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Abstract

The Internet of Things (IoT) and its applications empha-
size the need for being context-aware to be able to sense
the changing environmental conditions and to make use of
the rich contextual information for analysis. The huge
volume and high-velocity characteristics of IoT data
necessitates that representation of IoT data takes into
consideration the contextual information at scale during
every step of the data processing life cycle, from produc-
tion to storage, publication, and search. This chapter

categorizes and describes the diverse forms of IoT data
that are obtained from heterogeneous sensing sources. It
also presents a framework for describing and analyzing
the different types of contextual information that need to
be associated with the IoT data in order to drive context-
aware management and intelligent analytics. In addition,
mechanisms for storing big IoT data and its contextual
information are described, and common search and dis-
covery methods for making IoT data accessible to appli-
cations and analysis components are presented.

Keywords

IoT data models · IoT contextual information · Streaming
data · Location models · IoT data storage · IoT data
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16.1 Introduction

The emergence of the Internet of Things (IoT) paradigm and
the increase in the number of IoT-enabled applications are
driven by the deluge of data generated as a result of rapid
deployment of low-cost sensors and accompanying advances
in communication technologies [1]. Figure 16.1 shows the
top sources of data in the IoT, as noted in a market insight
report of emerging IoT data sources [2]. According to the
report, sensor-enabled smartphones constitute 69% of all data
across telecommunications, IT, financial services, insurance,
energy, healthcare, public sector, manufacturing, supply
chain, and logistics application sectors. This is followed by
smart meters which make up around 32% of the IoT data
sources. As more devices with intelligent data processing
capabilities are being connected to the network, data sources
from sensors in transportation logistics, healthcare, and the
energy sectors have also begun to emerge.

Practical realization of such a wide array of applications is
dependent on efficient and scalable techniques to make the
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collected IoT data discoverable and searchable. To realize the
capabilities rendered by such applications requires things to
understand the environment in which they are situated and to
convey this in their communications with others, in order to
drive true machine-to-machine (M2M) cooperation and appli-
cations [3]. Thus, the supporting IoT infrastructure and mid-
dleware platforms should include functionalities to extract the
contextual information that is embedded in raw IoT data. This
contextual information needs to be “fully understood in IoT
applications to guarantee an effective, efficient, scalable, and
automated decision-making process” [4].

The life cycle of observation and measurement IoT data,
starting from its production, to its analysis has been described
in a number of research works [5–7] differently, but the main
steps in the data processing chain, from the point at which it is
sensed and communicated, to the one at which it is discov-
ered for consumption by IoT applications, can be succinctly
described as shown in Fig. 16.2:

Production and Communication: This stage is usually
concerned about various means for collecting data from the

IoT devices or open Application Programming Interfaces
(APIs) and conveying the data over the network. The com-
munication layer enables data to be transported and
aggregated.

Annotation: IoT data can be individual points of measure-
ment (atomic data) about a particular phenomenon (feature of
interest), streaming data represented as a time series or data
arriving in heterogeneous or homogeneous time intervals.
Creating high-level abstractions of the raw data is needed to
infer insights from the raw data. As part of this process, data
and its associated context can be annotated with semantic
formalisms in a structured format in order to foster interop-
erability between heterogeneous data sources. This step
makes explicit the association of raw data with its inherent
context information, which is crucial for IoT applications to
perform reasoning and sophisticated analysis.

Storage: IoT data can be stored in various formats, with
the most common ones being Comma-Separated Values
(CSV), Extensible Markup Language (XML), and Javascript
Object Notation (JSON). It can be stored in centralized or
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distributed repositories and published in human-readable or
machine-processable formats. As noted in [6], the publication
step involves decisions regarding whether the data should be
published in aggregated form or in its entirety.

Indexing and Search: This step involves mechanisms to
enable efficient access to large volume of data, for example,
methods for creating and updating the indexing structures in
the face of continuous arrival of data streams and making the
data available for search. Efficient methods are needed that can
reduce the time lag between the arrival of data and its avail-
ability, without requiring rebuilding the entire indexing struc-
ture. Search mechanisms enable access to the needed data in
response to user or application queries, and should support
functionalities for searching the data by the associated contex-
tual information such as location, type, or time range.

In line with the above-identified steps of the data life
cycle, this chapter outlines the various models and techniques
in the state of the art to achieve the requirements in each
individual step. Section 16.2 first identifies the various types
of IoT data and the accompanying data models and represen-
tations. Section 16.3 describes the various context attributes
of IoT data, which enable IoT data to be extracted, indexed,
and searched. Section 16.4 focuses on the discussion of
common effective methods for IoT data storage, publication,
indexing, and search mechanisms. Finally, Sect. 16.5 sum-
marizes the chapter on data models and contextual informa-
tion, and discusses the pertinent issues in modelling the
contextual information of IoT data.

16.2 Data Models in the Internet of Things

Data models in the IoT mainly describe Observation and
Measurement (O&M) data, mostly focusing on how data is
generated, what the data is, and what real-world phenomena
or features may be related to the data. In addition, metadata
on when and where the data is generated is usually included.
This section presents data models designed for annotating
both instantaneous and streaming O&M data.

16.2.1 Atomic Data

Atomic data in the context of IoT refers to a piece of indivis-
ible unit of data should its existence be regarded as meaning-
ful to a particular application, for example, a measurement

value reported by a chemical sensor, or an image taken by a
satellite. Despite the different forms and modalities of IoT
data, it is possible to define high-level and abstract models to
represent an atomic data item. One of such models that has
received considerable consensus from the research commu-
nity is the linked data model proposed by [8]. There are five
attributes in describing atomic IoT data based on semantic
knowledge representation formalism:

Location – where the data is generated or reported. The
location can be specified with different methods, for
example, raw geographical coordinates, geographical
area, or Geohash (http://geohash.org/).

Time – when the data is generated or reported, for example, a
timestamp.

Type – what the data is about, for example, temperature,
humidity, or image.

Value – the actual physical observation and measurement.
Links – additional information about the data, for example,

descriptions that provide source or quality of information
related attributes.

Figure 16.3 shows the use of the model in describing a
sensor observation and measurement data. The five aspects in
the data model not only define most of the important properties
about an atomic data item but also provide ways on how the
data can be used and queried. The model was originally
designed for semantic sensor streams when sensors and sensor
data were the main focus of the IoT research community. Over
the years, the scope of IoT data has been greatly extended; the
study by [9] categorizes the basic IoT data to three types: sensor
data, text data, and image/video data. Textual data is mostly
generated by citizen participatory sensing [10] and has been
used in many IoT applications, for instance, traffic analysis [11]
and disease tracking [12]. Image and video data have been
widely used in smart parking, medical imaging, and public
security applications [9].

The linked data model can be easily adapted to represent
text, image, and video data. For a sensor reading, the “value”
field can be a double or float number with corresponding unit
of measurement. For other types of data, the field can be
further abstracted to a piece of text (e.g., a twitter message)
and an image or video (e.g., represented as a matrix or a
sequence of matrices). There are some taxonomies
representing quantities, units, dimensions, and values. For
example, the QU (Quantities and Units) ontology (https://
www.w3.org/2005/Incubator/ssn/ssnx/qu/qu-rec20.html) is

Production &
communication

Annotation Storage Indexing &
search

Fig. 16.2 IoT data flow: from its
generation to making it searchable
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one of the well-known taxonomies for quantities and units.
QU ontology was developed to support different Systems
Modelling Language (SysML) users [13].

