive at

𝜕𝑡𝜏(𝑇) = −

|𝑇|∑
𝑛=1

div𝑥𝑛 ∫
ℝ𝑑

𝐾(𝑥𝑛 − 𝑧) 𝜏(𝑇 + 𝑛)(𝑥1, … , 𝑥|𝑇|, 𝑧) 𝑑𝑧 + 𝜈

|𝑇|∑
𝑛=1

Δ𝑥𝑛𝜏(𝑇),

thus, concluding the proof. □

Proposition 4.17 shows that we can study directly the propagation of the observables 𝜏(𝑇, 𝑤, 𝑓).
Our next step is naturally to analyze the stability on the hierarchy with diffusion (42).

4.3 Stability on the hierarchy with artificial diffusion

Along this section, we will study a stability property of generic solutions to the previous hier-
archy of non-exchangeable Vlasov-type equations (42) which are not necessarily parametrized
as 𝜏(𝑇, 𝑤, 𝑓) for a weak solution (𝑤, 𝑓) of (37). Specifically, we shall consider any sequence
ℎ = (ℎ𝑇)𝑇∈𝖳 with ℎ𝑇 ∈ 𝐿∞([0, 𝑡∗], 𝐿

1(ℝ𝑑|𝑇|)) for any 𝑇 ∈ 𝖳 that solves the analogous hierarchy
of non-exchangeable Vlasov equations

𝜕𝑡ℎ𝑇 +

|𝑇|∑
𝑖=1

div𝑥𝑖

(
∫
ℝ𝑑

𝐾(𝑥𝑖 − 𝑧) ℎ𝑇+𝑖(𝑡, 𝑥1, … , 𝑥|𝑇|, 𝑧) 𝑑𝑧
)
= 𝜈

|𝑇|∑
𝑖=1

Δ𝑥𝑖ℎ𝑇, (43)

in the sense of distributions, for some 𝐾 ∈ 𝐿∞ and any 𝜈 > 0.
We do need to emphasize that this section does not provide a well-posedness theory for (43).

While we do obtain uniqueness on solutions with enough a priori estimates, this does not directly
yield the existence of any solutions in that class. This does not impact the present paper as we
only need the uniqueness result for the special type of solutions parametrized as ℎ𝑇 = 𝜏(𝑇,𝑤, 𝑓)

with (𝑤, 𝑓) a weak solution of (37) (cf. Proposition 4.17).
We also emphasize that the presence of artificial diffusion is needed in the method of proof

in this subsection and a similar result with 𝜈 = 0 is still unknown. To analyze stability we shall
define the following norms.

Definition 4.18 (Norm of the hierarchy). Consider any family ℎ = (ℎ𝑇)𝑇∈𝖳 such that ℎ𝑇 ∈
𝐿2(ℝ𝑑|𝑇|) for every 𝑇 ∈ 𝖳. Then, we define the following norms:

‖ℎ‖𝜆 = sup
𝑇∈𝖳

𝜆|𝑇|∕2 ‖ℎ𝑇‖𝐿2(ℝ𝑑 |𝑇|), (44)

for any 𝜆 > 0.
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MEAN-FIELD LIMIT OF NON-EXCHANGEABLE SYSTEMS 41

The norm (44) is natural since, for any 𝑓 ∈ 𝐿2(ℝ𝑑) and the special sequence ℎ = (ℎ𝑇)𝑇∈𝖳 given
by ℎ𝑇 = 𝜏(𝑇,𝑤, 𝑓) for any 𝑇 ∈ 𝖳, we obtain the following bound

‖ℎ‖𝜆 ≤ sup
𝑇∈𝖳

𝜆|𝑇|∕2‖𝑤‖|𝑇|−1
𝐿∞
𝜉
𝜁

‖𝑓‖|𝑇|
𝐿2
,

for any 𝜆 > 0 thanks to Corollary 4.16. Hence, by choosing 𝜆 > 0 small enough relative to the

inverses of the preceding norms of 𝑤 and 𝑓, that is, less than ‖𝑤‖−2 |𝑇|−1|𝑇|
𝐿∞
𝜉
𝜁

‖𝑓‖−2
𝐿2
, we obtain a finite

quantity. Indeed, it provides the following stability result for solutions of (43).

Theorem4.19. Consider any solutionℎ = (ℎ𝑇)𝑇∈𝖳 in the sense of distribution to (43) for some 𝜈 > 0

and 𝐾 ∈ 𝐿2 such that ℎ𝑇 ∈ 𝐿∞([0, 𝑡∗], (𝐿
1 ∩ 𝐿2)(ℝ𝑑|𝑇|)) for any 𝑇 ∈ 𝖳. Assume that there exists

some 𝜆 > 0 such that 𝐶𝜆 ∶= sup𝑡∈[0, 𝑡∗] ‖ℎ(𝑡, ⋅)‖𝜆 < ∞. Then, for any 𝑝 > 1 and any 𝜃 ∈ (0, 2−𝑝
′
)

there exists a constant 𝐶𝑝,𝜃 ∈ ℝ+ such that

‖ℎ(𝑡, ⋅)‖𝜃𝜆 ≤ 𝐶𝜆𝐶𝑝,𝜃 exp

(
𝑝
−

‖𝐾‖2
𝐿2

2𝜃𝜆𝜈
𝑡
log

‖ℎ0‖𝜃𝜆
𝐶𝜆

)
, (45)

for any 𝑡 ∈ [0, 𝑡∗], where 𝑝′ is the conjugate of 𝑝.

Remark 4.20. Taking 𝑝 > 1 sufficiently large, note that any 𝜃 ∈ (0,
1

2
) provides an estimate (45).

However, such a constraint on the size of 𝜃 is clearly an artifact of the method of proof since
a similar estimate can be obtained for any 𝜃 ∈ (0, 1) by interpolation. Namely, set any 𝑝0 > 1

and any 𝜃0 ∈ (0, 2−𝑝
′
0) so that (45) is fulfilled. Consider any arbitrary 𝜃 ∈ [

1

2
, 1). Then, note that

𝜃0𝜆 < 𝜃𝜆 < 𝜆 and

‖ℎ(𝑡, ⋅)‖𝜃𝜆 ≤ ‖ℎ(𝑡, ⋅)‖𝛼
𝜃0𝜆

‖ℎ(𝑡, ⋅)‖1−𝛼
𝜆

,

for any 𝑡 ∈ [0, 𝑡∗], where we have set 𝛼 ∶= log 𝜃∕ log 𝜃0. Then, we obtain

‖ℎ(𝑡, ⋅)‖𝜃𝜆 ≤ 𝐶𝜆𝐶
𝛼
𝑝0,𝜃0

exp

⎛⎜⎜⎜⎝𝛼𝑝
−

‖𝐾‖2
𝐿2

2𝜃0𝜆𝜈
𝑡

0 log
‖ℎ0‖𝜃𝜆
𝐶𝜆

⎞⎟⎟⎟⎠, (46)

for any 𝑡 ∈ [0, 𝑡∗].

Remark 4.21. Thanks to the linearity of the hierarchy, Theorem 4.19 provides uniqueness among
weak solutions ℎ = (ℎ𝑇)𝑇∈𝖳 to (43) for some 𝜈 > 0, such that ℎ𝑇 ∈ 𝐿∞([0, 𝑡∗], (𝐿

1 ∩ 𝐿2)(ℝ𝑑|𝑇|)
for any 𝑇 ∈ 𝖳 and sup𝑡∈[0, 𝑡∗] ‖ℎ(𝑡, ⋅)‖𝜆 < ∞ for some 𝜆 > 0. Indeed, assume that ℎ0 = 0. Then,‖ℎ0‖𝜃𝜆 = 0 for any 𝜃 ∈ (0, 1) so that (45) trivially implies that ‖ℎ(𝑡, ⋅)‖𝜃𝜆 = 0 (i.e., ℎ(𝑡, ⋅) = 0) at
any later time 𝑡 ∈ (0, 𝑡∗]. Unfortunately, it does not however provide a bounded or Markov semi-
group for those norms and in fact semi-group like estimates blow-up in finite time as it will be
apparent in the proof.

Proof of Theorem 4.19. We restrict to the special case 𝐶𝜆 = 1, all the other cases following by
linearity of the hierarchy (43) and homogeneity of the norms (44). First, for a given 𝑇 ∈ 𝖳, notice

 10970312, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22235 by U

niversidad D
e G

ranada, W
iley O

nline L
ibrary on [25/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



42 JABIN et al.

that (43) implies

𝑑

𝑑𝑡 ∫ℝ𝑑 |𝑇| |ℎ𝑇|2 𝑑𝑥1 …𝑑𝑥|𝑇| = 2

|𝑇|∑
𝑖=1

∫
ℝ𝑑 (|𝑇|+1) ∇𝑥𝑖ℎ𝑇 𝐾(𝑥𝑖 − 𝑧) ℎ𝑇+𝑖 𝑑𝑥1 …𝑑𝑥|𝑇| 𝑑𝑧

− 2 𝜈

|𝑇|∑
𝑖=1

∫
ℝ𝑑 |𝑇| |∇𝑥𝑖ℎ𝑇|2 𝑑𝑥1 …𝑑𝑥|𝑇|.

To justify the above formal calculation, we note that

𝜕𝑡ℎ𝑇 = 𝜈Δℎ𝑇 − div 𝑗𝑇,

where 𝑗𝑇 = ∫
ℝ𝑑 𝐾(𝑥𝑖 − 𝑧)ℎ𝑇+𝑖 𝑑𝑧. From our assumption on𝐾 and ℎ𝑇+𝑖 , we immediately have that

𝑗𝑇 ∈ 𝐿∞([0, 𝑡∗], 𝐿
2). Namely, we obtain

‖𝑗𝑇(𝑡, ⋅)‖𝐿2(ℝ𝑑|𝑇|) ≤ ‖𝐾‖𝐿2‖ℎ𝑇+𝑖(𝑡, ⋅)‖𝐿2(ℝ𝑑(|𝑇|+1)).
Standard properties of the heat kernel then prove that ℎ𝑇 ∈ 𝐿2([0, 𝑡∗], 𝐻

1(ℝ𝑑|𝑇|)).
By the Cauchy–Schwartz inequality and Young’s inequality we further obtain

𝑑

𝑑𝑡
‖ℎ𝑇(𝑡, ⋅)‖2𝐿2(ℝ𝑑 |𝑇|) ≤

‖𝐾‖2
𝐿2

2𝜈

|𝑇|∑
𝑖=1

‖ℎ𝑇+𝑖(𝑡, ⋅)‖2𝐿2(ℝ𝑑 (|𝑇|+1)).

For this reason, we introduce the family of intermediary norms

‖ℎ(𝑡, ⋅)‖𝑛 ∶= sup|𝑇|=𝑛 ‖ℎ𝑇(𝑡, ⋅)‖𝐿2(ℝ𝑑 |𝑇|),

for any tree order 𝑛 ∈ ℕ, which readily satisfies

𝑑

𝑑𝑡
‖ℎ(𝑡, ⋅)‖2𝑛 ≤ 𝑛

‖𝐾‖2
𝐿2

2𝜈
‖ℎ(𝑡, ⋅)‖2𝑛+1.

By induction this estimate yields

‖ℎ(𝑡, ⋅)‖2𝑛 ≤
(‖𝐾‖2

𝐿2

2𝜈

)𝑚−𝑛

∫
𝑡

𝑠

(𝑚 − 1)! (𝑡 − 𝑟)𝑚−𝑛−1

(𝑛 − 1)! (𝑚 − 𝑛 − 1)!
‖ℎ(𝑟, ⋅)‖2𝑚 𝑑𝑟

+

𝑚−1∑
𝑘=𝑛

(‖𝐾‖2
𝐿2

2𝜈

)𝑘−𝑛

(𝑘 − 1)! (𝑡 − 𝑠)𝑘−𝑛

(𝑛 − 1)! (𝑘 − 𝑛)!
‖ℎ(𝑠, ⋅)‖2

𝑘
.

for any𝑚 > 𝑛. Using the assumption on ℎ one has

‖ℎ(𝑟, ⋅)‖2𝑚 ≤ 𝜆−𝑚,
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MEAN-FIELD LIMIT OF NON-EXCHANGEABLE SYSTEMS 43

for any 𝑟 ∈ [𝑠, 𝑡], recall that we have assumed that 𝐶𝜆 = 1. We then infer

‖ℎ(𝑡, ⋅)‖2𝑛 ≤
(‖𝐾‖2

𝐿2

2𝜈

)𝑚−𝑛 (𝑚 − 1

𝑛 − 1

)
(𝑡 − 𝑠)𝑚−𝑛 𝜆−𝑚

+

𝑚−1∑
𝑘=𝑛

(‖𝐾‖2
𝐿2

2𝜈

)𝑘−𝑛 (𝑘 − 1

𝑛 − 1

)
(𝑡 − 𝑠)𝑘−𝑛 ‖ℎ(𝑠, ⋅)‖2

𝑘
.

(47)

Obviously, (47) can only provide smallness for short time intervals (𝑡 − 𝑠) ∼ 𝜈, if used directly. As
we advanced in Remark 4.21, we cannot bound a semi-group corresponding to the hierarchy for
the norm ‖ℎ(𝑡, ⋅)‖𝜆 on all times. Instead we fix now the time step

𝛿 ∶=
2𝜃𝜆𝜈‖𝐾‖2

𝐿2

,

and consider the associated sequence of discrete times 𝑡𝑖 = 𝛿 𝑖 with 𝑖 = 1, … ,𝑁. Applying (47) to
𝑡 = 𝑡𝑖+1 and 𝑠 = 𝑡𝑖 , one obtains

sup
𝑡∈[𝑡𝑖 , 𝑡𝑖+1]

(𝜃𝜆)𝑛‖ℎ(𝑡, ⋅)‖2𝑛 ≤ 𝜃𝑚
(𝑚 − 1

𝑛 − 1

)
+

𝑚−1∑
𝑘=𝑛

(𝜃𝜆)𝑘
(𝑘 − 1

𝑛 − 1

)‖ℎ(𝑡𝑖, ⋅)‖2𝑘.
We now interpolate the last factors

(𝜃1∕𝑝𝜆)𝑘 ‖ℎ(𝑡𝑖, ⋅)‖2𝑘 = (
(𝜃𝜆)𝑘 ‖ℎ(𝑡𝑖, ⋅)‖2𝑘)1∕𝑝 (

𝜆𝑘 ‖ℎ(𝑡𝑖, ⋅)‖2𝑘)1∕𝑝′ ≤ ‖ℎ(𝑡𝑖, ⋅)‖2∕𝑝𝜃𝜆
‖ℎ(𝑡𝑖, ⋅)‖2∕𝑝′𝜆

≤ ‖ℎ(𝑡𝑖, ⋅)‖2∕𝑝𝜃𝜆
,

where 1∕𝑝 + 1∕𝑝′ = 1 and we have used the assumption ‖ℎ(𝑡𝑖, ⋅)‖𝜆 ≤ 1. This yields

sup
𝑡∈[𝑡𝑖 , 𝑡𝑖+1]

(𝜃𝜆)𝑛 ‖ℎ(𝑡, ⋅)‖2𝑛 ≤ 𝜃𝑚
(𝑚 − 1

𝑛 − 1

)
+

𝑚−1∑
𝑘=𝑛

𝜃𝑘∕𝑝
′
(𝑘 − 1

𝑛 − 1

)‖ℎ(𝑡𝑖, ⋅)‖2∕𝑝𝜃𝜆
.

Since
∑𝑚

𝑛=1

(𝑚−1
𝑛−1

)
= 2𝑚−1, we have that

(𝑚−1
𝑛−1

) ≤ 2𝑚−1. Similarly, summing over 𝑘, we obtain

sup
𝑡∈[𝑡𝑖 , 𝑡𝑖+1]

(𝜃𝜆)𝑛 ‖ℎ(𝑡, ⋅)‖2𝑛 ≤ 1

2
(2𝜃)𝑚 +

1

2

𝑚−1∑
𝑘=𝑛

(2𝜃1∕𝑝
′
)𝑘 ‖ℎ(𝑡𝑖, ⋅)‖2∕𝑝𝜃𝜆

≤ 1

2
(2𝜃)𝑚

+
1

2(1 − 2𝜃1∕𝑝′)
‖ℎ(𝑡𝑖, ⋅)‖2∕𝑝𝜃𝜆

,

where we have used that 2𝜃1∕𝑝′ < 1 by hypothesis to guarantee the summability of the last factor.
Indeed, since 2𝜃 < 1 then taking limits𝑚 → ∞ shows that

sup
𝑡∈[𝑡𝑖 , 𝑡𝑖+1]

‖ℎ(𝑡, ⋅)‖𝜃𝜆 ≤
(

1

2(1 − 2𝜃1∕𝑝′)

)1∕2 ‖ℎ(𝑡𝑖, ⋅)‖1∕𝑝𝜃𝜆
.
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44 JABIN et al.

Then, for 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1] and 𝐶𝑝 =
1

2(1−2𝜃1∕𝑝
′
)
, we have

‖ℎ(𝑡, ⋅)‖𝜃𝜆 ≤ 𝐶
1

2
𝑝 ‖ℎ(𝑡𝑖, ⋅)‖1∕𝑝𝜃𝜆

≤ 𝐶
1

2
𝑝 𝐶

1

2𝑝
𝑝 ‖ℎ(𝑡𝑖−1, ⋅)‖1∕𝑝2𝜃𝜆

≤ 𝐶
1

2
𝑝 𝐶

1

2𝑝
𝑝 𝐶

1

2𝑝2

𝑝 ‖ℎ(𝑡𝑖−2, ⋅)‖1∕𝑝3𝜃𝜆

≤ ⋯ ≤ 𝐶

1

2

∑𝑖−1
𝑗=0

1

𝑝𝑗

𝑝 ‖ℎ(0, ⋅)‖1∕𝑝𝑖
𝜃𝜆

.

From this, by employing the fact that
∑𝑖−1

𝑗=0

1

𝑝𝑗
=

1

1−1∕𝑝
= 𝑝′ we find

sup
𝑡∈[𝑡𝑖 , 𝑡𝑖+1]

‖ℎ(𝑡, ⋅)‖𝜃𝜆 ≤
(

1

2(1 − 2𝜃1∕𝑝′)

)𝑝′∕2 ‖ℎ0‖𝑝−𝑖
𝜃𝜆

.

For any 𝑡 ∈ [0, 𝑡∗) set 𝑖 with 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1). Since ‖ℎ0‖𝜃𝜆 ≤ ‖ℎ0‖𝜆 ≤ 1, the relation

𝑖 ≤ 𝑡

𝛿
=

‖𝐾‖2
𝐿2

2𝜃𝜆𝜈
𝑡

allows concluding the proof. □

Weemphasize that Theorem4.19 only requires𝐾 ∈ 𝐿2 instead of𝐾 ∈ 𝑊1,∞, but it only provides
stability on the viscous hierarchy (43). Indeed, we do not know if any similar result could hold on
the non-viscous hierarchy (i.e., 𝜈 = 0). However Theorem 4.19 does imply a comparable stability
result on the solutions 𝑓 of the starting graphon equation (36) without diffusion, provided that
some added regularity is available on the 𝑓 or on 𝐾. The strategy is straightforward and consists
in adding some artificial viscosity, which is performed in the next subsection.

4.4 Stability on the system without artificial diffusion

Our stability result relies on stronger regularity for weak solutions (𝑤, 𝑓) to (36). Before stating
it, it is useful to observe that smoothness indeed propagates in time by a similar argument as in
Proposition 4.11.

Lemma 4.22. Consider any 𝐾 ∈ 𝑊1,1 with div 𝐾 ∈ 𝐿∞, any 𝑤 ∈ 𝐿∞
𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 and any

that 𝑓0 ∈ 𝐿∞
𝜉
(𝐿1𝑥 ∩ 𝐿

∞
𝑥 ∩ 𝐻1

𝑥). Assume that (𝑤, 𝑓) is a weak solution to (36). Then, 𝑓 ∈

𝐿∞([0, 𝑡∗], 𝐿
∞
𝜉
(𝐿1𝑥 ∩ 𝐿

∞
𝑥 ∩ 𝐻1

𝑥)), for any 𝑡∗ < ∞, and it satisfies

‖𝑓(𝑡, ⋅, ⋅)‖𝐿∞
𝜉
(𝐿1𝑥∩𝐿

∞
𝑥 ∩𝐻

1
𝑥)
≤ 𝐶 𝑒𝑒

𝐶 𝑡−1,

for some 𝐶 ∈ ℝ+ depending only on ‖𝑤‖𝐿∞
𝜉
𝜁

, ‖𝐾‖𝑊1,1 , ‖ div 𝐾‖𝐿∞ and ‖𝑓0‖𝐿∞
𝜉
(𝐿1𝑥∩𝐿

∞
𝑥 ∩𝐻

1
𝑥)
.

Proof. The following estimates can be made rigorous through a regularization process, for exam-
ple, adding viscosity as in the Equation (37), togetherwith a classical iterative delay in time leading
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MEAN-FIELD LIMIT OF NON-EXCHANGEABLE SYSTEMS 45

to a linear system. We first observe that by integration by parts we obtain the a priori bounds

𝑑

𝑑𝑡
‖𝑓(𝑡, ⋅, 𝜉)‖𝑝

𝐿
𝑝
𝑥

= −(𝑝 − 1)∫
1

0

𝑤(𝜉, 𝑑𝜁)∫
ℝ2𝑑

div 𝐾(𝑥 − 𝑦) 𝑓(𝑡, 𝑥, 𝜉)𝑝𝑓(𝑡, 𝑦, 𝜁) 𝑑𝑥 𝑑𝑦

≤ (𝑝 − 1) ‖𝑤‖𝐿∞
𝜉
𝜁

‖ div 𝐾‖𝐿∞ ‖𝑓(𝑡, ⋅, ⋅)‖𝐿∞
𝜉
𝐿1𝑥

‖𝑓(𝑡, ⋅, 𝜉)‖𝑝
𝐿
𝑝
𝑥

,

for 𝑡 ∈ [0, 𝑡∗] and 𝜉 ∈ [0, 1], where abovewe have used again Lemma 4.8. Since𝑓(𝑡, ⋅, 𝜉) preserves
mass for each 𝜉 ∈ [0, 1], one has that ‖𝑓(𝑡, ⋅, ⋅)‖𝐿∞

𝜉
𝐿1𝑥
= ‖𝑓0‖𝐿∞

𝜉
𝐿1𝑥
for each 𝑡 ∈ [0, 𝑡∗] and this

allows easily propagating any 𝐿∞
𝜉
𝐿
𝑝
𝑥 bound of 𝑓 by Gronwall’s inequality, leading to the following

estimate

‖𝑓(𝑡, ⋅, ⋅)‖𝐿∞
𝜉
𝐿
𝑝
𝑥
≤ 𝐶𝑝 𝑒

𝐶𝑝 𝑡.

Similarly, differentiating (20) with respect to 𝑥 we now get

𝜕𝑡∇𝑥𝑓(𝑡, 𝑥, 𝜉) + div𝑥

(
∇𝑥𝑓(𝑡, 𝑥, 𝜉) ⊗ ∫

1

0

𝑤(𝜉, 𝑑𝜁) ∫
ℝ𝑑

𝐾(𝑥 − 𝑦) 𝑓(𝑡, 𝑦, 𝜁) 𝑑𝑦

)

+ div𝑥

(
𝑓(𝑡, 𝑥, 𝜉) ∫

1

0

𝑤(𝜉, 𝑑𝜁) ∫
ℝ𝑑

∇𝐾(𝑥 − 𝑦)⊤ 𝑓(𝑡, 𝑦, 𝜁) 𝑑𝑦

)
= 0.

Again, by integrating by parts we easily get the following decomposition

𝑑

𝑑𝑡

1

2
‖∇𝑥𝑓(𝑡, ⋅, 𝜉)‖2𝐿2𝑥 = 𝐼1 + 𝐼2 + 𝐼3,

where each term takes the form

𝐼1 ∶=
1

2 ∫
1

0

𝑤(𝜉, 𝑑𝜁)∫
ℝ2𝑑

div 𝐾(𝑥 − 𝑦) |∇𝑥𝑓(𝑡, 𝑥, 𝜉)|2 𝑓(𝑡, 𝑦, 𝜁) 𝑑𝑥 𝑑𝑦,
𝐼2 ∶= −∫

1

0

𝑤(𝜉, 𝑑𝜁)∫
ℝ2𝑑

div 𝐾(𝑥 − 𝑦)∇𝑥𝑓(𝑡, 𝑥, 𝜉) ⋅ ∇𝑦𝑓(𝑡, 𝑦, 𝜁) 𝑓(𝑡, 𝑥, 𝜉) 𝑑𝑥 𝑑𝑦,

𝐼3 ∶= −∫
1

0

𝑤(𝜉, 𝑑𝜁)∫
ℝ2𝑑

∇𝑥𝑓(𝑡, 𝑥, 𝜉)
⊤ ⋅ ∇𝐾(𝑥 − 𝑦) ⋅ ∇𝑥𝑓(𝑡, 𝑥, 𝜉) 𝑓(𝑡, 𝑦, 𝜁) 𝑑𝑥 𝑑𝑦.

By the hypothesis on 𝐾, we have

|𝐼1| ≤ 1

2
‖𝑤‖𝐿∞

𝜉
𝜁

‖ div 𝐾‖𝐿∞ ‖𝑓(𝑡, ⋅, ⋅)‖𝐿∞
𝜉
𝐿1𝑥

‖∇𝑥𝑓(𝑡, ⋅, 𝜉)‖2𝐿2𝑥 ,|𝐼2| ≤ ‖𝑤‖𝐿∞
𝜉
𝜁

‖ div 𝐾‖𝐿1 ‖𝑓(𝑡, ⋅, ⋅)‖𝐿∞
𝜉
𝐿∞𝑥

‖∇𝑥𝑓(𝑡, ⋅, 𝜉)‖2𝐿2𝑥 ,|𝐼3| ≤ ‖𝑤‖𝐿∞
𝜉
𝜁

‖∇𝐾‖𝐿1 ‖𝑓(𝑡, ⋅, ⋅)‖𝐿∞
𝜉
𝐿∞𝑥

‖∇𝑥𝑓(𝑡, ⋅, 𝜉)‖2𝐿2𝑥 ,
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46 JABIN et al.

where we have used again Lemma 4.8. Putting everything together, using the previous 𝐿𝑝
estimates and the fact that ‖𝑓(𝑡, ⋅, ⋅)‖𝐿∞

𝜉
𝐿1𝑥
= ‖𝑓0‖𝐿∞

𝜉
𝐿1𝑥
for all 𝑡 ∈ [0, 𝑡∗], one obtains

𝑑

𝑑𝑡
‖∇𝑥𝑓(𝑡, ⋅, 𝜉)‖2𝐿2𝑥 ≤ 𝐶 𝑒𝐶 𝑡‖∇𝑥𝑓(𝑡, ⋅, 𝜉)‖2𝐿2𝑥 .

Therefore, we conclude by means of Gronwall’s lemma. □

With this additional regularity, in the context of the preceding subsections, and from
Theorem 4.19 and Proposition 4.17, we may derive the following uniqueness result.
We do note that in the following theorem, we use the 𝜏(𝑇, 𝑤, 𝑓) for generic 𝑤, �̃� ∈ 𝐿∞

𝜉
𝜁 ∩

𝐿∞
𝜁
𝜉 . While the operator 𝜏 is trivially well defined if 𝑤, �̃� ∈ 𝐿∞

𝜉
𝐿1
𝜁
∩ 𝐿∞

𝜁
𝐿1
𝜉
, we rigorously

justify the definition of 𝜏(𝑇, 𝑤, 𝑓) for kernels in 𝐿∞
𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 in the next Section 5 around

Definition 5.5. We refer to the more extensive discussion just after Lemma 4.15.

Theorem 4.23. Consider any couple of weak solution to (36) 𝑓, 𝑓 ∈ 𝐿∞([0, 𝑡∗], 𝐿
∞
𝜉
(𝐿1𝑥 ∩ 𝐿

∞
𝑥 ∩

𝐻1
𝑥)) with associated 𝑤, �̃� ∈ 𝐿∞

𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 , for some 𝐾 ∈ 𝐿∞ ∩𝑊1,1 with div 𝐾 ∈ 𝐿∞. Then,

we have ‖‖‖‖‖∫
1

0

(𝑓 − 𝑓)(𝑡, ⋅, 𝜉) 𝑑𝜉
‖‖‖‖‖𝐿2𝑥 ≤ 𝐶

(log | log ‖𝜏(⋅, 𝑤, 𝑓0) − 𝜏(⋅, �̃�, 𝑓0)‖𝜆|)1∕2+

,

for any 𝑡 ∈ [0, 𝑡∗], and some constants 𝐶, 𝜆 > 0, which only depend on 𝑡∗, the various norms of 𝐾,
the norm of𝑤, �̃� in 𝐿∞

𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 and the norm of the initial data 𝑓0, 𝑓0 in 𝐿∞

𝜉
(𝐿1𝑥 ∩ 𝐿

∞
𝑥 ∩ 𝐻1

𝑥).

