
ORIGINAL RESEARCH
published: 11 April 2019

doi: 10.3389/fneur.2019.00356

Frontiers in Neurology | www.frontiersin.org 1 April 2019 | Volume 10 | Article 356

Edited by:

Lino Nobili,

University of Genoa, Italy

Reviewed by:

Fabrizio De Carli,

Institute of Bioimaging and Molecular

Physiology, Italy

Thomas Penzel,

Charité Medical University of Berlin,

Germany

*Correspondence:

Maria Angeles Rol

angerol@um.es

Specialty section:

This article was submitted to

Sleep and Chronobiology,

a section of the journal

Frontiers in Neurology

Received: 21 December 2018

Accepted: 22 March 2019

Published: 11 April 2019

Citation:

Madrid-Navarro CJ,

Puertas Cuesta FJ, Escamilla-Sevilla F,

Campos M, Ruiz Abellán F, Rol MA

and Madrid JA (2019) Validation of a

Device for the Ambulatory Monitoring

of Sleep Patterns: A Pilot Study on

Parkinson’s Disease.

Front. Neurol. 10:356.

doi: 10.3389/fneur.2019.00356

Validation of a Device for the
Ambulatory Monitoring of Sleep
Patterns: A Pilot Study on
Parkinson’s Disease
Carlos Javier Madrid-Navarro 1,2, Francisco Javier Puertas Cuesta 3,4,

Francisco Escamilla-Sevilla 1,2, Manuel Campos 5, Fernando Ruiz Abellán 6,

Maria Angeles Rol 5* and Juan Antonio Madrid 5

1Neurology Service, Hospital Universitario Virgen de las Nieves, Granada, Spain, 2 Instituto de Investigación Biosanitaria ibs.

GRANADA, Granada, Spain, 3Unidad de Sueño, Hospital Universitario de la Ribera de Alzira, Valencia, Spain, 4Centre de

Sommeil, Service de Neurologie, CHU Liege, Liege, Belgium, 5Chronobiology Laboratory, IMIB-Arrixaca, CIBERFES, Instituto

de Salud Carlos III, Universidad de Murcia, Murcia, Spain, 6 Electronics Laboratory, SAI, University of Murcia, Murcia, Spain

The development of wearable devices has increase interest in the use of ambulatory

methods to detect sleep disorders more objectively than those permitted by subjective

scales evaluating sleep quality, while subjects maintain their usual lifestyle. This study

aims to validate an ambulatory circadian monitoring (ACM) device for the detection of

sleep and wake states and apply it to the evaluation of sleep quality in patients with

Parkinson disease (PD). A polysomnographic validation study was conducted on a group

of patients with different sleep disorders in a preliminary phase, followed by a pilot study

to apply this methodology to PD patients. The ACM device makes it possible to estimate

the main sleep parameters very accurately, as demonstrated by: (a) the lack of significant

differences between themean values detected by PSG and ACM in time in bed (TIB), total

sleep time (TST), sleep efficiency (SE), and time awake after sleep onset (WASO); (b) the

slope of the correlation lines between the parameters estimated by the two procedures,

very close to 1, which demonstrates the linearity of the predictions; (c) the low bias value

in the estimates obtained through ACM. Sleep in PD is associated with lower distal skin

temperature, efficiency and overall sleep time; greater WASO, activity during sleep and

duration of naps and a worse circadian function index. In summary, the ACM device

has proven to be clinically useful to evaluate sleep in an objective manner, thanks to the

integrated management of different complementary variables, having advantages over

conventional actigraphy.

Keywords: Parkinson’s disease, sleep, circadian rhythms, ambulatory recordings, actigraphy, polysomnography,

thermometry

INTRODUCTION

Sleep disorders constitute one of the most common non-motor symptoms of Parkinson’s Disease
(PD), with a prevalence of up to 90% (1), affecting the quality of life of patients to a large extent (2).
The development of devices and procedures for sleep monitoring in this population is essential in
order to implement treatment strategies aimed at improving the quality of life in patients with PD.
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Traditionally, sleep detection has been carried out using
polysomnography (PSG), a technique considered to be the
gold standard for evaluating the sleep disorders. However, this
technique presents certain disadvantages: its high cost, short
recording time (at most, one or two nights, with no recordings
during the day), the inconvenience of the sensor wiring and the
fact that it forces the patient to sleep under unusual conditions
and in a strange environment, whichmay condition the first night
effect, making it difficult to fall asleep (3). For these reasons,
the search for alternative techniques to PSG represents an
urgent need. Among these alternatives, actigraphy, which uses an
accelerometer to detect movement and a series of algorithms to
infer sleep, has been themost successful technique in recent years.
This technique permits the objective, non-invasive recording of
the sleep-wake pattern over long periods of time and estimating
parameters such as total sleep time (TST), sleep efficiency (SE)
and sleep latency (SL), with good agreement with PSG (4,
5). However, sleep detection via algorithms based solely on
movement shows important weaknesses. In general, actigraphy
has been demonstrated to be very sensitive in detecting sleep, but
its capacity to detect wake states during the night (specificity) is
not as high (6), as it tends to overestimate sleep by considering
moments of immobility in bed, or even apparent immobility due
to the removal of the sensor, as sleep (5, 7). That is the reason why
it loses clinical importance when studying specific pathologies,
such as insomnia, because the subject may remain awake for long
periods of time without barely moving (7).

In addition, the main sleep parameters derived from the
different actigraph models are inferred based on measurements
processed using different procedures (8), such as the Zero
Crossing Mode (ZCM), Time Above Threshold (TAT) and
Proportional Integral Mode (PIM), which are calculated with
different frequencies, sometimes (but not always) using filters,
depending on the device, and applying algorithms based on
different procedures, such as Cole-Kripke, Sadeh or UCSD (8–
10). These algorithms often tend to be specific to different
devices, age groups and sleep pathologies, whichmakes it difficult
to compare results, requires prior knowledge of the pathology
being evaluated and complicates conducting studies with large
population groups using the same technique.