Time is also represented with different abstractions, and
some research efforts have focused on the representation not
only of time, but also on some other related concepts such as
duration, etc. For example, the time ontology (https://www.
w3.org/TR/2017/REC-owl-time-20171019/) is one of the
most widely used semantic models to represent time. The
concepts included in the time ontology allow us to represent
information about duration, temporal position (i.e., date–time
information) and topological (ordering) relations. It also
includes the vocabulary to express time using different time
reference systems, such as Unix time, conventional clock, or
geologic time. Time does not only express an instant, but also
can represent duration, such as the Gregorian calendar used in
[14]. In the latest versions, time ontology has been extended
with diverse temporal concepts, including, for example, inter-
vals, instants, and interval relationships. Similarly, the Time-
Line ontology [15] represents temporal concepts in
conjunction with timeline concepts (e.g., discrete or universal).

The first research works on IoT measurement data model-
ling focused on the provisioning of the sensor observation
data through common interfaces. These works applied
Semantic Web technologies to the syntactic XML Open
Geospatial Consortium (OGC) schemas for associating the
domain knowledge to external models, enabling search
queries and cross-domain interpretation. Examples include
the work presented in [16], where the sensor data is associ-
ated with temporal and geographical concepts from external
schemas. In this work, sensor measurements are annotated
with time (at which they occurred) and location concepts
published by DBpedia [17], although the next steps of data
storage and queries over historical measurements are not part
of this work. A similar approach of linking sensor data to
concepts in DBpedia and GeoNames is presented in the
Linked Sensor Middleware (LSM) [18] and in [19].

Subsequent works [20–22] looked at semantic models for
sensor data, based on the OGC O&M standard. Prominent

among these is the Semantic Sensor Observation Service
(SemSOS) O&M model [22] for the weather domain, with
the schema including concepts for observations, processes,
features (abstraction of real-world entity), and phenomena
(property of a feature that can be sensed or measured). The
data from sensors installed in weather stations across the US
was converted from its raw textual form into Resource
Description Framework (RDF) in [20]. The associated
model for the data encapsulated the relevant contextual infor-
mation of the time of observation, its location and type of the
observation data. Location context was modelled by linking
to relevant concepts in the GeoNames dataset, which allows
search queries with approximate location parameters, for
example, sensors located “near” a specific place.

Another semantic model is SensorData [21], based on the
OGC Sensor Web Enablement (SWE) common data model.
Each data record in this model associates the measured quan-
tity with relevant instances from the NASA Semantic Web for
Earth and Environmental Terminology (SWEET) ontology
[23] to specify its units of measurement. Another model for
describing observational data is the SEEK Extensible Obser-
vation Ontology (OBOE) [24], which separates the model-
ling approach for the observations from the entity being
observed. This meta-model considers a measurement to con-
sist of a characteristic (i.e., attribute) and a value, with obser-
vations in turn consisting of the entity being observed and a
set of measurements associated with it. The notion of context
represents a relationship between observations.

In contrast to these domain-specific modelling approaches
for sensor data, more generic approaches taking into account
features of possible IoT smart objects were investigated in
some European Framework 7 and Horizon 2020 projects.
The Internet of Things-Architecture (IoT-A) project (https://
cordis.europa.eu/project/id/257521) in 2010 aimed to define
a reference architecture for the IoT. The IoT-A Reference
Model [25] established a common base and terminology for
IoT architectures and systems. The IoT-A Information
sub-model [26] specifically focuses on the IoT information
in an IoT system and how it can be defined conceptually
through relations and attributes linking the information to
the virtual entities, devices, and services in the IoT. In line
with the Data-Information-Knowledge-Wisdom (DIKW)
hierarchy [27], the IoT-A Information Model defines “infor-
mation” as something that adds context to data (data repre-
sents raw values without useable context). Information is
modelled in terms of a value, with associated meta-
information such as the time of measurement of the value,
the location of measurement, unit of measurement, and other
optional elements such as the quality of measurement. The
Alliance for the Internet of Things Innovation (AIOTI) ini-
tiative’s Working Group 3 (WG03), which focusses on IoT
standardization, has proposed a High-Level Architecture
(HLA) functional model [28] with two conceptual elements:

Value

DatatypeLocation

Timestamp Unit

O&M data

Fig. 16.3 Example of using the atomic data model in describing a
sensor observation and measurement data. (Figure adapted from [8])
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the IoT Entity and the App Entity. The IoT
Entity is responsible for “thing” representation and per-
forms functions such as data sharing, subscription and noti-
fication, device management, location, analytics, and
discovery. The App Entity implements application
logic. AIOTI considers five key IoT data roles: that of the
data provider, which collects data from “things” or from
external sources and provides it to IoT data consumers via
the IoT data carrier. The other key roles include that of an IoT
data application provider which is related to IoT data execu-
tion operations such as data preprocessing, analysis, query,
and visualization. The IoT data framework provider supports
the execution of these data operations by providing the
related infrastructure, such as storage, computing resources,
and the run time environment. These roles and their interac-
tions are visualized in Fig. 16.4. The mapping of the func-
tional model elements to these data models is also presented
in [28], with the IoT Entity performing the data pro-
vider and data framework provider roles and the App
Entity the application provider and data consumer ones.

The Agent-based COoperating Smart Objects (ACOSO)
metamodel [29] borrows the main coarse-grained concepts
from the previous models (AIOTI [28], IoT-A [25], and IEEE
P2413 [30]). These main concepts include: Virtual and Phys-
ical Entity, device, service, and user. Additionally, the
ACOSO metamodel includes concepts such as Quality of
Service, already used in other models, such as IoT.est or
CityPulse [31]. In particular, ACOSO groups the metadata
concepts into four categories: Type, which indicates the type
of smart object, (e.g., table, wall), from a taxonomy; Device,
which defines the physical characteristics of the device; Ser-
vice, which includes a list of service descriptions for each
Smart Object; and Location [32].

On amore concrete level, data measurements generated from
IoT smart objects are represented in the Virtual Object
(VO) schema [33] that annotates smart object O&M data.
This work associates attributes such as a semanticURI
and a user-friendly name, to the observation feature
type (e.g., temperature), which in turn has properties linking it to
external domain models, such as the vocabulary of climate and
forecast features (CF). The measurements themselves are
encoded to include their numeric values (as a literal), the

relevant unit of measurement encoded through links to external
schemas such as the Quantities, Units, Dimensions, Values
(QUDV) ontology, the time of measurement and the location
specified through a Geohash string.

A similar approach of modelling IoT smart objects and
their data is adopted in the H2020 Intelligent Knowledge as a
Service (iKaaS) project (http://ikaas.com), which investi-
gated IoT data and knowledge processing over multi-cloud
environments. In iKaaS, smart objects are abstracted as Vir-
tual Entities (VEs) and measurement data are associated with
the output of specific VEs that perform sensing mea-
surements, through the hasMeasurement property
in the VE’s output function [34]. In addition to the measured
value’s name, value and type, additional metadata is also
associated to the measurement, for instance, the measurement
location, accuracy etc. through the hasMeasure-
mentProperty attribute [35].

Readers are directed to a recent survey [36] of modelling
efforts for the relevant concepts in the IoT for a comprehen-
sive survey of the relevant literature in semantic modelling
for IoT entities.

16.2.2 Streaming Data

A data stream is an ordered sequence of data items which
arrives over time at varying time intervals [37]. In the field of
IoT, there is no control over the order in which data items
arrive. Therefore, it is important to keep a timestamp to each
value in the data stream.

As pointed out in [38], much of the earlier work on data
streams focused on using sensor Data Stream Management
Systems (DSMS) that offer continuous views over sensor
data streams through sliding windows defined with specific
temporal parameters. Examples include the Global Sensor
Networks (GSN) framework [39] that exposes data access
APIs to virtual sensors modelled in the GSN system.