Remark 4.24. A direct 𝐿𝑝 estimate would only provide the following trivial estimate

‖𝑓 − 𝑓‖𝐿∞𝑡 𝐿∞𝜉 𝐿2𝑥 ≤ 𝑒𝐶𝑡
(‖𝑓0 − 𝑓0‖𝐿∞

𝜉
𝐿2𝑥
+ 𝐶 ‖𝑤 − �̃�‖𝐿∞

𝜉
𝜁

)
.

Note that such estimatewould require a very precise strong control on the difference𝑤 − �̃�, which
is not available to us. However, as we will see in the next section, we can obtain good estimates
on the weaker objects 𝜏(𝑇, 𝑤, 𝑓0) − 𝜏(𝑇, �̃�, 𝑓0).

Remark 4.25. If we assume more regularity on 𝐾, for example 𝐾 ∈ 𝑊1,∞, then it is possible to
obtain stability with instead less regularity on 𝑓 and 𝑓 (typically 𝑓0 ∈ 𝐿∞

𝜉
𝐿∞𝑥 , for example).

Before turning to the proof of Theorem 4.23, let us emphasize some of its main consequences.
The key point is that it offers a direct way to obtain some form of compactness on our solutions.
More specifically, we can extract strong convergence in 𝐿2 on each of the 𝜏(𝑇, 𝑤𝑁, 𝑓

0
𝑁) through a

classical diagonal extraction process since each of them is bounded in 𝐿1 ∩𝑊1,∞ byCorollary 4.16.
From Theorem 4.23, this implies that ∫ 1

0
𝑓𝑁(𝑡, 𝑥, 𝜉) 𝑑𝜉 is strongly compact in 𝐿2𝑥. However, we are

still not able to identify the corresponding limit in terms of a solution to (36). This will require an
appropriate extension of graphons that is fully developed in the next section.

Proof of Theorem 4.23. For some 𝜈 > 0, let us consider the solution 𝑓𝜈 to the system (37) with
artificial diffusion with the same initial data 𝑓0 and same weights 𝑤 as 𝑓. We define similarly 𝑓𝜈

 10970312, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22235 by U

niversidad D
e G

ranada, W
iley O

nline L
ibrary on [25/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



MEAN-FIELD LIMIT OF NON-EXCHANGEABLE SYSTEMS 47

solution to (37) with the same initial data 𝑓0 and weights �̃� as 𝑓. The existence of both 𝑓𝜈 and 𝑓𝜈
is provided by Proposition 4.11.
The strategy of the proof is classical: First use the regularity of 𝑓 (resp. 𝑓) to compare themwith

𝑓𝜈 (resp. 𝑓𝜈). Then use Theorem 4.19 to compare the observables from 𝑓𝜈 and 𝑓𝜈. To compare 𝑓
with 𝑓𝜈, we first derive𝐻1 estimates for 𝑓𝜈 in the usual way

𝑑

𝑑𝑡

1

2
‖𝑓𝜈(𝑡, ⋅, 𝜉)‖2

𝐿2𝑥
= −𝜈 ∫

ℝ𝑑

|∇𝑥𝑓
𝜈(𝑡, 𝑥, 𝜉)|2 𝑑𝑥

+ ∫
1

0

𝑤(𝜉, 𝑑𝜁)∫
ℝ2𝑑

𝑓𝜈(𝑡, 𝑥, 𝜉)∇𝑓𝜈(𝑡, 𝑥, 𝜉) ⋅ 𝐾(𝑥 − 𝑦) 𝑓𝜈(𝑡, 𝑦, 𝜁) 𝑑𝑦 𝑑𝑥.

Integrating by parts in the second term yields

𝑑

𝑑𝑡

1

2
‖𝑓𝜈(𝑡, ⋅, 𝜉)‖2

𝐿2𝑥
+ 𝜈 ∫

ℝ𝑑

|∇𝑥𝑓
𝜈(𝑡, 𝑥, 𝜉)|2 𝑑𝑥

= −
1

2 ∫
1

0

𝑤(𝜉, 𝑑𝜁)∫
ℝ2𝑑

div 𝐾(𝑥 − 𝑦) |𝑓𝜈(𝑡, 𝑥, 𝜉)|2 𝑓𝜈(𝑡, 𝑦, 𝜁) 𝑑𝑦 𝑑𝑥
≤ 1

2
‖𝑤‖𝐿∞

𝜉
𝜁

‖ div 𝐾‖𝐿∞‖𝑓𝜈(𝑡, ⋅, ⋅)‖𝐿∞
𝜉
𝐿1𝑥

‖𝑓𝜈(𝑡, ⋅, 𝜉)‖2
𝐿2𝑥
,

where we have used Lemma 4.8 in the last step. Again, notice that ‖𝑓𝜈(𝑡, ⋅, ⋅)‖𝐿∞
𝜉
𝐿1𝑥
= ‖𝑓0‖𝐿∞

𝜉
𝐿1𝑥

for all 𝑡 ∈ [0, 𝑡∗]. Using Gronwall’s lemma we obtain

‖𝑓𝜈(𝑡, ⋅, ⋅)‖2
𝐿∞
𝜉
𝐿2𝑥
+ 𝜈 ∫

𝑡

0
∫
ℝ𝑑

|∇𝑥𝑓
𝜈(𝑠, 𝑥, 𝜉)|2 𝑑𝑥 𝑑𝑠 ≤ ‖𝑓0‖2

𝐿∞
𝜉
𝐿2𝑥
𝑒

𝑡

2
‖𝑤‖𝐿∞

𝜉
𝜁

‖ div 𝐾‖𝐿∞ ‖𝑓0‖
𝐿∞
𝜉
𝐿1𝑥 .

(48)
Now, observe that the difference 𝑓𝜈 − 𝑓 satisfies the following equation

𝜕𝑡(𝑓
𝜈 − 𝑓)(𝑡, 𝑥, 𝜉) + div𝑥

(
(𝑓𝜈 − 𝑓)(𝑡, 𝑥, 𝜉) ∫

1

0

𝑤(𝜉, 𝑑𝜁)∫
ℝ𝑑

𝐾(𝑥 − 𝑦) 𝑓𝜈(𝑡, 𝑦, 𝜁) 𝑑𝑦

)

+ div𝑥

(
𝑓(𝑡, 𝑥, 𝜉)∫

1

0

𝑤(𝜉, 𝑑𝜁)∫
ℝ𝑑

𝐾(𝑥 − 𝑦) (𝑓𝜈 − 𝑓)(𝑡, 𝑦, 𝜁) 𝑑𝑦

)
− 𝜈 Δ𝑥(𝑓

𝜈 − 𝑓)(𝑡, 𝑥, 𝜉) = 𝜈 Δ𝑥𝑓(𝑡, 𝑥, 𝜉).

Therefore, similar arguments as above lead to analogous𝐻1 estimates

𝑑

𝑑𝑡

1

2
‖‖(𝑓𝜈 − 𝑓)(𝑡, ⋅, 𝜉)‖‖2𝐿2𝑥 + 𝜈 ∫

ℝ𝑑

|∇𝑥(𝑓
𝜈 − 𝑓)(𝑡, 𝑥, 𝜉)|2 𝑑𝑥

≤ 1

2
‖𝑤‖𝐿∞

𝜉
𝜁

‖ div 𝐾‖𝐿∞ ‖𝑓𝜈(𝑡, ⋅, ⋅)‖𝐿∞
𝜉
𝐿1𝑥

‖(𝑓𝜈 − 𝑓)(𝑡, ⋅, 𝜉)‖𝐿2𝑥
+ ‖𝑤‖𝐿∞

𝜉
𝜁

‖𝐾‖𝐿2 ‖𝑓(𝑡, ⋅, ⋅)‖𝐿∞
𝜉
𝐻1
𝑥
‖(𝑓𝜈 − 𝑓)(𝑡, ⋅, 𝜉)‖𝐿2𝑥 ‖(𝑓𝜈 − 𝑓)(𝑡, ⋅, ⋅)‖𝐿∞

𝜉
𝐿2𝑥

+ ‖𝑤‖𝐿∞
𝜉
𝜁

‖ div 𝐾‖𝐿1 ‖𝑓(𝑡, ⋅, ⋅)‖𝐿∞
𝜉
𝐿∞𝑥

‖(𝑓𝜈 − 𝑓)(𝑡, ⋅, 𝜉)‖𝐿2𝑥 ‖(𝑓𝜈 − 𝑓)(𝑡, ⋅, ⋅)‖𝐿∞
𝜉
𝐿2𝑥

+ 𝜈 ‖∇𝑥(𝑓
𝜈 − 𝑓)(𝑡, ⋅, 𝜉)‖𝐿2𝑥 ‖𝑓(𝑡, ⋅, ⋅)‖𝐿∞𝜉 𝐻1

𝑥
.
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48 JABIN et al.

Using the additional regularity 𝑓, 𝑓 ∈ 𝐿∞([0, 𝑡∗], 𝐿
∞
𝜉
(𝐿1𝑥 ∩ 𝐿

∞
𝑥 ∩ 𝐻1

𝑥)) from Lemma 4.22, apply-
ing Young’s inequality in the last term, and recalling that 𝑓(0, ⋅, ⋅) = 𝑓𝜈(0, ⋅, ⋅) we obtain by
Gronwall’s lemma that

‖(𝑓𝜈 − 𝑓)(𝑡, ⋅, ⋅)‖𝐿∞
𝜉
𝐿2𝑥

≤ 𝐶(𝑡)
√
𝜈, (49)

for some continuous and non-decreasing function 𝐶 = 𝐶(𝑡) ∈ ℝ+ that only depends on the var-
ious norms of 𝐾, the norm of 𝑤 in 𝐿∞

𝜉
𝜁 and the norm of the initial datum 𝑓0 in 𝐿∞

𝜉
(𝐿1𝑥 ∩

𝐿∞𝑥 ∩ 𝐻1
𝑥). Note that a similar estimate can be obtained for 𝑓𝜈 − 𝑓. The function 𝐶 is actually

a triple exponential.
By Proposition 4.17, the observables 𝜏(𝑇, 𝑤, 𝑓𝜈) and 𝜏(𝑇, �̃�, 𝑓𝜈)with 𝑇 ∈ 𝖳 both solve the same

hierarchy (43) (since 𝑤, �̃� do not appear explicitly in that formulation). Therefore, ℎ = (ℎ𝑇)𝑇∈𝖳,
with ℎ𝑇 = 𝜏(𝑇,𝑤, 𝑓𝜈) − 𝜏(𝑇, �̃�, 𝑓𝜈), again solves (43) by linearity. In addition, Corollary 4.16
implies that

‖ℎ𝑇(𝑡, ⋅, ⋅)‖𝐿2(ℝ𝑑|𝑇|) ≤ ‖𝜏(𝑇, 𝑤, 𝑓𝜈(𝑡, ⋅, ⋅))‖𝐿2(ℝ𝑑|𝑇|) + ‖𝜏(𝑇, 𝑤, 𝑓𝜈(𝑡, ⋅, ⋅))‖𝐿2(ℝ𝑑|𝑇|)
≤ ‖𝑤‖|𝑇|−1

𝐿∞
𝜉
𝜁

‖𝑓𝜈(𝑡, ⋅, ⋅)‖|𝑇|
𝐿∞
𝜉
𝐿2𝑥
+ ‖�̃�‖|𝑇|−1

𝐿∞
𝜉
𝜁

‖𝑓𝜈(𝑡, ⋅, ⋅)‖|𝑇|
𝐿∞
𝜉
𝐿2𝑥

≤ 2

𝑤min

⎛⎜⎜⎝𝑤max

‖𝑓0‖𝐿∞
𝜉
𝐿2𝑥
+ ‖𝑓0‖𝐿∞

𝜉
𝐿2𝑥

2
𝑒

𝑡∗
4
𝑤max‖ div 𝐾‖𝐿∞ ‖𝑓0‖

𝐿∞
𝜉
𝐿1𝑥

⎞⎟⎟⎠
|𝑇|
,

where 𝑤min = min{‖𝑤‖𝐿∞
𝜉
𝜁

, ‖�̃�‖𝐿∞
𝜉
𝜁

} and 𝑤max = max{‖𝑤‖𝐿∞
𝜉
𝜁

, ‖�̃�‖𝐿∞
𝜉
𝜁

}. Consequently,
we obtain that sup𝑡∈[0, 𝑡∗] ‖ℎ(𝑡, ⋅)‖𝜆 < 1, for any 𝜆 > 0 such that

√
𝜆 < min

{
2

𝑤max
,
𝑤min
𝑤max

}
𝑒

−𝑡∗
4
𝑤max‖ div 𝐾‖𝐿∞ ‖𝑓0‖

𝐿∞
𝜉
𝐿1𝑥

(‖𝑓0‖𝐿∞
𝜉
𝐿2𝑥
+ ‖𝑓0‖𝐿∞

𝜉
𝐿2𝑥
)
.

We can now apply Theorem 4.19 for this 𝜆, any 𝑝 > 1 and 𝜃 ∈ (0, 2−𝑝
′
), and obtain

sup
𝑡∈[0, 𝑡∗]

‖ℎ(𝑡, ⋅, ⋅)‖𝜃𝜆 ≤ 𝐶𝑝,𝜃 exp

(
𝑝
−

‖𝐾‖2
𝐿2

2𝜃𝜆𝜈
𝑡
log ‖ℎ0‖𝜃𝜆),

for any 𝑇 ∈ 𝖳 and some constant 𝐶𝑝,𝜃 > 0 depending only on 𝑝 and 𝜃. In the special case of the
trivial tree 𝑇1 ∈ 𝖳1 with only one vertex, we obtain

‖ℎ‖𝜃𝜆 ≥ 𝜆‖ℎ𝑇1‖𝐿2 = √
𝜆‖‖𝜏(𝑇1, 𝑤, 𝑓𝜈) − 𝜏(𝑇1, �̃�, 𝑓

𝜈)‖‖𝐿2𝑥 = √
𝜆
‖‖‖‖‖∫

1

0

(𝑓𝜈 − 𝑓𝜈)(𝑡, ⋅, 𝜉) 𝑑𝜉
‖‖‖‖‖𝐿2𝑥 .

Therefore, we deduce that

‖‖‖‖‖∫
1

0

(𝑓𝜈 − 𝑓𝜈)(𝑡, ⋅, 𝜉) 𝑑𝜉
‖‖‖‖‖𝐿2𝑥 ≤ 𝐶𝑝,𝜃√

𝜆
exp

(
𝑝
−

‖𝐾‖2
𝐿2

2𝜃𝜆𝜈
𝑡
log ‖ℎ0‖𝜃𝜆), (50)
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MEAN-FIELD LIMIT OF NON-EXCHANGEABLE SYSTEMS 49

for any 𝑡 ∈ [0, 𝑡∗]. By (49) and Minkowski’s integral inequality, we also have that‖‖‖‖‖∫
1

0

(𝑓𝜈 − 𝑓)(𝑡, ⋅, 𝜉) 𝑑𝜉
‖‖‖‖‖𝐿2𝑥 ≤ ‖𝑓𝜈 − 𝑓‖𝐿∞

𝜉
𝐿2𝑥

≤ 𝐶(𝑡)
√
𝜈,

and similarly for 𝑓𝜈 − 𝑓, where the function 𝐶 = 𝐶(𝑡) is given above. This combined with (50)
immediately yields that‖‖‖‖‖∫

1

0

(𝑓 − 𝑓)(𝑡, ⋅, 𝜉) 𝑑𝜉
‖‖‖‖‖𝐿2𝑥 ≤ 𝐶𝑝,𝜃√

𝜆
exp

(
𝑝
−

‖𝐾‖2
𝐿2

2𝜃𝜆𝜈
𝑡
log ‖ℎ0‖𝜃𝜆) + 𝐶(𝑡)

√
𝜈.

Since the above is valid for any 𝜈 > 0, it only remains to optimize in 𝜈 appropriately. For example,
considering 𝑝 = 𝑒 for simplicity and setting

𝜈 =
‖𝐾‖2

𝐿2

𝜃𝜆
𝑡 (log | log ‖ℎ0‖𝜃𝜆|)−1+ ,

ends the proof. □

5 EXTENDING GRAPHONS

5.1 Our goals

This section is centered on the process of taking limits on the 𝜏(𝑇, 𝑤𝑁, 𝑓𝑁) defined by the operator
(39) for the pairs (𝑤𝑁, 𝑓𝑁) given by Definition 4.4, at some fixed time 𝑡 ∈ ℝ+. Since the time
variable plays no role in this part, we omit it from the calculations. The first aim of this section is
to analyze the following question already raised in the previous section: If lim𝑁→∞ 𝜏(𝑇,𝑤𝑁, 𝑓𝑁)

exists for any 𝑇 ∈ 𝖳, can we find appropriate 𝑤 and 𝑓 such that we recover the representation

𝜏(𝑇, 𝑤, 𝑓) = lim
𝑁→∞

𝜏(𝑇,𝑤𝑁, 𝑓𝑁), ∀ 𝑇 ∈ 𝖳?

As we will see below, this can be rephrased as the question of how to take appropriate limits of
𝑤𝑁 and 𝑓𝑁 so that they allow passing to the limit in 𝜏(𝑇, 𝑤𝑁, 𝑓𝑁). The following result answers
this question.

Theorem 5.1. The definition of 𝜏(𝑇, 𝑤, 𝑓) can be uniquely extended for any 𝑤 ∈ 𝐿∞
𝜁
𝜉 ∩ 𝐿

∞
𝜉
𝜁

and 𝑓 ∈ 𝐿∞
𝜉
𝐿∞𝑥 . Furthermore, consider any sequence {𝑤𝑁}𝑁∈ℕ and {𝑓𝑁}𝑁∈ℕ such that the following

hypothesis hold true

(i) sup𝑁∈ℕ sup𝜉∈[0, 1] ∫ 1

0
|𝑤𝑁(𝜉, 𝜁)|𝑑𝜁 < ∞, sup𝑁∈ℕ sup𝜁∈[0, 1] ∫ 1

0
|𝑤𝑁(𝜉, 𝜁)|𝑑𝜉 < ∞,

(ii) sup𝑁∈ℕ ‖𝑓𝑁‖𝐿∞
𝜉
(𝑊1,1

𝑥 ∩𝑊1,∞
𝑥 )

< ∞.

Then, there exists an extracted subsequence of 𝑁 (that we still denote as 𝑁 for simplicity) and 𝑤 ∈

𝐿∞
𝜁
𝜉 ∩ 𝐿

∞
𝜉
𝜁 together with 𝑓 ∈ 𝐿∞

𝜉
(𝑊1,1

𝑥 ∩ 𝑊1,∞
𝑥 ) such that

𝜏(𝑇, 𝑤𝑁, 𝑓𝑁) → 𝜏(𝑇,𝑤, 𝑓) in 𝐿
𝑝

𝑙𝑜𝑐
(ℝ𝑑 |𝑇|),

as𝑁 → ∞, for each 𝑇 ∈ 𝖳 and any 1 ≤ 𝑝 < ∞.
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50 JABIN et al.

We note that Theorem 5.1 only imposes that the sequences {𝑤𝑁}𝑁∈ℕ and {𝑓𝑁}𝑁∈ℕ fulfill the
above uniform estimates (𝑖) and (𝑖𝑖). Those sequences can, hence, bemore general than the empir-
ical graphons inDefinition 4.4 associated to discrete objects (𝑤𝑖𝑗)𝑖,𝑗=1,…,𝑁 and (𝑓𝑖)𝑖=1,…,𝑁 ⊆ (ℝ𝑑).
However, when restricting to empirical 𝑤𝑁 and 𝑓𝑁 , note that we have equivalently the following
uniform bounds

(𝑖′) sup𝑁∈ℕ max1≤𝑖≤𝑁
∑𝑁

𝑗=1 |𝑤𝑖𝑗| < ∞, sup𝑁∈ℕ max1≤𝑗≤𝑁
∑𝑁

𝑖=1 |𝑤𝑖𝑗| < ∞,
(𝑖𝑖′) sup𝑁∈ℕ max1≤𝑖≤𝑁 ‖𝑓𝑖‖𝑊1,∞

𝑥
< ∞.

Let us remark some critical differences of our generalized graphons with standard graphons:

∙ As discussed in Section 1, the notion of graphon arises naturally under the scaling condition
(8), that is, 𝑤𝑖𝑗 ≲ 1∕𝑁, since it leads to 𝑤𝑁 uniformly bounded in 𝐿∞

𝜉,𝜁
. Compactness is then

obtained by considering𝑤𝑁 as the kernel of an operator from 𝐿1 to 𝐿∞. This corresponds to the
natural topology on graphons characterized by the cut metric, which can be reframed in terms
of the homomorphism densities 𝜏(𝐺,𝑤) in Lemma 4.14 for general simple graphs 𝐺, see the
pioneer works of Lovász and Lovász–Szegedy [62, 63].

∙ Instead, in this work, we focus on the generalizedmean-field scaling given by (3)–(4). This leads
to𝑤𝑁 which are not uniformly bounded in 𝐿∞𝜉,𝜁 , but only in 𝐿

∞
𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 . As wementioned

in Section 1, graphons could still be able to capture graph limits in the absence of the scaling
𝑤𝑖𝑗 ≲ 1∕𝑁 by suitably renormalizing the weights, but these results do not appear to be able to
handle such a general scaling assumption as we have here. Our scaling still allows to consider
𝑤𝑁 as the kernel of an operator, for example, from 𝐿∞ to 𝐿∞ and from 𝐿1 to 𝐿1 as it has been
depicted in Lemma 4.7. But the connection with the cut metric and the natural compactness
that derives from it are lost. Instead Theorem 5.1 suggests an alternative natural topology on
pairs (𝑤, 𝑓) with 𝑤 ∈ 𝐿∞

𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 and 𝑓 ∈ 𝐿∞

𝜉
𝐿∞𝑥 .

∙ One straightforward result that highlights these differences is the following: As we have seen
in the previous section (cf. Lemma 4.15), we have

‖𝜏(𝑇, 𝑤, 𝑓)‖𝐿∞ ≤ ‖𝑤‖|𝑇|−1
𝐿∞
𝜉
𝜁

‖𝑓‖|𝑇|
𝐿∞
𝜉
𝐿∞𝑥
,

for any tree 𝑇 and any 𝑤 ∈ 𝐿∞
𝜉
𝜁 , while this estimate is obviously false if we consider 𝜏(𝐺,𝑤)

for general simple graphs 𝐺 as it is done in the standard theory of graphons.

Of direct impact to our work here is the fact that we cannot easily define 𝜏(𝑇, 𝑤, 𝑓) through for-
mula (39) in Definition 4.13 when we only have𝑤 ∈ 𝐿∞

𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 and 𝑓 ∈ 𝐿∞

𝜉
𝐿∞𝑥 . We explain

how this can be done in the next subsection through the construction of an appropriate alge-
bra. The rest of the section is devoted to the proof of Theorem 5.1 which is based on obtaining
simultaneous compactness on all elements of the algebra.

5.2 Defining 𝝉(𝑻,𝒘,𝒇) for unbounded𝒘

The key to the definition of 𝜏(𝑇, 𝑤, 𝑓) (and later of the compactness argument) for only 𝑓 ∈

𝐿∞
𝜉
(𝐿1𝑥 ∩ 𝐿

∞
𝑥 ) and 𝑤 ∈ 𝐿∞

𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 , is an iterative way to construct it from the leaves of the

tree. This leads us to the following definition.
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MEAN-FIELD LIMIT OF NON-EXCHANGEABLE SYSTEMS 51

Definition 5.2 (A countable algebra). We will denote by  the countable algebra of transforms
over spaces of arbitrarily large dimensions which is built as follows: For each transform 𝐹 ∈ 
there exists 𝑛 ∈ ℕ (the rank of 𝐹) so that 𝐹maps each couple (𝑤, 𝑓) into a scalar function 𝐹(𝑤, 𝑓)
on [0, 1] × ℝ𝑑𝑛. The full algebra  is obtained in a recursive way according to the following
rules:

(i) The elementary 1-rank transform 𝐹0 ∶ (𝑤, 𝑓) ↦ 𝑓 belongs to the algebra  .
(ii) Let 𝐹1 ∈  and 𝐹2 ∈  be 𝑛1-rank and 𝑛2-rank transforms respectively. Then, the following

(𝑛1 + 𝑛2)-rank transform also belongs to  :
𝐹1 ⊗ 𝐹2 ∶ (𝑤, 𝑓) ↦ 𝐹1(𝑤, 𝑓)(𝜉, 𝑥1, … , 𝑥𝑛1) 𝐹2(𝑤, 𝑓)(𝜉, 𝑥𝑛1+1, … , 𝑥𝑛1+𝑛2).

(iii) Let 𝐹 ∈  be a 𝑛-rank transform. Then, the following 𝑛-rank transform also belongs to  :

𝐹⋆ ∶ (𝑤, 𝑓) ↦ ∫
1

0

𝐹(𝑤, 𝑓)(𝜁, 𝑥1, … , 𝑥𝑛)𝑤(𝜉, 𝑑𝜁).

For a given choice of (𝑤, 𝑓), we also denote by 𝑀(𝑤, 𝑓) the countable algebra consisting of
functions over spaces of arbitrary large dimensions given by 𝐹(𝑤, 𝑓) for any transform 𝐹 ∈  . Of
course𝑀(𝑤, 𝑓) can also be obtained directly by transposing the rules (𝑖), (𝑖𝑖) and (𝑖𝑖𝑖) above:

(i) We have 𝑓(𝑥1, 𝜉) ∈ 𝑀(𝑤, 𝑓).
(ii) If 𝜙(𝜉, 𝑥1, … , 𝑥𝑛1), 𝜓(𝜉, 𝑥1, … , 𝑥𝑛2) ∈ 𝑀(𝑤, 𝑓), then we have:

𝜙(𝜉, 𝑥1, … , 𝑥𝑛1) 𝜓(𝜉, 𝑥𝑛1+1, … , 𝑥𝑛1+𝑛2) ∈ 𝑀(𝑤, 𝑓).

(iii) If 𝜙(𝜉, 𝑥1, … , 𝑥𝑛) ∈ 𝑀(𝑤, 𝑓), then we have:

∫
1

0

𝜙(𝜁, 𝑥1, … , 𝑥𝑛)𝑤(𝜉, 𝑑𝜁) ∈ 𝑀(𝑤, 𝑓).

The first point is to observe that 𝑀(𝑤, 𝑓) (and thus the algebra  ) is well defined with the only
hypotheses 𝑓 ∈ 𝐿∞

𝜉
(𝐿1𝑥 ∩ 𝐿

∞
𝑥 ) and 𝑤 ∈ 𝐿∞

𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 .

Lemma 5.3. Consider any 𝑓 ∈ 𝐿∞
𝜉
(𝐿1𝑥 ∩ 𝐿

∞
𝑥 ) and any𝑤 ∈ 𝐿∞

𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 . Then all functions of

𝑀(𝑤, 𝑓) are well defined and belong to 𝐿∞
𝜉
(𝐿1𝑥1,…,𝑥𝑛 ∩ 𝐿

∞
𝑥1,…,𝑥𝑛

), for some 𝑛 ∈ ℕ. Moreover,

𝐹(𝑤𝑁, 𝑓𝑁) → 𝐹(𝑤, 𝑓) in 𝐿1([0, 1] × ℝ𝑑𝑛),

an 𝑁 → ∞ for any fixed 𝐹 ∈  , any sequence {𝑓𝑁}𝑁∈ℕ uniformly bounded in 𝐿∞
𝜉
(𝐿1𝑥 ∩ 𝐿

∞
𝑥 ) and

converging to some𝑓 in𝐿∞
𝜉
(𝐿1𝑥 ∩ 𝐿

∞
𝑥 ), and any sequence of {𝑤𝑁}𝑁∈ℕ uniformly bounded in𝐿∞𝜉 𝜁 ∩

𝐿∞
𝜁
𝜉 and converging to 𝑤 in 𝐿1

𝜉
𝐻−1
𝜁

∩ 𝐿1
𝜁
𝐻−1
𝜉
.

Proof. We of course use an induction argument based on the recursive rules above defining the
countable algebra𝑀(𝑤, 𝑓).
⋄ Step 1: Good definition of elements of𝑀(𝑤, 𝑓).
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52 JABIN et al.