To make up for the lack of precision associated with
the recording of a single variable, multivariable recordings
under ambulatory conditions have recently been suggested
(11). These procedures, generically referred to as Ambulatory

Abbreviations: ACM, ambulatory circadian monitoring; AT, awake time; BT, bed
time; CFI, circadian function index; GUT, gep up time; IS, interdaily stability; IV,
intradaily variability; L5V and L5T, mean value and timing of the 5 consecutive
hours with the lowest values; L10V and L10T, mean value and timing of the
10 consecutive hours with the lowest values; M5V and M5T, mean value and
timing of the 5 consecutive hours with the highest values; M10V and M10T,
mean value and timing of the 10 consecutive hours with the highest values; NT,
napping time; PD, Parkinson’s disease; PIM, proportional integrated mode; PLM,
periodic leg movements; PSG, polysomnography; PX, position of the x axis; RA,
normalized relative amplitude; SE, sleep efficiency; SL, sleep latency; TAP, intra-
subject normalization of three signals, wrist skin temperature, time of movement
and variability of the x-axis; TAT, time above threshold; TIB, time in bed; TM, time
in movement; TMI, time in movement index; TST, total sleep time; WASO, wake
after sleep onset; WT, wrist temperature.

Circadian Monitoring (ACM), are based on the integration of
a combination of variables, such as skin temperature, motor
activity and body position (12). The peripheral temperature
rhythm measured on the wrist is especially important in this
procedure, since it is not only very useful for detecting sensor
removal, it is also a good sleep marker (11, 13), having been
used to evaluate circadian rhythms in several physiological
and pathological conditions, such as metabolic syndrome (14),
obesity (15), and sleep apnea (16).

The development of wearable devices has increased interest in
the use of ambulatory methods to detect sleep disorders in PD
more objectively than those permitted by scales evaluating sleep
quality (17, 18). In addition, these sensors can be used to monitor
and detect early symptoms of PD, which will facilitate the
intensive long-term monitoring at home, offering the possibility
of providing individualized medical care and, at the same time,
making it an effective, affordable procedure to monitor the
progression of PD.

The main objective of this work is to validate an ACM
device for the detection of sleep and wake states and apply it
to the evaluation of sleep quality in patients with PD. To do
this, a polysomnographic validation study was conducted in a
preliminary phase on a large group of patients of different ages,
genders and sleep pathologies, followed by a pilot study to apply
this methodology to patients with Parkinson’s disease.

METHODS

Study Populations
Two separate studies have been carried out, involving different
subjects: one for the polisomnographic validation for sleep
detection of the ACM device in a Sleep Unit and a second one
for sleep-wake rhythm assessment in patients with PD under
normal-living conditions.

For Kronowise polisomnographic validation, seventy patients
were studied (26 women, 44 men, with an age range of 11–
86 years), recruited among those patients who attended the
Sleep Unit at Ribera de Alzira University Hospital (Spain), by
strict order of reception, between February and March 2016.
Ambient room temperature was kept at 23 ± 1◦C, and the
same experimental protocol was applied to all subjects. PSG was
conducted on these patients to attempt to diagnose the cause
of their sleep problems. From all monitored subjects, 9 showed
no sleep pathology after the PSG. The remaining subjects were
diagnosed as follows: obstructive sleep apnea (38), periodic leg
movements (PLM) (5), onset and maintenance insomnia (5) and
apnea+PLM (13). Their characteristics are described in Table 1.

For the sleep-wake rhythm assessment in patients with PD
under ambulatory conditions, a cross-sectional design was used
including 30 adult volunteers: 15 patients with PD, who met the
diagnostic criteria according to theMDS 2015 criteria (PD group)
(19) and 15 healthy control subjects who matched the same
demographic characteristics (control group). The patients with
PD were selected by convenience sampling among those who
attended the Movement Disorder Unit at Virgen de las Nieves
University Hospital in Granada (HUVN). Control subjects were
recruited among relatives of the University of Murcia’s students
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TABLE 1 | Characteristics of the subjects participating in the polysomnographic

validation study.

Mean ± SEM Range

Age (years) 55.67 ± 1.85 11–86

Gender (F/M) 26/44

BMI 29.29 ± 0.66 19–47

No pathology 9

Severe apnea 23

Moderate apnea 8

Mild apnea 7

PLM 5

Insomnia 5

Apnea + PLM 13

Mean values ± standard error of the mean (SEM). PLM, periodic leg movement.

whose anthropometric and demographic characteristics matched
those of the PD subjects. Both groups were instructed to
maintain their normal lifestyle during the week of the study.
All participants received adequate information on the study and
signed an informed consent form before being included. The
study was approved by the Ethics Committee at the University
of Murcia and HUVN.

All patients were in treatment with L-dopa and/or dopamine
agonists. Exclusion criteria were: diagnosis of dementia or
severe psychiatric comorbidity, fever or infection over the last
2 weeks, habitual tobacco use or alcohol abuse, diagnosis of
diabetes mellitus during≥10 years or subjected to treatment with
insulin for ≥5 years, clinical polyneuropathy, endocrinopathies
(thyroidopathies or diseases of the adrenal glands), arterial
diseases (Raynaud, thoracic outlet syndrome), treatment with
medications for excessive daytime sleepiness (i.e., modafinil),
treatment with adrenergic agonists/blockers or a connective
tissue disease that could affect skin temperature. None of them
were shift workers or had crossed several time zones during the
month prior to testing. The same exclusion criteria applied to
the control group. Trained interviewers evaluated the severity
of PD according to the Hoehn and Yahr scale (20). The clinical
disability of the patients was evaluated according to the Unified
Parkinson’s Disease Disease Scale Rating (UPDRS) and its
corresponding subscales. The patients with PD also completed
non-motor and sleep evaluations, using the second version of
the Parkinson’s Disease Sleep Scale (PDSS-2) and the Parkinson’s
Disease Quality of Life Questionnaire (PDQ-39). Subjects in both
groups completed the Pittsburgh Sleep Quality Index (PSQI)
and the Epworth Sleepiness Scale (EES). The equivalent dose
of Levodopa (LED) was determined in patients with PD using
standardized protocols (21). The characteristics of the patients
who participated in this study are described in Table 2.

Polysomnographic Validation of the ACM
Device for Sleep Detection
A conventional PSG test was administered in the sleep unit as the
standard of reference to evaluate the reliability of the ACMdevice
for sleep detection. Electroencephalographic (EEG) activity was

TABLE 2 | Characteristics of the patients who participated in the sleep rhythm

evaluation study in Parkinson’s disease.