In IoT environments, the stream data generated can be
voluminous, and some applications need to deal with the data
in real time. Furthermore, the devices used in IoT tend to have
battery and processing constraints, and the networks used are
not always wideband. In such circumstances, lightweight

Data carrierData provider
IoT data

IoT data

Data framework
provider

Data application
provider

Data consumer

Data from things

External data sources

Fig. 16.4 AIOTI IoT data roles.
(Adapted from [28])
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models are needed in preprocessing steps that could happen in
the network edge in order to reduce the processing time and the
traffic generated in the transmission of data. This is demon-
strated in [1], where various machine learning-enabled micro-
services are distributed across edge devices, leading to a
reduction in the amount of data communicated over the net-
work. With respect to these considerations, the Stream Annota-
tion Ontology (SAO) model proposed by [40] has three main
concepts:StreamData,StreamAnalysis, and
StreamEvent. The StreamData models the data
streams, which can be raw data or preprocessed/analyzed data,
also in the form of streams. The StreamAnalysis
annotates the type of preprocessing or analysis performed on
the data, and the StreamEvent gathers any events
inferred from the analysis.

It is important that data model design takes into account
user requirements and the purpose of the applications [41].
For example, an application needs to query temperature data
in a certain room and to retrieve the values. The useful
sensors that provide such information are located, and some
applications may need continuous streams of the data. In
order to reduce the information sent, the only important
information needed to be fetched at that stage is the data
value attached to a timestamp. The timestamp is important
in order to deal with unordered data, missing data, etc. In that
line, the IoT-Stream model proposed by [42, 43] reduces the
continuous information by transferring only a two-tuple,
value timestamp, which is considered in the concept
StreamObservation (see Fig. 16.5). With this,
the retrieval of stream values, once the source is selected, is
just concerned with sending values and timestamps, keeping
the queries and responses lightweight.

The RDF Stream Processing Community Group is currently
working on the design of a common model for producing,

transmitting, and continuously querying semantically annotated
streams. The main goal of this group is to extend the data format
RDF and the query language SPARQL Protocol and RDF
Query Language (SPARQL) for stream data representation
and query. The Group has recently published the representation
of an RDF stream as a sequence of time-annotated graphs
<g [t]>, where g is an RDF graph and t is a timestamp [44].
The main idea behind this extension is based on the previous
work of Siemens within the European project Optique [45, 46].
Regarding the extension of SPARQL, the RDF Stream Pro-
cessing Community Group is studying some of the most repre-
sentative approaches that address the stream data querying. For
example: Instants [47], SPARQLstream [48, 49], EP-SPARQL
[50], C-SPARQL [51], CQUEL [52], or STARQL [53], which
allow queries not only for stream data, but also static data.

16.2.3 FUTS Data

A recent survey of IoT-enabled cyber-physical-social systems
(CPSS) [54] pointed out the diverse range of contextual data
sources, taking into consideration not only fixed sensing
devices (and hence, locations) but also opportunistic and
participatory ones. Opportunistic sensing is mainly
concerned about mobile sensing sources that can provide
data about the relevant location at a given time point, such
as smart city deployments in Santander [55], Madrid [56],
Barcelona [57], and China [58], which have sensors mounted
on public transport and taxis.

On the other hand, participatory sensing usually involves
smart city residents that perform local knowledge gathering
through their smartphones enabled with GPS-tracking capa-
bilities and a range of sensors, such as the experiments with
portable air quality sensors [59], noise pollution detection in
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Fig. 16.5 IoT stream ontology. (Adapted from [42])
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Melbourne [60], and traffic congestion and incident detection
[61]. As noted in a recent survey of IoT data search methods
[38], the data streams from mobile sensing sources are not
generated at successive, equally time-spaced points, and each
observation may be associated with a different geo-location
value, thus, differentiating them from pure time-series data.
Such resultant IoT data is subsequently termed as “frequently
updated, timestamped and structured” (FUTS) data [33, 62].
FUTS data is usually obtainable in a structured data format,
such as CSV, XML, or JSON. However, these data models do
not necessarily conform to any data standards and the
resulting heterogeneous models give rise to compatibility
challenges during data storage, search, and retrieval.

An example of a FUTS data is shown in Fig. 16.6, which
depicts the observation data values from the Santander city-
scale environment monitoring testbed, that monitors temper-
ature, CO, humidity, particles, NO2, and car presence.

Zhou et al. [63] propose a corresponding data model for
such FUTS data, shown in Fig. 16.7, which describes the data
sources as ‘virtual objects’ (VO) with an identifier (ID),
name, associated data point in terms of the phenomenon
(e.g., humidity), measurement value, unit of measurement,

time point, and location (described as a latitude-longitude
pair and a Geohash value).

Table 16.1 summarizes the various IoT data modelling
efforts for atomic, streaming, and FUTS data. The existing
state-of-the-art works are presented along the following
dimensions:

IoT data concepts: indicate the elements defined in the model
for the data.

Context information: specifies the context metadata associ-
ated to the data to describe it.

Application: indicates the application domain to which the
model has been applied.

16.3 Context Information in the Internet
of Things

Contextual information for the IoT can be loosely defined as
the information attached to the Things and their data under
consideration that makes them meaningful, discoverable, and
useful for reasoning and analytics. Considerable research has

{ “id”:  “3021”,
  “latitude”:  “43.430007”,
  “longitude”:  “–3.949993”,
  “title”:  “bus3021”,
  “image”:  “http://lira.tlmat.unican.es/SmartSantander/iconos/tus.png”,
  “content”:  “<div class=‘googft-info-window’\n   style=‘font-family: sans-serif;
font-size: 10px;width: 200px; height: 18em ; overflow-y: auto;’><table
width=‘100%’ border=‘0’>\n <tr>\n  <td valign=‘top’>
  <h2 style=‘color: #5080e1’>NODE 3021</h2>Last update: 2015-01-02
17:33:19<br>Particles: 0.89 mg/m3<br>Humidity: 64.00%
  </td>\n    <td valign=‘top’></td>\n </tr>\n</table></div>”,
  “tags”: “BUS”}
{...}

Fig. 16.6 Example of FUTS data
from the SmartSantander city
testbed in JSON. (Adapted from
[63])

{Humidity, 0.64, percentage, 2015-01-02 17:33:19, Humidity}

{43.430007, –3.949993, eztpn45wn}

3021

http://dbpedia.org/page/Bus

{Particles, 0.89, mg/m3, 2015-01-02 17:33:19, density of particles with a diameter between 2.5 and
10 micrometres}

Information {name, value, unit of measurement, time, description}

Location {latitude, longitude, geohash}

Type

ID bus3021

YesMobile

Name

Fig. 16.7 Virtual object schema
and instance for FUTS data.
(Adapted from [63])
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been conducted in modelling contextual information for
IoT-based applications, notably, using ontology-based
methods [64]. Most of the existing studies in this line con-
sider common concepts as useful entities in capturing con-
texts in pervasive computing environments, such as people,
location, space, and activities [65, 66]. Some of the
approaches also take into account extensibility by allowing
more specific entities to be included in context modelling for
specific applications, for example, smart home, office, and
entertainment [66].

Referring to the data models presented in the previous
section, location, time, and additional information
(i.e., Links) are considered as main contextual information
for the IoT data. Due to the simplicity of time information and
the fact that temporal information is always added to IoT

observation and measurement data, only semantic modelling
of the location and user preference is discussed in detail.

Semantics have been seen as a natural and integrated
element for the IoT and are necessarily useful for knowledge
representation in IoT applications where a large number of
devices and services, and their generated data need to be
managed [67, 68]. Without losing much generality, the linked
data principles can be used to associate contextual informa-
tion to what is being modelled [8]. The key advantages
include a high degree of reusability and interoperability.