Obviously, for the elementary transform 𝐹0 in rule (𝑖)we have that 𝐹0(𝑤, 𝑓) = 𝑓 is well defined
and belongs to 𝐿∞([0, 1] × ℝ𝑑) by hypothesis. The second rule (𝑖𝑖) also poses no issue. Indeed,
let us set 𝐹 = 𝐹1 ⊗ 𝐹2 and assume 𝐹1, 𝐹2 ∈  are transform with rank 𝑛1, 𝑛2 ∈ ℕ for which we
already now that 𝐹1(𝑤, 𝑓) and 𝐹2(𝑤, 𝑓) are well defined and belong to 𝐿∞([0, 1] × ℝ𝑑𝑛1) and
𝐿∞([0, 1] × ℝ𝑑𝑛2) respectively. Then,𝐹(𝑤, 𝑓) is well defined and belongs to 𝐿∞([0, 1] × ℝ𝑑(𝑛1+𝑛2))

as the product of two bounded functions. Finally, it only remains to check the third rule (𝑖𝑖𝑖).
Consider any 𝐹 ∈  of rank 𝑛 ∈ ℕ for which we already now that 𝐹(𝑤, 𝑓) is well defined and
belongs 𝐿∞([0, 1] × ℝ𝑑𝑛). Then, 𝐹⋆(𝑤, 𝑓) is also well defined and belongs to 𝐿∞([0, 1] × ℝ𝑑𝑛) by
the estimate (35)2 in Lemma 4.8.
Moreover, since 𝐿1 norms are also stable under tensor products, by the same argument we also

have that if 𝑓 ∈ 𝐿∞
𝜉
(𝐿1𝑥 ∩ 𝐿

∞
𝑥 ) and 𝑤 ∈ 𝐿∞

𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 , then all functions in 𝑀(𝑤, 𝑓) are well

defined and belong to 𝐿∞
𝜉
(𝐿1𝑥1,…,𝑥𝑛 ∩ 𝐿

∞
𝑥1,…,𝑥𝑛

) for some 𝑛 ∈ ℕ.
⋄ Step 2: Convergence of elements of𝑀(𝑤𝑁, 𝑓𝑁).
First note that taking the elementary transform 𝐹0 ∈  in rule (𝑖) we have that

𝐹0(𝑤𝑁, 𝑓𝑁) = 𝑓𝑁 → 𝑓 = 𝐹0(𝑤, 𝑓) in 𝐿1([0, 1] × ℝ𝑑),

by the convergence hypothesis on {𝑓𝑁}𝑁∈ℕ. Let us set 𝐹 = 𝐹1 ⊗ 𝐹2 as in the rule (𝑖𝑖) for a couple
of transforms 𝐹1, 𝐹2 ∈  and assume that we already now that 𝐹1(𝑤𝑁, 𝑓𝑁) and 𝐹2(𝑤𝑁, 𝑓𝑁) are
both convergent in 𝐿1 and uniformly bounded in 𝐿∞. Therefore, it is clear that

𝐹(𝑤𝑁, 𝑓𝑁) → 𝐹(𝑤, 𝑓) in 𝐿1([0, 1] × ℝ𝑑(𝑛1+𝑛2)),

and it is uniformly bounded in 𝐿∞ as the product of uniformly bounded sequences in 𝐿∞, each of
them convergent in 𝐿1. Finally, consider a 𝑛-rank transform 𝐹 ∈  and assume that we already
now that 𝐹(𝑤𝑁, 𝑓𝑁) converges to 𝐹(𝑤, 𝑓) in 𝐿1 and is uniformly bounded in 𝐿∞. Our last goal is
to show that 𝐹⋆(𝑤𝑁, 𝑓𝑁) given by the rule (𝑖𝑖𝑖) is also convergent in 𝐿1 and uniformly bounded
in 𝐿∞. Note that Lemma 4.7 yields a partial answer in the weak topology of 𝐿∞ though. We shall
improve it here at the expense of the stronger convergence assumed on {𝑤𝑁}𝑁∈ℕ. For simplicity of
notation, we set 𝜙𝑁 ∶= 𝐹(𝑤𝑁, 𝑓𝑁), which by the induction hypothesis converges to 𝜙 ∶= 𝐹(𝑤, 𝑓)

in 𝐿1 and uniformly bounded in 𝐿∞. Then, we find that

𝐹⋆(𝑤𝑁, 𝑓𝑁)(𝜉, 𝑥1, … , 𝑥𝑛) = ∫
1

0

𝜙𝑁(𝜁, 𝑥1, … , 𝑥𝑁)𝑤𝑁(𝜉, 𝑑𝜁),

is uniformly bounded in 𝐿∞ by estimate (35)2 in Lemma 4.8 thanks to the uniform bound of
{𝑤𝑁}𝑁∈ℕ in 𝐿∞𝜉 𝜁 and of 𝜙𝑁 in 𝐿∞. Regarding convergence, we have

𝐹⋆(𝑤𝑁, 𝑓𝑁) − 𝐹⋆(𝑤, 𝑓) = 𝐼1𝑁 + 𝐼2𝑁,

where each factor reads

𝐼1𝑁(𝜉, 𝑥1, … , 𝑥𝑛) ∶= ∫
1

0

(𝜙𝑁 − 𝜙)(𝜁, 𝑥1, … , 𝑥𝑛)𝑤𝑁(𝜉, 𝑑𝜁),

𝐼2𝑁(𝜉, 𝑥1, … , 𝑥𝑛) ∶= ∫
1

0

𝜙(𝜁, 𝑥1, … , 𝑥𝑛) (𝑤𝑁(𝜉, 𝑑𝜁) − 𝑤(𝜉, 𝑑𝜁)).
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MEAN-FIELD LIMIT OF NON-EXCHANGEABLE SYSTEMS 53

for 𝑁 ∈ ℕ. On the one hand, it is clear by estimate (35)1 in Lemma 4.8 that we have

‖𝐼1𝑁‖𝐿1 ≤ ‖𝑤𝑁‖𝐿∞
𝜁
𝜉

‖𝜙𝑁 − 𝜙‖𝐿1 ,
and, therefore, 𝐼1𝑁 → 0 in 𝐿1 by the convergence of 𝜙𝑁 to 𝜙 in 𝐿1 and the uniform estimate of𝑤𝑁 in
𝐿∞
𝜁
𝜉 . On the other hand, consider any sequence {𝜙𝜀}𝜀>0 ⊂ 𝐶∞𝑐 ([0, 1] × ℝ

𝑑𝑛) such that 𝜙𝜀 → 𝜙

in 𝐿1 as 𝜀 → 0 and define

𝐼2𝑁,𝜀(𝜉, 𝑥1, … , 𝑥𝑛) ∶= ∫
1

0

𝜙𝜀(𝜁, 𝑥1, … , 𝑥𝑛) (𝑤𝑁(𝜉, 𝑑𝜁) − 𝑤(𝜉, 𝑑𝜁)),

for 𝑁 ∈ ℕ and 𝜀 > 0. Then, by (35)1 in Lemma 4.8 we have

‖𝐼2𝑁‖𝐿1 ≤ ‖𝑤𝑁‖𝐿∞
𝜁
𝜉

‖𝜙 − 𝜙𝜀‖𝐿1 + ‖𝐼2𝑁,𝜀‖𝐿1
≤ ‖𝑤𝑁‖𝐿∞

𝜁
𝜉

‖𝜙 − 𝜙𝜀‖𝐿1 + ‖𝜙𝜀‖𝐿1𝑥1,…,𝑥𝑛𝐻1
𝜁
‖𝑤𝑁 − 𝑤‖𝐿1

𝜉
𝐻−1
𝜁
,

for every 𝑁 ∈ ℕ and 𝜀 > 0. Taking lim sup as 𝑁 → ∞ we have that

lim sup
𝑁→0

‖𝐼2𝑁‖𝐿1 ≤ sup
𝑁∈ℕ

‖𝑤𝑁‖𝐿∞
𝜁
𝜉

‖𝜙𝜀 − 𝜙‖𝐿1 .
Since 𝜀 > 0 is arbitrary, taking 𝜀 → 0 and recalling that 𝑤𝑁 is uniformly bounded in 𝐿∞

𝜁
𝜉 and

𝜙𝜀 → 𝜙 in 𝐿1 allow concluding. □

The critical reason for the introduction of the algebras 𝑀(𝑤, 𝑓) and  is that they allow eas-
ily recovering all 𝜏(𝑇, 𝑤, 𝑓), at least for bounded 𝑤. Namely, for any tree 𝑇 ∈ 𝖳, there exists a
transform 𝐹 ∈  so that 𝜏(𝑇, 𝑤, 𝑓) can be described in terms of the transform 𝐹(𝑤, 𝑓) of the pair
(𝑤, 𝑓).

Lemma 5.4. For any tree 𝑇 ∈ 𝖳 there exists a transform 𝐹 ∈  such that

𝜏(𝑇, 𝑤, 𝑓)(𝑥1, … , 𝑥|𝑇|) = ∫
1

0

𝐹(𝑤, 𝑓)(𝜁, 𝑥1, … , 𝑥|𝑇|) 𝑑𝜁,
for any 𝑤 ∈ 𝐿∞

𝜉,𝜁
, and any 𝑓 ∈ 𝐿∞

𝜉
(𝐿1𝑥 ∩ 𝐿

∞
𝑥 ).

Proof. For any tree 𝑇𝑛 ∈ 𝖳𝑛, index the vertices so that the root has index 1. We define themodified
𝜏 operator as follows

�̂�(𝑇𝑛, 𝑤, 𝑓)(𝜉, 𝑥1, … , 𝑥𝑛) ∶= ∫
[0, 1]𝑛

∏
(𝑘,𝑙)∈𝐸(𝑇𝑛)

𝑤(𝜉𝑘, 𝜉𝑙)
∏

𝑚∈(𝑇𝑛)

𝑓(𝜉𝑚, 𝑥𝑚) 𝑑𝜉2 … 𝑑𝜉𝑛
|||𝜉1=𝜉.

Note that since 𝑤 ∈ 𝐿∞
𝜉,𝜁

and 𝑓 ∈ 𝐿∞
𝜉
𝐿∞𝑥 then all the computations above make sense and this

will also apply in the manipulations below. We also note that we readily obtain the following
representation

𝜏(𝑇, 𝑤, 𝑓) = ∫
1

0

�̂�(𝑇, 𝑤, 𝑓)(𝜉, ⋅) 𝑑𝜉,
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54 JABIN et al.

for every tree 𝑇 ∈ 𝖳. Then, we prove the more precise result that there must exists 𝐹 ∈  such
that �̂�(𝑇, 𝑤, 𝑓) = 𝐹(𝑤, 𝑓). We proceed by induction on the size of the tree 𝑇.
Let 𝑇2 ∈ 𝖳2 be the only tree with two vertices. Then, we have

�̂�(𝑇2, 𝑤, 𝑓)(𝜉, 𝑥1, 𝑥2) = 𝑓(𝜉, 𝑥1)∫
1

0

𝑤(𝜉, 𝜁) 𝑓(𝜁, 𝑥2) 𝑑𝜁.

In other words, �̂�(𝑇2, 𝑤, 𝑓) = 𝐹2(𝑤, 𝑓) with 𝐹2 ∶= 𝐹⋆0 ⊗ 𝐹0. Of course, 𝐹0 ∈  by item (𝑖) in
Definition 5.2. Hence 𝐹⋆0 ∈  by item (𝑖𝑖𝑖), and finally 𝐹2 so does by item (𝑖𝑖).
Assume by induction that the above holds for any tree in 𝖳𝑛. We need to show that it is also

verified for any tree in 𝖳𝑛+1. Assume that the root is index by 1 and has degree 𝑘. Index the corre-
sponding vertices connected to the root by 2, … , 𝑘 + 1. Denote by 𝑇2, … , 𝑇𝑘+1 the subtrees starting
from each vertex 2 to 𝑘 + 1. Then, we have that

�̂�(𝑇𝑛+1, 𝑤, 𝑓) = 𝑓(𝜉, 𝑥1) ∫
[0, 1]𝑘

Π𝑘+1
𝑖=2

𝑤(𝜉, 𝜉𝑖) �̂�(𝑇
𝑖, 𝑤, 𝑓)(𝜉𝑖) 𝑑𝜉𝑖

= 𝑓(𝜉, 𝑥1)Π
𝑘+1
𝑖=2 ∫

[0, 1]

𝑤(𝜉, 𝜉𝑖) �̂�(𝑇
𝑖, 𝑤, 𝑓)(𝜉𝑖) 𝑑𝜉𝑖.

By our induction hypothesis, we have 𝐹𝑖 such that �̂�(𝑇𝑖, 𝑤, 𝑓) = 𝐹𝑖(𝑤, 𝑓). By rule (𝑖𝑖𝑖), for each 𝑖,

∫
[0, 1]

𝑤(𝜉, 𝜉𝑖) �̂�(𝑇
𝑖, 𝑤, 𝑓)(𝜉𝑖) 𝑑𝜉𝑖 = ∫

[0, 1]

𝑤(𝜉, 𝜉𝑖) 𝐹𝑖(𝑤, 𝑓)(𝜉𝑖) 𝑑𝜉𝑖 = 𝐹∗
𝑖

belongs to  . Of course,𝑓(𝜉, 𝑥1) = 𝐹0 by rule (𝑖). Hence finally �̂�(𝑇𝑛+1, 𝑤, 𝑓) = 𝐹0 ⊗ 𝐹∗2⋯⊗ 𝐹∗
𝑘+1

by rule (𝑖𝑖). □

The combination of Lemmas 5.3 and 5.4 naturally lead to the following extended definition of
𝜏(𝑇, 𝑤, 𝑓).

Definition 5.5 (Extension of the 𝜏 operator). Consider a transform 𝐹 ∈  , for any 𝑇 ∈ 𝖳, as
provided by Lemma 5.4. We then define

𝜏(𝑇, 𝑤, 𝑓)(𝑥1, … , 𝑥|𝑇|) = ∫
1

0

𝐹(𝑤, 𝑓)(𝜁, 𝑥1, … , 𝑥|𝑇|) 𝑑𝜁,
for any 𝑓 ∈ 𝐿∞

𝜉
(𝐿1𝑥 ∩ 𝐿

∞
𝑥 ) and any 𝑤 ∈ 𝐿∞

𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 .

In Lemma 5.4 we built a special transform 𝐹 ∈  associated to each tree 𝑇 ∈ 𝖳. It relies on a
recursive construction involving the operations (𝑖), (𝑖𝑖) and (𝑖𝑖𝑖) in Definition 5.1, starting from the
leafs of 𝑇 and descending towards the root. As there could a priori be several transforms 𝐹 that fit
a given tree, the last point to check is that Definition 5.5 is independent of the particular choice of
𝐹.

Lemma 5.6. Consider any 𝐹1, 𝐹2 ∈  such that

∫
1

0

𝐹1(𝑤, 𝑓)(𝜁, .) 𝑑𝜁 = ∫
1

0

𝐹2(𝑤, 𝑓)(𝜁, .) 𝑑𝜁, (51)
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MEAN-FIELD LIMIT OF NON-EXCHANGEABLE SYSTEMS 55

for all𝑓 ∈ 𝐿∞
𝜉
(𝐿1𝑥 ∩ 𝐿

∞
𝑥 ) and all𝑤 ∈ 𝐿∞

𝜉,𝜁
. Then, the equality (51) also holds for all𝑓 ∈ 𝐿∞

𝜉
(𝐿1𝑥 ∩ 𝐿

∞
𝑥 )

and all 𝑤 ∈ 𝐿∞
𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 .

Proof. Define 𝑤𝑁 = 𝐾𝑁 ⋆𝜉,𝜁 𝑤 for some smooth convolution kernel 𝐾𝑁 with 𝐾𝑁 → 𝛿0, and for
any 𝑤 ∈ 𝐿∞

𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 .

First of all𝑤𝑁 ∈ 𝐿∞
𝜉,𝜁
since𝑤 ∈ 𝐿∞

𝜉
𝜁 .We also have that𝑤𝑁 converges to𝑤 in𝐿1

𝜉
𝐻−1
𝜁

∩ 𝐿1
𝜁
𝐻−1
𝜉
.

Therefore, we first have that for 𝑤𝑁

∫
1

0

𝐹1(𝑤𝑁, 𝑓)(𝜁, .) 𝑑𝜁 = ∫
1

0

𝐹2(𝑤𝑁, 𝑓)(𝜁, .) 𝑑𝜁.

But, furthermore, by applying Lemma 5.3, we have that 𝐹1(𝑤𝑁, 𝑓) and 𝐹2(𝑤𝑁, 𝐹) converge
strongly in 𝐿1 to 𝐹1(𝑤, 𝑓) and 𝐹2(𝑤, 𝑓), respectively. Hence, we obtain the desired equality. □

Being able to correctly define 𝜏(𝑇, 𝑤, 𝑓) is of course only the first and simplest step in the proof
of Theorem 5.1. Passing to the limit in 𝜏(𝑇, 𝑤𝑁, 𝑓𝑁) is considerablymore intricate and in particular
we cannot apply Lemma 5.3 as of course we cannot have the required compactness on 𝑓𝑁 and𝑤𝑁

from the assumptions of Theorem 5.1.
Instead we have to derive compactness through the clever use of measure-preserving

transforms which are the object of the next subsections.

5.3 An extended multilinear framework

We briefly explain in this subsection how the analysis and estimates presented here can also be
applied to a larger framework of multilinear operators that extends on the transforms introduced
earlier. We define a family of multilinear operators

𝑀 ∶ (𝐿∞
𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉)

𝑘 × (𝐿∞
𝜉
(𝐿1𝑥 ∩ 𝐿

∞
𝑥 ))

𝑙 → 𝐿∞
𝜉
((𝐿1 ∩ 𝐿∞(ℝ𝑑𝑛))

(𝑤1, … ,𝑤𝑘) × (𝑓1, … , 𝑓𝑙) ↦ 𝑀(𝑤1, … ,𝑤𝑘, 𝑓1, … , 𝑓𝑙)(𝜉, 𝑥1, … , 𝑥𝑛).

This family  is constructed exactly as the algebra of transform before through the following
rules

(i) The map𝑀0 ∶ 𝑓 ↦ 𝑓 belongs to.
(ii) Let 𝑀1 ∈  and 𝑀2 ∈  be posed on (𝐿∞

𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉)

𝑘1 × (𝐿∞
𝜉
(𝐿1𝑥 ∩ 𝐿

∞
𝑥 ))

𝑙1 and
(𝐿∞

𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉)

𝑘2 × (𝐿∞
𝜉
(𝐿1𝑥 ∩ 𝐿

∞
𝑥 ))

𝑙2 . Then, the following multilinear operator also
belongs to:

𝑀1 ⊗𝑀2 ∶ (𝐿
∞
𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉)

𝑘1+𝑘2 × (𝐿∞
𝜉
(𝐿1𝑥 ∩ 𝐿

∞
𝑥 ))

𝑙1+𝑙2 → 𝐿∞
𝜉
((𝐿1 ∩ 𝐿∞(ℝ𝑑𝑛))

(𝑤1, … ,𝑤𝑘1 , 𝑤𝑘1+1, … ,𝑤𝑘1+𝑘2) × (𝑓1, … , 𝑓𝑙1 , 𝑓𝑙1+1, … , 𝑓𝑙1+𝑙2)

↦ 𝑀1(𝑤1, … ,𝑤𝑘1 , 𝑓1, … , 𝑓𝑙1)𝑀2(𝑤𝑘1+1, … ,𝑤𝑘1+𝑘2 , 𝑓𝑙1+1, … , 𝑓𝑙1+𝑙2).
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56 JABIN et al.

(iii) Let𝑀 ∈  be posed on (𝐿∞
𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉)

𝑘 × (𝐿∞
𝜉
(𝐿1𝑥 ∩ 𝐿

∞
𝑥 ))

𝑙. Then, the following operator
posed on (𝐿∞

𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉)

𝑘+1 × (𝐿∞
𝜉
(𝐿1𝑥 ∩ 𝐿

∞
𝑥 ))

𝑙 also belongs to:

(𝑤1, … ,𝑤𝑘) × (𝑓1, … , 𝑓𝑙) ↦ ∫
1

0

𝑀(𝑤1, … ,𝑤𝑘, 𝑓1, … , 𝑓𝑙)(𝜁, 𝑥1, … , 𝑥𝑛)𝑤𝑘+1(𝜉, 𝑑𝜁).

As one can readily see, these exactly mimic our previous construction: the only difference is that
we can actually take different kernels 𝑤𝑖 and functions 𝑓𝑖 at every step when building the fam-
ily. This extended freedom does not seem to play a significant role in this paper but could be
useful in the future.
As one would expect, there is a one-to-one correspondence between the 𝐹 ∈  and the𝑀 ∈ 

with the straightforward relation

𝐹(𝑤, 𝑓) = 𝑀(𝑤,… ,𝑤, 𝑓, … , 𝑓).

As we mentioned above, all estimates and properties of  could be extended with the exact same
arguments to.

5.4 The key compactness lemma

A key tool to prove Theorem 5.1 is the following result that encompasses the inherent regularity
on graphons.

Lemma 5.7. Consider any sequence 𝑔𝑛 in 𝐿∞([0, 1]) with 0 ≤ 𝑔𝑛(𝑥) ≤ 2−𝑛+1. Then, there exists
Φ ∶ [0, 1] → [0, 1], a.e. injective, measure-preserving, such that the following uniform regularity
estimate is verified

sup
𝑛∈ℕ ∫

1

0

|(𝑔𝑛 ◦Φ)(𝜉) − (𝑔𝑛 ◦Φ)(𝜉 + ℎ)|𝑑𝜉 ≤ 2
−𝐶

√
log

1|ℎ| ,
for any 0 < |ℎ| < 1 and some universal constant 𝐶.

Remark 5.8. By a.e. injective, we mean that there exists a full measure subset 𝐹′ ⊂ [0, 1], |[0, 1] ⧵
𝐹′| = 0, such that Φ ∶ 𝐹′ ⟶ [0, 1] injective.

We note that independently on the measure-preserving map Φ, by hypothesis we get that
𝑔𝑛 ◦Φ → 0 in 𝐿1 when 𝑛 → ∞. In particular, 𝑔𝑛 ◦Φ is compact in 𝐿1. Therefore, by the Fréchet–
Kolmogorov theoremwe infer that the sequence 𝑔𝑛 ◦Φmust be uniformly equicontinuous so that
the left hand side in the above inequality always converges to zero when ℎ → 0. The novelty of the
previous result is that we can choose a specialmeasure-preservingmapΦ so that such an equicon-
tinuity condition is made explicit in terms of a modulus of continuity. As usual, we extend by zero
for evaluations outside [0, 1], namely (𝑔𝑛 ◦Φ)(𝜉 + ℎ) = 0, if 𝜉 + ℎ ∉ [0, 1].

Proof of Lemma 5.7. Our proof is performed in several steps and relies on a hierarchical con-
struction associated to a suitable hierarchical decomposition of the interval [0, 1]. Throughout
the proof we shall assume that 𝑔𝑛 > 0 and that the 𝑔𝑛 do not charge any point, i.e., |{𝑥 ∈ [0, 1] ∶
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MEAN-FIELD LIMIT OF NON-EXCHANGEABLE SYSTEMS 57

∅

2

24232221

1

14131211

F IGURE 3 Words in𝖶0,𝖶1, and𝖶2.

𝑔𝑛(𝑥) = 𝑡}| = 0 for every 𝑡 ∈ ℝ which will make decomposing [0, 1] according to the level sets
of the 𝑔𝑛 easier. For this, we observe that if 𝑔𝑛 charges some points (at most in a countable way),
then there exists 𝑔𝑛,𝜀, for every 𝜀 > 0, that does not charge any point and with ‖𝑔𝑛 − 𝑔𝑛,𝜀‖𝐿∞ < 𝜀,
for all 𝑛 ∈ ℕ. We may hence obtain the claimed regularity on each 𝑔𝑛,𝜖 independently of 𝜀 which
implies the desired result on 𝑔𝑛.
⋄ Step 1: The hierarchical decomposition.
We built a sequence of covering of [0, 1] determined through a hierarchical decomposition.

For simplicity of the construction, we use indices ranging over the following special sets of words
with 𝑘 letters

𝖶𝑘 ∶= {𝑖1𝑖2 ⋯ 𝑖𝑘 ∶ 𝑖𝑚 ∈ {1, … , 2𝑚}, 𝑚 = 1,… , 𝑘},

for any 𝑘 ∈ ℤ+ (see Figure 3). Note that 𝖶0 = {∅} and for 𝑘 ≥ 1 we have that 𝖶𝑘 contains all
possible words with 𝑘 letters, where the letter at position 𝑚 ∈ {1,… , 𝑘} is allowed to take values
in {1, … , 2𝑚}. For any 𝑖 ∈ 𝖶𝑘 we shall define 𝑗𝑘(𝑖) ∶= {𝑖1, … , 𝑖2𝑘+1} the subset of 𝖶𝑘+1 obtained
by juxtaposition of a letter at the end of the word 𝑖. If we denote 𝑛𝑘 ∶= #𝑊𝑘, then the following
induction follows

𝖶𝑘+1 =
⋃
𝑖∈𝖶𝑘

𝑗𝑘(𝑖), 𝑛𝑘+1 = 2𝑘+1 𝑛𝑘. (52)

Hence, we actually obtain that 𝑛𝑘 =
∏𝑘

𝑚=0 2
𝑚 = 2

∑𝑘
𝑚=0 𝑚 = 2

𝑘(𝑘+1)

2 .
For every level 𝑘 ∈ ℤ+ we shall consider a covering of [0, 1] into 𝑛𝑘 sub-intervals of identical

size as follows. At level 0 we set 𝐼∅0 = [0, 1] and given a covering [0, 1] =
⋃

𝑖∈𝖶𝑘
𝐼𝑖
𝑘
at level 𝑘, we

define the covering at level 𝑘 + 1 by decomposing each 𝐼𝑖
𝑘
with 𝑖 ∈ 𝖶𝑘 into 2𝑘+1 identical sub-

intervals and labeling them in lexicographical order with indices in 𝑗𝑘(𝑖). For instance, at level 1
we obtain 2 sub-intervals 𝐼11 = [0, 1∕2], 𝐼21 = [1∕2, 1], and at level 2 we obtain 8 sub-intervals: 4
associated with 𝐼11

𝐼112 = [0, 1∕8], 𝐼122 = [1∕8, 1∕4], 𝐼132 = [1∕4, 3∕8], 𝐼142 = [3∕8, 1∕2],

and other 4 associated with 𝐼21

𝐼212 = [1∕2, 5∕8], 𝐼222 = [5∕8, 3∕4], 𝐼232 = [3∕4, 7∕8], 𝐼242 = [7∕8, 1].

We proceed in an analogous way at higher levels. Note that 𝐼𝑗
𝑘+1

⊂ 𝐼𝑖
𝑘
for every 𝑗 ∈ 𝑗𝑘(𝑖) and |𝐼𝑖

𝑘
| =

1

𝑛𝑘
since there are exactly 𝑛𝑘 intervals 𝐼𝑖𝑘 with 𝑖 ∈ 𝖶𝑘.
If we had only one function 𝑔𝑛, the proof would be straightforward: we would just perform a

decreasing (or increasing) re-arrangement to obtain a 𝐵𝑉 function. The main idea of the proof is
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58 JABIN et al.

to try to mimic this by re-arranging the level sets of 𝑔𝑛 to decrease their oscillations. Because there
are a countable number of 𝑔𝑛, this is complicated. We introduce a specific decomposition of the
𝑔𝑛 along hierarchical level sets through the 𝑂𝑖

𝑘
below. At each step, we want to cut the level set

into two pieces that have same mass.
Now, we define new coverings [0, 1] =

⋃
𝑖∈𝖶𝑘

𝑂𝑖
𝑘
with measurable subsets 𝑂𝑖

𝑘
⊂ [0, 1] such

that 𝑂𝑗

𝑘+1
⊂ 𝑂𝑖

𝑘
for every 𝑗 ∈ 𝑗𝑘(𝑖) and |𝑂𝑖

𝑘
| = |𝐼𝑖

𝑘
| = 1

𝑛𝑘
. Specifically, they will take the form

𝑂𝑖
𝑘
∶= {𝑥 ∈ [0, 1] ∶ 𝑠𝑖

𝑘,𝑚
< 𝑔𝑚(𝑥) ≤ 𝑡𝑖

𝑘,𝑚
, 𝑚 = 1,… , 𝑘}, (53)

for some values 0 ≤ 𝑠𝑖
𝑘,𝑚

< 𝑡𝑖
𝑘,𝑚

≤ 2−𝑚+1 with𝑚 = 1,… , 𝑘 to be determined below by recursion on
𝑘. Again,𝑂∅

0 = [0, 1].Wedefine𝑂1
1 and𝑂

2
1 at level 1 as follows. Since 𝑡 ↦ |{𝑥 ∈ [0, 1] ∶ 𝑔1(𝑥) ≥ 𝑡}|

is continuous (because |{𝑥 ∈ [0, 1] ∶ 𝑔1(𝑥) = 𝑡}| = 0) then there must exist some 𝑡 ∈ [0, 1] such
that

|{𝑥 ∈ [0, 1] ∶ 𝑔1(𝑥) > 𝑡}| = |{𝑥 ∈ [0, 1] ∶ 𝑔1(𝑥) ≤ 𝑡}| = 1

2
.