PD Controls P

Mean ± SEM Mean ± SEM

Age (years) 65.53 ± 2.19 60.71 ± 1.97 0.10

Gender (M/F) 12/3 12/3 1.00

Weight (kg) 77.64 ± 2.09 79.43 ± 3.03 0.56

Height (cm) 170.43 ± 1.78 175.29 ± 2.34 0.11

BMI 26.71 ± 0.56 25.77 ± 0.69 0.37

PD progression (years) 11.27 ± 1.49

Mean values ± standard error of the means (SEM). The differences between means were

evaluated using a Student’s t-test, with values being considered significant at p < 0.05.

BMI, body mass index.

recorded by surface electrodes placed on the scalp in the central,
frontal and occipital regions by means of monopolar leads with a
reference electrode located on the contralateral mastoid process
(F4-M1, F3-M2, C4-M1, C3-M2, O2-M1, O1-M2), based on the
international 10–20 system, according to the recommendations
of the American Academy of Sleep Medicine (AASM Scoring
Manual 2015). Electromyographic (EMG) activity was recorded
by electrodes in the submental region and on both anterior
tibial muscles. A modified DII lead was used to record the
electrocardiogram, whereas eye movements were recorded by
two electrodes placed on the left (LOC-M2) and the right
(ROC-M2) eye. Respiratory signals included nasal pressure
cannulas and nasal and oral thermal sensors to assess nasobuccal
flow. Respiratory effort was assessed by means of inductance
plethysmography bands on the thorax and abdomen, including
the signal of the sum of both. The snoring signal was obtained by
filtering the nasal cannula signal (PTAF, Protech). Blood oxygen
saturation (SaO2) was recorded by pulse oximetry. PSG data
were acquired simultaneously from 20 different channels at 30 s
per page, for ∼8 h, using a 44-channel Grass R©Comet-PLUS R©

EEG/PSG equipment (Natus Medical Incorporated, San Carlos,
CA, USA).

Sleep (N1, N2, N3 and REM) and wake stages were classified
according to the criteria of the American Academy of Sleep
Medicine (AASM Scoring Manual 2015). An infrared video
camera recorded the entire PSG procedure in a synchronized
manner. To synchronize the results of the PSG (one page every
30 s) with the recordings from the ACM KW device (one data
recording every 30 s), the infrared sensor of the KW device was
used to detect the turning on and off of the video recording.

Use of an Ambulatory Circadian Monitoring
(ACM) Device for Detecting the
Sleep-Wake Rhythm
Both for sleep detection during the polysomnographic validation
study and to evaluate the sleep-wake rhythm in patients with
PD under normal living conditions, an ACM device the size
of a wrist watch was used (Kronowise 3.0, Kronohealth, S.L.,
Spain). In the case of patients with PD, it was placed on the
less affected hand, and in the case of the control subjects
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and patients in the PSG validation study, it was worn on
the non-dominant hand. The main variables recorded by this
device were wrist skin temperature, triaxial acceleration, wrist
position, exposure to light on three spectral bands (visible,
blue light with a wavelength of 460–490 nm and infrared light
>800 nm). An electronic record (event marker) was kept that
could be used by the subjects as an electronic diary. The
sampling frequencies were: 10Hz for the acceleration and time
in movement measurements, 1Hz for skin temperature and
exposure to light and 0.033Hz (1 reading per time period)
for wrist position and event marker. The data captured over
the course of a week (∼23,000,000 data points) were internally
processed and saved in 30-s time periods. The technical
characteristics of the ACM Kronowise 3.0 device have been
previously described by Madrid-Navarro et al. (18). Briefly, the
device is equipped with:

1) A temperature sensor with an accuracy of±0.1◦C at 25◦C and
a resolution of 0.0635◦C.

2) A MEMS calibrated triaxial accelerometer with a linear
sensitivity equal to (0.001) g along all three axes and a range of
±2 g. The Y axis of the device was aligned with the radius; the
X corresponded to the radial-cubital axis and the Z axis with
the palmar-dorsal axis. Based on the information provided by
the accelerometer, a total of five groups of motor variables
were recorded: (a) tilt of the X, Y, and Z axes, as well as the
angle between each axis and the horizontal plane, expressed
in degrees; (b) the sum of the degrees of change between
the position of the current axis and the previous one; (c)
the area under the curve, which proportionally integrates the
acceleration values per time period (proportional integrated
mode, PIM); this variable indicates speed of movement and
force, but not the duration or frequency of the movement; (d)
time inmovement, as the cumulative time above the threshold
of 0.05 g (time above threshold, TAT) in which a movement
on any of the three axes was detected. This parameter ranges
from 0 (no movement in any of the three axes, none of the
300 times in which acceleration is sampled in a period of
30 s) to 300 (by adding each movement>0.05 g every time the
acceleration is sampled in 30 s, that implies 300 times, scores
as 1); (e) the area under the curve for the individual X, Y, and
Z acceleration, in order to discriminate among the types of
motor activity (i.e., walking, running, writing, etc.).

3) Three light sensors on the front to record visible, infrared and
blue light, with a range of between 0.01 and 43,000 lux, with
internal self-adjustment according to the level of luminance
and suppression of flicker at 50/60Hz. The ratio between
infrared/visible light made it possible to determine the source
of light (i.e., natural, fluorescent, infrared, incandescent, or
LED light). The sensor for blue light was equipped with a
filter that only let circadian light through, which is the one
primarily detected by the melanopsin cells of the retina.

Communication with the ACM device was established using
Kronoware 10.0 software (Kronohealth, S.L., Spain) via a USB
port. This software allows visual inspection before analysis to
eliminate any artifacts and the calculation of circadian and basic
sleep parameters. In this study, four calibrated Kronowise devices

were used with minimal differences in variables recorded among
them (coefficient of variation <4%). The data were converted
into a text file for later analysis using the chronobiological
software Circadianware, implemented on the Kronowizard cloud
platform (https://kronowizard.um.es/, University of Murcia).