Depending on the nature and requirements of the applica-
tions, location can be represented in different forms and
granularities; for example, geographical coordinates can be
readily obtained via GPS-enabled devices; region or place of
interest can be linked to the devices or data which is human

Table 16.1 IoT Data Models for atomic, streaming, and FUTS data

Reference IoT data concepts Context information Application

IoT-A information
model [26]

Value, value container Time, location, unit of measurement, quality of
measurement

Monitoring of perishable
food in a logistics chain

AIOTI [28] IoT entity, app entity Context as relevant for the data roles of
provider, framework or application provider,
and data consumer

–

ACOSO [29] Virtual and physical entity, device,
service and user

Quality of service, location Smart University Campus
(Smart UniCal)

IoT-Lite [41] Entity, device, service Location, time, quantityKind, units, coverage. FIESTA-IoT
(SmartSantander, SmartICS,
SoundCity, KETI)

SAO (CityPuse) [40] StreamData, StreamAnalysis, and
StreamEvent

Time, location, quality of information,
provenance.

CityPulse (Smart City)

IoT-Stream [43] IotStream, StreamObservation,
analytics and event

Time, location, quality of information,
quantityKind, units.

eHealth

O&M linked data
model [8]

Value, data type Timestamp, location (raw geographical
coordinates, geographical area, or Geohash),
links to external schema

Sensor streams clustering

W. Wang et al. [16] Sensor observation data Timestamp, location (Dbpedia) Weather conditions inference

Linked Sensor
Middleware (LSM)
[18]

Sensor O&M data Location (DBpedia and GeoNames) Sensor data discovery

Barnaghi et al. [19] Sensor data Spatial (DBpedia), temporal and thematic Sense2Web linked sensor
data platform

Patni et al. [20] Measurement data, phenomena,
property

Location (WGS84), sampling time, unit of
measurement

MesoWest sensor discovery

SensorData [21] Data record, conditional value,
category, vector, geolocation area,
position, time

Units of measurement (NASA SWEET
ontology), time, location

–

SemSOS O&M model
[22]

Observation, process, property,
feature, and result data

Location (gml:Point), sampling time, unit of
measurement

Weather condition reasoning

SEEK Extensible
Observation Ontology
(OBOE) [24]

Measurement, value,
characteristic, entity, observation,
context, relationship

Conceptual contexts such as within, near,
overlaps, contains

Annotation and discovery of
observational data sets

Zhou et al. [33] semanticURI, name, value, feature Unit of measurement (QUDV), time of
measurement, location (Geohash)

Sensor data discovery

iKaaS VE model [34] Measurement, measurement
property, name, value, type

Location, accuracy Environment monitoring,
ambient-assisted living, town
management

VO model [63] Name, type, mobility, description,
value

Unit of measurement, time, location (latitude,
longitude, Geohash)

FUTS data discovery

392 S. De et al.



understandable; and relative location can be used to represent
indoor positioning. To add more semantics, additional infor-
mation can be specified for a data model. With the linked
data, links for additional information can virtually refer to
any data objects within a particular domain or the linked open
data cloud [69, 70]. In a closed domain, a data model includ-
ing the contextual entities is usually defined beforehand in an
ontology, and instances of the data objects are stored in a
knowledge base. With the linked open data cloud, the con-
textual information can be easily specified by exploiting the
massive amount of human knowledge shared and created by
millions of people.

16.3.1 Location as Context

Geographical Location
The geographic coordinate system is one of the most widely
used system for representation of locations. This system, with
its invention dated back to the third century, has been used
worldwide. In some cases, it is sufficient to represent only the
latitude and longitude; while in others, it could be useful to
represent the altitude as well. In the context of IoT, spatial
models encompassing the geographic coordinate system are
widely used to represent real-world objects’ locations [71].
Geographic coordinates also allow to calculate the distance
between any two points, and support simple spatial reasoning
operations that calculate whether two areas overlap, are adja-
cent to each other, or one is contained inside the other [72].

There are several standardization bodies working towards
a standard for spatial models, such as OGC (http://www.
opengeospatial.org/), ISO (https://www.isotc211.org/), and
World Wide Web Consortium (W3C) (https://www.w3.org/
2015/spatial/wiki/Main_Page), and joining forces, such as
the collaboration between OGC and W3C (https://www.w3.
org/2015/01/spatial). The Open Geospatial Consortium is an
international nonprofit organization committed to make qual-
ity open standards for the global geospatial community. The
International Organization for Standardization (ISO) is an
international standard-setting body composed of representa-
tives from various national standardization organizations.
The W3C is the main international standardization organiza-
tion for the World Wide Web.

The most widely used geographical coordinate models are
based on the World Geodetic System 84 (WGS84) location
coordinates. WGS84 is the standard U.S. Department of
Defense definition of a global reference system for geospatial
information. It describes the Earth’s size, shape, gravity, and
geomagnetic fields, and it is the reference system used by the
Global Positioning System (GPS). It is compatible with the
International Terrestrial Reference System (ITRS) and uses
the International system of units (IS). In every coordinate
system, each position on the Earth has a unique coordinate in

terms of longitude and latitude. For example, the geo ontol-
ogy (http://www.georss.org/georss/) originally from OGC
and now a joint model of OGC and W3C, defines a point
by its long (longitude) and lat (latitude) concepts. The altitude
(elev) and some other concepts useful to define areas, such as
line, polygon, radius, etc., have also been added.

In IoT, the location of a sensor, which is generally a point,
can be usually modelled as a coordinate with longitude,
latitude, and maybe altitude. In some other occasions, the
coverage of the sensor may be needed, for example, to know
whether the data of a sensor is relevant to a particular point in
the vicinity of the sensor. Most models today allow specifi-
cation of the geographic coordinates and coverage, which
could be simplified by common shapes such as a circle or a
polygon [73, 74].

Another location model is GeoRSS (Reed et al., 2006),
http://www.georss.org/, also using WGS-84, that models a
basic point with longitude and latitude. The scope of this
model is to request, aggregate, share, and map geographically
tagged RSS feeds. GeoRSS has two models: the “simple”
model and “GML”; the “simple”model supports basic geom-
etries such as point, line, or polygon. GML stands for
OpenGIS® Geography Markup Language, a standard from
OGC; and is an XML schema for modelling the OpenGIS®

Abstract Specification and the ISO 19100 series, with con-
cepts such as coordinate reference systems, geometry, topol-
ogy, time, units of measure, and generalized values.

As JSON is increasingly used in Internet and replacing
XML as a format to transfer information, there is also a
specification from the Internet Engineering Task Force
(IETF), GeoJson [75], that allows the representation of sim-
ple geographical features, along with their nonspatial attri-
butes in JSON. GeoJson represents concepts such as points,
line strings, polygons, and multipart collections of these
types. Figure 16.8 represents a GeoJSON file, in which one
geopoint and two adjacent squares are represented.

GeoJSON has evolved into a lightweight version,
TopoJSON, in which the files are reduced by 80% approxi-
mately. This reduction is due to the fact that the geometries
can share boundaries, avoiding replicating them. For exam-
ple, in Fig. 16.8, we have represented two adjacent squares in
GeoJSON, while in Fig. 16.9 we have represented arcs (line
segments) in TopoJSON, which can be accessed by any
geometry in the file. In TopoJSON, each square references
the index of the arcs it needs. In the example, the arc[0] ¼ arc
[�1] is accessed by both squares. TopoJSON also uses an
encoding method for file reduction, as well as transformation,
consisting of coordinate scaling, translation, and value
rounding. All of this eliminates unnecessarily long numbers
in coordinates values [76].

There are also some tools that facilitate the use of the
spatial models, such as GeoSPARQL [77]. This OGC stan-
dard provides a model to represent geospatial data and the
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ability to query and filter on the relationships between
geospatial entities, supporting concepts such as intersects,
within, adjacency, etc., that allow search in the spatial
space.