Therefore, we can set the values 𝑠11,1 = 0, 𝑡11,1 = 𝑡 for 𝑂1
1 and 𝑠

2
1,1 = 𝑡, 𝑡21,1 = 1 for 𝑂2

1 so that

𝑂1
1 = {𝑥 ∈ [0, 1] ∶ 𝑠11,1 < 𝑔1(𝑥) ≤ 𝑡11,1} = {𝑥 ∈ [0, 1] ∶ 0 < 𝑔1(𝑥) ≤ 𝑡},

𝑂2
1 = {𝑥 ∈ [0, 1] ∶ 𝑠21,1 < 𝑔1(𝑥) ≤ 𝑡21,1} = {𝑥 ∈ [0, 1] ∶ 𝑡 < 𝑔1(𝑥) ≤ 1}.

So defined note that [0, 1] = 𝑂1
1 ∪ 𝑂

2
1 thanks to the hypothesis 0 < 𝑔1 ≤ 1, and |𝑂1

1| = |𝑂2
1| = 1

2
.

Let us now assume that at level 𝑘 the values 0 ≤ 𝑠𝑖
𝑘,𝑚

< 𝑡𝑖
𝑘,𝑚

≤ 2−𝑚+1 have been set so that the 𝑂𝑖
𝑘

given in (53) determine a covering [0, 1] =
⋃

𝑖∈𝖶𝑘
𝑂𝑖
𝑘
and |𝑂𝑖

𝑘
| = 1

𝑛𝑘
. Let us now proceed in the

recursion by defining at level 𝑘 + 1 the values 0 ≤ 𝑠
𝑗

𝑘+1,𝑚
< 𝑡

𝑗

𝑘+1,𝑚
≤ 2−𝑚+1 which will determine

the 𝑂𝑗

𝑘+1
.

For any fixed 𝑖 ∈ 𝖶𝑘 we will built the 𝑂
𝑗

𝑘+1
with 𝑗 ∈ 𝑗𝑘(𝑖) by appropriately decomposing 𝑂𝑖

𝑘

into 2𝑘+1 measurable pieces with identical measure. In this construction we will use words �̃�𝑚

containing𝑚 letters with only allowed values {1, 2}, that is,

�̃�𝑚 ∶= {𝑖1𝑖2 ⋯ 𝑖𝑚 ∶ 𝑖𝑙 ∈ {1, 2}, 𝑙 = 1, … ,𝑚},

for any 𝑚 = 0,… , 𝑘 + 1. By a new recursion on 𝑚, we shall proceed by defining a family of aux-
iliary subsets 𝑂𝛼

𝑚 for 𝛼 ∈ �̃�𝑚 and 𝑚 = 0, 1, … , 𝑘 + 1 verifying 𝑂𝛼
𝑚 = 𝑂𝛼1

𝑚+1 ∪ 𝑂
𝛼2
𝑚+1 and |𝑂𝛼1

𝑚+1| =|𝑂𝛼2
𝑚+1| = 1

2
|𝑂𝛼

𝑚| starting at 𝑂∅
0 = 𝑂𝑖

𝑘
. For𝑚 = 1 we note that 𝑡 ↦ |{𝑥 ∈ 𝑂𝑖

𝑘
∶ 𝑡 < 𝑔1(𝑥) ≤ 𝑡𝑖

𝑘,1
}| is

continuous. Then, there must exist some 𝑡∅0 ∈ (𝑠𝑖
𝑘,1
, 𝑡𝑖

𝑘,1
) such that

|{𝑥 ∈ 𝑂𝑖
𝑘
∶ 𝑠𝑖

𝑘,1
< 𝑔1(𝑥) ≤ 𝑡∅0 }| = |{𝑥 ∈ 𝑂𝑖

𝑘
∶ 𝑡∅0 < 𝑔1(𝑥) ≤ 𝑡𝑖

𝑘,1
}| = 1

2
|𝑂𝑖

𝑘
|.

Then, we set

𝑂1
1 ∶= {𝑥 ∈ 𝑂𝑖

𝑘
∶ 𝑠𝑖

𝑘,1
< 𝑔1(𝑥) ≤ 𝑡∅0 },

𝑂2
1 ∶= {𝑥 ∈ 𝑂𝑖

𝑘
∶ 𝑡∅0 < 𝑔1(𝑥) ≤ 𝑡𝑖

𝑘,1
}.
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MEAN-FIELD LIMIT OF NON-EXCHANGEABLE SYSTEMS 59

Note that in 𝑂1
1 and 𝑂

2
1 we have simply split the interval [𝑠

𝑖
𝑘,1
, 𝑡𝑖

𝑘,1
] for the 𝑔1 into [𝑠𝑖𝑘,1, 𝑡

∅
0 ] and

[𝑡∅0 , 𝑡
𝑖
𝑘,1
] respectively to divide 𝑂𝑖

𝑘
into two pieces with exactly half the mass. Assume that 𝑂𝛼

𝑚

have been defined for 𝛼 ∈ �̃�𝑚 and𝑚 < 𝑘 and let us define𝑂𝛼1
𝑚+1 and𝑂

𝛼2
𝑚+1. The argument is sim-

ilar: since 𝑡 ↦ |{𝑥 ∈ 𝑂𝛼
𝑚 ∶ 𝑡 < 𝑔𝑚+1(𝑥) ≤ 𝑡𝑖

𝑘,𝑚+1
}| is continuous, there exists 𝑡𝛼𝑚 ∈ (𝑠𝑖

𝑘,𝑚+1
, 𝑡𝑖

𝑘,𝑚+1
)

with

|{𝑥 ∈ 𝑂𝛼
𝑚 ∶ 𝑠𝑖

𝑘,𝑚+1
< 𝑔𝑚+1(𝑥) ≤ 𝑡𝛼𝑚}| = |{𝑥 ∈ 𝑂𝛼

𝑚 ∶ 𝑡𝛼𝑚 < 𝑔𝑚+1(𝑥) ≤ 𝑡𝑖
𝑘,𝑚+1

}| = 1

2
|𝑂𝛼

𝑚|.
Then, we define

𝑂𝛼1
𝑚+1 = {𝑥 ∈ 𝑂𝛼

𝑚 ∶ 𝑠𝑖
𝑘,𝑚+1

< 𝑔𝑚+1(𝑥) ≤ 𝑡𝛼𝑚},

𝑂𝛼2
𝑚+1 = {𝑥 ∈ 𝑂𝛼

𝑚 ∶ 𝑡𝛼𝑚 < 𝑔𝑚+1(𝑥) ≤ 𝑡𝑖
𝑘,𝑚+1

}.

Again note that in𝑂𝛼1
𝑚+1 and𝑂

𝛼2
𝑚+1 we have simply split the interval [𝑠

𝑖
𝑘,𝑚

, 𝑡𝑖
𝑘,𝑚

] for the 𝑔𝑚 into two
pieces [𝑠𝑖

𝑘,𝑚
, 𝑡𝛼𝑚] and [𝑡𝛼𝑚, 𝑡𝑖𝑘,𝑚] respectively to divide 𝑂

𝛼
𝑚 into pieces with exactly half the mass.

Once the auxiliary family has been set up to𝑚 = 𝑘, note that we can repeat the above argument
once more for each 𝛼 ∈ �̃�𝑘 and find 𝑡𝛼𝑘 ∈ (0, 2−𝑘) (by the bound 0 < 𝑔𝑘+1 ≤ 2−𝑘) such that the
following subsets divide 𝑂𝛼

𝑘
into two halves with exact mass

𝑂𝛼1
𝑘+1

∶= {𝑥 ∈ 𝑂𝛼
𝑘
∶ 0 < 𝑔𝑘+1(𝑥) ≤ 𝑡𝛼

𝑘
},

𝑂𝛼2
𝑘+1

∶= {𝑥 ∈ 𝑂𝛼
𝑘
∶ 𝑡𝛼

𝑘
< 𝑔𝑘+1(𝑥) ≤ 2−𝑘}.

By construction the last level {𝑂𝛼
𝑘+1

∶ 𝛼 ∈ �̃�𝑘+1} contain exactly 2𝑘+1 pieces with same mass so
that 𝑂𝑖

𝑘
=

⋃
𝛼∈�̃�𝑘+1

𝑂𝛼
𝑘+1

. We then define 𝑂𝑗

𝑘+1
with 𝑗 ∈ 𝑗𝑘(𝑖) by labeling them in lexicographical

order and we set the resulting values 0 ≤ 𝑠
𝑗

𝑘+1,𝑚
< 𝑡

𝑗

𝑘+1,𝑚
≤ 2−𝑚+1 accordingly.

From this construction, we easily infer that fixing any𝑚 ≤ 𝑘 and any 𝑖 ∈ 𝖶𝑘, then at least half
of the new intervals [𝑠𝑗

𝑘+1,𝑚
, 𝑡

𝑗

𝑘+1,𝑚
]with 𝑗 ∈ 𝑗𝑘(𝑖)must have atmost half the length of [𝑠𝑖𝑘,𝑚, 𝑡

𝑖
𝑘,𝑚

],
that is,

#

{
𝑗 ∈ 𝑗𝑘(𝑖) ∶

(
𝑡
𝑗

𝑘+1,𝑚
− 𝑠

𝑗

𝑘+1,𝑚

)
>
1

2

(
𝑡𝑖
𝑘,𝑚

− 𝑠𝑖
𝑘,𝑚

)}
< 2𝑘. (54)

We can even be more precise. Note that going from [𝑠𝑖
𝑘,𝑚

, 𝑡𝑖
𝑘,𝑚

] to the next level 𝑘 + 1, we intro-
duced 2𝑘+1 new intervals [𝑠𝑗

𝑘+1,𝑚
, 𝑡

𝑗

𝑘+1,𝑚
]. They correspond to either of the two pieces [𝑠𝑖

𝑘,𝑚
, 𝑡𝛼𝑚−1]

or [𝑡𝛼𝑚−1, 𝑡
𝑖
𝑘,𝑚

] for 𝛼 ∈ �̃�𝑚−1 in which we split the initial interval. By construction note that each
of the pieces is repeated in exactly 2𝑘−𝑚+1 of the 𝑂𝑗

𝑘+1
with 𝑗 ∈ 𝑗𝑘(𝑖). Therefore, we obtain

1

2𝑘+1

∑
𝑗∈𝑗𝑘(𝑖)

(
𝑡
𝑗

𝑘+1,𝑚
− 𝑠

𝑗

𝑘+1,𝑚

)
=

1

2𝑘+1
2𝑘−𝑚+1

∑
𝛼∈�̃�𝑚−1

((
𝑡𝑖
𝑘,𝑚

− 𝑡𝛼𝑚−1
)
+

(
𝑡𝛼𝑚−1 − 𝑠𝑖

𝑘,𝑚

))
=

1

2𝑚

∑
𝛼∈�̃�𝑚−1

(
𝑡𝑖
𝑘,𝑚

− 𝑠𝑖
𝑘,𝑚

)
=
1

2

(
𝑡𝑖
𝑘,𝑚

− 𝑠𝑖
𝑘,𝑚

)
.
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60 JABIN et al.

Summing over 𝑖 ∈ 𝖶𝑘, dividing by 𝑛𝑘 and recalling (52) yields

1

𝑛𝑘+1

∑
𝑗∈𝖶𝑘+1

(
𝑡
𝑗

𝑘+1,𝑚
− 𝑠

𝑗

𝑘+1,𝑚

)
=

1

2𝑛𝑘

∑
𝑖∈𝖶𝑘

(
𝑡𝑖
𝑘,𝑚

− 𝑠𝑖
𝑘,𝑚

)
.

for any 𝑘 ≥ 𝑚. By induction we then infer that

1

𝑛𝑘

∑
𝑖∈𝖶𝑘

(
𝑡𝑖
𝑘,𝑚

− 𝑠𝑖
𝑘,𝑚

) ≤ 1

2𝑘−𝑚
1

𝑛𝑚

∑
𝑖∈𝖶𝑚

(
𝑡𝑖𝑚,𝑚 − 𝑠𝑖𝑚,𝑚

)
,

for any 𝑘 ≥ 𝑚. Notice that by construction and our assumption on the 𝑔𝑚 we obtain that the
intervals (𝑠𝑖𝑚,𝑚, 𝑡𝑖𝑚,𝑚] they all reduce to (0,

1

2𝑚−1
]. Therefore, we obtain

1

𝑛𝑘

∑
𝑖∈𝖶𝑘

(
𝑡𝑖
𝑘,𝑚

− 𝑠𝑖
𝑘,𝑚

) ≤ 1

2𝑘
, (55)

for any 𝑘 ∈ ℕ and every𝑚 ≤ 𝑘. Note that the fact that 0 < 𝑔𝑚 ≤ 1

2𝑚
has crucially used in the above

cancellations, thus leading to a uniform in𝑚 bound.
⋄ Step 2: The measure-preserving map Φ.
We begin by defining Ψ ∶ [0, 1] → [0, 1], which will correspond to the inverse of Φ ∶ [0, 1] →

[0, 1]. Set any point 𝑥 ∈ [0, 1] and use the previous covering by the disjoint {𝑂𝑖
𝑘
}𝑖∈𝖶𝑘

to find a
unique nested sequence 𝑖𝑘+1(𝑥) ∈ 𝑗𝑘(𝑖𝑘(𝑥)) such that 𝑥 ∈

⋂
𝑘∈ℕ 𝑂

𝑖𝑘(𝑥)

𝑘
. Since {𝐼𝑖𝑘(𝑥)

𝑘
}𝑘∈ℕ is a nested

sequence of compact sets, by Cantor’s intersection theorem it is evident that their intersection is
a non-empty compact interval again. In fact, since |𝐼𝑖𝑘(𝑥)

𝑘
| → 0 as 𝑘 → ∞ then

⋂
𝑘∈ℕ 𝐼

𝑖𝑘(𝑥)

𝑘
must

consist in a singleton {𝑦}, which we use to define Ψ(𝑥) ∶= 𝑦.
Now we prove that Ψ is a measure-preserving map. Specifically, we shall prove that for every

Borel 𝐵 ⊂ [0, 1]we have thatΨ−1(𝐵) is measurable and |Ψ−1(𝐵)| = |𝐵|. First, we argue for 𝐵 = 𝐼𝑖
𝑘

for any fixed 𝑘 ∈ ℕ and 𝑖 ∈ 𝖶𝑘. Note that the inclusion Ψ−1(𝐼𝑖
𝑘
) ⊃ 𝑂𝑖

𝑘
is clear by definition, but

the converse does not necessarily hold. Indeed, we have that Ψ−1(𝐼𝑖
𝑘
) = 𝑂𝑖

𝑘
∪ 𝑁𝑖

𝑘
, where

𝑁𝑖
𝑘
=

( ⋂
𝑚∈ℕ

𝑂
𝑙𝑚
𝑚

)⋃( ⋂
𝑚∈ℕ

𝑂
𝑟𝑚
𝑘

)
.

Here, 𝑙𝑚+1 ∈ 𝑗𝑚(𝑙𝑚) and 𝑟𝑚+1 ∈ 𝑗𝑚(𝑟𝑚) describe the only two nested sequences of intervals
{𝐼
𝑙𝑚
𝑚 }𝑚∈ℕ and {𝐼

𝑟𝑚
𝑚 }𝑚∈ℕ which stay always adjacent to (and respectively at the left or the right of)

𝐼𝑖
𝑘
for 𝑚 ≥ 𝑘. Obviously, if 𝐼𝑖

𝑘
is the first or last interval at level 𝑘 in lexicographical order, then

there is only one such sequence. In particular, Ψ−1(𝐼𝑖
𝑘
) is measurable because so are 𝑂𝑖

𝑘
and 𝑁𝑖

𝑘

(as countable union and intersection of measurable sets). In fact,𝑁𝑖
𝑘
⊂ [0, 1] is negligible (as the

union of two negligible subsets), then |Ψ−1(𝐼𝑖
𝑘
)| = |𝑂𝑖

𝑘
| = |𝐼𝑖

𝑘
|. To extend the above property to

general Borel sets 𝐵, we note that it is enough to verify the property for any semialgebra generat-
ing the Borel 𝜎-algebra (cf. [90, Theorem 1.1]), for example, the algebra of intervals with endpoints
in the dyadic rationals 𝐽:

 ∶= {[𝑎, 𝑏) ∶ 𝑎, 𝑏 ∈ 𝐽, 0 ≤ 𝑎 ≤ 𝑏 ≤ 1} ∪ {[𝑎, 1] ∶ 𝑎 ∈ 𝐽, 0 ≤ 𝑎 < 1}.

Set any such 𝐵 ∈ , for instance 𝐵 = [𝑎, 𝑏) for 𝑎, 𝑏 ∈ 𝐽 and 0 ≤ 𝑎 < 𝑏 ≤ 1 (the other case follows
similarly). Then, there exists some (countable) subset  of indices (𝑘, 𝑙) so that [𝑎, 𝑏) = ⋃

(𝑘,𝑙)∈ 𝐼𝑖𝑘
because the 𝐼𝑖

𝑘
are a basis of neighborhoods of [0, 1]. By appropriately removing eventual nested
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MEAN-FIELD LIMIT OF NON-EXCHANGEABLE SYSTEMS 61

elements in  to avoid redundant information, we may assume that all the involved 𝐼𝑖
𝑘
are not

contained in each other so that they can only intersect at points 𝐽 of their boundaries. Therefore,
we obtain

Ψ−1(𝐵) =
⋃

(𝑘,𝑖)∈
Ψ−1(𝐼𝑖

𝑘
) =

⋃
(𝑘,𝑖)∈

(𝑂𝑖
𝑘
∪ 𝑁𝑖

𝑘
).

so that Ψ−1(𝐵) is measurable. Since 𝑁𝑖
𝑘
are negligible and all the involved 𝑂𝑖

𝑘
are disjoint then

|Ψ−1(𝐵)| = ∑
(𝑘,𝑖)∈

|𝑂𝑖
𝑘
| = ∑

(𝑘,𝑖)∈
|𝐼𝑖
𝑘
| = |𝐵|,

where in the last equality we have used again that the 𝐼𝑖
𝑘
only intersect at most at points 𝐽 of their

boundaries and this has a null contribution to the sum.
Let us now study the injectivity and surjectivity a.e. of Ψ. Consider any point 𝑦 ∈ [0, 1] ⧵ 𝐽

and set unique nested sequence 𝑖′
𝑘+1

(𝑦) ∈ 𝑗𝑘(𝑖
′
𝑘
(𝑦)) so that {𝑦} =

⋂
𝑘∈ℕ 𝐼

𝑖′
𝑘
(𝑦)

𝑘
. We can then con-

sider the associated negligible measurable set
⋂

𝑘∈ℕ 𝑂
𝑖′
𝑘
(𝑦)

𝑘
. Notice that the a.e. surjectivity of Ψ

amounts to proving that the latter intersection is non-empty for a.e. 𝑦, whilst the a.e. injectivity of
Ψ amounts to proving that the intersection contains atmost one point for a.e. 𝑦. For the injectivity,
let us assume that 𝑔1 is strictly decreasing and continuous (by adding it to the sequence {𝑔𝑛}𝑛∈ℕ
if needed). Then note that

⋂
𝑘∈ℕ

𝑂
𝑖′
𝑘
(𝑦)

𝑘
⊂

⋂
𝑘∈ℕ

𝑔−11

(
[𝑠
𝑖′
𝑘
(𝑦)

𝑘,1
, 𝑡
𝑖′
𝑘
(𝑦)

𝑘,1
]

)
= 𝑔−11

(⋂
𝑘∈ℕ

[𝑠
𝑖′
𝑘
(𝑦)

𝑘,1
, 𝑡
𝑖′
𝑘
(𝑦)

𝑘,1
]

)
,

for each 𝑦 ∈ [0, 1] ⧵ 𝐽. Since the right hand side consists in an intersection of a nested sequence
of compact intervals, then it reduces to a compact interval again. The condition for it to actually

contain a single point is that 𝑡
𝑖′
𝑘
(𝑦)

𝑘,1
− 𝑠

𝑖′
𝑘
(𝑦)

𝑘,1
→ 0 when 𝑘 → ∞. Although it does not necessarily

happen for each 𝑦 ∈ [0, 1] ⧵ 𝐽, we shall prove that it does happen for a.e. 𝑦. Our argument relies
heavily on (54) or, its more quantitative version (55) above. Namely, for any 𝑚 ∈ ℕ let us define
the sets

𝐽𝑘,𝑚 ∶=

{
𝑖 ∈ 𝖶𝑘 ∶ 𝑡𝑖

𝑘,𝑚
− 𝑠𝑖

𝑘,𝑚
≥ 2𝑘

3𝑘

}
. (56)

for any level 𝑘 ≥ 𝑚. As it will be observed below, the choice of 2

3
in 𝐽𝑘,𝑚 is rather arbitrary and

could be replaced by any fixed rate 𝑟 ∈ (
1

2
, 1). Therefore,

1

𝑛𝑘

∑
𝑖∈𝖶𝑘

(
𝑡𝑖
𝑘,𝑚

− 𝑠𝑖
𝑘,𝑚

) ≥ 1

𝑛𝑘

∑
𝑖∈𝐽𝑘,𝑚

(
𝑡𝑖
𝑘,𝑚

− 𝑠𝑖
𝑘,𝑚

) ≥ 2𝑘 |𝐽𝑘,𝑚|
3𝑘 𝑛𝑘

.

Hence, using (55) implies

|𝐽𝑘,𝑚| ≤ 3𝑘

4𝑘
𝑛𝑘, (57)
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62 JABIN et al.

for any 𝑘 ≥ 𝑚 ≥ 1. In particular, if one defines the poor sets

𝑃𝑚 ∶= {𝑦 ∈ [0, 1] ⧵ 𝐽 ∶ 𝑡
𝑖′
𝑘
(𝑦)

𝑘,𝑚
− 𝑠

𝑖′
𝑘
(𝑦)

𝑘,𝑚
↛ 0 when 𝑘 → ∞}, (58)

for any𝑚 ∈ ℕ, then one has that

𝑃𝑚 ⊂
⋂
𝑘0∈ℕ

⋃
𝑘≥𝑘0

⋃
𝑗∈𝐽𝑘,𝑚

𝐼
𝑗

𝑘
. (59)

Since |𝐼𝑗
𝑘
| = 1

𝑛𝑘
, using (57) and (59) we find that |𝑃𝑚| = 0 since

|𝑃𝑚| ≤ ∑
𝑘≥𝑘0

3𝑘

4𝑘
,

for any 𝑘0 ∈ ℕ. Define the associated global poor set

𝑃 ∶=
⋃
𝑚∈ℕ

𝑃𝑚. (60)

which is again negligible, and consider pair of full measure sets

𝐹′0 ∶= [0, 1] ⧵ (𝐽 ∪ 𝑃), 𝐹 ∶= Ψ−1(𝐹′0).

Then, it is clear that Ψ ∶ 𝐹 → [0, 1] becomes an injective (measurable) measure-preserving map.
Sincewe are dealingwith the (completed) Lebesgue𝜎-algebra, which determines a standard prob-
ability space, then Ψ(𝐹) is measurable (cf. [28, Theorem 3-2]). Unfortunately, we only have the
inclusion Ψ(𝐹) ⊂ 𝐹′0. Hence, we define the (eventually) smaller full measure set

𝐹′ ∶= Ψ(𝐹).

Therefore,Ψ ∶ 𝐹 → 𝐹′ becomes indeed a bijective (measurable) measure-preserving map. There-
fore, Ψ−1 ∶ 𝐹′ → 𝐹 is also a measure-preserving map. Extending Ψ−1 to all [0, 1] we obtain our
measure-preserving map Φ. In particular, note that by construction Φ and Ψ are characterized by
the fact that

Φ(𝐼𝑖
𝑘
∩ 𝐹′) = 𝑂𝑖

𝑘
∩ 𝐹, Ψ(𝑂𝑖

𝑘
∩ 𝐹) = 𝐼𝑖

𝑘
∩ 𝐹′, (61)

for each 𝑘 ∈ ℕ and 𝑖 ∈ 𝖶𝑘.
⋄ Step 3: 𝐿1 modulus of continuity of {𝑔𝑛 ◦Φ}𝑛∈ℕ.
For simplicity of notation, we define ℎ𝑛 ∶= 𝑔𝑛 ◦Φ for any 𝑛 ∈ ℕ. First, we notice that for

any 𝑦 ∈ 𝐹′ ⊂ 𝐹′0 the value ℎ𝑚(𝑦) is determined by the sequence 𝑡
𝑖′
𝑘
(𝑦)

𝑘,𝑚
(or 𝑠

𝑖′
𝑘
(𝑦)

𝑘,𝑚
), where 𝑖′

𝑘+1
(𝑦) ∈

𝑗𝑘(𝑖
′
𝑘
(𝑦)) is defined as before as the unique nested sequence with {𝑦} =

⋂
𝑘∈ℕ 𝐼

𝑖′
𝑘
(𝑦)

𝑘
. Specifically,

we shall prove

ℎ𝑚(𝑦) = lim
𝑘→∞

𝑡
𝑖′
𝑘
(𝑦)

𝑘,𝑚
= lim

𝑘→∞
𝑠
𝑖′
𝑘
(𝑦)

𝑘,𝑚
, (62)

for each 𝑦 ∈ 𝐹′ ⊂ 𝐹′0. Indeed, by (61) and (53) note that

𝑠
𝑖′
𝑘
(𝑦)

𝑘,𝑚
< ℎ𝑚(𝑦) ≤ 𝑡

𝑖′
𝑘
(𝑦)

𝑘,𝑚
,
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MEAN-FIELD LIMIT OF NON-EXCHANGEABLE SYSTEMS 63

for any 𝑘 ≥ 𝑚 and any 𝑦 ∈ 𝐹′ ⊂ 𝐹′0. By the definitions (58) and (60) of 𝑃𝑚 and 𝑃 the nested

intervals [𝑠
𝑖′
𝑘
(𝑦)

𝑘,𝑚
, 𝑡
𝑖′
𝑘
(𝑦)

𝑘,𝑚
] verify 𝑡

𝑖′
𝑘
(𝑦)

𝑘,𝑚
− 𝑠

𝑖′
𝑘
(𝑦)

𝑘,𝑚
→ 0 when 𝑘 → ∞ so that we conclude (62).

To finish the proof, we need to show that

∫
1

0

|ℎ𝑚(𝑦) − ℎ𝑚(𝑦 + 𝜏)|𝑑𝑦 ≤ 2
−𝐶

√
log

1|𝜏| ,

for any 0 < |𝜏| < 1 and some universal constant 𝐶. Let us fix any 0 < 𝜏 < 1 (a similar argument
yields−1 < 𝜏 < 0) and any level 𝑘 ∈ ℕ so that 𝜏 < 1

𝑛𝑘
. That is, the size 𝜏 of the shift is smaller than

the length of the dyadic intervals 𝐼𝑖
𝑘
at the level 𝑘. Then, we can split each interval 𝐼𝑖

𝑘
as follows

𝐼𝑖
𝑘
∩ 𝐹′ = 𝐺𝑖

𝑘,𝜏
∪ 𝐵𝑖

𝑘,𝜏
,

for every 𝑖 ∈ 𝖶𝑘, where 𝐺𝑖
𝑘,𝜏

consist of the points in 𝐼𝑖
𝑘
which stay in 𝐼𝑖

𝑘
up to a shift of size 𝜏 and

𝐵𝑖
𝑘𝜏
are all the other points in 𝐼𝑖

𝑘
. Specifically,

𝐺𝑖
𝑘,𝜏

∶= {𝑦 ∈ 𝐼𝑖
𝑘
∩ 𝐹′ ∶ 𝑦 + 𝜏 ∈ 𝐼𝑖

𝑘
∩ 𝐹′},

𝐵𝑖
𝑘,𝜏

∶= {𝑦 ∈ 𝐼𝑖
𝑘
∩ 𝐹′ ∶ 𝑦 + 𝜏 ∉ 𝐼𝑖

𝑘
∩ 𝐹′}.

Note that a point 𝑦 ∈ 𝐵𝑖
𝑘
must stay within 𝜏 of the right boundary of 𝐼𝑖

𝑘
. Therefore, we infer

|𝐺𝑖
𝑘,𝜏

| = 1

𝑛𝑘
− 𝜏 ≤ 1

𝑛𝑘
, |𝐵𝑖

𝑘,𝜏
| = 𝜏. (63)

Using such a decomposition, we can split the above integrals as follows

∫
1

0

|ℎ𝑚(𝑦) − ℎ𝑚(𝑦 + 𝜏)|𝑑𝑦 = ∑
𝑖∈𝖶𝑘

∫
𝐺𝑖
𝑘,𝜏

|ℎ𝑚(𝑦) − ℎ𝑚(𝑦 + 𝜏)|𝑑𝑦
+

∑
𝑖∈𝖶𝑘

∫
𝐵𝑖
𝑘,𝜏

|ℎ𝑚(𝑦) − ℎ𝑚(𝑦 + 𝜏)|𝑑𝑦. (64)

For points 𝑦 ∈ 𝐺𝑖
𝑘,𝜏
, since 𝑦, 𝑦 + 𝜏 ∈ 𝐼𝑖

𝑘
∩ 𝐹′ then Φ(𝑦), Φ(𝑦 + 𝜏) ∈ 𝑂𝑖

𝑘
so that

|ℎ𝑚(𝑦) − ℎ𝑚(𝑦 + 𝜏)| ≤ 𝑡𝑖
𝑘,𝑚

− 𝑠𝑖
𝑘,𝑚

.