Automatic Detection of Sleep and Wake
States
To automatically detect sleep and wake periods, a two-phase
procedure was used (Figure 1). The first was aimed at the
automatic detection of sleep and wake periods using the new
TAPL algorithm, a modification of the TAP algorithm (12) to
additionally integrate exposure to visible light, implemented
on the Kronowizard website (https://kronowizard.um.es/,
University of Murcia). As described by Ortiz-Tudela et al. (12),
the TAP algorithm is based on the intra-subject standardization
of three signals: wrist skin temperature (WT), time of movement
(TM), and variability of the position of the X axis (PX) by
time period, using the 95th and 5th percentiles as the upper
and lower intervals for standardization, respectively. In order
to include variability of exposure to visible light (L) in the
new TAPL algorithm, the same procedure was used as for its
standardization. Given that the WT rhythm is the inverse of
the TM, PX, and L, WT values were inverted before proceeding
to calculate the mathematical mean of the four standardized
variables. Therefore, a TAPL value of 0 was an indicator of deep
rest, characterized by immobility, vasodilation of the skin and
low variability of L exposure (sleep), while 1 corresponded to
a wake state, light and movement (wake). A time period was
classified as sleep when the TAPL value fell beneath a preset
threshold, previously validated by PSG (11). Once the main
sleep and wake periods have been detected by means of TAPL,
we proceeded to mark the sleep episodes in order to improve
the precision of the estimates, using PSG as the standard. The
Keywake R© algorithm was used to mark these periods, using
artificial intelligence and based on the time in movement from
the 4min before and 2min after each time period evaluated. All
these calculations are implemented on the Kronowizard platform
(https://kronowizard.um.es/, University of Murcia).

Calculation of Circadian Parameters
To characterize the circadian pattern of PD patients and
the control group, a non-parametric analysis was carried
out as described in the literature (22), which includes the
following parameters:

- Interdaily stability (IS) throughout the recording period
calculated as follows:

IS =
n
∑n

h=1(xh − x)2

p
∑n

i=1 (xi − x)2

Where n is the total number of data, p the number of data
per day, xh the mean value of this time point, x the mean
value of the complete series of data, and xi the individual data.
This index varies from 0 for Gaussian noise and 1 for perfect
stability, where the rhythm repeats itself exactly, day after day.
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FIGURE 1 | Sequence for data processing and algorithms used for automatic detection of sleep and wake periods. Downloaded raw data from ACM device (A) were

submitted to a two-phase procedure. The first procedure for automatic sleep and wake (B,C) detection used the TAPL algorithm (D) (integrating wrist temperature,

motor activity, variability in wrist position and variability in light exposure), implemented on the Kronowizard website (https://kronowizard.um.es/, University of Murcia).

Given that, WT rhythm is the inverse of the A, P, and L, WT values were inverted before calculating the mean of the four standardized variables. Therefore, a TAPL

value of 0 indicates deep rest, characterized by immobility, vasodilation of the skin vessels, and low variability of L exposure, while 1 corresponds to wake, movement,

vasoconstriction, and high light variability. A concrete period was classified as sleep when TAPL values fell beneath a preset threshold (D), previously validated by PSG

(11). Next, we proceeded to remark sleep episodes using the Keywake algorithm implemented on the Kronowizard website (https://kronowizard.um.es/, University of

Murcia) in order to improve the precision of the estimates (E).

- Intradaily variability (IV), indicates the fragmentation of the
rhythm and was calculated according to the following formula:

IV =
n
∑n

i=2(xi − xi−1)
2

(n− 1)
∑n

i=1 (xi − x)2

Where n represents the total number of data, x the mean value
of the complete series of data, xi the individual data, and xi−1

the data immediately before to xi. IV values oscillate between 0
(when the variable is not fragmented) and 2 (Gaussian noise).

- The mean value and the central hour of the 10 consecutive
hours with the lowest values (L10V and L10T, respectively) of
WT and sleep probability (probability that a subject is asleep at
a given time), and the mean value and central hour of the 10
consecutive hours with the highest values (M10V and M10T,

respectively) of the acceleration calculated as PIM, TM, and
light exposure (LE). All these indexes are indicators or the level
of activation during the wake period.

- The mean value and the central hour of the 5 consecutive
hours with the lowest values (L5V and L5T, respectively) of
acceleration, TM and LE, and the mean value and central
time of the 5 consecutive hours with the highest values (M5V
and M5T, respectively) of WT and sleep probability. All these
indexes are markers of stillness and depth of sleep.

- The standardized relative amplitude (RA) has been calculated
as the difference between VM10 and VL5, divided by the
difference between the two extreme percentiles, Pc95th M10V-
Pc5th L5V for acceleration, TM and LE. The percentiles were
obtained from a population of 90 healthy adults previously
recorded using the KW3 device (https://kronowizard.um.es/,
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University of Murcia). The reference values for acceleration
were: 40 and 1 g for the 95th and 5th percentiles, respectively;
200 and 2 counts/30 s for the time in movement; and 3 (log
lux) and 0 (log lux) for light exposure. The reference values
were rounded off to the nearest upper and lower whole values
for the Pc95th and Pc5th, respectively. Given that the skin
temperature and the sleep probability exhibit an inverse pattern
to motor activity and light exposure, their RA referred to
the difference between M5V and L10V, considering the 95th
percentile for M5V and the 5th percentile for L10V (M5V-
L10V)/(Pc95th M5V-Pc5th L10V). In this case, the reference
values for skin temperature were 35–30◦C and 1 and 0 for the
sleep probability, according to the 95th and 5th percentiles,
respectively. As an integrated index to differentiate between PD
and C, the quotient betweenM10V of acceleration/L5V of time
in movement (A/T) was used, as previously described (18).

In order to obtain a global index of the robustness of the circadian
system (inverse to chronodisruption), the circadian function
index (CFI) (12) was calculated as the mean of IS, IV and RA, but
the IV values were previously inverted and standardized between
0 and 1. Therefore, a CFI of close to 1 indicates a high amplitude
rhythm, that is unfragmented and stable.