Symbolic Location
A symbolic location model gives names to location areas
such as region and place of interest, instead of coordinates.
Sometimes, it is simpler to use symbolic location names than
the geo-coordinates, especially for human beings. For exam-
ple, it is easier for a user to provide a postal address than to
provide the geo-coordinates of that address. There are some
models that support these relative notations of locations, for
example, GeoNames [78], which is also part of the Linked
Data Open Cloud [70]. GeoNames is an open geographical
dataset with more than 11 million unique features
representing city-scale location features. These features fol-
low a hierarchical categorization. GeoNames matches the
geo-coordinates in WGS84 with user-friendly names of

places in various languages and consists of other useful
information related to those places, such as population, ele-
vation, etc. It also captures the associated contextual infor-
mation on region containment and distance among locations. As
an open data source, users can add or edit names in easy ways.
ISO has also a symbolic model (https://www.isotc211.org/)
based on addresses including important concepts such as coun-
try, city-town, road, etc. The DBPedia dataset [17], which forms
part of the Linked Open Data cloud, defines the Place concept
for cities and natural environment features (e.g., mountains,
rivers, etc.). Each Place concept also delineates with region
containment and other spatial relationships. In terms of location

{  “type”:  “FeatureCollection”,

{  “type”:  “Feature”,

{  “type”:  “Feature”,

{  “type”:  “Feature”,

},

}
},

},

}
}

}
]

 “features”:  [

“geometry”:  {“type”:  “Point”,

“geometry”:  {

“properties”:  {
“AreaShape”:  “square-left”

“coordinates”:  [–0.58763,51.24273]},
“properties”:  {

}
},

“name”:  “University of Surrey”,

“type”:  “Polygon”,
“coordinates”:  [

“geometry”:  {
“type”:  “Polygon”,
“coordinates”:  [

“postcode”:  “GU2 7XH”

“properties”:  {
“AreaShape”:  “square-right”,
“VersionOfSquare”:  0.0

[

]

]

[–0.6,51.1],
[–0.4,51.1],
[–0.4,51.3],
[–0.6,51.3],
[–0.6,51.1]   ]

[–0.6,51.1],
[–0.8,51.1],
[–0.8,51.3],
[–0.6,51.3],
[–0.6,51.1]

Fig. 16.8 Example of a location representation in GeoJson format

“type”:  “Topology”,

“type”:  “Point”,
“coordinates”:  [–0.58763,51.24273],
“properties”:  {

“type”:  “Polygon”,
“properties”:  {

“arcs”:  [[0, 1]]

“AreaShape”:  “square-left”

“name”:  “University of Surrey”,
“postcode”:  “GU2 7XH”

“objects”:  {

“type”:  “GeometryCollection”,
“geometries”:  [

“UniversityOfSurrey”:  {

{

{

},

},

“type”:  “Polygon”,
“properties”:  {

“arcs”:  [[2, –1]]

“arcs”:  [

“AreaShape”:  “square-right”,
“VersionOfSquare”:  0.0
},

},

}

}
]

[

[ [–0.6,51.1],
[–0.4,51.1],
[–0.4,51.3],
[–0.6,51.3]   ],

[–0.6,51.1],
[–0.8,51.1],
[–0.8,51.3],
[–0.6,51.3]   ]

[

]
}

],
[–0.6,51.3], [–0.6,51.1]

},

{

{

}

Fig. 16.9 Example of a location representation in TopoJson format
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context, the H2020 TagItSmart project (https://www.
tagitsmart.eu) specified its location model [79] to include, in
addition to the geo-coordinate information encoded in WGS84
notation, the local county and country information encoded with
the NUTS [80] classification system. Figure 16.12 in Sect.
16.3.2 shows an example of a user’s location annotated with
the TagItSmart location model.

The CityGML OGC standard [81] consists of XML
schemas for representing virtual 3D city models. It is based
on Geography Markup Language version 3.1.1 (GML3) and
represents the city space with concepts for land use, vegeta-
tion, tunnels, transportation, water bodies, bridges and
buildings, etc.

An important geospatial modelling construct that maps a
two-dimensional latitude-longitude pair into a
one-dimensional string (consisting of letters and numbers)
is the Geohash geocoding system. The Geohash algorithm
uses a Base-32 (https://en.wikipedia.org/wiki/Base32) vari-
ant and bit interleaving to obtain the string representation of a
latitude and longitude pair (the reverse operation is also
possible). The encoding represents a hierarchical grid on the
map, similar to a Z-order curve, with one bit dividing the
entire map area into two halves, with each subsequent bit
addition breaking this down into an increasing number of
grids, that is, 4, 8, 16, and 32. An example is shown in
Fig. 16.10 where the 32 child grids of the geohash string u0
are shown (u00 - u0z), covering parts of France, Germany,
Belgium, Switzerland, and northern Italy. The component
higher resolution grids of the area covered by the geohash
u09 are shown on the right, encoded from u090 to u09z. This
area encodes Paris and the region to its south, as shown in
Fig. 16.10 below.

As the length of the geohash string increases, the grid size
decreases, resulting in higher spatial resolution. The geohash
algorithm is in the public domain and the website allows
users to input either latitude and longitude or address data
to obtain the corresponding geohash string. The hierarchical
nature of the underlying grid system and resulting strings
mean that nearby locations typically share similar string pre-
fixes, with longer shared prefixes translating to closer
geolocations. This property, combined with the
one-dimensional string format, finds use in storing point
data into a database system, where it is easier to query on a
single index rather than on a two-dimensional (latitude-lon-
gitude) one and also to conduct proximity search based on
string matching (due to the shared prefixes property).

Relative Location
In addition to the outdoor location models reviewed in the
preceding sections, a number of research studies have
modelled indoor locations to provide spatial context to the
IoT entities at a finer granularity. De et al. [83] proposed an
indoor location model as part of federated IoT resolution
framework, where the main “place” concept can be mapped
to indoor constructs such as buildings, floors, commercial/
public/residential premises and other structures, with a build-
ing modelled as an entity with at least one floor. Also
included in the model are various spatial relations to convey
adjacency, containment (spatial hierarchy), access, and place-
ment (N, S, E, W direction). Similar approaches were pro-
posed in [84, 85] with resources clustered into different types
of rooms, labs, offices, etc., based on semantic relations.

Table 16.2 summarizes the various surveyed works on
location-based context models in the IoT. The existing

Fig. 16.10 Geohash geocoding system. Maps generated with the Geohash Explorer Service [82]
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state-of-the-art works are presented along the following
dimensions:

Modelled concepts: indicate the elements defined in the
model.

Range: specifies the range of the location model, as either
one of indoor/outdoor/global.

Format: specifies the language in which the model has been
formalized.

Application: indicates the application domain to which the
model has been applied.

16.3.2 User Preferences

User profiles usually store the description of the characteris-
tics of people and their preferences, which can be used as
contextual information in many applications. For example, in
a travel recommendation application, the ability to drive a car
or the health condition of a user can influence the decision
about which transport to use, such as car, bicycle, or bus. In
the case of an unexpected event, some assumptions could
become invalid and the user’s profile could again influence
the decision.

The early focus of such efforts has been for user interface
design [86] and Web information retrieval [87], with more
recent efforts leaning towards capture of user profiles and
personalization relating to health factors [88–90].

The profile model proposed in [31] includes important
concepts such as personal information,
interest, and abilities that could enhance

the user experience in an application. The personal informa-
tion concept can annotate aspects such as age, educational
level, and employment. The Interest concept covers aspects
that users like, such as watching football matches. The Abil-
ity concept allows the representation of the activities that the
user is able to perform, such as driving a car. Abilities and
Interest concepts could be grouped in types (in taxonomies),
for easily clustering users (see Fig. 16.11).