For all other points 𝑦 ∈ 𝐵𝑖
𝑘,𝜏

we only have that

|ℎ𝑚(𝑦) − ℎ𝑚(𝑦 + 𝜏)| ≤ |ℎ𝑚(𝑦)| + |ℎ𝑚(𝑦 + ℎ)| ≤ 2

2𝑚−1
≤ 2.

Using the above bounds along with (63) in (64), which exploit the decay of 𝑔𝑚, we obtain

∫
1

0

|ℎ𝑚(𝑦) − ℎ𝑚(𝑦 + 𝜏)|𝑑𝑦 ≤ 1

𝑛𝑘

∑
𝑖∈𝖶𝑘

(𝑡𝑖
𝑘,𝑚

− 𝑠𝑖
𝑘,𝑚

) +
∑
𝑖∈𝖶𝑘

2𝜏 ≤ 1

2𝑘
+ 2𝜏𝑛𝑘. (65)
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64 JABIN et al.

Here, 𝑘 ∈ ℕ has only been set under the restriction 𝜏 < 1

𝑛𝑘
but we could optimize our choice of

𝑘. Specifically, let us set 𝑘 = 𝑘𝜏 more precisely so that
1

𝑛2
𝑘+1

< 𝜏 ≤ 1

𝑛2
𝑘

. Then, we obtain that

1

2𝑘
+ 2𝜏𝑛𝑘 ≤ 3

2𝑘
≤ 2

−𝐶
√
log

1

𝜏 ,

for universal 𝐶, which by (65) yields our result. For the last inequality, note that by our choice of
𝑘 in terms of 𝜏 we get 1

𝜏
≤ 𝑛2

𝑘+1
= 2(𝑘+1)(𝑘+2) ≤ 26𝑘

2 so that
√
log

1

𝜏
≤ √

6 log 2 𝑘. □

We note that the dyadic character of the hierarchical construction in the proof of Lemma 5.7
required a specific geometric uniform decay 0 ≤ 𝑔𝑛 ≤ 2−𝑛+1 in order for the 𝐿1 modulus of
continuity of 𝑔𝑛 ◦Φ to be independent of 𝑘. However, applying the above to the rescaled sequence

𝑔𝑛 ∶=
𝑔𝑛 + ‖𝑔𝑛‖𝐿∞
2𝑛‖𝑔𝑛‖𝐿∞ ,

allows considering a generic sequence 𝑔𝑛 in 𝐿∞([0, 1]), and obtaining a 𝑛-dependent 𝐿1 modulus
of continuity (eventually growing with 𝑛) as follows.

Corollary 5.9. Consider any sequence 𝑔𝑛 in 𝐿∞([0, 1]). Then, there exists Φ ∶ [0, 1] → [0, 1], a.e.
injective, measure-preserving, such that the following estimate is verified

∫
1

0

|(𝑔𝑛 ◦Φ)(𝜉) − (𝑔𝑛 ◦Φ)(𝜉 + ℎ)|𝑑𝜉 ≤ 2𝑛 ‖𝑔𝑛‖𝐿∞ 2
−𝐶

√
log

1|ℎ| ,
for any 0 < |ℎ| < 1, each 𝑛 ∈ ℕ and some universal constant 𝐶.

As a further remark, let us highlight the relationship of this lemma with the classical results
of regularity on graphons. If 𝑤 is a graphon, then the Lemma 5.7 implies the classical regularity
lemma by Lovász–Szegedy [63], and in turn the famous regularity lemma on graphs by Szemerédi.

Lemma 5.10Regularity lemma on graphons [63]. If𝑤 ∈ 𝐿∞([0, 1]2) is symmetric with 0 ≤ 𝑤 ≤ 1,
then there exists Φ ∶ [0, 1] → [0, 1], measure-preserving, such that in the cut-distance

𝛿□(𝑤(Φ(⋅), Φ(⋅)), 𝑤(Φ(⋅ + ℎ), Φ(⋅))) ≤ 𝐶√
log

1

ℎ

,

where the cut-distance is given by

𝛿□(𝑤, �̃�) = sup
Φ, Φ̃

sup
𝑆,𝑇

|||||∫𝑆×𝑇(𝑤(Φ(𝜉), Φ(𝜁)) − �̃�(Φ̃(𝜉), Φ̃(𝜁))) 𝑑𝜉 𝑑𝜁
|||||,

where the supremum is taken over any pairΦ, Φ̃ ∶ [0, 1] → [0, 1] of measure-preserving maps, and
any pair 𝑆, 𝑇 ⊂ [0, 1] of measurable subsets.

We once again emphasize that in our case 𝑤 is not necessarily symmetric nor a bounded func-
tion.
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MEAN-FIELD LIMIT OF NON-EXCHANGEABLE SYSTEMS 65

5.5 Proof of Theorem 5.1

We are now ready to prove the main theorem of this section. By hypothesis (𝑖) and (𝑖𝑖) in
Theorem 5.1 we have that there exist 𝐶1, 𝐶2 ∈ ℝ+ so that

‖𝑤𝑁‖𝐿∞
𝜉
𝜁∩𝐿

∞
𝜁
𝜉

≤ 𝐶1, ‖𝑓𝑁‖𝐿∞
𝜉
(𝑊1,1

𝑥 ∩𝑊1,∞
𝑥 )

≤ 𝐶2,

for any 𝑁 ∈ ℕ. For each fixed 𝑇 ∈ 𝖳, by Lemma 4.15, we have that 𝜏(𝑇, 𝑤𝑁, 𝑓𝑁) is uniformly
bounded in 𝑊1,1 ∩𝑊1,∞ and is hence locally compact in 𝐿𝑝𝑥 for all 𝑝 < ∞. By a standard diag-
onal extraction procedure, we may hence assume that for some subsequence of 𝑁 (still denoted
as 𝑁 for simplicity)

lim
𝑁→∞

𝜏(𝑇,𝑤𝑁, 𝑓𝑁) exists in 𝐿
𝑝

𝑙𝑜𝑐
, ∀𝑝 < ∞, ∀𝑇 ∈ 𝖳.

Our goal is to identify the above limits for each 𝑇 ∈ 𝖳.
We also recall the above countable algebras𝑀(𝑤𝑁, 𝑓𝑁) in Definition 5.2 endowedwith the fam-

ily of transforms  according to the rules (𝑖), (𝑖𝑖) and (𝑖𝑖𝑖). From Lemma 5.4, we already know that
this algebra represents the hierarchy accurately. The rest of the proof is handled in several steps.
⋄ Step 1: Stability by re-arrangements.
In order to apply our compactness Lemma 5.7 note that we have to perform appropriate re-

arrangements in the 𝜉 variable by measure-preserving maps. The following result show that the
representation through the algebra𝑀(𝑤𝑁, 𝑓𝑁) is stable under re-arrangements.

Lemma 5.11. Consider any 𝑤 ∈ 𝐿∞
𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 , 𝑓 ∈ 𝐿∞

𝜉
(𝐿1𝑥 ∩ 𝐿

∞
𝑥 ) and any a.e. injective

measure-preserving map Φ ∶ [0, 1] → [0, 1]. Define the re-arranged objects

�̃�(𝜉, 𝑑𝜁) ∶= Φ−1
# 𝑤(Φ(𝜉), ⋅)(𝑑𝜁), 𝑓(𝑥, 𝜉) ∶= 𝑓(𝑥, Φ(𝜉)). (66)

Then we have that

𝐹(�̃�, 𝑓)(𝜉, 𝑥1, … , 𝑥𝑚) = 𝐹(𝑤, 𝑓)(Φ(𝜉), 𝑥1, … , 𝑥𝑚),

for any transform 𝐹 ∈  , and for a.e. 𝜉 ∈ [0, 1] and each 𝑥1, … , 𝑥𝑚 ∈ ℝ𝑑, where Φ−1 is any a.e.
defined left inverse of Φ. Moreover, 𝜏(𝑇, �̃�, 𝑓) = 𝜏(𝑇,𝑤, 𝑓) for any tree 𝑇.

If𝑤 ∈ 𝐿∞
𝜉
𝐿1
𝜁
∩ 𝐿∞

𝜁
𝐿1
𝜉
, then the re-arranged object �̃� in (66) clearly belongs to 𝐿∞

𝜉
𝐿1
𝜁
∩ 𝐿∞

𝜁
𝐿1
𝜉
and

we have the straightforward formula

�̃�(𝜉, 𝜁) = 𝑤(Φ(𝜉), Φ(𝜁)).

For general 𝑤 ∈ 𝐿∞
𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 , we have that �̃� is defined as the pull-back of 𝑤 through Φ.

Since Φ is injective, the pull-back though Φ agrees with the push-forward trough Φ−1. We also
emphasize that the definition is not sensitive tomodifications ofΦ−1 over the atoms of𝑤(Φ(𝜉), 𝑑𝜁)
within a Lebesgue-negligible set, as we show in the following straightforward argument based on
Lemma 4.7. Assume that Φ−1

1 and Φ−1
2 are two different choices of the a.e. left inverse of Φ (i.e.,
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66 JABIN et al.

Φ−1
1 ◦Φ = 𝐼𝑑 = Φ−1

2 ◦Φ a.e.) and define

�̃�1(𝜉, 𝑑𝜁) ∶= Φ−1
1#𝑤(Φ(𝜉), ⋅)(𝑑𝜁), �̃�2(𝜉, 𝑑𝜁) ∶= Φ−1

2#�̃�(Φ(𝜉), ⋅)(𝑑𝜁),

𝜙1(𝜁) ∶= 𝜙(Φ−1
1 (𝜁)), 𝜙2(𝜁) ∶= 𝜙(Φ−1

2 (𝜁)),

for any 𝜙 ∈ 𝐿∞([0, 1]). Then, by estimate (33)2 we have

‖‖‖‖‖∫
1

0

𝜙(𝜁) (�̃�1(𝜉, 𝑑𝜁)−�̃�2(𝜉, 𝑑𝜁))
‖‖‖‖‖𝐿∞

𝜁

=
‖‖‖‖‖∫

1

0

(𝜙(Φ−1
1 (𝜁)) 𝑤(Φ1(𝜉), 𝑑𝜁)−𝜙(Φ

−1
2 (𝜁)) 𝑤(Φ2(𝜉), 𝑑𝜁))

‖‖‖‖‖𝐿∞
𝜁

≤ ‖𝑤‖𝐿∞
𝜉
𝜁

‖𝜙1 − 𝜙2‖𝐿∞ = 0,

where we have used that 𝜙1 = 𝜙2 a.e. by definition. Since 𝜙 ∈ 𝐿∞([0, 1]) is arbitrary, we can
restrict to𝜙 ∈ 𝐶([0, 1]) and by a straightforward separability argumentwe conclude that �̃�1 = �̃�2.

Proof of Lemma 5.11. The proof is done by induction on the number of operations performed by
𝐹. Of course, for the basic transformation 𝐹0 in item (𝑖) of Definition 5.2, the property is obvious
since

𝐹0(�̃�, 𝑓)(𝜉, 𝑥) = 𝑓(𝜉, 𝑥) = 𝑓(Φ(𝜉), 𝑥) = 𝐹0(𝑤, 𝑓)(Φ(𝜉), 𝑥),

by definition (66) of the re-arrangements. Now consider any 𝐹 ∈  with at least one operation,
either of the type (𝑖𝑖) or (𝑖𝑖𝑖) inDefinition 5.2. On the onehand, let us first assume that𝐹 = 𝐹1 ⊗ 𝐹2
is obtained through operations of type (𝑖𝑖) by taking the tensor product of some 𝐹1 and 𝐹2. Since
both the transforms 𝐹1 and 𝐹2 must contain at least one less operation each, by the induction
hypothesis we have

𝐹𝑖(�̃�, 𝑓)(𝜉, 𝑥1, … , 𝑥𝑚𝑖
) = 𝐹𝑖(𝑤, 𝑓)(Φ(𝜉), 𝑥1, … , 𝑥𝑚𝑖

),

for 𝑖 = 1, 2. Then, we obviously have

𝐹(𝑓, �̃�)(𝜉, 𝑥1, … , 𝑥𝑚1+𝑚2
)

= 𝐹1(�̃�, 𝑓)(𝜉, 𝑥1, … , 𝑥𝑚1
) 𝐹2(�̃�, 𝑓)(𝜉, 𝑥𝑚1+1, … , 𝑥𝑚1+𝑚2

)

= 𝐹1(𝑤, 𝑓)(Φ(𝜉), 𝑥1, … , 𝑥𝑚1
) 𝐹2(𝑤, 𝑓)(Φ(𝜉), 𝑥𝑚1+1, … , 𝑥𝑚1+𝑚2

)

= 𝐹(𝑤, 𝑓)(Φ(𝜉), 𝑥1, … , 𝑥𝑚1+𝑚2
).

On the other hand, assume now that the identity holds for some 𝐹 ∈  and let us consider 𝐹⋆ via
an operation of (𝑖𝑖𝑖), that is,

𝐹⋆(𝑤, 𝑓)(𝜉, 𝑥1, … , 𝑥𝑚) = ∫
1

0

𝐹(𝑤, 𝑓)(𝜁, 𝑥1, … , 𝑥𝑚)𝑤(𝜉, 𝑑𝜁).
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MEAN-FIELD LIMIT OF NON-EXCHANGEABLE SYSTEMS 67

Then, we have again that

𝐹⋆(�̃�, 𝑓)(𝜉, 𝑥1, … , 𝑥𝑚) = ∫
1

0

𝐹(�̃�, 𝑓)(𝜁, 𝑥1, … , 𝑥𝑚) �̃�(𝜉, 𝑑𝜁)

= ∫
1

0

𝐹(𝑤, 𝑓)(Φ(𝜁), 𝑥1, … , 𝑥𝑚) �̃�(𝜉, 𝑑𝜁)

= ∫
1

0

𝐹(𝑤, 𝑓)(𝜁, 𝑥1, … , 𝑥𝑚)𝑤(Φ(𝜉), 𝑑𝜁),

where in the second line we have used that 𝐹(�̃�, 𝑓)(𝜉, 𝑥1, … , 𝑥𝑚) = 𝐹(𝑓,𝑤)(Φ(𝜉), 𝑥1, … , 𝑥𝑚) and
in the third line we have used the definition of �̃� as a push-forward measure. Hence, we find

𝐹⋆(�̃�, 𝑓)(𝜉, 𝑥1, … , 𝑥𝑚) = 𝐹⋆(𝑤, 𝑓)(Φ(𝜉), 𝑥1, … , 𝑥𝑚).

Finally, by Lemma 5.4, for any 𝑇 ∈ 𝖳 there exists 𝐹 ∈  such that

𝜏(𝑇, 𝑤, 𝑓)(𝑥1, … , 𝑥|𝑇|) = ∫
1

0

𝐹(𝑤, 𝑓)(𝜉, 𝑥1, … , 𝑥|𝑇|) 𝑑𝜉,
𝜏(𝑇, �̃�, 𝑓)(𝑥1, … , 𝑥|𝑇|) = ∫

1

0

𝐹(�̃�, 𝑓)(𝜉, 𝑥1, … , 𝑥|𝑇|) 𝑑𝜉.
Since Φ is measure-preserving, by the theorem of change of variables we obtain

𝜏(𝑇, �̃�, 𝑓) = ∫
1

0

𝐹(�̃�, 𝑓)(𝜉, 𝑥1, … , 𝑥|𝑇|) 𝑑𝜉 = ∫
1

0

𝐹(𝑤, 𝑓)(Φ(𝜉), 𝑥1, … , 𝑥|𝑇|) 𝑑𝜉
= ∫

1

0

𝐹(𝑤, 𝑓)(𝜉, 𝑥1, … , 𝑥|𝑇|) 𝑑𝜉 = 𝜏(𝑇,𝑤, 𝑓),

which concludes the proof. □

⋄ Step 2: Obtaining compactness.
Since  is countable,wemay label its elementswith countable indices as follows  = {𝐹𝑘 ∶ 𝑘 ∈

ℕ}, where we choose as the first element 𝐹0 the elementary transform in rule (𝑖) of Definition 5.2.
Assume that 𝐹𝑘 involves 𝑚𝑘 variables 𝑥1, … , 𝑥𝑚𝑘

and denote 𝑛𝑘 ∈ ℕ the amount of operations
of type (𝑖𝑖𝑖) involved in the transform 𝐹𝑘. Then, by Definition 5.2 of the algebra 𝑀(𝑤𝑁, 𝑓𝑁) and
arguing like in Lemma 4.15 by induction on the number of operations in 𝐹𝑘 implies

‖𝐹𝑘(𝑤𝑁, 𝑓𝑁)‖𝐿∞
𝜉
(𝑊1,1∩𝑊1,∞) ≤ ‖𝑤𝑁‖𝑛𝑘𝐿∞

𝜉
𝐿1
𝜁

‖𝑓𝑁‖𝑚𝑘

𝐿∞
𝜉
(𝑊1,1

𝑥 ∩𝑊1,∞
𝑥 )

≤ 𝐶
𝑚𝑘

1 𝐶
𝑛𝑘
2 , (67)

for any 𝑁 ∈ ℕ and each 𝑘 ∈ ℕ. We remark that by our hypothesis, the above estimate is inde-
pendent on 𝑁. Our goal in this part is to use Lemma 5.7 (more specifically its Corollary 5.9) to
obtain compactness with respect to𝑁 after suitable re-arrangements of the sequence 𝐹𝑘(𝑤𝑁, 𝑓𝑁)

for any 𝑘 ∈ ℕ. Unfortunately, 𝐹𝑘(𝑤𝑁, 𝑓𝑁) does not only depend on 𝜉 but also on the extra vari-
ables 𝑥1, … , 𝑥𝑚𝑘

, so that it is not totally clear how compactness in the joint variables (𝜉, 𝑥1, … , 𝑥𝑚𝑘
)

arises from Corollary 5.9. Note thought that dependency on 𝑥1, … , 𝑥𝑚𝑘
is actually smooth.

 10970312, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22235 by U

niversidad D
e G

ranada, W
iley O

nline L
ibrary on [25/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



68 JABIN et al.

Lemma 5.12. Under the assumptions in Theorem 5.1, there exist Φ𝑁 ∶ [0, 1] → [0, 1] measure-
preserving maps for each 𝑁 ∈ ℕ and 𝜙𝑘(𝜉, 𝑥1, … , 𝑥𝑚𝑘

) ∈ 𝐿∞
𝜉
(𝑊1,1

𝑥 ∩ 𝑊1,∞
𝑥 ) for each 𝑘 ∈ ℕ so that

we have

𝐹𝑘(𝑤𝑁, 𝑓𝑁)(Φ𝑁(𝜉), 𝑥1, … , 𝑥𝑚𝑘
) → 𝜙𝑘(𝜉, 𝑥1, … , 𝑥𝑚𝑘

) in 𝐿
𝑝

𝑙𝑜𝑐
([0, 1] × ℝ𝑑𝑚𝑘),

when𝑁 → ∞ (up to a subsequence on𝑁) for each 𝑘 ∈ ℕ, and any 1 ≤ 𝑝 < ∞.

Proof. For every 𝑘 ∈ ℕ, let 𝑘 = {(𝑥𝑙1, … , 𝑥𝑙𝑚𝑘
) ∶ 𝑙 ∈ ℕ} ⊂ ℝ𝑑𝑚𝑘 be any countable dense sub-

set (e.g., 𝑘 = ℚ𝑑𝑚𝑘 ), and define the functions 𝑔𝑁
𝑘,𝑙
(𝜉) ∶= 𝐹𝑘(𝑤𝑁, 𝑓𝑁)(𝜉, 𝑥

𝑙
1, … , 𝑥𝑙𝑚𝑘

) for each
𝜉 ∈ [0, 1] and any 𝑘, 𝑙, 𝑁 ∈ ℕ. Let us fix 𝑁 and apply Corollary 5.9 to the countable family
{𝑔𝑁
𝑘,𝑙
}𝑘,𝑙∈ℕ ⊂ 𝐿∞([0, 1]): that is the role of 𝑛 in Corollary 5.9 is played by (𝑘, 𝑙). We obtain that

for each 𝑁 ∈ ℕ there exists and a measure-preserving map Φ𝑁 ∶ [0, 1]⟶ [0, 1] so that the
re-arrangements 𝑔𝑁

𝑘,𝑙
= 𝑔𝑁

𝑘,𝑙
◦Φ𝑁 fulfill the following estimate

sup
𝑁∈ℕ∫

1

0

|𝑔𝑁
𝑘,𝑙
(𝜉 + ℎ) − 𝑔𝑁

𝑘,𝑙
(𝜉)|𝑑𝜉 ≤ 𝐶𝑘,𝑙 2

−𝐶

√
log

1|ℎ| ,
for any 0 < |ℎ| < 1, an universal constant𝐶 ∈ ℝ+, and some constants𝐶𝑘,𝑙 ∈ ℝ+. We remark that
the constants 𝐶𝑘,𝑙 are indeed independent of 𝑁 thanks to the above uniform bound (67). By the
Fréchet–Kolmogorov theorem and using a diagonal extraction there exists some subsequence of
𝑁’s (which we still denote𝑁 for simplicity) and there exists 𝑔𝑘,𝑙 ∈ 𝐿1([0, 1]) so that 𝑔𝑁

𝑘,𝑙
→ 𝑔𝑘,𝑙 in

𝐿1([0, 1]) as𝑁 → ∞ for any 𝑘, 𝑙 ∈ ℕ. Our final step will be to lift the above convergence on𝑘 to
allℝ𝑑𝑚𝑘 . To such an end, we define the functions 𝑔𝑘 ∶ [0, 1] ×𝑘 ⟶ ℝ by 𝑔𝑘(𝜉, 𝑥𝑙1, … , 𝑥𝑙𝑚𝑘

) ∶=

𝑔𝑘,𝑙(𝜉). Since 𝐿1 convergence implies convergence a.e. of an appropriate subsequence, then the
uniform Lipschitz bounds on (67) imply

|𝑔𝑘(𝜉, 𝑥𝑙1, … , 𝑥𝑙𝑚𝑘
)| ≤ 𝐶

𝑚𝑘

1 𝐶
𝑛𝑘
2 ,

|𝑔𝑘(𝜉, 𝑥𝑙11 , … , 𝑥
𝑙1
𝑚𝑘
) − 𝑔𝑘(𝜉, 𝑥

𝑙2
1 , … , 𝑥

𝑙2
𝑚𝑘
)| ≤ 𝐶

𝑚𝑘

1 𝐶
𝑛𝑘
2 |(𝑥𝑙11 , … , 𝑥

𝑙1
𝑚𝑘
) − (𝑥

𝑙2
1 , … , 𝑥

𝑙2
𝑚𝑘
)|,

for any 𝑘, 𝑙, 𝑙1, 𝑙2 ∈ ℕ and a.e. 𝜉 ∈ [0, 1]. Then, 𝑔𝑘 ∶ [0, 1] ×𝑘 ⟶ ℝ can be extended by con-
tinuity in a unique way into a function 𝜙𝑘 ∈ 𝐿∞

𝜉
𝑊1,∞

𝑥1,…,𝑥𝑚𝑘
with ‖𝜙𝑘‖𝐿∞

𝜉
𝑊1,∞

𝑥1,…,𝑥𝑚𝑘

≤ 𝐶
𝑚𝑘

1 𝐶
𝑛𝑘
2 . From

the uniform Lipschitz bounds on the 𝑔𝑁
𝑘,𝑙
and 𝜙𝑘, we obtain that

𝐹𝑘(𝑤𝑁, 𝑓𝑁)(Φ𝑁(𝜉), 𝑥1, … , 𝑥𝑚𝑘
) → 𝜙𝑘(𝜉, 𝑥1, … , 𝑥𝑚𝑘

),

as 𝑁 → ∞, for each 𝑘 ∈ ℕ, 𝑎.𝑒. 𝜉 ∈ [0, 1], and any 𝑥1, … , 𝑥𝑚𝑘
∈ ℝ𝑑.

Note we also know that 𝐹𝑘(𝑤𝑁, 𝑓𝑁)(⋅, Φ𝑁(⋅), ⋅, … , ⋅) and 𝜙𝑘(⋅, ⋅, … , ⋅) are bounded in 𝐿∞ uni-
formly with respect to 𝑁 thanks to the uniform bounds (67). Therefore, the above pointwise
convergence can indeed be improved into 𝐿

𝑝

𝑙𝑜𝑐
convergence for any 1 ≤ 𝑝 < ∞, on any com-

pact set, through the dominated convergence theorem. Indeed, since 𝐹𝑘(𝑤𝑁, 𝑓𝑁)(⋅, Φ𝑁(⋅), ⋅, … , ⋅)

are also uniformly bounded in 𝐿∞
𝜉
𝑊1,1

𝑥1,…,𝑥𝑚𝑘
⊆ 𝐿∞

𝜉
𝐵𝑉𝑥1,…,𝑥𝑚𝑘

with respect to 𝑁 by (67), then we
can also take the subsequence of 𝑁’s so that it converges locally weakly-star in 𝐿∞

𝜉
𝐵𝑉𝑥1,…,𝑥𝑚𝑘

,

thus guaranteeing that 𝜙𝑘 ∈ 𝐿∞
𝜉
𝑊1,1

𝑥1,…,𝑥𝑚𝑘
. Note we also know that 𝐹𝑘(𝑤𝑁, 𝑓𝑁)(⋅, Φ𝑁(⋅), ⋅, … , ⋅)

and 𝜙𝑘(⋅, ⋅, … , ⋅) are bounded in 𝐿∞ uniformly with respect to 𝑁 thanks to the uniform bounds
(67). Therefore, the above pointwise convergence can indeed be improved into 𝐿𝑝

𝑙𝑜𝑐
convergence

for any 1 ≤ 𝑝 < ∞, on any compact set, through the dominated convergence theorem. Indeed,
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MEAN-FIELD LIMIT OF NON-EXCHANGEABLE SYSTEMS 69

since 𝐹𝑘(𝑤𝑁, 𝑓𝑁)(⋅, Φ𝑁(⋅), ⋅, … , ⋅) are also uniformly bounded in 𝐿∞
𝜉
𝑊1,1

𝑥1,…,𝑥𝑚𝑘
⊆ 𝐿∞

𝜉
𝐵𝑉𝑥1,…,𝑥𝑚𝑘

with respect to𝑁 by (67), then we can also take the subsequence of𝑁’s so that it converges locally
weakly-star in 𝐿∞

𝜉
𝐵𝑉𝑥1,…,𝑥𝑚𝑘

, thus guaranteeing that 𝜙𝑘 ∈ 𝐿∞
𝜉
𝑊1,1

𝑥1,…,𝑥𝑚𝑘
. □

Remark 5.13. Lemma 5.12 could also be extended to time-dependent objects, but we had omit-
ted this full generality of the proof in a first approach to avoid complicating the notation.
More specifically, assume that {𝑤𝑁}𝑁∈ℕ and {𝑓𝑁}𝑁∈ℕ (now time-dependent) verify the following
hypothesis

(i) sup𝑁∈ℕ sup𝜉∈[0, 1] ∫ 1

0
|𝑤𝑁(𝜉, 𝜁)|𝑑𝜁 < ∞, sup𝑁∈ℕ sup𝜁∈[0, 1] ∫ 1

0
|𝑤𝑁(𝜉, 𝜁)|𝑑𝜉 < ∞,

(ii) sup𝑁∈ℕ ‖𝑓𝑁‖𝐿∞
𝜉
(𝑊1,1

𝑡,𝑥 ∩𝑊
1,∞
𝑡,𝑥 )

< ∞.

Then, there existΦ𝑁 ∶ [0, 1] → [0, 1]measure-preserving maps for each𝑁 ∈ ℕ, the sameΦ𝑁 for
all 𝑡, and there exist 𝜙𝑘(𝑡, 𝜉, 𝑥1, … , 𝑥𝑚𝑘

) ∈ 𝐿∞
𝜉
(𝑊1,1

𝑡,𝑥 ∩ 𝑊
1,∞
𝑡,𝑥 ) for each 𝑘 ∈ ℕ so that we have

𝐹𝑘(𝑤𝑁, 𝑓𝑁)(𝑡, Φ𝑁(𝜉), 𝑥1, … , 𝑥𝑚𝑘
) → 𝜙𝑘(𝑡, 𝜉, 𝑥1, … , 𝑥𝑚𝑘

) in 𝐿
𝑝

𝑙𝑜𝑐
([0, 𝑡∗] × [0, 1] × ℝ𝑑𝑚𝑘),

when 𝑁 → ∞ (up to a subsequence on 𝑁) for each 𝑘 ∈ ℕ, any 𝑡∗ > 0 and any 1 ≤ 𝑝 < ∞.
Indeed, the proof of the time-dependent version is identical to the one of Lemma 5.12 and simply

considers the time variable 𝑡 along with the space variables 𝑥1, … , 𝑥𝑚𝑘
that are already included.