Calculation of Sleep Parameters
Detection of the Sleep Period

While the sleep and wake periods were automatically detected as
previously described, the precise moment at which the subject
went to bed (bed time, BT) and got up (get up time, GUT) was
determined differently in the laboratory PSG validation study
than in the ambulatory study on patients with PD. In the first
case, the start and end of the time period in bed was inferred
automatically, using the sharp increase in the ratio between
infrared/visible light generated by turning off the visible light and
turning on the infrared camera during the PSG validation period.
However, in the laboratory study and given the great variability
of habits related to going to bed and getting up in patients with
PD, their period of time in bed was recorded manually, according
to the following procedure, which is described in Figure 2. Bed
time was defined using the following information: drop in activity
level, visible light off and, if appropriate, the event marker, as
shown in the top of Figure 2. Get up time was defined using
the following indicators: increase in activity level, decrease in
skin temperature, increase in light level above 1.0 µW/cm2 and,
if applicable, an event marker (bottom part of Figure 2). The
rest of the sleep parameters were calculated automatically, as
described below:

- Time in bed (TIB): period of time between BT and GUT.
- Sleep onset (SO): first time period marked as sleep after BT.
- Awake time (AT): the last time period marked as sleep
before GUT.

- Sleep interval (SI): time between SO and AT.
- Sleep onset latency (SOL): total time in minutes between BT
and SO.

- Wake after sleep onset time (WASO): total minutes marked as
awake after SO.

- Total sleep time (TST): time marked as sleep during the
sleep interval.

- Sleep efficiency (SE): percentage of time asleep with regard to
the time in bed; SE= (TST/TIB)∗100.

- Number of awakenings: number of awakenings equal to or
longer than 30 s per hour of sleep interval.

- Total time in movement (TTM): total minutes in the sleep
interval during which movement has been detected.

- Time in movement index (TMI): average per time period in
seconds in which movement has been detected (expressed
in s/30 s).

- Sleep acceleration index (SAI): mean total acceleration time per
time period (expressed in g/30 s).

- Wrist sleep temperature (WST): mean skin temperature during
the sleep interval.

- Napping time (NT): sleep time outside the main sleep period.
- Napping frequency (NF): number of nap episodes per day.

Statistical Analysis
The statistical comparisons between the sleep parameters
detected by PSG and ACM were carried out using different
methods, according to the objective of the analysis: (1) The
mean values of the sleep parameters obtained by ACM were
compared to those of PSG, using a paired samples Student’s
t-test; (2) Associations between values calculated by PSG and
ACM were analyzed using Pearson’s correlation analysis; (3) To
show the degree of concordance between the sleep parameters
determined by PSG and ACM, a Bland-Altman analysis was used,
representing the difference between the PSG-ACM estimates on
the Y axis and the mean of both values on the X axis, along with
the 95% confidence interval and the deviation from the mean of
the estimates; (4) The comparison between the sleep parameters
in patients with PD and the control subjects was carried out by
means of a Student’s t-test for non-paired samples. The data were
processed and graphically represented using Microsoft Office
Excel 2016, and were statistically analyzed using SPSS v20.0
software (SPSS, Inc. Chicago, IL, USA).

RESULTS

Characteristics of the Subjects Included in
the Study
The main characteristics of the subjects who participated in
the PSG validation study are described in Table 1. In the
PSG-monitored patients, the duration was at least 420min. In
most cases, the clinical suspicion was confirmed, diagnosing
obstructive sleep apnea in a total of 38 patients, PLM in 5,
insomnia in 5 and PLM+ obstructive sleep apnea in 13.

The characteristics of the patients included in the sleep rhythm
evaluation study in PD are shown in Table 2, with ages between
44 and 78 years and no significant differences in age or gender
as compared to the control group. The mean duration of the
disease in the group with PD was 12 ± 1.8 years (with a range
of 3–20 years). None of the participants had previously been
diagnosed with RLS or PLM and one patient hadmild obstructive
sleep apnea.
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FIGURE 2 | Decision trees for the marking, using criteria objectifiable by an expert, of the sleep interval defined as the time between the voluntary start of sleep (bed

time) and the end of the time spent in bed (get up time). The expert uses the criteria of: the event marker (E), lights on and off (L), motor activity (A), and stability of

wrist position (P).

Polysomnographic Validation of Sleep
Detection by ACM
Figure 3 shows the representative hypnograms for two patients
with different sleep pathologies (apnea and insomnia),
simultaneously recoded by ACM and PSG. The start and
end of the PSG recording can be observed in the ACM panel by
the sharp increase in the intensity of infrared light. A high level
of concordance is observed between the awakenings detected
by ACM and those shown on the hypnogram obtained through

PSG. The sleep periods and awakenings were automatically
detected using the Circadianware software based on the TAPL
algorithm. The fine rescoring of awakening during sleep
periods was performed by means of the Keywake R© algorithm
implemented on the Kronowizard website (https://kronowizard.
um.es/, University of Murcia).

For the comparative analysis between PSG and ACM, to begin
with, the same parameters were selected, estimated by each of
the two techniques, with no statistically significant differences
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FIGURE 3 | Representative examples of two sleep pathologies (apnea and insomnia), for which a comparison between the hypnogram determined by PSG and the

sleep pattern obtained by ACM recording is shown. The sleep detected by the ACM device is shown in orange, while the awakenings appear in white. The estimation

of sleep and wake episodes were determined automatically based on the integration of sleep temperature, light exposure (visible and infrared), time in movement, and

hand position. The corresponding hypnogram has been superimposed on the bottom of each panel to facilitate comparison.

detected between the two procedures in terms of time in bed
(TIB, 430.4 ± 3.8min KW vs. 424.5 ± 4.01min PSG, p = 0.27),
total sleep time (TST, 351.9 ± 5.2min KW vs. 352 ± 4.7min
PSG, p = 0.99), sleep efficiency (SE, 0.82 ± 1.0 KW vs. 0.83 ±

0.1 PSG, p = 0.59), and time awake after sleep onset (WASO,
50.0 ± 3.8min KW vs. 56.6 ± 3.5min PSG, p = 0.34). As shown
in Figure 4, there was a strong significant positive correlation
between TIB estimated by ACM and that detected by PSG.
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FIGURE 4 | Pearson correlations showing the correspondence between the main sleep parameters estimated by ACM and PSG. TIB, time in bed; TST, total sleep

time; SE, sleep efficiency; WASO, wake time after sleep onset. The graph indicates the corresponding equation, its R value and its probability.

Likewise, a statistically significant positive correlation was found
between TST, SE, and WASO.