The Assisted Living user model [89] defines a number of
modules that include a Profile encompassing the person’s
habits, impairment, and preferences; health encompassing dis-
ease, its symptoms and treatment aspects and an Activity rec-
ognition module. The user profile in the MobileSage project
[88] is aimed at user modelling and personalization reasoning to
provide assistance services to people with dementia. The profile
aspects are modelled through five concepts:
CapabilityProfile, InterestProfile,
PreferenceProfile, EducationProfi-
le, and HealthProfile. The ambient environment
is modelled through Context, Location, and Activity classes.
The user profile model in [90] facilitates a personalization
reasoning mechanism by modelling user preferences in the
ontology in terms of preferred media and text size, personal
information such as name, age, date of birth, gender, language,
and health status, physical and cognitive health conditions and
activity. The concept of a user’s role has been investigated in the
H2020 EU-Japan iKaaS [91] and H2020 TagItSmart project
[79], where a user can have different roles in the system that are
associated with particular access rights. The user role in these
cases is associated with the user’s personal information. A
combination of location and role specification is used for

Table 16.2 Location-based context models

Reference Modelled concepts Range Format Application

geoRSS ontology
(http://www.georss.
org/georss/)

Point: long (longitude), lat (latitude), and altitude
(elev).
line, polygon, coordinate reference systems,
geometry, topology, time, units of measure and
generalized values, etc.

Global,
outdoors

OWL, XML,
Relax NG

Any application that needs
geolocation

IoT-Lite [41] Objects, system or resources and services. Point
and coverage (polygon, circle, etc.), relative
location

Global,
outdoors,
and indoors

RDF/XML,
Turtle, JSON-
LD

Smart cities, health

GeoSPARQL [77] Areas, intersects, within, touches, etc. Global RDF Sensors and actuators (SOSA:
Janowicz et al., 2018)

GeoJson [75] Point, LineString, Polygon, MultiPoint,
MultiLineString, and MultiPolygon

Global JSON Any application that needs relative
location between objects

Geohash geocoding
system

Location encoded as a string Global Alphanumeric Geospatial indexing of mobile
sensor data and search [63],
proximity queries [33]

De et al. [83] Place (premise, building, room, floor, corridor)
and spatial relations

Indoor OWL Federated semantic nodes for
association analysis [83]

Ben Fredj [84] Building, room, floor and spatial relations Indoor RDF Clustering of resources based on
location

Wang et al. [85] Place (premise, building, room, floor, corridor)
and spatial relations

Indoor RDF IoT service annotation and
discovery
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delivering different levels of information as well as services to
the user, with generic services available to all users, and only
certain user roles getting access to specialized platform services.

A key issue in many applications on the Internet of Things
is to provide personalized recommendations based on pref-
erences and requirements of the user. An example of a user
profile instance, as implemented in the TagItSmart project, is
shown in Fig. 16.12, where the user’s home location infor-
mation is used to provide personalized recommendations for
local recycling points.

To provide personalized recommendations, a user profile
could be stored every time a new user registers in a platform
or application. With the user profile, the system could rec-
ommend customized actions or personalize the application.
However, sometimes, the profiles could be incomplete and
the application may not have accurate information about a
particular user. In these situations, some techniques could be
used to group users in different clusters according to what is
present in their profile, assuming that the missing information
about a particular user is the same as those users with similar
profiles. For example, unsupervised learning algorithms such
as clustering can group users based on a set of available
variables. The clustering information can be stored in a
knowledge base; if a new user only fills in some variables,
the user profile system could derive the most suitable cluster
for that user and infer the missing information with that of the
cluster. The profile information can be updated if new, addi-
tional information about the user becomes available.

As for privacy protection, users’ profiles could be aggre-
gated into classes (or clusters) and should not contain exact
values of profiles attributes that might identify a particular
user. For example, ranges of values for age could be used for
a user with age between 30 and 50. Likewise, within the
knowledge base that stores users’ profiles, only the users of
a specific application should have their profile accessible by
that application, whereas the whole clustered users’ profiles
(aggregated) can be accessible by any application, as they are
anonymized. This clustered knowledge base will contain
only clusters which depend on some of the variables, such

as young people, student, low or medium income, able to
drive, etc. This not only anonymizes the information, but also
makes difficult the inference of prejudged statements related
to gender, age, religion, or other sensitive information.

16.4 Data Storage and Search in the IoT

16.4.1 IoT Data Storage

The huge volume and high ingestion rate of data in the IoT
requires innovative ways for persisting this data and making
it accessible for analysis. Since many IoT applications require
measurements either as a function of time, the order in which
events happened or rates of change of some phenomenon,
storing this series of measurements as flat files is not ideal as
most retrieval requests would need to access the data based
on a time span. For such situations, a time series database
(TSDB) is a better choice since it is optimized for queries
based on a time range. In TSDBs, facilities are provided to
ensure that queries can be efficiently executed for retrieving
data from large number of time series for a particular time
range. Recent NoSQL approaches, which offer a trade-off
against the transactions-level stability, by providing the abil-
ity to handle semistructured and de-normalised data, offer
greater scalability as well.

In terms of available tools, OpenTSDB [92] is an open
source TSDB that uses either Apache HBase or MapR-DB as
the underlying storage engine. MapR-DB is a non-relational
database that is directly integrated into the file system of
MapR distribution derived from Apache Hadoop, enabling
rapid ingestion and query of time series data. Since in both
HBase and MapR-DB, the number of columns in a database
is nearly unbounded, it allows multiple values to be stored in

Person

Personal
information

Ability

Interest

AbilityType

InterestType

Fig. 16.11 Example of users’ profile model

{
“userID”: “http://example.com/foaf/Jo”
“userLocation”:{
 “municipality”: “Islington”,
 “latitude”: 51.5301712,
 “longitude”: –0.0865162,
 “country_NUTS_ID”: “UK”,
 “country_NUTS_ID”: “UK14”
       },
“preferredLanguage”: “en”
“userRole”: “PlatformUser”
}

Fig. 16.12 TagItSmart user instance in user repository
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each row (as long as the number of columns with active data
in a single row is in the order of a few hundred thousand)
[93]. This capability overcomes the limitation of relational
databases where one row is used for each measurement.
Since data retrieval is dependent on the number of rows that
need to be scanned, having multiple measurements in one
row enables much faster retrieval times. This capability is
known as a wide table design, which is the default feature of
OpenTSDB and is also extended with a compressor function
that converts wide rows into blobs. A blob is a single data
structure which contains the compressed versions of the data
in a row. A blob can be highly compressed, so less data needs
to be read from disk. So, the time series data is initially
inserted into the wide table format and is later compressed
into blob structures, facilitating high-performance data
recording. OpenTSDB not only features a user interface but
also allows direct access to the data via a representational
state transfer (REST) interface.

Another industry-standard TSDB is InfluxDB [94], which
offers a simple but powerful SQL-like query language and is
optimized for query load and data compression. InfluxDB is a
schema-less TSDB that includes built-in indexing for string
values used to “tag” a measurement. In addition to a com-
mand line interface for inserting and querying data (through
cURL (https://curl.haxx.se/) scripts), it also offers APIs for
programming access. Both OpenTSDB and InfluxDB offer
time series retrieval in terms of a number of tag/value pairs,
grouping and aggregation functionalities in terms of pre-
defined functions such as minimum, average, and sum.
Both of these TSDB tools also feature interfaces that allow
integration with Grafana (http://grafana.org/), which is an
open source dashboard editor and provides visualization
tools for time series data.

Since FUTS data features a different spatial measurement in
addition to the temporal one, recent works [63] have extended
the InfluxDB TSDB with spatial indices to exploit the spatio-
temporal characteristics of FUTS data, with experiments
showing impressive data insertion and query performance.