In the proof, instead of discretizing in space we can also discretize in time by setting for every 𝑘 ∈
ℕ a countable dense set 𝑘 = {(𝑡𝑙, 𝑥𝑙1, … , 𝑥𝑙𝑚𝑘

) ∶ 𝑙 ∈ ℕ} ⊂ [0, 𝑡∗] × ℝ
𝑑𝑚𝑘 and defining 𝑔𝑁

𝑘,𝑙
(𝜉) ∶=

𝐹𝑘(𝑤𝑁, 𝑓𝑁)(𝑡
𝑙, 𝜉, 𝑥𝑙1, … , 𝑥𝑙𝑚𝑘

) for each 𝜉 ∈ [0, 1] and any 𝑘, 𝑙, 𝑁 ∈ ℕ. Applying Corollary 5.9 to the
countable family {𝑔𝑁

𝑘,𝑙
}𝑘,𝑙∈ℕ ⊂ 𝐿∞([0, 1]) we obtain time-independent measure-preserving maps

Φ𝑁 ∶ [0, 1]⟶ [0, 1] such that for all 𝑘, 𝑙 ∈ ℕ the rearranged 𝑔𝑁
𝑘,𝑙
∶= 𝑔𝑁

𝑘,𝑙
◦Φ𝑁 converge when

𝑁 → ∞ (up-to subsequence of 𝑁) toward some limiting 𝑔𝑘,𝑙 in 𝐿1([0, 1]). The rest of the proof
follows the same train of thoughts in order to build the extension by continuity of this discrete (in
time and space) limit to 𝜙𝑘 ∈ 𝐿∞

𝜉
(𝑊1,∞

𝑡,𝑥1,…,𝑥𝑚𝑘
∩ 𝑊1,1

𝑡,𝑥1,…,𝑥𝑚𝑘
) so that the above convergence of the

observables takes place in 𝐿𝑝
loc
([0, 𝑡∗] × [0, 1] × ℝ

𝑑𝑚𝑘).

Before entering into the last step in the proof of Theorem 5.1 (namely, the identification of
the limits 𝜙𝑘 in Lemma 5.12), let us first note that at this point we already have the necessary
information to prove the following result.

Theorem5.14. Let (𝑋1, … , 𝑋𝑁) be solution to (1)with𝐾 ∈ 𝑊1,1 ∩ 𝑊1,∞ and consider the associated
laws 𝑓𝑖(𝑡, ⋅) ∶= Law(𝑋𝑖(𝑡)). Assume that 𝑋0

𝑖
are independent with 𝔼[|𝑋0

𝑖
|2] < ∞ and

sup
1≤𝑖≤𝑁

√
𝔼|𝑋0

𝑖
|2 ≤ 𝑀, sup

1≤𝑖≤𝑁 ‖𝑓0
𝑖
‖𝑊1,1∩𝑊1,∞ ≤ 𝐿, sup

1≤𝑖≤𝑁
𝑁∑
𝑗=1

|𝑤𝑖𝑗| ≤ 𝐶, sup
1≤𝑗≤𝑁

𝑁∑
𝑖=1

|𝑤𝑖𝑗| ≤ 𝐶,

for every 𝑁 ∈ ℕ and appropriate 𝑀,𝐿, 𝐶 ∈ ℝ+. Then, there exists �̃�𝑁 ∈ 𝐿∞
𝜉
𝐿1
𝜁
∩ 𝐿∞

𝜁
𝐿1
𝜉
and 𝑓𝑁 ∈

𝐿∞
𝜉
(𝑊1,1

𝑥 ∩ 𝑊1,∞
𝑥 ) for every𝑁 ∈ ℕ satisfying the graphon-type Vlasov PDE (36), that is,

𝜕𝑡𝑓𝑁(𝑡, 𝑥, 𝜉) + div𝑥

(
𝑓𝑁(𝑡, 𝑥, 𝜉) ∫

1

0
∫
ℝ𝑑

𝐾(𝑥 − 𝑦) �̃�𝑁(𝜉, 𝜁) 𝑓𝑁(𝑡, 𝑦, 𝜁) 𝑑𝑦 𝑑𝜁

)
= 0, (68)
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70 JABIN et al.

in the distributional sense.Moreover, for any finite time interval [0, 𝑡∗] and each compact setΩ ⊂ ℝ𝑑

we have that �̃�𝑁 and 𝑓𝑁 verify

∫
𝑡∗

0
∫
Ω
∫

1

0

|||||∫
1

0

(�̃�𝑁(𝜉, 𝜁) − �̃�𝑁(𝜉 + ℎ, 𝜁)) 𝑓𝑁(𝑡, 𝑥, 𝜁) 𝑑𝜁
||||| 𝑑𝜉 𝑑𝑥 𝑑𝑡 ≤ 𝜀(|ℎ|),

sup
𝑡∈[0, 𝑡∗]

𝑊1

(
𝔼𝜇𝑁(𝑡, ⋅),∫

1

0

𝑓𝑁(𝑡, ⋅, 𝜉) 𝑑𝜉

)
≤ �̃� sup

1≤𝑖,𝑗≤𝑁 |𝑤𝑖𝑗|1∕2,
(69)

for any ℎ ∈ ℝ, each𝑁 ∈ ℕ, some constant �̃� ∈ ℝ+ and some continuous function 𝜀(|ℎ|)with 𝜀(0) =
0. Both �̃� and 𝜀(ℎ) are independent on 𝑁: �̃� only depends on 𝐶, ‖𝐾‖𝑊1,∞ and 𝑡∗, and 𝜀(|ℎ|) only
depends on 𝐶, 𝐿, 𝑡∗ andΩ. Here, 𝜇𝑁 is the empirical measure 𝜇𝑁(𝑡, 𝑥) ∶=

1

𝑁

∑𝑁

𝑖=1 𝛿𝑋𝑖(𝑡)(𝑥).

Remark 5.15. By interpolation with Lemma 5.7, the function 𝜀(ℎ) can be calculated explicitly by
considering an explicit choice of a dense sequence of points 𝑥𝑙1, . . . , 𝑥

𝑙
𝑚𝑘

in the argument above
(by constructing a dyadic grid for example), as we briefly explain in the proof.

Proof of Theorem 5.14. First, by Proposition 3.2 we know that the laws 𝑓𝑖 and the solution 𝑓𝑖 to
the coupled system (20) with the same initial data 𝑓0

𝑖
= 𝑓0

𝑖
satisfy the estimate (21), that is,

𝑊1(𝑓𝑖(𝑡, ⋅), 𝑓𝑖(𝑡, ⋅)) ≤ �̃� sup
1≤𝑖,𝑗≤𝑁 |𝑤𝑖𝑗|1∕2,

for each 𝑡 ∈ [0, 𝑡∗], any 𝑖 = 1, … ,𝑁, and the constant �̃� ∶=
√
2∕𝐶

(
𝑒2𝐶 𝑡∗‖𝐾‖𝑊1,∞ − 1

)
. Let us set

𝑓𝑁 and𝑤𝑁 according to the graphon-type representation in Definition 4.4 associated with 𝑓𝑖 and
𝑤𝑖𝑗 . Therefore, noting that 𝔼𝜇𝑁(𝑡, ⋅) =

1

𝑁

∑𝑁

𝑖=1 𝑓𝑖(𝑡, ⋅) and ∫ 1

0
𝑓𝑁(𝑡, 𝑥, 𝜉) 𝑑𝜉 =

1

𝑁

∑𝑁

𝑖=1 𝑓𝑖(𝑡, 𝑥, 𝜉)

we infer

sup
𝑡∈[0, 𝑡∗]

𝑊1

(
𝔼𝜇𝑁(𝑡, ⋅),∫

1

0

𝑓𝑁(𝑡, ⋅, 𝜉) 𝑑𝜉

)
≤ �̃� sup

1≤𝑖,𝑗≤𝑁 |𝑤𝑖𝑗|1∕2. (70)

Second, as already studied in Section 4, we recall that 𝑓𝑁 solves the same transport equations as
in (68) in the sense of distribution. Arguing like in the proof of Proposition 4.11 we can propa-
gate the initial 𝐿∞

𝜉
(𝑊1,1

𝑥 ∩ 𝑊1,∞
𝑥 ) norms of the solution. This implies that on any bounded time

interval [0, 𝑡∗], we have that 𝑓𝑁 ∈ 𝐿∞
𝜉
𝑊1,1

𝑡,𝑥 ∩ 𝑊
1,∞
𝑡,𝑥 and, in addition, ‖𝑓𝑁‖𝐿∞

𝜉
𝑊1,1

𝑡,𝑥 ∩𝑊
1,∞
𝑡,𝑥

is bounded

uniformly with respect to 𝑁 in terms of ‖𝐾‖𝑊1,∞ , the constants 𝐿, 𝐶 and 𝑡∗.
We note that Lemma 5.12 was initially proved for time-independent objects. However, as men-

tioned in Remark 5.12 since 𝑓𝑁 have appropriate Lipschitz dependence in the joint variable (𝑡, 𝑥)
and the norms are bounded uniformly on 𝑁, then a similar result holds true for the time depen-
dent objects. Specifically, there exists a measure-preserving map Φ𝑁 ∶ [0, 1]⟶ [0, 1] for every
𝑁 ∈ ℕ such that the sequence {𝐹𝑘(𝑤𝑁, 𝑓𝑁)(Φ𝑁(⋅), ⋅, … , ⋅)}𝑁∈ℕ is compact in 𝐿1𝑙𝑜𝑐([0, 𝑡∗] × [0, 1] ×
ℝ𝑑𝑚𝑘) for each 𝑘 ∈ ℕ. For simplicity of notation, we denote again the re-arranged objects

�̃�𝑁(𝜉, 𝜁) ∶= 𝑤𝑁(Φ𝑁(𝜉), Φ𝑁(𝜁)), 𝑓𝑁(𝑡, 𝑥, 𝜉) ∶= 𝑓𝑁(𝑡, 𝑥, Φ𝑁(𝜉)),

as given in (66). In the sequel, we shall restrict to the special transform 𝐹⋆0 ∈  consisting of
only one operation of the type (𝑖𝑖𝑖) on the elementary transform 𝐹0 of rule (𝑖) in Definition 5.2.
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MEAN-FIELD LIMIT OF NON-EXCHANGEABLE SYSTEMS 71

Specifically,we choose𝐹⋆0 (𝑤𝑁, 𝑓𝑁)(𝑡, 𝜉, 𝑥) = ∫ 1

0
𝑤𝑁(𝜉, 𝜁)𝑓𝑁(𝑡, 𝑥, 𝜁) 𝑑𝜁. Indeed, by Lemma 5.11we

can reformulate it as

𝐹⋆0 (𝑤𝑁, 𝑓𝑁)(𝑡, Φ𝑁(𝜉), 𝑥) = 𝐹⋆0 (�̃�𝑁, 𝑓𝑁)(𝑡, 𝜉, 𝑥) = ∫
1

0

�̃�𝑁(𝜉, 𝜁) 𝑓𝑁(𝑡, 𝑥, 𝜁) 𝑑𝜁,

which is compact in 𝐿1
𝑙𝑜𝑐
([0, 𝑡∗] × [0, 1] × ℝ

𝑑) in particular. Then, by the Fréchet–Kolmogorov
theorem, for every compact set Ω ⊂ ℝ𝑑 there must exist then some 𝑁-independent continuous
function 𝜀Ω(|ℎ|) with 𝜀Ω(|0|) = 0 such that

∫
1

0
∫

𝑡∗

0
∫
Ω

|||||∫
1

0

(�̃�𝑁(𝜉, 𝜁) 𝑓𝑁(𝑡, 𝑥, 𝜁) − �̃�𝑁(𝜉 + ℎ, 𝜁) 𝑓𝑁(𝑡 + ℎ, 𝑥 + ℎ 𝑣, 𝜁)) 𝑑𝜁
||||| 𝑑𝜉 𝑑𝑥 𝑑𝑡 ≤ 𝜀Ω(|ℎ|),

for every ℎ ∈ ℝ, each 𝑣 ∈ 𝕊𝑑−1 and each 𝑁 ∈ ℕ.
Using the Lipschitz-continuity of 𝑓𝑁 (thus 𝑓𝑁) on the joint variables (𝑡, 𝑥) implies

∫
1

0
∫

𝑡∗

0
∫
Ω

|||||∫
1

0

(�̃�𝑁(𝜉, 𝜁)−�̃�𝑁(𝜉 + ℎ, 𝜁)) 𝑓𝑁(𝑡, 𝑥, 𝜁) 𝑑𝜁
||||| 𝑑𝜉 𝑑𝑥 𝑑𝑡 ≤ 𝜀Ω(|ℎ|)+𝐶 𝑡∗ |Ω| ‖𝑓𝑁‖𝐿∞

𝜉
𝑊1,∞

𝑡,𝑥
|ℎ|,

for every ℎ ∈ ℝ and any 𝑁 ∈ ℕ. Since 𝑓𝑁 (thus 𝑓𝑁) are bounded in 𝐿∞
𝜉
𝑊1,∞

𝑡,𝑥 uniformly in 𝑁,
then the above estimate implies (69)1. Finally, note that (68) and the above estimate (70) for 𝑓𝑁
are stable under re-arrangements on 𝑓𝑁 . Hence, we conclude that 𝑓𝑁 also satisfies (68) and (69)2
by a simple change of variables.
We observe here that a more intricate interpolation argument can show that 𝜀 depend only on

the uniform bounds on 𝑤𝑁 and 𝑓𝑁 , and on Ω and could even be made explicit. As in the proof
of Lemma 5.12, we construct a dense sequence (𝑡𝑙, 𝑥𝑙) ∈ [0, 𝑡∗] × Ω, for example, through dyadic
grid such that for some 𝜃 > 0, we have that there exists 𝑙 ≤ 𝐶Ω 𝜀

−𝜃 with |(𝑡, 𝑥) − (𝑡𝑙, 𝑥𝑙)| ≤ 𝜀, for
any (𝑡, 𝑥) and any 𝜀 > 0. Now Corollary 5.9 implies that

sup
𝑁∈ℕ∫

1

0

|𝐹⋆0 (𝑤𝑁, 𝑓𝑁)(𝑡𝑙, Φ𝑁(𝜉 + ℎ), 𝑥𝑙) − 𝐹⋆0 (𝑤𝑁, 𝑓𝑁)(𝑡𝑙, Φ𝑁(𝜉), 𝑥𝑙)|𝑑𝜉 ≤ 𝐶Ω 2
𝑙 2

−𝐶

√
log

1|ℎ| ,

for some constant 𝐶Ω. Thanks to the Lipschitz bound in 𝑡 and 𝑥, we also have

sup
𝑁∈ℕ∫

1

0

|𝐹⋆0 (𝑤𝑁, 𝑓𝑁)(𝑡, Φ𝑁(𝜉 + ℎ), 𝑥) − 𝐹⋆0 (𝑤𝑁, 𝑓𝑁)(𝑡, Φ𝑁(𝜉), 𝑥)|𝑑𝜉
≤ sup

𝑁∈ℕ∫
1

0

|𝐹⋆0 (𝑤𝑁, 𝑓𝑁)(𝑡𝑙, Φ𝑁(𝜉 + ℎ), 𝑥𝑙) − 𝐹⋆0 (𝑤𝑁, 𝑓𝑁)(𝑡𝑙, Φ𝑁(𝜉), 𝑥𝑙)|𝑑𝜉
+ 𝐶 𝑡∗ |Ω| ‖𝑓𝑁‖𝐿∞

𝜉
𝑊1,∞

𝑡,𝑥
|(𝑡, 𝑥) − (𝑡𝑙, 𝑥𝑙)|,
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72 JABIN et al.

for any (𝑡, 𝑥) and any (𝑡𝑙, 𝑥𝑙). Recalling the property on the grid (𝑡𝑙, 𝑥𝑙), we find that

sup
𝑁∈ℕ∫

1

0

|𝐹⋆0 (𝑤𝑁, 𝑓𝑁)(𝑡, Φ𝑁(𝜉 + ℎ), 𝑥) − 𝐹⋆0 (𝑤𝑁, 𝑓𝑁)(𝑡, Φ𝑁(𝜉), 𝑥)|𝑑𝜉
≤ inf

𝑙

⎛⎜⎜⎝𝐶Ω 2𝑙 2
−𝐶

√
log

1|ℎ| + 𝐶 𝑡∗ |Ω| ‖𝑓𝑁‖𝐿∞
𝜉
𝑊1,∞

𝑡,𝑥
𝑙1∕𝜃

⎞⎟⎟⎠,
which yields an explicit 𝜀Ω(|ℎ|), indeed depending only on Ω, 𝑡∗ and ‖𝑓𝑁‖𝐿∞

𝜉
𝑊1,∞

𝑡,𝑥
. □

⋄ Step 3: Identifying limits.
We are finally ready to identify the limits obtained by the compactness result in Lemma 5.12.

We recall that, according to such a result, there exists a measure-preserving map Φ𝑁 ∶ [0, 1]⟶

[0, 1] for every 𝑁 ∈ ℕ and 𝜙𝑘(𝜉, 𝑥1, … , 𝑥𝑚𝑘
) ∈ 𝐿∞

𝜉
(𝑊1,1

𝑥 ∩ 𝑊1,∞
𝑥 ) for every 𝑘 ∈ ℕ so that for an

appropriate subsequence in 𝑁 (still denoted by 𝑁 for simplicity) we obtain

𝐹𝑘(𝑤𝑁, 𝑓𝑁)(Φ𝑁(𝜉), 𝑥1, … , 𝑥𝑚𝑘
) → 𝜙𝑘(𝜉, 𝑥1, … , 𝑥𝑚𝑘

) in 𝐿
𝑝

𝑙𝑜𝑐
([0, 1] × ℝ𝑑𝑚𝑘),

as𝑁 → ∞ for all 𝑘 ∈ ℕ and each 1 ≤ 𝑝 < ∞. For simplicity of notation, we shall denote again the
re-arranged objects by 𝑓𝑁 and �̃�𝑁 as given in (66). Using the stability under re-arrangements in
Lemma 5.11, the above convergence can then be simply reformulated as follows:

𝐹𝑘(�̃�𝑁, 𝑓𝑁) → 𝜙𝑘 in 𝐿
𝑝

𝑙𝑜𝑐
([0, 1] × ℝ𝑑𝑚𝑘), (71)

as𝑁 → ∞ for all 𝑘 ∈ ℕ and each 1 ≤ 𝑝 < ∞. As mentioned above, our goal here reduces to iden-
tifying 𝜙𝑘 as 𝐹(�̃�, 𝑓) for some appropriate limiting objects 𝑓 and �̃� of the re-arranged objects 𝑓𝑁
and �̃�𝑁 .
On the one hand, since 𝑓𝑁 is the first element in the algebra𝑀(�̃�𝑁, 𝑓𝑁), the above implies that

there exists 𝑓 ∈ 𝐿∞
𝜉
(𝑊1,1

𝑥 ∩ 𝑊1,∞
𝑥 ) (which is indeed the first of the above 𝜙𝑘) so that we have

𝑓𝑁 → 𝑓 in 𝐿
𝑝

𝑙𝑜𝑐
([0, 1] × ℝ𝑑), (72)

when𝑁 → ∞ for each 1 ≤ 𝑝 < ∞. On the other hand, by the uniform bound of 𝑤𝑁 in item (𝑖) of
Theorem 5.1, we readily obtain that ‖�̃�𝑁‖𝐿∞

𝜉
𝐿1
𝜁
≤ 𝐶 and ‖�̃�𝑁‖𝐿∞

𝜁
𝐿1
𝜉
≤ 𝐶 for every𝑁 ∈ ℕ. Since we

have (see [47])

𝐿∞([0, 1], 𝐿1(0, 1)) ⊂ 𝐿∞([0, 1], ([0, 1])) = (𝐿1([0, 1], 𝐶([0, 1])))∗,

then the Alaoglu–Bourbaki theorem claims that there exist a subsequence on 𝑁 (again denoted
by 𝑁 for simplicity) and some �̃� ∈ 𝐿∞

𝜉
𝜁 (which is in fact exchangeable because so are the �̃�𝑁)

so that

�̃�𝑁

∗
⇀ �̃� in 𝐿∞

𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉, (73)

when 𝑁 → ∞. Our last step is to prove that indeed 𝜙𝑘 = 𝐹𝑘(�̃�, 𝑓) for every 𝑘 ∈ ℕ. Again, we
proceed by induction on the number of operations in 𝐹𝑘.
First, let us assume that 𝐹𝑘 is built via an operation of type (𝑖𝑖) in Definition 5.2. Specifically,

assume that 𝐹𝑘 = 𝐹𝑘1 ⊗ 𝐹𝑘2 . Since each 𝐹𝑘1 and 𝐹𝑘2 must contain at least one less operation that
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MEAN-FIELD LIMIT OF NON-EXCHANGEABLE SYSTEMS 73

𝐹𝑘, then the induction hypothesis implies

𝐹𝑘𝑖 (�̃�, 𝑓) = 𝜙𝑘𝑖 = lim
𝑁→∞

𝐹𝑘𝑖 (�̃�𝑁, 𝑓𝑁),

for 𝑖 = 1, 2. We recall that the above is a limit in 𝐿𝑝
𝑙𝑜𝑐

for any 1 ≤ 𝑝 < ∞. Therefore,

𝜙𝑘(𝜉, 𝑥1, … , 𝑥𝑚𝑘
) = lim

𝑁→∞
𝐹𝑘(�̃�𝑁, 𝑓𝑁)(𝜉, 𝑥1, … , 𝑥𝑚𝑘

)

= lim
𝑁→∞

𝐹𝑘1(�̃�𝑁, 𝑓𝑁)(𝜉, 𝑥1, … , 𝑥𝑚𝑘1
) lim
𝑁→∞

𝐹𝑘2(�̃�𝑁, 𝑓𝑁)(𝜉, 𝑥𝑚𝑘1
+1, … , 𝑥𝑚𝑘

)

= 𝜙𝑘1(𝜉, 𝑥1, … , 𝑥𝑚𝑘1
) 𝜙𝑘2(𝜉, 𝑥𝑚𝑘1

+1, … , 𝑥𝑚𝑘
)

= 𝐹𝑘1(�̃�, 𝑓)(𝜉, 𝑥1, … , 𝑥𝑚𝑘1
) 𝐹𝑘2(�̃�, 𝑓)(𝜉, 𝑥𝑚𝑘1

+1, … , 𝑥𝑚𝑘
)

= 𝐹𝑘(�̃�, 𝑓)(𝜉, 𝑥1, … , 𝑥𝑚𝑘
).

Second, let us assume that 𝐹𝑘 is obtained through an operation of type (𝑖𝑖𝑖) in Definition 5.2.
Specifically, we have there exists some transform 𝐹𝑘′ ∈  with𝑚𝑘 = 𝑚′

𝑘
such that 𝐹𝑘 = 𝐹⋆

𝑘′
, that

is

𝐹𝑘(�̃�𝑁, 𝑓𝑁)(𝜉, 𝑥1, … , 𝑥𝑚𝑘
) = ∫

1

0

�̃�𝑁(𝜉, 𝜁) 𝐹𝑘′(�̃�𝑁, 𝑓𝑁)(𝜁, 𝑥1, … , 𝑥𝑚𝑘
) 𝑑𝜁, (74)

holds. Since 𝐹𝑘′ contains at least one operation less than 𝐹𝑘, then the induction hypothesis shows
that

𝐹𝑘′(�̃�, 𝑓) = 𝜙𝑘′ = lim
𝑁→∞

𝐹𝑘′(�̃�𝑁, 𝑓𝑁), (75)

again in 𝐿𝑝
𝑙𝑜𝑐

for any 1 ≤ 𝑝 < ∞. Take any 𝜑 ∈ 𝐶𝑐([0, 1] × ℝ
𝑑𝑚𝑘) and define

𝜓𝑁(𝜉, 𝜁) ∶= ∫
ℝ𝑑𝑚𝑘

𝜑(𝜉, 𝑥1, … , 𝑥𝑚𝑘
) 𝐹𝑘′(�̃�𝑁, 𝑓𝑁)(𝜁, 𝑥1, … , 𝑥𝑚𝑘

) 𝑑𝑥1 … 𝑑𝑥𝑚𝑘
,

𝜓(𝜉, 𝜁) ∶= ∫
ℝ𝑑𝑚𝑘

𝜑(𝜉, 𝑥1, … , 𝑥𝑚𝑘
) 𝐹𝑘′(�̃�, 𝑓)(𝜁, 𝑥1, … , 𝑥𝑚𝑘

) 𝑑𝑥1 … 𝑑𝑥𝑚𝑘
.

Then, by (75) it is clear that 𝜓𝑁(𝜉, 𝜁) → 𝜓(𝜉, 𝜁) in 𝐿1
𝜁
𝐶𝜉 . Multiplying (74) by 𝜑 and integrating note

that we can write

∫
1

0
∫
ℝ𝑑𝑚𝑘

𝜑(𝜉, 𝑥1, … , 𝑥𝑚𝑘
) 𝐹𝑘(�̃�𝑁, 𝑓𝑁)(𝜉, 𝑥1, … , 𝑥𝑚𝑘

) 𝑑𝑥1 … 𝑑𝑥𝑚𝑘
𝑑𝜉

= ∫
1

0
∫

1

0

�̃�𝑁(𝜉, 𝜁)𝜓𝑁(𝜉, 𝜁) 𝑑𝜉 𝑑𝜁.

Using that 𝜓𝑁(𝜉, 𝜁) → 𝜓(𝜉, 𝜁) in 𝐿1
𝜁
𝐶𝜉 and the weak-* convergence of �̃�𝑁 in 𝐿∞

𝜁
𝜉 as given in

(73) imply that

lim
𝑁→∞∫

1

0
∫
ℝ𝑑𝑚𝑘

𝜑(𝜉, 𝑥1, … , 𝑥𝑚𝑘
) 𝐹𝑘(𝑓𝑁, �̃�𝑁)(𝜉, 𝑥1, … , 𝑥𝑚𝑘

) 𝑑𝑥1 … 𝑑𝑥𝑚𝑘
𝑑𝜉

= ∫
1

0
∫

1

0

�̃�(𝜉, 𝑑𝜁) 𝜓(𝜉, 𝜁) 𝑑𝜉,
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74 JABIN et al.

where in the last step we have used Remark 3.3. Undoing the definition of 𝜓 we have proven (by
arbitrariness of 𝜑 ∈ 𝐶𝑐([0, 1] × ℝ

𝑑𝑚𝑘)) that

𝐹𝑘(�̃�𝑁, 𝑓𝑁)
∗
⇀ 𝐹𝑘(�̃�, 𝑓) in ([0, 1] × ℝ𝑑𝑚𝑘),

as 𝑁 → ∞. Since 𝐹𝑘(�̃�𝑁, 𝑓𝑁) → 𝜙𝑘 in 𝐿
𝑝

𝑙𝑜𝑐
by (71), then we conclude that 𝜙𝑘 = 𝐹𝑘(�̃�, 𝑓).

Finally, we conclude the identifications of the limits of 𝜏(𝑇, 𝑤𝑁, 𝑓𝑁) by using Lemmas 5.4, 5.11.
Specifically, for any 𝑇 ∈ 𝖳, there exists some 𝐹 ∈  such that

𝜏(𝑇, 𝑤𝑁, 𝑓𝑁)(𝑥1, … , 𝑥|𝑇|) = 𝜏(𝑇, �̃�𝑁, 𝑓𝑁)(𝑥1, … , 𝑥|𝑇|) = ∫
1

0

𝐹(�̃�𝑁, 𝑓𝑁)(𝜉, 𝑥1, … , 𝑥|𝑇|) 𝑑𝜉.
We recall the above convergence of the 𝐹(𝑓𝑁, �̃�𝑁) to 𝐹(𝑓, �̃�) in 𝐿

𝑝

𝑙𝑜𝑐
as𝑁 → ∞. Then, we can pass

to the limit in the right hand side of the above relation to achieve

𝜏(𝑇, 𝑤𝑁, 𝑓𝑁)(𝑥1, … , 𝑥|𝑇|) → ∫
1

0

𝐹(𝑓, �̃�)(𝜉, 𝑥1, … , 𝑥|𝑇|) 𝑑𝜉 = 𝜏(𝑇, �̃�, 𝑓),

as𝑁 → ∞ in 𝐿𝑝
𝑙𝑜𝑐
(ℝ𝑑 |𝑇|), for any 1 ≤ 𝑝 < ∞ and each 𝑇 ∈ 𝖳, where in the last step we have used

Definition 5.5 for the extension of the operator 𝜏.