The Bland-Altman analysis (Figure 5) shows that, on average,
ACM overestimates TIB by 2.47min, which represents 0.58%
of the mean TIB value. In the case of TST detection, the
underestimation with ACM is 3.73min (1% of the mean), while
for SE, barely 0.48% is underestimated. Finally, the Bland-Altman
analysis for WASO shows an underestimation of this parameter
of 5.51min, which represents 10.5% of its mean value. It also
provides information on individual agreement between ACM
and PSG. Sixty nine subjects (98.6%) presented differences lower
than 43min (10% of TIB mean) for TIB; lower than 35min for
TST (10% of the mean) in 48 individuals (69%); 49 individuals
(70%) exhibited differences lower than 8% for SE (10% of the
mean). Finally, in the case of WASO, differences lower than
25min (50% of WASO) were found in 35 individuals (50%).

In order to determine whether the value obtained directly
from the ACM device for the time in movement index (TMI,
obtained from the TAT mode) could be used as a reliable
predictor of the sleep parameters recorded by PSG, and thus
prevent any implicit errors or bias in their indirect estimates
by ACM, a correlation analysis was carried out between the

TMI during sleep and the parameters indicating sleep quality
calculated by PSG. While the correlations between TMI and
the parameters estimated by PSG are statistically significant,
their level of significance does not reach the values obtained
when comparing the same sleep parameters calculated by ACM
and PSG (see the Pearson’s correlations on the previous page).
Accordingly, TMI correlates positively withWASO (r= 0.51, p<

0.001) and negatively with sleep efficiency (r=−0.51, p< 0.001),
both parameters calculated by PSG. TMI also demonstrated a
statistically significant negative correlation with REM sleep time
(r = −0.48, p < 0.001) and time in the N3 phase (r = −0.37,
p < 0.01).

Sleep-Wake Rhythm in Patients With
Parkinson’s Disease
The ACMKWdevice allows the non-invasive recording of fifteen
rhythmic variables, as described by Madrid-Navarro et al. (18).
Among them, five complementary variables were selected to
characterize the PD and C sleep pattern: wrist skin temperature
(WT), movement acceleration, wrist position, TM and exposure
to visible light (environmental synchronization). The integration
of the information in the TAPL algorithm made it possible to
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FIGURE 5 | Bland-Altman representation, comparing the deviations in the

estimates generated by ACM and PSG. ACM overestimates time in bed by

0.58% and underestimates total sleep time by 1.05%, sleep efficiency by

0.48%, and WASO (wake time after sleep onset) by 10.5%. Each of the

graphs shows with horizontal lines the mean deviation ± 1.96 SD.

infer sleep and wake states, as previously described. Figure 6
shows two representative recordings (a full week and one
representative night) for the PD and C groups. In general, the
PD patients showed great sleep fragmentation accompanied by
a high level of movement and frequent lights-on episodes, and

alterations in thermoregulation were also detected in a high
percentage of them.

The circadian sleep-wake pattern shown in Figure 7 and
Table 3 is significantly different between the patients and the
control subjects. A slight phase advance in sleep onset and offset
and a lower probability of sleep during the night were observed.
Subjects with PD showed less regularity, a lower probability of
nighttime sleep (M5V), less contrast between day and night (RA)
and greater chronodisruption, as demonstrated by lower CFI
values (Table 3).

The sleep parameters calculated from ACM are shown in
Table 4. No significant differences were observed in time in bed,
sleep interval, sleep latency or sleep fragmentation (number of
awakenings); however, statistically significant differences were
seen in all indexes related to sleep efficiency, such as greater
WASO, total time in movement and time in movement index,
lower temperature during sleep and longer duration and greater
frequency of naps.

DISCUSSION

This article presents a new method for detecting the sleep-
wake rhythm based on the data provided by an ACM (KW)
multisensor device validated in comparison to a night PSG.
Its usefulness under ambulatory conditions is evaluated for
detecting sleep alterations in a neurodegenerative disease, such
as PD.

Ambulatory circadian monitoring using a combination of
sensors, including thermometry, actimetry, and light exposure,
integrated into the TAPL algorithm, is a useful tool for evaluating
the main sleep parameters: TIB, TST, SE, and WASO, without
the need to resort to different specific algorithms for each sleep
pathology and with better predictive capacity than conventional
actimeters based solely on the movement of the subject.

The findings presented in our study show the capacity of a
multi-channel ACM device to monitor the sleep-wake rhythm
in patients with PD while they live their normal lives. Sleep in
PD is associated with a lower distal skin temperature, efficiency
and overall sleep time; greater WASO, activity during sleep and
duration of naps and a worse circadian functioning index.

The ACM device makes possible to estimate the main sleep
parameters while the subjects develop their normal life, as
demonstrated by: (a) the lack of significant differences between
the mean values detected by PSG and ACM for TIB, TST, SE,
and WASO; (b) the slope of the regression lines between the
parameters estimated by the two procedures are very close to 1,
which demonstrates the linearity of the predictions; (c) the low
bias value in the estimates obtained through ACM respect.

Actigraphy based on the movement of a part of the body
has been widely studied and proposed by the AASM as an
appropriate method to evaluate circadian sleep alterations (23).
However, unlike ACM techniques, actigraphy presents serious
limitations in terms of evaluating subjects with sleep pathologies
or neurodegenerative diseases of a non-circadian origin: (a)
actigraphy tends to underestimate awakenings in which the
subject remains immobile (7); (b) there is no linear relationship
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FIGURE 6 | Weekly recording (A,C) and one-night recording (B,D) via ACM of wrist temperature (red line), exposure to visible light (blue line), acceleration (green line),

time in movement (brown line), wrist position (dark green line), and estimated sleep (orange bars), representative of two subjects monitored in the study: one control

subject (A,B) and a patient with PD (C,D). Surprising is the great fragmentation of sleep, accompanied by high levels of movement, frequent lights-on episodes and

temperature drops of the skin during sleep that were observed in the patient with PD.
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FIGURE 7 | Mean 24-h wave of sleep probability in patients with PD (red line)

and healthy control subjects (blue line). The values represent the mean ± SEM

for 15 subjects in each condition, monitored every 30 s for 7 full days.

between the estimates from actigraphy and PSG; as a result, the
more important the sleep alteration is, the greater the bias is
between the two readings (24); (c) actigraphy requires the use
of specific algorithms for different population and pathology
groups (8); (d) the detection of sleep periods can be confused
with the sensor having been removed, which requires the patient
to keep a sleep diary (8, 25); (e) it provides no information
about autonomic alterations or exposure to synchronizers of the
circadian system.