Other widely used, open source tools include the
mongoDB NoSQL database, which stores data in JSON-
like documents, with useful additional features such as
built-in spatial indexing. Cloud platform providers such as
Google Cloud Platform include schema-less datastores, for
example, Cloud Datastore [95] and Firebase Realtime Data-
base [96] and Amazon’s DynamoDB [97].

16.4.2 Data Publication and Subscription

The service-oriented paradigm has also been applied in IoT
application development, in which data is not accessed and
used with the explicit use of databases, but through a service
publication-subscription scheme. Functionalities of a

physical device can be abstracted as a virtual service(s)
[98, 99], which is essentially similar to a standard Web
service. They define input and output, which can be accessed
through a service endpoint, and can participate in a service
composition process in order to automatically create applica-
tions with sophisticated functions [100]. The main differ-
ences to Web services are that such services are usually not
reliable as they are exposed by IoT devices that mostly
operate in dynamic environments.

In this scheme, the services are described according to
some semantic models (adding the contextual information
about the service, for example, the associated device, input,
output, location, and service type) and the service descrip-
tions are stored in distributed semantic repositories [101].
This is often referred to as the service publication. To access
data generated by a device, the service(s) that provide the
needed data needs to be discovered first according to user’s
search criteria [101]. The search criteria are defined by the
users who specify whatever contextual information they
regard as relevant. Once discovered, an application can sub-
scribe to that service for future data communications. It is
often the case that there is more than one service returned by
the discovery process. In applications that need automatic
service composition, the discovered services need to be
ranked [102], so that the “best” service can participate in
the automatic service composition [100].

16.4.3 Data Search

Indexing
Due to the distributed and often ad hoc nature of IoT data
sources, special data indexing methods are often used to
constrain the search space for IoT applications. These
indexing methods organize search key values and object
addresses into catalogues for efficient lookup [38]. Recent
studies on IoT indexing and search methods [38, 103] have
pointed out the limitations of existing Web-application
focused methods in terms of centralized indexing which
relies on preexisting links between resources [104, 105] or
even distributed indexing which lacks support for index
update [106, 107]. IoT data-focused indexing structures
need to be adaptive to the high ingestion rate of data, which
could be in either the spatial or the temporal dimensions, and
could possibly even exceed the rate of user or application
queries [103]. This makes the selection of the indexing
criteria very important.

Recent surveys [6, 38] have primarily classified IoT
indexing techniques into text (or thematic)-based and spa-
tially oriented ones, as depicted in Fig. 16.13.

Text-Based Indexing These indexing methods rely on the
textual descriptions of the IoT data in accordance with some
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semantic models. Values for some or all of the attributes in
the semantic models are used as the keywords for indexing
and subsequent search. Notable examples of textual indexing
include GSN [108], SenseWeb [109], Dyser [110], Micro-
search [111], and IoT-SVK [112]. These approaches can only
support low search precision [38]. In some instances [113],
XML descriptions of the attributes are used to create a dis-
tributed index, with each single indexing structure handling
one attribute. However, this limits the search to exact queries
only and does not provide support for multi-attribute queries.
Similar limitations are experienced with the use of tree
indexing, such as the B+ tree with RDF descriptions for IoT
data [114].

Spatial Indexing Spatial indexing-based methods typically
make use of tree-like structures, such as R-Tree [112,
115, 116], B-tree [117], and quad-tree [103]. These
approaches index the Minimum Bounding Rectangles
(MBR) of the location range of a node. However, using
traditional tree structures for indexing is computational
expensive in situations where there are frequent data updates,
due to the need for restoring the balance of the tree. Recent
approaches have utilized one-dimensional representations of
the spatial information, in terms of geohashes with space-
filling curves such as Z-order curve [63] to handle the fre-
quent updates of FUTS data.

Trajectory Indexing The survey of indexing approaches in
[63] also includes a category of trajectory indexing [118, 119]
that involves approximating the trajectories of moving
objects to perform faster indexing. However, this requires
the time series to have the same length, which is not feasible
for many practical IoT deployments. Trajectory approaches
also focus on the objects themselves and do not provide
means of accessing the generated data. Moreover, time
range queries and data aggregation functionalities are not
supported, making answering time-dependent queries
difficult.

In addition, Fathy et al. [6] propose a time-series based
category of indexing methods. Readers are directed to recent
surveys [6, 117] of indexing approaches of IoT data for a
comprehensive review of the state of the art.

Query Processing and Search
Semantic search is one of the general approaches for search
and retrieval of information objects according to users’
requirements based on semantic Web technologies [38]. In
IoT, the objects and data of interest may be of different types,
for example, atomic data, data stream, or service. All these
objects should have been semantically described or annotated
before search, for example using the data, service, and con-
textual models presented earlier. The semantic descriptions,
or metadata are usually stored in distributed semantic repos-
itories, or as linked data available in the cloud. Various
techniques developed for the semantic Web, for example,
RDF, SPARQL and linked data, can be leveraged to facilitate
the search process and provide accurate and unambiguous
results. A common practice is to store semantic descriptions
of data and services in RDF format in semantic repositories as
such data is usually not updated frequently, while the data
itself is stored or archived in distributed streaming databases.
Metadata stored in the semantic repositories contains refer-
ences to the actual data in databases [99, 101].

Due to the heterogeneity of the IoT applications, semantic
search should be capable of answering queries of different
kinds with high degree of flexibility for users. A search
system should offer an easy-to-use interface to help users
construct their queries based on the data itself as well as the
contextual information that the users are concerned about.
The study in [8] listed some of the popular queries that a
semantic search system should support:

• Exact queries – where the values for the key attributes are
known, e.g., Type, Location, or Time are clearly defined
for a requested data item.

• Proximate queries – where the approximate value for the
key attributes is known.

• Range queries – where a range of values for the key
attributes is known.

Based on this, the system developed in [33] accepts three
types of queries for FUTS data collected from mobile sensors:

• Range queries – users can specify a rectangular area on a
map, along with the desired time window.

• Distance queries – users can define a circular area of
interest by specifying a point on the map and a radius
within which observations should have been stored. Time
window is also supported.

• Time window and aggregation – in addition to specifying the
time range for observations, users also can specify several
aggregation functions: minimum, maximum, or average.

The queries are internally translated to a format in line
with the semantic description models for data and its context.
For example, the system in [33] allows users to specify the

Indexing

Spatial

Text-based

Point-based

Trajectory

Fig. 16.13 Categorization of IoT data indexing methods
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location and time with a simple, map-based interface and then
translates the input data into a SPARQL query. By leveraging
the built-in reasoning capabilities of the SPARQL language, a
semantic search system can provide unambiguous results
while offering a certain degree of flexibility for end users.

Readers are directed to recent surveys [6, 38, 120–122] of
IoT discovery and search mechanisms for a comprehensive
review of the state of the art.

Federated Search
Federated search methods [123–126] that take advantage of
the established relations between concepts in datasets that are
part of the Linked Open Data cloud, have been proposed to
answer queries for data that may be stored in different
datasets. In contrast to data warehousing methods that aggre-
gate the data from various datasets before the query being
issued, the above approaches perform distributed query pro-
cessing at run time by decomposing the issued query into
sub-queries. These approaches apply a variety of grouping
and join operations in the sub-queries to minimize the num-
ber of remote queries to the datasets and thus, reduce the
overall network latency for query response. A comprehensive
survey of existing federated search techniques over linked
datasets is available in [123] and [127].