5.6 An alternative formulation of the proof

We mention here a possible variant of the proof above, which consists in re-arranging the argu-
ments in our proof along the following 3 lemmas (separated to make the discussion easier
here).

Lemma 5.16. For any sequence 𝑤𝑁 uniformly bounded in 𝐿∞
𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 and any sequence 𝑓𝑁

uniformly bounded in 𝐿∞
𝜉
𝑊1,∞

𝑡,𝑥 , there exists a measure-preserving map Φ𝑁 such that 𝑓𝑁(𝑡, 𝑥, 𝜉) =
𝑓𝑁(𝑡, 𝑥, Φ𝑁(𝜉)) converges strongly in 𝐿1𝑡,𝑥,𝜉 , �̃�𝑁(𝜉, 𝜁) = 𝑤𝑁(Φ𝑁(𝜉), Φ𝑁(𝜁) converges weakly to 𝑤 ∈

𝐿∞
𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 , and

∫
1

0

(�̃�𝑁(𝜉, 𝑑𝜁) − 𝑤(𝜉, 𝑑𝜁)) ℎ(𝜁) → 0

strongly in 𝐿1
𝜉
for all ℎ in a countable dense family of 𝐶([0, 1]).

The proof of Lemma 5.16 is a straightforward consequence of Lemma 5.7 and Corollary 5.9 for
�̃�𝑁 . For 𝑓𝑁 , it follows from a time-dependent version o Lemma 5.12 as mentioned in Remark 5.13.
We remark here that the proof of Lemma 5.12 could equivalently be performed by using a basis of
the function space.
The next step is as follows:
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MEAN-FIELD LIMIT OF NON-EXCHANGEABLE SYSTEMS 75

Lemma 5.17. Consider a sequence �̃�𝑁 uniformly bounded in 𝐿∞
𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 . Assume that

�̃�𝑁(𝜉, 𝜁) converges weakly to 𝐿∞𝜉 𝜁 ∩ 𝐿
∞
𝜁
𝜉 , and

∫
1

0

(�̃�𝑁(𝜉, 𝑑𝜁) − �̃�(𝜉, 𝑑𝜁))ℎ(𝜁) → 0

strongly in 𝐿1
𝜉
for all ℎ in a countable dense family of 𝐶([0, 1]). Then for any function

𝑔𝑁(𝑡, 𝑥1, … , 𝑥𝑘, 𝜉) uniformly bounded in 𝐿∞ and converging to 𝑔 strongly in 𝐿1, we have
that

∫
1

0

(�̃�𝑁(𝜉, 𝑑𝜁) − �̃�(𝜉, 𝑑𝜁))𝑔𝑁(𝑡, 𝑥1, … , 𝑥𝑘, 𝜁) → 0

strongly in 𝐿1
𝑡,𝑥1,…,𝑥𝑑,𝜉

.

Lemma 5.17 follows easily from a density argument, together with the estimate in Lemma 4.8
(notice that this is already implicitly used in step 3 of the proof of Theorem 5.1).
The final step is as follows

Lemma 5.18. Consider any sequence �̃�𝑁 uniformly bounded in 𝐿∞𝜉 𝜁 ∩ 𝐿
∞
𝜁
𝜉 and any sequence

𝑓𝑁 uniformly bounded in 𝐿∞
𝜉
𝑊1,∞

𝑡,𝑥 , such that 𝑓𝑁(𝑡, 𝑥, 𝜉) = 𝑓𝑁(𝑡, 𝑥, Φ𝑁(𝜉)) converges strongly in
𝐿1
𝑡,𝑥,𝜉

, �̃�𝑁(𝜉, 𝜁) = 𝑤𝑁(Φ𝑁(𝜉), Φ𝑁(𝜁) converges weakly to𝑤 ∈ 𝐿∞
𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 , and assume that for

any function 𝑔𝑁(𝑡, 𝑥1, … , 𝑥𝑘, 𝜉) uniformly bounded in 𝐿∞ and converging to 𝑔 strongly in 𝐿1, we have
that

∫
1

0

(�̃�𝑁(𝜉, 𝑑𝜁) − �̃�(𝜉, 𝑑𝜁))𝑔𝑁(𝑡, 𝑥1, … , 𝑥𝑘, 𝜁) → 0

strongly in 𝐿1
𝑡,𝑥1,…,𝑥𝑑,𝜉

. Then for all transform 𝐹 (or equivalently all multilinear operators), we have
that 𝐹(�̃�𝑁, 𝑓𝑁) converges strongly in 𝐿1 to 𝐹(𝑤, 𝑓).

The proof of Lemma 5.18 is exactly the induction argument in step 3 of the proof of Theorem 5.1.
This approach skips Theorem 5.14, which is however interesting on itself. But it does have some

advantage and in particular, it allows to disentangle more the limits of 𝑓𝑁 and of 𝑤𝑁 through
Lemma 5.16.

6 PROOF OF THEMAIN RESULT: THEOREM 1.1

We are now ready to perform the full proof of Theorem 1.1.
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76 JABIN et al.

First of all, denote by𝑓0
𝑖
the density of each𝑋0

𝑖
. Then,we define𝑤𝑁(𝜉, 𝜁) and𝑓0𝑁(𝑥, 𝜉) according

to equation (30) in Definition 4.4, which we recall

𝑤𝑁(𝜉, 𝜁) =

𝑁∑
𝑖,𝑗=1

𝑁 𝑤𝑖𝑗 𝕀[ 𝑖−1
𝑁
,
𝑖

𝑁
)
(𝜉) 𝕀

[
𝑗−1

𝑁
,
𝑗

𝑁
)
(𝜁), 𝜉, 𝜁 ∈ [0, 1],

𝑓0𝑁(𝑥, 𝜉) =

𝑁∑
𝑖=1

𝑓0
𝑖
(𝑥) 𝕀

[
𝑖−1

𝑁
,
𝑖

𝑁
)
(𝜁), 𝑥 ∈ ℝ𝑑, 𝜉 ∈ [0, 1].

From the uniform bounds on 𝑓0
𝑖
and 𝑤𝑖𝑗 , it is immediate to check that 𝑤𝑁 and 𝑓0𝑁 satisfy the

assumptions (𝑖) − (𝑖𝑖) of Theorem 5.1. We note as well that 𝜏(𝑇, 𝑤𝑁, 𝑓𝑁) is uniformly bounded in
𝑊1,∞, for any fixed 𝑇. Since trees are countable, by the usual diagonal extraction technique, we
can obtain a subsequence (still denoted by 𝑁) such that 𝜏(𝑇, 𝑤𝑁, 𝑓𝑁) converges strongly in 𝐿∞,
for every 𝑇. Hence, this subsequence also satisfies assumption (𝑖𝑖𝑖) of Theorem 5.1.
Applying nowTheorem5.1,we find𝑤 ∈ 𝐿∞

𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 and𝑓0 ∈ 𝐿∞

𝜉
(𝑊1,1

𝑥 ∩ 𝑊1,∞
𝑥 ) such that

𝜏(𝑇, 𝑤, 𝑓0) = lim
𝑁→∞

𝜏(𝑇,𝑤𝑁, 𝑓
0
𝑁), ∀𝑇,

in any 𝐿𝑝
𝑙𝑜𝑐

with 𝑝 < ∞. Furthermore, we note that, for each 𝑇, 𝜏(𝑇, 𝑤, 𝑓0) is uniformly bounded
in 𝐿1𝑥 ∩ 𝐿∞𝑥 . Fixing now any 𝑅 > 0, a straightforward extension of Lemma 4.15 leads to

‖𝜏(𝑇, 𝑤, 𝑓0𝑁)‖𝐿1(ℝ𝑑 |𝑇|)⧵𝐵(0,𝑅)|𝑇| ≤ |𝑇| ‖𝑤‖|𝑇|−1
𝐿∞
𝜉
𝑀𝜁

‖𝑓0𝑁‖|𝑇|−1𝐿∞
𝜉
𝐿1(ℝ𝑑)

‖𝑓0𝑁‖𝐿∞𝜉 𝐿1(ℝ𝑑⧵𝐵(0,𝑅)).

On the other hand, from the assumptions the main theorem, we have that

∫
ℝ𝑑

|𝑥|2 𝑓0
𝑖
(𝑥) 𝑑𝑥 ≤ 𝐶,

for some constant 𝐶 independent of 𝑁 and 𝑖. By the definition of 𝑓0𝑁 , this implies as well that

∫
ℝ𝑑

|𝑥|2 𝑓0𝑁(𝑥) 𝑑𝑥 ≤ 𝐶.

This shows that

‖𝜏(𝑇, 𝑤, 𝑓0𝑁)‖𝐿1(ℝ𝑑 |𝑇|)⧵𝐵(0,𝑅)|𝑇| ≤ 𝐶

𝑅2
|𝑇| ‖𝑤‖|𝑇|−1

𝐿∞
𝜉
𝑀𝜁

‖𝑓0𝑁‖|𝑇|−1𝐿∞
𝜉
𝐿1(ℝ𝑑)

.

Combined with the local convergence in 𝐿𝑝, it implies that 𝜏(𝑇, 𝑤𝑁, 𝑓
0
𝑁) converges strongly to

𝜏(𝑇, 𝑤𝑁, 𝑓
0) in every 𝐿𝑝(ℝ𝑑 |𝑇|) and in particular in 𝐿2(ℝ𝑑 |𝑇|).

We further note that also by Corollary 4.16, we have that

‖𝜏(𝑇, 𝑤, 𝑓0)‖𝐿2𝑥 ≤ ‖𝑤‖|𝑇|−1
𝐿∞
𝜉
𝜁

‖𝑓0‖|𝑇|
𝐿∞
𝜉
𝐿2𝑥
.

Consequently, there exists some 𝜆 > 0 small enough such that

‖𝜏(⋅, 𝑤, 𝑓0) − 𝜏(⋅, 𝑤𝑁, 𝑓
0
𝑁)‖𝜆 → 0, as 𝑁 → ∞. (76)

 10970312, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22235 by U

niversidad D
e G

ranada, W
iley O

nline L
ibrary on [25/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



MEAN-FIELD LIMIT OF NON-EXCHANGEABLE SYSTEMS 77

By Proposition 4.11, we have existence of weak solution 𝑓 ∈ 𝐿∞
𝑡,𝜉
(𝑊1,1

𝑥 ∩ 𝑊1,∞
𝑥 ) to (36) associated

with 𝑤 in the sense of Definition 4.10, namely

⎧⎪⎨⎪⎩
𝜕𝑡𝑓(𝑡, 𝑥, 𝜉) + div𝑥

(
𝑓(𝑡, 𝑥, 𝜉) ∫

1

0

𝑤(𝜉, 𝑑𝜁)∫
ℝ𝑑

𝐾(𝑥 − 𝑦) 𝑓(𝑡, 𝑦, 𝜁) 𝑑𝑦

)
= 0,

𝑓(0, ⋅, ⋅) = 𝑓0.

Of course, 𝑓 is the function that we will use to compare to the empirical measure, meaning that
we have to prove that

𝔼𝑊1

(
∫

1

0

𝑓(𝑡, ⋅, 𝜉) 𝑑𝜉,
1

𝑁

𝑁∑
𝑖=1

𝛿𝑋𝑖(𝑡)

)
→ 0, as 𝑁 → ∞. (77)

First of all, we apply Proposition 3.2: Since sup1≤𝑖,𝑗≤𝑁 |𝑤𝑖𝑗| → 0 as 𝑁 → ∞, then this shows that
the solutions 𝑓𝑖 to (20) satisfy that

𝔼𝑊1

(
1

𝑁

𝑁∑
𝑖=1

𝑓𝑖(𝑡, ⋅),
1

𝑁

𝑁∑
𝑖=1

𝛿𝑋𝑖(𝑡)

)
→ 0, as 𝑁 → ∞. (78)

Then, we define 𝑓𝑁 as per (30), namely

𝑓𝑁(𝑡, 𝑥, 𝜉) =

𝑁∑
𝑖=1

𝑓𝑖(𝑡, 𝑥) 𝕀[ 𝑖−1
𝑁
,
𝑖

𝑁
)
(𝜉), 𝑡 ∈ ℝ+, 𝑥 ∈ ℝ𝑑, 𝜉 ∈ [0, 1].

We recall that (𝑤𝑁, 𝑓𝑁) is also a weak solution to (36), with 𝑓𝑁 ∈ 𝐿∞
𝑡,𝜉
(𝑊1,1

𝑥 ∩ 𝑊1,∞
𝑥 ). Therefore,

both 𝑓𝑁 and 𝑓 satisfy the assumptions of Theorem 4.23. Consequently, using (76), we find‖‖‖‖‖∫
1

0

(𝑓 − 𝑓𝑁)(𝑡, ⋅, 𝜉) 𝑑𝜉
‖‖‖‖‖𝐿2𝑥 ≤ 𝐶(𝑡)

(log | log ‖𝜏(⋅, 𝑤𝑁, 𝑓
0
𝑁) − 𝜏(⋅, 𝑤, 𝑓0)‖𝜆|)1∕2+

→ 0, as 𝑁 → ∞.

Since the 𝐿2 norm locally dominates the Wasserstein distance and we have propagation of any
moments, this implies that

𝑊1

(
∫

1

0

𝑓𝑁(𝑡, ⋅, 𝜉) 𝑑𝜉,∫
1

0

𝑓(𝑡, ⋅, 𝜉) 𝑑𝜉

)
→ 0, as 𝑁 → ∞.

Recalling that ∫ 1

0
𝑓𝑁(𝑡, 𝑥, 𝜉) 𝑑𝜉 =

1

𝑁

∑𝑁

𝑖=1 𝑓𝑖(𝑡, 𝑥), and combining this convergence with (78),
finally we obtain (77), which therefore concludes the proof of Theorem 1.1.
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APPENDIX A: MODELS OF BIOLOGICAL NEURONS

A.1 Smooth neuron dynamics of the Fitzhugh–Nagumo or Hodgkin–Huxley type
Models of biological neurons offer a natural example which requires the more complex structure
of the connectivities that we handle in this article. The purpose of this appendix is to give a very
brief overview of some of the models, how they motivate our current study and what are the
remaining open questions. There exists an extensive literature on the subject that we cannot do
full justice to in this appendix. We first briefly refer to [40, 86], for a comprehensive point of view
and to [23, 24] for the cortical network.
Typical models of neuron dynamics include the now famous Fitzhugh–Nagumo [36, 68], or

Hodgkin-Huxley [45], which naturally fit in the framework of (1). In the case of Hodgkin-Huxley
for example, onewould take𝑋𝑖(𝑡) = (𝑉𝑖(𝑡), 𝑛𝑖(𝑡),𝑚𝑖(𝑡), ℎ𝑖(𝑡))where𝑉𝑖 is themembrane potential,
(𝑛𝑖,𝑚𝑖) are connected to the activation for the potassiumand sodium channels andℎ𝑖 is connected
to the inactivation for the Sodium channel. (𝑛𝑖(𝑡),𝑚𝑖(𝑡), ℎ𝑖(𝑡)) solve uncoupled ODE’s that can be
represented by adding some self-interaction in our model, for example

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑑

𝑑𝑡
𝑛𝑖(𝑡) = 𝛼𝑛(𝑉𝑖(𝑡)) (1 − 𝑛𝑖(𝑡)) − 𝛽𝑛(𝑉𝑖(𝑡)) 𝑛𝑖(𝑡),

𝑑

𝑑𝑡
𝑚𝑖(𝑡) = 𝛼𝑚(𝑉𝑖(𝑡)) (1 − 𝑚𝑖(𝑡)) − 𝛽𝑚(𝑉𝑖(𝑡))𝑚𝑖(𝑡),

𝑑

𝑑𝑡
ℎ𝑖(𝑡) = 𝛼ℎ(𝑉𝑖(𝑡)) (1 − ℎ𝑖(𝑡)) − 𝛽ℎ(𝑉𝑖(𝑡)) ℎ𝑖(𝑡),

(A1)
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82 JABIN et al.

for some given functions 𝛼𝑛,𝑚,ℎ and 𝛽𝑛,𝑚,ℎ.
The neurons are coupled through their membrane potentials solving

𝐶𝑚
𝑑𝑉𝑖
𝑑𝑡

+ 𝑔𝐾 𝑛
4
𝑖
(𝑉𝑖 − 𝑉𝐾) + 𝑔𝑁𝑎 𝑚

3
𝑖
ℎ𝑖(𝑉𝑖 − 𝑉𝑁𝑎) + 𝑔𝑙 (𝑉𝑖 − 𝑉𝑙) +

∑
𝑗≠𝑖

𝑤𝑖𝑗(𝑉𝑖 − 𝑉𝑗) = 0, (A2)

for given constants 𝐶𝑚, 𝑔𝐾, 𝑔𝑁𝑎, 𝑔𝑙, 𝑉𝐾, 𝑉𝑁𝑎, 𝑉𝑙.
The coupled system composed of (A1)–(A2) obviously fits within the general framework of sys-

tems like (1). Provided all coefficients are smooth, it also satisfies the assumptions of Theorem 1.1
so that all our results are immediately applicable.
The simulation of such large systems is challenging, and mean-field limits are again an attrac-

tive alternative; see [65, 72, 75, 84]. For identical weights 𝑤𝑖𝑗 = 1∕𝑁, the mean-field limit can be
rigorously derived by classical methods and has proved useful in understanding some of the large
scale behavior of such systems, see for example, [29, 30, 32, 37, 39] on the stochastic side or [16–19,
37, 73, 76] on the deterministic side.
Those studies do not account for the structure of connectivity in the neural network, whose

effect has been shown to be critical, as in [78–80, 91–93]. Of course, a first practical modeling
issue, when considering more complex networks, simply is that the connectivity map 𝑤𝑖𝑗 has
long remain mysterious. Random weights 𝑤𝑖𝑗 are popular for this reason and naturally lead to
random networks, see [4]. The corresponding graph of interactions is typically dense and some
notion ofmean-field limit, based on graphons, has been derived for example in [20–22] for smooth
interaction kernels 𝐾, and actually for the so-called Kuramoto [56, 57] model without learning
(see (A7) below with 𝜂 = 0).
Those follow an interesting approach to the problemwhen the interacting network is described

as a random graph, usually based on symmetric Erdős–Rényi type graphs. The family of Erdős–
Réenyi graphs is one example of a convergent family of random graphs. The limiting behavior of
such families is determined by a symmetric measurable function on the unit square: a classical
graphon. In the case of the Erdős–Réenyi graphs, the limiting graphon is even a constant function.
This also leads to investigating bifurcations in theKuramotomodels on a variety of graphs ranging
from symmetric and random small-world and power law graphs. The graph structure plays a key
role in the transition to synchronization in the model. In [22], Kuramoto models on Erdős–Rényi
and Paley graphs have been proven to have the same critical value that defines synchronization,
an the authors explain the onset of synchronization in the Kuramoto model on a broad class of
dense and sparse random graphs by establishing an explicit link between the network structure
and the onset of synchronization. Furthermore, the mean-field limits of the Kuramoto models on
these graphs can be proved to coincide with that for the Kuramoto models on weighted complete
graphs [20, 21].
However, from a scaling point of view, it is expected that the graph of connection maps 𝑤𝑖𝑗

should be sparse for applications in neurosciences.Mammalian brains contain between 108 − 1011

neurons (86 ⋅ 109 actually in humans). Although, of course, the models generally apply only to
subdomains or certain neural clusters in charge of some specific mission, the dimensions of these
clusters is very large 𝑁 ≫ 1 and even these clusters tend to be correlated with others, which also
implies very large dimensions. For example, in the human brain each neuron has on average
7000 synaptic connections to other neurons. This implies that synaptic weights must have a scale
according to this number of the order of sup𝑖,𝑗 𝑤𝑖𝑗 ∼ 10−3 − 10−4 ≪ 1.
We also emphasize the importance of not imposing symmetry conditions to keep 𝑤𝑖𝑗 ≠ 𝑤𝑗𝑖 in

general. In the neuronal framework, the breakdown in symmetry of network connectivity can be
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MEAN-FIELD LIMIT OF NON-EXCHANGEABLE SYSTEMS 83

correlated with a time scale hierarchy in some special situations. Small deviations from symmet-
ric connectivity will cause small deviations from the invariant dynamics and introduce a temporal
hierarchy, ensuring the consequence of an emergent separation on the time scale. Exploring net-
work mechanisms due to asymmetric couplings to create more complex processes suggests that
asymmetric coupling is not always a variation that needs to be averaged, since complex dynamics
can be formed by simpler dynamics through a combination of asymmetric couplings. For exam-
ple, stimulating a local part of neural tissue can trigger temporarily extended paths of motion by
inciting the spread and sustained activation of motor networks. Asymmetries in connectivity can
reshape the emerging dynamics of a neural network, see [79, 93].
The derivation of mean-field limits for neuron models with sparse, non-symmetric connec-

tion maps had remained fully open and is critical for biological applications. The question was
made even more pressing by recent progress that have lead to the first fully detailed representa-
tion of the connections between neurons, for some simple animals such as the Drosophila, see
for example [46]. The present article is the first to allow handling of arbitrary connection maps.
However our investigations still leave a certain number of open questionswhichwe briefly discuss
below.

A.2 Integrate and fire models
Many variants of models (A1)–(A2) have been studied to make the individual dynamics of a neu-
ron more accurate. Those include adding noise to the system in various forms that often still fully
compatible with our results.
However, so-called integrate and fire models are considered to better capture the dynamics of

large networks; see for example [14, 15] or [1] for a historical perspective. Among many elabo-
rate variants, a basic model is described here for simplicity. The state of each neuron is again
represented by its membrane potential 𝑉𝑖(𝑡) which follows a simple SDE at almost all time,

𝑑𝑉𝑖(𝑡) = 𝑏(𝑉𝑖(𝑡)) 𝑑𝑡 + 𝜎𝑁 𝑑𝑊𝑖, (A3)

but with a probability to spike

ℙ(spike between 𝑡 and 𝑡 + 𝑑𝑡) ≈ 𝑓(𝑉(𝑡)) 𝑑𝑡. (A4)

In the case of a spike at time 𝑡,𝑉𝑖 is reset at 0while all connected neurons are activated or inhibited

𝑉𝑖(𝑡+) = 0, 𝑉𝑗(𝑡+) = 𝑉𝑗(𝑡−) + 𝛼 𝑤𝑖𝑗 ∀𝑗 ≠ 𝑖. (A5)

There exist many variations around those models, for example to include more complex equa-
tions instead of (A3), or deterministic spikingwhen𝑉𝑖 reaches a given threshold.While (A3)–(A5)
would formally fit in a modified version of (1), it includes singular interactions that prevent our
results to apply. The nature of this singularity is however different frommany of the other applica-
tions in this proposal, as it comes from the jumps in the𝑉𝑖 at spiking times, instead of unbounded
interactions at 𝑋𝑖 = 𝑋𝑗 .
Still a full result on the derivation of integrate and fire models for general connectivities has

been performed in [52], by building on the approach introduced here.
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A.3 Open problem: Learning mechanisms in neuron dynamics
Long-term perspectives also include understanding how to incorporate learningmechanisms into
system (1). This is a key question for biological and artificial neuron dynamics as learning is of
course a critical function of the network.
Learning can simply translate in having time dependent connection weights 𝑤𝑖𝑗(𝑡) that evolve

according to the dynamics of the agents themselves, see [2] for instance; this corresponds for
example to thewell-knownHebb rule that neuronswire together if they fire together. Considering
again 𝑁 neurons with activation 𝑋𝑖 and time-dependent connectivity or synaptic weights 𝑤𝑖𝑗(𝑡)

between neuron 𝑖 and 𝑗, a straightforward extension of (1) simply reads

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑑𝑋𝑖
𝑑𝑡

=

𝑁∑
𝑗=1

𝑤𝑖𝑗(𝑡) 𝐾(𝑋𝑖, 𝑋𝑗) (+noise),

𝑑𝑤𝑖𝑗

𝑑𝑡
= 𝜂 (Γ(𝑋𝑖, 𝑋𝑗) − 𝑤𝑖𝑗) (+noise),

𝑋𝑖(0) = 𝑋0
𝑖
, 𝑤𝑖𝑗(0) = 𝑤0

𝑖𝑗
,

(A6)

for some plasticity function Γ, where 𝜂 is regarded as the learning rate parameter.
How the mechanisms of learning can be reinforced or relaxed was specified in the neuronal

context by Hebb [44]. Hebb proposed a theory of the adaptation of neurons in the brain during
the learning process. The basic idea of his rule is based on the fact that neurons wire together if
they fire together. Such a mechanism is based on the hypothesis that synchronous activation of
cells (firing of neurons) leads to selectively pronounced increases in synaptic strength between
these cells. From this process emerges the self-organized patterns. These postulates provide the
neural basis for unsupervised complex learning of cognitive function in neural networks andmay
explain some processes that occur in the development of the nervous system.
The modeling is however made especially difficult in the present setting: changes in the 𝑤𝑖𝑗(𝑡)

need to be able to altering the structure of sparse networks while preserving bounds such as (3). If
all𝑤𝑖𝑗 are of the same order, which is typical of dense graphs, then system (A6) likely has a similar
behavior to (1). However for sparse graphs, we expect the values of the 𝑤𝑖𝑗 to vary wildly and a
straightforward system like (A6) just cannot correctly capture very different orders of magnitude
in connectivities.
On the analytical side, weights 𝑤𝑖𝑗 that adapt in time can lead to stronger synchronization

between agents, strengthening correlations between them and putting in doubt the propagation
of independence. Useful hints can be derived from studies on the Kuramoto model [56, 57] of
coupled oscillators that was briefly mentioned above. The system is posed on the frequencies 𝜃𝑖
and can read, with learning,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑑𝜃𝑖
𝑑𝑡

= Ω𝑖 +
1

𝑁

𝑁∑
𝑗=1

𝑤𝑖𝑗 sin(𝜃𝑗 − 𝜃𝑖),

𝑑𝑤𝑖𝑗

𝑑𝑡
= 𝜂 (Γ(𝜃𝑖, 𝜃𝑗) − 𝑤𝑖𝑗) (+noise),

𝜃𝑖(0) = 𝜃0
𝑖
, 𝑤𝑖𝑗(0) = 𝑤0

𝑖𝑗
,

(A7)

where the Ω𝑖 are the natural frequencies of oscillators.
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MEAN-FIELD LIMIT OF NON-EXCHANGEABLE SYSTEMS 85

For large 𝜂, the other variable in the model that is the choice of Γ takes on great relevance
since, at the limit 𝜂 → ∞, we have that 𝑤𝑖𝑗(𝑡) = Γ(𝜃𝑖, 𝜃𝑗). If for example Γ is assumed to be
Γ(𝜃𝑖, 𝜃𝑗) = cos(𝜃𝑖 − 𝜃𝑗), the attraction between near oscillators is reinforced whereas repulsive
interaction arises between apart phases. On the other hand if one takesΓ(𝜃𝑖, 𝜃𝑗) = 𝐶| sin(𝜃𝑖 − 𝜃𝑗)|,
synchronization only slowly emerges due to the reduction in connectivities for nearby oscillators.
Hebbian-type dynamics can be considered for the Kuramoto model. This learning law ensures

that the weight of the adaptive coupling increases if the phases of the oscillators are close. One
possibility discussed in [74] is to assume that the Hebbian-like plasticity function Γ is given by

Γ(𝜃, 𝜃′) ∶=
1

𝑐𝛼
𝛼,𝜁

|𝜃 − 𝜃′|2𝛼𝑜 , (A8)

where |𝜃 − 𝜃′|𝑜 is the orthodromic distance (to zero) over the unit circle and the parameter 𝑐𝛼,𝜁 ∶=
1 − 𝜁−1∕𝛼, 𝜁 ∈ (0, 1], has been chosen so that whenever two phases 𝜃𝑖 and 𝜃𝑗 stay at orthodromic
distance 𝜎 or larger, then the adaptive function Γ predicts a maximum degree of connectedness
not larger than 𝜁 between such oscillators. This is another way to create and amplify correlations
between neurons.
However, at this stage, time-evolving connectivities do not fit within our framework. At least

formally, note that when 𝑡 ≫ 1, weights behave as 𝑤𝑖𝑗 ≈ Γ(𝜃𝑗, 𝜃𝑗). If Γ were bounded, it appears
that our extended mean-field scaling should be satisfied (note that (A7) contains weights 𝑤𝑖𝑗

𝑁
instead of 𝑤𝑖𝑗); but that does not apply anymore when using unbounded Γ as the Hebbian-like
plasticity mentioned above.

APPENDIX B: TECHNICAL PROOFS FROM SUBSECTION 4.2
For the sake of completeness, we collect here the more technical proofs from subsection 4.2,
starting with the proof of Lemma 4.7.