One of the variables that can overcome actigraphy limitation
for sleep detection is wrist temperature (WT). It constitutes
a good predictor for sleep onset latency (13) and sleep
fragmentation (16). WT appears to anticipate light sleep by a
few minutes (11). Sleep onset is anticipated and promoted by
the vasodilatation of peripheral skin vessels, which causes an
increase in WT (26, 27), and in consequence a drop in core
body temperature. Additional increase in skin temperature was
associated to phase N3. Conversely, short before and immediately
after waking up, skin temperature drops, allowing core body
temperature to increase. Previous validation studies using PSG,
showed that WT presented the highest specificity of all variables
studied (11) (motor activity, body position, and TAP), and it was
also the only one whose values varied significantly with sleep
phases. Thus, WT is fundamental for detecting sleep onset and
offset, as well as informing on voluntary removal of the sensor.
Recently, WT usefulness has been supported by a consensus
document sponsored by the National Heart Lung and Blood
Institute, National Institute on Aging and the Sleep Research
Society (28), stating thatWT constitutes a newer and less invasive
method of measuring circadian phase timing and sleep and
wake states.

Another source of information that eliminates the need for
subjects to keep sleep diaries is the recording of exposure to light,
both visible and infrared. These variables can be used for the
automatic detection of the time the subject goes to bed and gets
up, which makes the calculation of time in bed more accurate.
For example, in the validation study, using PSG, the turning on
of the infrared light source for the video recording has been used

to synchronize the recording of ACMwith that of PSG, which has
made it possible to obtain very precise TIB estimates.

Among the device channels detectingmovement and position,
the variability of the position of the X axis provides a great
deal of information with regard to the onset of the sleep period
and changes in position in bed. This variable has recently been
proposed as a source of information for the detection of sleep
episodes (29), however, with this technique, the removal of the
sensor would continue to be a factor of confusion in the correct
detection of sleep. On the other hand, the PIM method for
calculating the integrated acceleration in each time period is a
good measure of the activity level and vigor of movements, while
the TAT mode, which measures the time the patient remains
in movement above the sensitivity threshold set on the device,
constitutes an appropriate measure to evaluate the time the
subject spends in an active state.

Although ACM mean values for TST, SE, and WASO were
quite close to those obtained from PSG, there was a moderate
degree of variability in accuracy between individuals, as
evidenced by those participants with relatively large differences
between ACM and PSG values particularly in WASO estimation
(Figure 3). Therefore, caution should be required when
considering ACM as unique method to detect sleep pathologies.

This ambulatory monitoring device meets the challenge
proposed by the Movement Disorder Society Task Force on
Rating Scales that suggested that the scales and questionnaires
by themselves cannot adequately reflect the fluctuating nature
of sleep alterations nor detect the multiple variants of sleep
disorders in PD (30). This group proposes the urgent need to
develop practical, specific tools to detect sleep disorders, and
daytime drowsiness in large groups of PD patients. It is precisely
along this line of work where we find the device evaluated in
this study.

The main strengths of ACM as compared to PSG in PD can
be summarized as: (a) it measures sleep parameters related to
the disease in the patient’s real-life environment; (b) recordings
can be made over 1 or more weeks to improve the reliability
and provide a broad spectrum of the subject’s sleep variability;
(c) greater ease in carrying out repeated evaluations over time;
(d) it makes it possible to evaluate the motor function through
a comparison between the TAT and PIM measurements; (e) it
provides data on the evolution of the dysautonomia typical of PD
through measurements of wrist skin temperature; (f) in addition,
ACM provides simultaneous information on both daytime and
nighttime sleep, as well as physical activity and exposure to
synchronizers, such as the light-dark cycle.

In spite of all these advantages, there are some clear limitations
to our study. For example, how is it possible to ensure that
immobility measured by ACM corresponds to sleep episodes and
how to distinguish between the bradykinesia typical of an off
state from real sleep episodes? In patients with good regulation
of vasomotor tone, this drawback would be avoided by adding
wrist temperature to sleep detection by ACM; however, it is
more complicated in the subgroup of patients with vasomotor
alterations. Another limitation is the lack of a controlled diary of
motor fluctuations, which limits the capacity of the observations
made and renders impossible any correlation between the
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TABLE 3 | Circadian parameters of the probability of sleep, motor acceleration, and time in movement variables.

Circadian parameters Sleep Acceleration Time in movement

PD C P PD C P PD C P

Mean ± SEM 0.23 ± 0.02 0.28 ± 0.01 0.0047 10.10 ± 1.11 14.05 ± 0.93 0.0086 10.22 ± 0.80 10.06 ± 0.40 0.8528