16.5 Conclusions

In this chapter, we presented some of the representative
models for IoT data and the related contextual information
in the literature. We demonstrated the importance of the
contextual information in semantically describing different
types of data that are unique to IoT, for example, atomic,
streaming, and FUTS. A good practice in using the contex-
tual information to annotate IoT data is to create links to
existing concepts in existing semantic repositories or data-
bases whereas possible, in accordance with the Linked Data
principles. This has the potential to promote interoperability
among heterogeneous, distributed systems, and enable auto-
mated reasoning by utilising the descriptions of the linked
concepts, especially in terms of data storage and search.
Moreover, the original contextual information could be
enriched with the linked data automatically.

Undoubtedly, data models that allow inclusion of contex-
tual modelling are essential to IoT applications of different
sizes and scales. A more prominent usage of these models is
perhaps to facilitate data analytics for human users and
enable applications to respond and adapt their behavior in
an automated fashion to changing ambient environments
seamlessly. Among others, the following topics relating to
IoT data models and contextual information may need further
research.

The ownership and provenance of IoT data has become
more important with the rise of participatory sensing in
various IoT applications [54]. A recent study [128] has pro-
posed the “sensing-as-a-service” ecosystem, which offers a
data marketplace where individual data producers can operate
as data owners and can control, manage, monetize and share
data with various IoT applications acting as consumers of this
data. According to an AIOTI WG white paper on market
drivers for IoT-enabled data marketplaces [129], transactions
based on IoT data are set to further augment the possibilities
of the Data-as-a-Service (DaaS) paradigm by monetizing IoT
data. The market drivers are identified as innovation poten-
tially brought about by cross-domain data, where data is
produced both internally within an industry (e.g., road infra-
structure) and available in real time from external sources
(e.g., cars using the roads and reporting on bumps and pot-
holes on the road). A proposed HLA for data marketplace
[129] consists of various functions such as data
aggregators that fuse multiple data streams and pro-
vide semantic annotation and contractual terms of use;
data lakes that store high data volumes with associ-
ated metadata to enable data discovery; and data
enrichers that apply algorithms to yield new insights
into the data, providing it as a value-added service.

However, given the penetration of IoT devices into critical
industry processes and homes, questions of trust, threats to
privacy and confidentiality of commercial intelligence need to
be addressed for sustainability of the data marketplace. The
AIOTI report [129] on data marketplaces suggests the use of
distributed ledger technologies for providing proof of origin
for datasets as well as proof of integrity for data lakes. Privacy
and security of the data are important concerns in open systems
such as the IoT. Specifically, privacy concerns arise from the
increasing collection and sharing of personal data, both at an
individual as well as at an aggregate level (e.g., GPS traces
from individual cars collectively contributing to traffic analy-
sis). Recent PETRAS (privacy, ethics, trust, reliability, accept-
ability, and security) National Centre of Excellence for IoT
Systems Cybersecurity Hub projects such as Displays and
Sensors on Smart Campuses (DiSSC) [130] and Resolving
Conflicts in Public Spaces (ReCoPS) [131] have demonstrated
the benefits of the contextualization of personal data obtained
in public spaces through IoTsensors, while also identifying the
need for privacy-aware systems to ensure the safe use and
adoptability of IoT in public spaces. A survey [132] of the
IoT from a data perspective reviews data privacy at both the
collection and sharing stages. The authors of this survey list a
variety of methods such as spatial delays and the addition of
noise to locations for increasing location data privacy. Readers
are directed to the work in [133] for a discussion of location
privacy-preserving methods.

With regard to the collection and use of personal data,
existing methods of ensuring privacy of personal data apply
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anonymization techniques to aggregated data [134], require a
trusted third party or target methods of differential privacy
[135], which mediate access to datasets containing personal
and sensitive data. However, these approaches are only appli-
cable to aggregated datasets and not practical for continu-
ously generated IoT data streams or implementable in IoT
edge devices. The growing penetration of connected and data
sensing devices in homes (e.g., smart energy meters, learning
thermostats etc.) and participatory sensing in public spaces
through smartphones, calls for privacy-preserving systems
and analytics approaches that can enable transformation of
sensed data at the IoT edge and make it available to IoT
applications, without revealing user-identifiable information.
Moreover, accidental data disclosure by people and a lack of
processes and standards regarding metadata descriptions are
some of the key sources of threats to the integrity of IoT data.

With the increasing use of personal devices, especially in
the domain of health and smart wearables, annotating and
ensuring the Quality of Information (QoI) attribute of the data
also gains prominence. There is still no consensus on the
dimensions and metrics that can assess the QoI. That lack of
consensus could be due to the infancy of the area of research
[136]. Trust is one of the most important issues in QoI,
specially for crowd-sensing [137], but there are others such
as accuracy, precision, completeness, consistency, current-
ness, reputation, value add, etc. [138–141].

In the IoT environments, the heterogeneity of sources of
information and its multi-modal nature results in differences
in the QoI [142, 143]; understanding QoI as the utility of the
information, or fitness for use [144]. Sensors in IoT are
heterogeneous and have differences in precision, accuracy
and granularity. Generally, IoT applications make use of
different sensors with different QoI. The fusion of such
information needs to select the right sensors for each appli-
cation, depending on the requirements of the application,
from the available one and the overlapping information.
Selection of the right sensors among multiple ones, or the
interpolation methods for missing data because of faulty
sensors, also represents a challenge for each individual IoT
applications.

Another important challenge is to annotate the spatial
component of the QoI. In the IoT environments, multiples
sensors could cover a same area. For example, in smart cities,
several sensors in different locations could cover the entire
city. But the value of the noise sensor will be more accurate
near the sensor location, than the one in between two sensors
[145]. Furthermore, the accuracy of the spatial component
also depends on the propagation model and the spatial infra-
structure [146]. For example, temperature is normally similar
in a neighbourhood, but noise depends on the buildings
infrastructure, and traffic depends on road infrastructures.

The data models reviewed in this chapter are primarily
designed for raw IoT data before abstraction and integration.

Given the ‘big’ nature of the IoT data, it has become imper-
ative in many application scenarios that such data needs to be
processed at different stages and at different locations. This
also accords with the key ideas of a recent proposal of edge
computing [147] and distributed intelligence in IoT [148],
which has become a popular paradigm for the IoT. It proposes
cloud offloading and data processing at the edge of the
networks, for example, smart homes or cities. As the result,
intermediate data will be generated at the edges. As there are
numerous ways to abstract or process data of different kinds,
it becomes difficult to understand the meaning of the inter-
mediate data. Often, the abstracted data may be useful, and
needs to be reused in many applications. To save the compu-
tation cost and facilitate reusability, it is also worth having
data models for the abstracted intermediate data.

The need becomes more obvious when data needs to be
integrated at the later stage for data analytics. Data integration
may happen in different forms, for example, integration of
data according to spatial, temporal and type dimensions at
sensor networks, gateways or network edges. One form of
integration, which is particularly important, happens when
data of different modalities co-exists and describes the same
event or phenomenon, for example, a natural fire may be
described by remote sensor measurement data, social
media, or satellite images. The multi-modal data, when inte-
grated together, potentially allows deep insights and action-
able knowledge to be obtained, and makes it possible to
facilitate building intelligent systems and applications
[149]. Considerable research has been conducted in recent
years on applying machine learning techniques in processing
big IoT and smart city data to design next generation intelli-
gent IoT systems. In particular, deep learning techniques have
been widely adopted in processing large amounts of multi-
modal data [9]. The research in [150] performed a compre-
hensive study on the convergence of edge computing and
deep learning for IoT. A collaborative end-edge-cloud deep
learning computing paradigm is proposed, in which a con-
siderable amount of intermediate data will be generated at
end devices, edges and clouds, and transmitted among them.
For the sake of optimizing model inputs and narrowing down
the searching space for deep learning models, the need for
well-defined models for the intermediate data is essential.
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