Proof of Lemma 4.7. Set any 𝑤 ∈ 𝐿∞
𝜉
𝜁 ∩ 𝐿

∞
𝜁
𝜉 , any 𝜙 ∈ 𝐿∞([0, 1]) and any couple of

sequences {𝑤𝑛}𝑛∈ℕ and {𝜙𝑛}𝑛∈ℕ as in the statement of the lemma. On the one hand, since
𝜙 ∈ 𝐿1([0, 1]), then

∫
1

0

𝜓(𝜉)

(
∫

1

0

𝜙(𝜁)𝑤(𝜉, 𝑑𝜁)

)
𝑑𝜉 = ∫

1

0

𝜙(𝜁)

(
∫

1

0

𝜓(𝜉)𝑤(𝑑𝜉, 𝜁)

)
𝑑𝜁 ≤ ‖𝑤‖𝐿∞

𝜁
𝜉

‖𝜙‖𝐿1‖𝜓‖𝐿∞,
for any 𝜓 ∈ 𝐶([0, 1]). This implies that ∫ 1

0
𝜙(𝜁)𝑤(⋅, 𝑑𝜁) ∈ ([0, 1]) and

‖‖‖‖‖∫
1

0

𝜙(𝜁)𝑤(𝜉, 𝑑𝜁)
‖‖‖‖‖𝜉

≤ ‖𝑤‖𝐿∞
𝜁
𝜉

‖𝜙‖𝐿1 . (B1)

Moreover, given any 𝜓 ∈ 𝐶([0, 1]) we have that 𝜓 ⊗ 𝜙𝑛 → 𝜓 ⊗ 𝜙 strongly in 𝐿1
𝜁
𝐶𝜉 . Since in

addition 𝑤𝑛

∗
⇀ 𝑤 weakly-star in 𝐿∞

𝜁
𝜉 = (𝐿1

𝜁
𝐶𝜉)

∗, then we also obtain

∫
1

0

𝜓(𝜉)

(
∫

1

0

𝜙𝑛(𝜁)𝑤𝑛(𝜉, 𝑑𝜁)

)
𝑑𝜉 → ∫

1

0

𝜓(𝜉)

(
∫

1

0

𝜙(𝜁)𝑤(𝜉, 𝑑𝜁)

)
𝑑𝜉.
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86 JABIN et al.

Due to the arbitrariness of 𝜓, the above amounts to

∫
1

0

𝜙𝑛(𝜁)𝑤𝑛(⋅, 𝑑𝜁)
∗
⇀ ∫

1

0

𝜙(𝜁)𝑤(⋅, 𝑑𝜁), (B2)

weakly-star in([0, 1]). On the other hand, set any 𝜓 ∈ 𝐶([0, 1]) and another sequence {�̃�𝑛}𝑛∈ℕ
as above consisting of continuous functions. It clearly exists by density of 𝐶([0, 1]) in 𝐿1([0, 1])
and we can indeed assume that {�̃�𝑛}𝑛∈ℕ ∈ 𝐶([0, 1]), �̃�𝑛 → 𝜙 strongly in 𝐿1 and ‖�̃�𝑛‖𝐿∞ ≤ ‖𝜙‖𝐿∞ .
Then,

∫
1

0

𝜓(𝜉)

(
∫

1

0

�̃�𝑛(𝜁)𝑤(𝜉, 𝑑𝜁)

)
𝑑𝜉 ≤ ‖𝑤‖𝐿∞

𝜉
𝜁

‖𝜓‖𝐿1‖�̃�𝑛‖𝐿∞ ≤ ‖𝑤‖𝐿∞
𝜉
𝜁

‖𝜓‖𝐿1‖𝜙‖𝐿∞.
By the above weak-* convergence, we obtain

∫
1

0

𝜓(𝜉)

(
∫

1

0

𝜙(𝜁)𝑤(𝜉, 𝑑𝜁)

)
𝑑𝜉 ≤ ‖𝑤‖𝐿∞

𝜉
𝜁

‖𝜓‖𝐿1‖𝜙‖𝐿∞,
for every 𝜓 ∈ 𝐶([0, 1]). Noting that 𝐶([0, 1]) is dense in 𝐿1([0, 1]), we find that the above Radon
measure ∫ 1

0
𝜙(𝜁)𝑤(⋅, 𝑑𝜁) actually belongs to 𝐿1([0, 1])∗ = 𝐿∞([0, 1]) and

‖‖‖‖‖∫
1

0

𝜙(𝜁)𝑤(𝜉, 𝑑𝜁)
‖‖‖‖‖𝐿∞

𝜉

≤ ‖𝑤‖𝐿∞
𝜉
𝜁

‖𝜙‖𝐿∞,
which implies (33)2. Using (B1) we also infer (33)1 again because the Radon measure
∫ 1

0
𝜙(𝜁)𝑤(⋅, 𝑑𝜁) is absolutely continuous with respect to the Lebesgue measure and we already

had an estimate in the total variation norm. To end the proof of (34) note that ∫ 1

0
𝜙𝑛(𝜁)𝑤𝑛(⋅, 𝑑𝜁)

are uniformly bounded in 𝐿1 and 𝐿∞ thanks to the already proven estimates (33). Since we already
had that they converge weakly-star in([0, 1]) to ∫ 1

0
𝜙(𝜁)𝑤(⋅, 𝑑𝜁) by (B2), we conclude that they

also converge weakly-star in 𝐿∞. □

We now turn to the proof of Proposition 4.11.

Proof of Proposition 4.11. The argument relies on a direct Picard fixed point. Specifically, let us
define

𝐸 ∶= 𝐿∞([0, 𝑡∗] × [0, 1], 𝑊
1,1 ∩ 𝑊1,∞(ℝ𝑑)), 𝐸𝑅 ∶=

{
𝑓 ∈ 𝐸 ∶ ‖𝑓‖

𝐿∞
𝑡,𝜉
𝑊1,1

𝑥 ∩𝑊1,∞
𝑥

< 𝑅

}
,

for any 𝑅 > 0 to be determined later. It is straightforward to check that 𝐸𝑅 is a closed subset of
𝐿1([0, 𝑡∗] × [0, 1] × ℝ

𝑑) under the 𝐿1 norm in all variables 𝑡, 𝜉 and 𝑥. Then, endowed with the
𝐿1 norm, 𝐸𝑅 becomes a complete and convex metric space, which we shall use in the fixed point
argument below.
Notice that the nonlinear PDE (36) can be reformulated as a fixed point equation in the usual

way. Specifically, for any 𝑓 ∈ 𝐸 let us set 𝑓 ∈ 𝐸 to be the unique solution of the linear Cauchy
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MEAN-FIELD LIMIT OF NON-EXCHANGEABLE SYSTEMS 87

problem

⎧⎪⎨⎪⎩
𝜕𝑡𝑓(𝑡, 𝑥, 𝜉) + div𝑥

(
𝑓(𝑡, 𝑥, 𝜉) ∫

1

0

𝑤(𝜉, 𝑑𝜁)∫
ℝ𝑑

𝐾(𝑥 − 𝑦) 𝑓(𝑡, 𝑦, 𝜁) 𝑑𝑦

)
= 𝜈 Δ𝑥𝑓(𝑡, 𝑥, 𝜉),

𝑓(0, ⋅, ⋅) = 𝑓0.

(B3)
Hence, the fixed points of the operator  amount to weak solutions of (36). The rest of the proof
will focus on proving that the operator  ∶ 𝐸 ⟶ 𝐸 is well defined, and we have that (𝐸𝑅) ⊂ 𝐸𝑅
and it is contractive in the 𝐿1 norm for appropriate 𝑅 > 0.
⋄ Step 1: Well-posedness of (B3).
We note that (B3) is a linear transport equation in 𝑓 parametrized by 𝜉 and whose velocity

field 𝑓 is given in Definition 4.9. Notice that integrating by parts we have

∇𝑥𝑓(𝑡, 𝑥, 𝜉) = ∫
1

0

𝑤(𝜉, 𝑑𝜁)∫
ℝ𝑑

𝐾(𝑥 − 𝑦) ⊗ ∇𝑦𝑓(𝑡, 𝑦, 𝜁) 𝑑𝑦,

which is bounded uniformly in all variables by the regularity of 𝑓 ∈ 𝐸. Therefore, the velocity
field verifies 𝑓 ∈ 𝐿∞([0, 𝑡∗] × [0, 1], 𝑊

1,∞(ℝ𝑑,ℝ𝑑)). For 𝜈 = 0 and for a.e. value 𝜉 ∈ [0, 1] we
can associate a unique and well-defined flow solving the characteristic system

⎧⎪⎨⎪⎩
𝑑𝑋𝑓

𝑑𝑡
(𝑡, 𝑠, 𝑥; 𝜉) = 𝑓(𝑡, 𝑋𝑓(𝑡, 𝑠, 𝑥; 𝜉); 𝜉),

𝑋𝑓(𝑠, 𝑠, 𝑥; 𝜉) = 𝑥,

(B4)

in the sense of Caratheodory. Hence, the classical results ensure that the unique solution
of (B3) can be obtained for example by the method of characteristics, namely, 𝑓(𝑡, ⋅, 𝜉) =
𝑋𝑓(𝑡, 0, ⋅ ; 𝜉)#𝑓

0(⋅, 𝜉) for 𝑡 ∈ [0, 𝑡∗] and a.e. 𝜉 ∈ [0, 1]. In other words, we have that

𝑓(𝑡, 𝑥, 𝜉) = 𝑓0(𝑋𝑓(0, 𝑡, 𝑥; 𝜉)) 𝐽𝑓(0, 𝑡, 𝑥; 𝜉), (B5)

where 𝐽𝑓(𝑡, 𝑠, 𝑥; 𝜉) ∶= det(∇𝑥𝑋𝑓(𝑡, 𝑠, 𝑥; 𝜉)) denotes the Jacobian associated to the flow.
For 𝜈 > 0, we may instead use the heat kernel 𝐺𝜈(𝑡, 𝑥) and we can again classically obtain a

solution through the mild formulation

𝑓(𝑡, 𝑥, 𝜉) = 𝐺𝜈(𝑡, .) ⋆𝑥 𝑓
0(𝑥, 𝜉)

+ ∫
𝑡

0
∫
ℝ𝑑

𝐺𝜈(𝑡 − 𝑠, 𝑥 − 𝑦) div𝑦

(
𝑓(𝑠, 𝑦, 𝜉) ∫

1

0

𝑤(𝜉, 𝑑𝜁)∫
ℝ𝑑

𝐾(𝑦 − 𝑧) 𝑓(𝑠, 𝑧, 𝜁) 𝑑𝑧

)
𝑑𝑠 𝑑𝑦.

(B6)

⋄ Step 2: A priori estimates of (B3).
We first recall classical estimates for advection and advection-diffusion equations. Consider any

𝑣(𝑡, 𝑥) ∈ 𝐿∞([0, 𝑡∗], 𝑊1,∞(ℝ𝑑)), any weak solution 𝑢 in 𝐿1
𝑙𝑜𝑐

to{
𝜕𝑡𝑢 + div𝑥(𝑢 𝑣) = 𝜈 Δ𝑥𝑢 + 𝑅(𝑡, 𝑥),

𝑢(0, 𝑥) = 𝑢0(𝑥).
(B7)
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88 JABIN et al.

Then if 𝑅 ∈ 𝐿1𝑡,𝑥, we have that 𝑢 ∈ 𝐿∞𝑡 𝐿
1
𝑥 with

‖𝑢(𝑡, ⋅)‖𝐿1𝑥 ≤ ‖𝑢0‖𝐿1𝑥 + ∫
𝑡

0

‖𝑅(𝑠, ⋅)‖𝐿1𝑥 𝑑𝑠. (B8)

If 𝑅 ∈ 𝐿1𝑡 𝐿
∞
𝑥 , then 𝑢 ∈ 𝐿∞𝑡,𝑥 with

‖𝑢(𝑡, ⋅)‖𝐿∞𝑥 ≤ ‖𝑢0‖𝐿∞𝑥 exp
(
𝑡 ‖ div𝑥 𝑣‖𝐿∞𝑡,𝑥)

+ ∫
𝑡

0

‖𝑅(𝑠, ⋅)‖𝐿∞𝑥 exp
(
(𝑡 − 𝑠) ‖ div𝑥 𝑣‖𝐿∞𝑡,𝑥) 𝑑𝑠. (B9)

If additional derivatives are available on𝑢0, 𝑣 and𝑅, Sobolev bounds are also propagated. Provided
that 𝑣 is 𝐶1, 𝑢 is automatically a classical solution to (B7) so that

𝜕𝑡∇𝑥𝑢 + div(𝑣 ∇𝑥𝑢) + div(∇𝑥𝑣 𝑢) = 𝜈 Δ𝑥∇𝑥𝑢 + ∇𝑥𝑅.

In particular, we may apply estimates similar to the previous ones as ∇𝑥𝑢 solves (B7) with �̃� =

∇𝑥𝑅 − div(∇𝑥𝑣 𝑢). We consequently find that, if 𝑢0 ∈ 𝑊1,1
𝑥 and 𝑅 = 0 for simplicity, then

‖�̃�(𝑡, ⋅)‖𝐿1𝑥 ≤ ‖ div 𝑣(𝑡, ⋅)‖
𝑊1,∞

𝑥
‖𝑢(𝑡, ⋅)‖𝐿1𝑥 + ‖𝑣(𝑡, ⋅)‖

𝑊1,∞
𝑥

‖∇𝑥𝑢(𝑡, ⋅)‖𝐿1𝑥
≤ ‖ div 𝑣(𝑡, ⋅)‖

𝑊1,∞
𝑥

‖𝑢0‖𝐿1𝑥 + ‖𝑣(𝑡, ⋅)‖
𝑊1,∞

𝑥
‖∇𝑥𝑢(𝑡, ⋅)‖𝐿1𝑥 .

Hence we obtain by Gronwall’s lemma that

‖∇𝑥𝑢(𝑡, ⋅)‖𝐿1𝑥 ≤ ‖∇𝑥𝑢
0‖𝐿1𝑥 exp(𝑡 ‖ div𝑥 𝑣‖𝐿∞𝑡,𝑥)

+ ‖𝑢0‖𝐿1 ∫
𝑡

0

‖ div 𝑣(𝑠, ⋅)‖
𝑊1,∞

𝑥
exp

(
(𝑡 − 𝑠) ‖𝑣‖

𝐿∞𝑡 𝑊
1,∞
𝑥

)
𝑑𝑠. (B10)

Similarly if 𝑢0 ∈ 𝑊1,∞
𝑥 and 𝑅 = 0, then

‖�̃�(𝑡, ⋅)‖𝐿∞𝑥 ≤ ‖ div 𝑣(𝑡, ⋅)‖
𝑊1,∞

𝑥
‖𝑢(𝑡, ⋅)‖𝐿∞𝑥 + ‖𝑣(𝑡, ⋅)‖

𝑊1,∞
𝑥

‖∇𝑥𝑢(𝑡, ⋅)‖𝐿∞𝑥
≤ ‖ div 𝑣(𝑡, ⋅)‖

𝑊1,∞
𝑥

‖𝑢0‖𝐿∞𝑥 exp
(
𝑡 ‖ div𝑥 𝑣‖𝐿∞𝑡,𝑥) + ‖𝑣(𝑡, ⋅)‖

𝑊1,∞
𝑥

‖∇𝑥𝑢(𝑡, ⋅)‖𝐿∞𝑥 ,
and one has that, still by Gronwall’s lemma,

‖∇𝑥𝑢(𝑡, .)‖𝐿∞𝑥 ≤ ‖∇𝑥𝑢
0‖𝐿∞𝑥 exp

(
𝑡 ‖ div𝑥 𝑣‖𝐿∞𝑡,𝑥)

+ ‖𝑢0‖𝐿∞ ∫
𝑡

0

‖ div 𝑣(𝑠, .)‖
𝑊1,∞

𝑥
exp

(
(𝑡 − 𝑠) (‖𝑣‖

𝐿∞𝑡 𝑊
1,∞
𝑥

+ ‖ div𝑥 𝑣‖𝐿∞𝑡,𝑥 )) 𝑑𝑠.
(B11)

Wemay now propagate estimates to show that the solution𝑓 lies in𝐸, and indeed(𝐸𝑅) ⊂ 𝐸𝑅
for an appropriate choice of 𝑅 > 0. We note that Equation (B3) is immediately under the form (B7)
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MEAN-FIELD LIMIT OF NON-EXCHANGEABLE SYSTEMS 89

where 𝜉 is only a parameter and

𝑣𝜉(𝑡, 𝑥) = 𝑉𝑓(𝑡, 𝑥, 𝜉) = ∫
1

0

𝑤(𝜉, 𝑑𝜁)∫
ℝ𝑑

𝐾(𝑥 − 𝑦) 𝑓(𝑡, 𝑦, 𝜁) 𝑑𝑦.

From here, since 𝑓0 ∈ 𝐿∞
𝜉
𝐿1𝑥 we obtain that

‖𝑓(𝑡, ⋅, 𝜉)‖𝐿1𝑥 = ‖𝑓0(⋅, 𝜉)‖𝐿1𝑥 ,
‖𝑓(𝑡, ⋅, 𝜉)‖𝐿∞𝑥 ≤ ‖𝑓0(⋅, 𝜉)‖𝐿∞ exp

(
𝑡∗ ‖ div𝑥 𝑓‖𝐿∞

𝑡,𝑥,𝜉

)
,

(B12)

for 𝑡 ∈ [0, 𝑡∗] and a.e. 𝜉 ∈ [0, 1].
From the definition of 𝑉𝑓 , we also directly obtain that

‖ div𝑥 𝑉𝑓‖𝐿∞
𝑡,𝑥,𝜉

≤ ‖𝐾‖𝐿∞‖𝑤‖𝐿∞
𝜉
𝜁∩𝐿

∞
𝜁
𝜉

‖∇𝑥𝑓‖𝐿∞
𝑡,𝜉
𝐿1𝑥

‖𝑉𝑓‖𝐿∞
𝑡,𝜉
𝑊1,∞

𝑥
≤ ‖𝐾‖𝐿∞ ‖𝑤‖𝐿∞

𝜉
𝜁∩𝐿

∞
𝜁
𝜉

‖∇𝑥𝑓‖𝐿∞
𝑡,𝜉
𝐿1𝑥

‖ div 𝑉𝑓‖𝐿∞
𝑡,𝜉
𝑊1,∞

𝑥
≤ ‖ div 𝐾‖𝐿1 ‖𝑤‖𝐿∞

𝜉
𝜁∩𝐿

∞
𝜁
𝜉

‖∇𝑥𝑓‖𝐿∞
𝑡,𝜉
𝐿∞𝑥
.

(B13)

Putting (B12), and (B13) together into (B10) and (B11) implies that

‖𝑓‖
𝐿∞
𝑡,𝜉
𝑊1,1

𝑥 ∩𝑊1,∞
𝑥

≤ 𝐶1‖𝑓0‖𝐿∞
𝜉
𝑊1,1

𝑥 ∩𝑊1,∞

× exp

(
𝐶2 𝑡∗ (‖𝐾‖𝐿∞ + ‖ div 𝐾‖𝐿1)‖𝑤‖𝐿∞

𝜉
𝜁∩𝐿

∞
𝜁
𝜉

‖𝑓‖
𝐿∞
𝑡,𝜉
𝑊1,1

𝑥 ∩𝑊1,∞
𝑥

)
,

(B14)

for some universal𝐶1, 𝐶2 ≥ 1. In particular, the above estimate show that𝑓 ∈ 𝐸 for every 𝑓 ∈ 𝐸.
⋄ Step 3: Invariance of 𝐸𝑅 and contractivity of .
Set now any 𝑅 > 𝐶1‖𝑓0‖𝐿∞

𝜉
𝑊1,1

𝑥 𝑊1,∞
𝑥

and note that the above estimates also show that (𝐸𝑅) ⊂
𝐸𝑅 if the maximal time 𝑡∗ is taken sufficiently small, namely,

0 < 𝑡∗ ≤ 𝑡1(𝑅) ∶=
1

𝐶2(‖𝐾‖𝐿∞ + ‖ div 𝐾‖𝐿1)‖𝑤‖𝐿∞
𝜉
𝜁∩𝐿

∞
𝜁
𝜉

𝑅
log

⎛⎜⎜⎝
𝑅

𝐶1‖𝑓0‖𝐿∞
𝜉
𝑊1,1

𝑥 ∩𝑊1,∞
𝑥

⎞⎟⎟⎠.
Our next goal is to show that is contractive under the 𝐿1 norm. To do so, let us consider𝑓, 𝑔 ∈ 𝐸𝑅
and note that 𝑓 − 𝑔 follows the following linear transport equation with a source term{

𝜕𝑡(𝑓 − 𝑔) + div𝑥(𝑔 (𝑓 − 𝑔)) + div𝑥((𝑓 − 𝑔)𝑓) = 𝜈Δ𝑥(𝑓 − 𝑔),
(𝑓 − 𝑔)(0, ⋅, ⋅) = 0.

Taking 𝐿1 norms with respect to 𝑥 and 𝜉 yields

‖(𝑓 − 𝑔)(𝑡, ⋅, ⋅)‖𝐿1
𝑥,𝜉

≤ ‖ div𝑥((𝑓 − 𝑔)𝑓)‖𝐿1
𝑡,𝑥,𝜉

≤ ‖ div𝑥(𝑓 − 𝑔)‖𝐿∞
𝑡,𝜉
𝐿1𝑥
‖𝑓‖𝐿∞

𝑡,𝑥,𝜉
+ ‖𝑓 − 𝑔‖𝐿∞

𝑡,𝜉
𝐿1𝑥
‖∇𝑥𝑓‖𝐿∞

𝑡,𝑥,𝜉
,
(B15)
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90 JABIN et al.

for 𝑡 ∈ [0, 𝑡∗]. By the estimate (35)1 in Lemma 4.8 we have

‖𝑓 − 𝑔‖𝐿1
𝑡,𝑥,𝜉

≤ ‖𝐾‖𝐿1‖𝑤‖𝐿∞
𝜉
𝜁∩𝐿

∞
𝜁
𝜉

‖𝑓 − 𝑔‖𝐿1
𝑡,𝑥,𝜉

,

‖ div𝑥(𝑓 − 𝑔)‖𝐿1
𝑡,𝑥,𝜉

≤ ‖ div 𝐾‖𝐿1‖𝑤‖𝐿∞
𝜉
𝜁∩𝐿

∞
𝜁
𝜉

‖𝑓 − 𝑔‖𝐿1
𝑡,𝑥,𝜉

.
(B16)

Then, putting (B15) and (B16) together, and using that 𝑓 ∈ 𝐸𝑅 by the above step, we have that

‖𝑓 − 𝑔‖𝐿1
𝑡,𝑥,𝜉

≤ 𝑅 𝑡∗(‖𝐾‖𝐿1 + ‖ div 𝐾‖𝐿1)‖𝑤‖𝐿∞
𝜉
𝜁∩𝐿

∞
𝜁
𝜉

‖𝑓 − 𝑔‖𝐿1
𝑡,𝑥,𝜉

. (B17)

Take 𝑡∗ sufficiently small so that 𝑡∗ ≤ 𝑡1(𝑅) as above and, in addition

0 < 𝑡∗ < 𝑡2(𝑅) ∶=
1

𝑅 (‖𝐾‖𝐿1 + ‖ div 𝐾‖𝐿1)‖𝑤‖𝐿∞
𝜉
𝜁∩𝐿

∞
𝜁
𝜉

.

Hence  is contractive on 𝐸𝑅 under the 𝐿1 norm by the stability estimate (B17). By the Banach
fixed point theorem there must exist a (unique) fixed point 𝑓 ∈ 𝐸𝑅 of , leading to a weak solu-
tion of (36) in [0, 𝑡∗]. Note that 𝑡∗ must be taken small enough so that 0 < 𝑡∗ < min{𝑡1(𝑅), 𝑡2(𝑅)}.
However, restarting the argument from 𝑡∗ allows extending this weak solution solution to any
finite time interval as usual, since the above a priori estimate (B14) above does not blow up in
time. □

We finish this technical appendix with the proof of Lemma 4.12.

Proof of Lemma 4.12. As usual, one uses an approximation by convolution. Because 𝑤 is defined
on [0, 1]2, we first extend 𝑤 as a periodic function on with period 1 in both variables. Similarly
we naturally consider any function on [0, 1] as periodic, allowing to naturally use convolutions.
Then, choose any convolution kernel 𝐿𝑛 ≥ 0 with 𝐿𝑛 ∈ 𝐶∞𝑐 (ℝ) for any fixed 𝑛 and define 𝑤𝑛 =

𝐿𝑛 ⊗ 𝐿𝑛 ⋆𝜉,𝜁 𝑤. Since 𝑤 ∈ 𝜉,𝜁 , we immediately note that 𝑤𝑛 ∈ 𝐿∞
𝜉,𝜁
.

Next, for any 𝑓 ∈ 𝐿1
𝜉
𝐶𝜁 , we trivially have that ‖𝐿𝑛 ⊗ 𝐿𝑛 ⋆ 𝑓‖𝐿1

𝜉
𝐿∞
𝜁
≤ ‖𝑓‖𝐿1

𝜉
𝐿∞
𝜁
. By duality, we

deduce that𝑤𝑛 is uniformly bounded in 𝐿∞𝜉 𝜁 ∩ 𝐿
∞
𝜁
𝜉 and, hence, in 𝐿∞𝜉 𝐿

1
𝜁
∩ 𝐿∞

𝜁
𝐿1
𝜉
, since𝑤𝑛 ∈

𝐿∞
𝜉,𝜁
.
Consider now any 𝜙𝑛 converging weakly to 𝜙 in𝐻1([0, 1]), we have that

∫
1

0

𝜙𝑛(𝜁) 𝐿𝑛 ⋆𝜁 𝑤(𝜉, 𝜁) 𝑑𝜁 = ∫
1

0

�̃�𝑛 ⋆𝜁 𝜙𝑛(𝜁)𝑤(𝜉, 𝜁) 𝑑𝜁,

with �̃�𝑛(𝜉) = 𝐿𝑛(−𝜉). By Lemma 4.7, for any 𝜓 ∈ 𝐿∞([0, 1]), we deduce that

∫
1

0

𝜓(𝜉)

(
∫

1

0

𝜙𝑛(𝜁) 𝐿𝑛 ⋆𝜁 𝑤(𝜉, 𝜁) 𝑑𝜁 − ∫
1

0

𝜙(𝜁)𝑤(𝜉, 𝑑𝜁)

)
𝑑𝜉

≤ ‖𝜓‖𝐿∞ ‖𝑤‖𝐿∞
𝜉
𝜁∩𝐿

∞
𝜁
𝜉

‖𝜙 − �̃�𝑛 ⋆ 𝜙𝑛‖𝐿1 .
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MEAN-FIELD LIMIT OF NON-EXCHANGEABLE SYSTEMS 91

Since𝐻1 is compactly embedded in 𝐿1, this shows that‖‖‖‖‖∫
1

0

𝜙𝑛(𝜁) 𝐿𝑛 ⋆𝜁 𝑤(𝜉, 𝜁) 𝑑𝜁 − ∫
1

0

𝜙(𝜁)𝑤(𝜉, 𝑑𝜁)
‖‖‖‖‖𝐿1

𝜉

→ 0, as 𝑛 → ∞.

Still by Lemma 4.7 since𝐻1 ⊂ 𝐿∞, ∫ 1

0
𝜙(𝜁)𝑤(𝜉, 𝑑𝜁) is a fixed function in 𝐿∞ and consequently its

convolution by 𝐿𝑛 converges in 𝐿1 (and in all 𝐿𝑝, 𝑝 < ∞). Therefore‖‖‖‖‖∫
1

0

𝜙𝑛(𝜁)𝑤𝑛(𝜉, 𝜁) 𝑑𝜁 − ∫
1

0

𝜙(𝜁)𝑤(𝜉, 𝑑𝜁)
‖‖‖‖‖𝐿1

𝜉

≤
‖‖‖‖‖‖𝐿𝑛 ⋆𝜉

(
∫

1

0

𝜙𝑛(𝜁) 𝐿𝑛 ⋆𝜁 𝑤(𝜉, 𝜁) 𝑑𝜁 − ∫
1

0

𝜙(𝜁)𝑤(𝜉, 𝑑𝜁)

)‖‖‖‖‖‖𝐿1
𝜉

+
‖‖‖‖‖𝐿𝑛 ⋆𝜉 ∫

1

0

𝜙𝑛(𝜁)𝑤(𝜉, 𝜁) 𝑑𝜁 − ∫
1

0

𝜙(𝜁)𝑤(𝜉, 𝑑𝜁)
‖‖‖‖‖𝐿1

𝜉

→ 0,

proving the convergence of 𝑤𝑛 in 𝐿1𝜉𝐻
−1
𝜁
. □
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