M5V 0.68 ± 0.05 0.90 ± 0.01 0.0000 17.99 ± 2.03 26.46 ± 2.55 0.118 17.00 ± 1.15 17.20 ± 0.71 0.8764

M5T 3:58 ± 0:37 3:53 ± 0.14 0.9117 11:04 ± 0:53 13:36 ± 1:02 0.0659 13:02 ± 0:51 13:03 ± 0:51 0.9997

L10V 0.03 ± 0.01 0.02 ± 0.01 0.4934 4.54 ± 0.66 5.25 ± 0.50 0.3812 4.62 ± 0.68 3.23 ± 0.26 0.0585

L10T 14:27 ± 0:43 14:38 ± 0:27 0.8183 4:49 ± 1:28 3:11 ± 0:16 0.2677 4:43 ± 1:20 3:25 ± 0:15 0.3345

M10V 0.51 ± 0,04 0.65 ± 0.02 0.0017 14.75 ± 1.63 21.86 ± 1,49 0.0024 14.67 ± 1.04 15.62 ± 0.59 0.4137

M10T 3:17 ± 0:27 3:27 ± 0:12 0.7542 14:38 ± 0:25 14:29 ± 0:28 0.8166 14:55 ± 0:30 14:32 ± 0:30 0.5984

L5V 0.00 ± 0.00 0.00 ± 0.00 0.3052 3.17 ± 0.51 2.48 ± 0.32 0.2440 2.75 ± 0.61 0.52 ± 0.05 0.0008

L5T 13:09 ± 1:00 15:52 ± 1:03 0.0672 3:48 ± 0:27 3:56 ± 0:15 0.7947 3:45 ± 0:27 3:57 ± 0.15 0.6972

IS 0.55 ± 0.04 0.76 ± 0.02 0.0000 0.33 ± 0.03 0.34 ± 0.02 0.7553 0.42 ± 0.04 0.48 ± 0.02 0.2132

IV 0.11 ± 0.01 0.08 ± 0.01 0.1285 0.36 ± 0.02 0.29 ± 0.03 0.0382 0.28 ± 0.02 0.25 ± 0.01 0.1961

RA 0.65 ± 0.05 0.88 ± 0.01 0.0000 0.29 ± 0.05 0.48 ± 0.04 0.0010 0.65 ± 0.05 0.88 ± 0.01 0.0130

CFI 0.71 ± 0.03 0.87 ± 0.01 0.0000 0.48 ± 0.02 0.56 ± 0.02 0.0098 0.63 ± 0.03 0.70 ± 0.02 0.0044

The values are expressed as the mean ± SEM. M5V and M5T, mean value and central hour of the 5 consecutive hours with the maximum values; L10V and L10T, mean value and

central hour of the 10 consecutive hours with minimum values; M10V and M10T, mean value and central hour of the 10 consecutive hours with the maximum values; L5V and L5T, mean

value and central hour of the 5 consecutive hours with the minimum values; IS, interdaily stability; IV, interdaily variability; RA, standardized relative amplitude; CFI, circadian function

index; Differences with p < 0.05 on a Student’s t-test are shown in bold type.

TABLE 4 | Main sleep parameters.

PD Controls P

Mean ± SEM Mean ± SEM

Time in bed, TIB (min) 457.27 ± 21.96 457.95 ± 13.07 0.9784

Sleep latency, SL (min) 15.95 ± 2.68 10.37 ± 1.97 0.0934

WASO (min) 110.38 ± 12.43 48.55 ± 5.02 0.0001

Total sleep time, TST (min) 307.03 ± 21.15 386.30 ± 11.22 0.0019

Sleep efficiency, SE (%) 67.23 ± 2.84 84.52 ± 1.21 0.0000

Awakenings (No.) 3.36 ± 0.40 3.11 ± 0.25 0.5906

Total time in movement (min) 29.82 ± 4.84 8.46 ± 0.82 0.0001

Time in movement index, TMI (s/30s) 1.94 ± 0.26 0.57 ± 0.05 0.0000

Acceleration index, SAI (g/30 s) 2.83 ± 0.32 2.52 ± 0.31 0.4780

Temperature during sleep (◦C) 33.57 ± 0.21 34.15 ± 0.16 0.0312

Visible light during sleep (lux) 3.89 ± 2.37 0.44 ± 0.24 0.1450

Blue light during sleep (lux) 1.52 ± 0.99 0.13 ± 0.08 0.1589

Nap frequency (No./day) 0.91 ± 0.15 0.45 ± 0.09 0.0112

Duration of naps (min) 33.33 ± 6.19 15.81 ± 3.94 0.0199

Mean values and SEM of the main sleep parameters obtained from 7 days of recording

of the sleep-wake rhythm in 15 patients with Parkinson’s disease and 15 healthy control

subjects (105 nights per experimental condition). Differences with a Student’s t-test value

of p < 0.05 are shown in bold type.

findings observed in the recordings and the motor and non-
motor symptoms experienced by the patients.

All of the patients with PD monitored in our study showed
nighttime sleep alterations, most of which have previously been
described, such as poor sleep efficiency (31), lengthy nighttime
movement time (32), altered thermoregulation during sleep (33),
increased frequency and duration of naps (34), and a slight
advance in the times for waking up and going to bed. Most

of these symptoms are associated with maintenance insomnia,
which is the most common sleep disorder in patients with
PD (35). The etiology of insomnia in PD owes to multiple
factors and includes the nighttime reemergence of motor
symptoms, pain, depression, nocturia, dopaminergic medication,
and the coexistence of other sleep alterations, such as sleep
breathing disorders and parasomnias (1). In our study, there
are no significant differences in the number of awakenings
per hour in PD vs. control subjects, however, the duration
of these awakenings is significantly greater in the former. It
is possible that once the patient wakes up, the presence of
motor and non-motor symptoms, such as anxiety (36), may
make it more difficult to fall back asleep. Another possible
factor is the existence in PD of nighttime akinesia, which
refers to the greater limitation or difficulty in performing
axial movements during sleep, such as rolling over (37, 38).
In a previous study, nighttime akinesia was associated with a
greater number of episodes in which the subject got out of
bed due to nocturia, a common symptom in these patients
(38). As shown in our recordings, patients usually turn on
the bedroom light when they get up, which may be related
to said nocturia, contributing to difficulty in falling asleep and
prolonging awakenings.

Furthermore, even though a good correlation exists between
the findings of PSG and ACM, this comparison has only been
made in subjects who do not have PD. It is well known
that many PD presents specific motor symptoms, with intense
movements during sleep, as occurs with the REM Sleep Behavior
Disorder (RBD), that can appear even in the prodromal phase
of the disease. In this condition the interpretation of motor
activity during sleep could differ with that for normal sleep and
probably will requires of future studies in which both techniques
are compared in these patients to develop. specific algorithms.
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However, our main objective was to validate the use of an
ambulatory device (ACM, Kronowise) for the assessment of
sleep-wake in wide population groups without previous selection
or exclusion by pathologies or conditions. The need of specific
algorithms per condition, as occurs with other commercial
devices would make unviable its use for screening in huge
populations when their possible pathologies are not known
at priori.

In summary, the ACM KW device has proven to be clinically
useful in evaluating sleep in an objective manner, thanks to the
integrated management of different complementary variables,
which has advantages over conventional actigraphy based on
movement as a complement to PSG, although PSG continues to
be the standard of reference in the diagnosis of sleep disorders.
Furthermore, ACM is especially useful in those population
groups that simultaneously experience autonomic, circadian and
sleep alterations, as occurs in PD, making it possible to record the
evolution of the disease and the development of individualized
therapies to specifically improve nighttime symptoms.
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