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Abstract

Marketers have to constantly make decisions on how to implement word-of-mouth (WOM)

programs and a well-developed decision support system (DSS) can provide them with valuable

assistance. The authors propose an agent-based framework that aggregates social network-level

individual interactions to guide the construction of a successful DSS for WOM. The framework

presents a set of guidelines and recommendations to: (1) involve stakeholders, (2) follow a

data-driven iterative modeling approach, (3) increase validity through automated calibration, and

(4) understand the DSS behavior. This framework is applied to build a DSS for a freemium app,

where premium users discuss the product with their social network and promote the viral

adoption. After its validation, the agent-based DSS forecasts the aggregate number of premium

sales over time and the most likely users to become premium in a near future. The experiments

show how the DSS can help managers by forecasting premium conversions and increasing the

number of premiums via targeting and reward policies.
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One day a brand manager walks into her office, and comes up with what she thinks is a great

idea, she should send out a designer, one-of-a-kind, unique t-shirt to her most valuable customers.

She hopes that customers who receive these t-shirts will talk about them with their friends, and

those friends will be more likely to become customers themselves. She knows that

word-of-mouth (WOM) can be a powerful force for marketing (Trusov et al. 2009), and she hopes

that she can utilize this force for the benefit of her brand.

However, she runs into a stumbling block when she sits down and starts to think about the

plan logistics. Being part of a data-driven organization, she needs to answer a number of different

questions to justify this marketing policy to her superiors. How does she balance this WOM

program with her traditional marketing mix (Libai et al. 2013)? How much should the rewards

cost to maximize revenue (Ryu and Feick 2007) and how should she balance these costs with the

number of customers who receive the reward (Schlereth et al. 2013, Stonedahl et al. 2010)?

Which exact customers should she target (Hinz et al. 2011, Van der Lans et al. 2010)? Should she

favor targeting influential users on social media (Watts and Dodds 2007, Trusov et al. 2010, Hinz

et al. 2011)? Or should she only reward the highest revenue customers (Haenlein and Libai 2013)?

Moreover, what will the effect of this promotion be on non-customers (Schmitt et al. 2011)?

This scenario is not fictional but one faced by managers on a regular basis. In fact, Blizzard

Entertainment faced a very similar set of questions when they sent statues of orcs from their

massively multi-player online game, World of Warcraft, to all customers who had been playing

the game for more than ten years (IGN 2015). Airline and hotel companies often consider these

questions when designing special rewards for their loyalty programs (Terblanche 2015, Xie et al.

2015). And these questions are also relevant for new business models, such as freemium apps,

where the area of interest centers around encouraging non-paying users to adopt paid

content (Kumar 2014). Of course, managers could spend time examining the previous theory and

research on the various effects of WOM on product adoption and market expansion (Trusov et al.

2010, Libai et al. 2013), but what they really need is a practical tool that embodies this theory and

provides them with direct answers to help them make decisions.
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The goal of this paper is to provide a general framework for the creation of such a tool that

can answer these questions. We also provide an example of applying this framework to a real

product, called Animal Jam, a multiplayer online freemium game for kids, created by WildWorks

and licensed from National Geographic Society. These questions about WOM are difficult to

answer using traditional methods of analysis, due to the fact that WOM models must take into

account: (1) the heterogeneity of individuals’ network positions, (2) interactions between

individuals over time, and (3) complex incentive and adoption rules (Goldenberg et al. 2001). As

a result, answering them requires an individual-level model that gives the analyst the ability to

represent the behavior of every customer and the interactions between customers, which is

difficult to do using many traditional forms of modeling.

A powerful solution to this problem is to use agent-based modeling (ABM) (Macal and North

2005, Epstein 2006), a computational approach where every individual can be represented

separately and the entire context of their decision, including their social network and their

adoption preferences, can be taken into consideration. The advantage of ABM is that researchers

create the model at the individual level which does not require knowledge of higher level

assumptions. Rand and Rust (2011) described a set of indicators to consider when deciding if

ABMs are more appropriate than other tools such as analytical or statistical modeling. These

indicators show that WOM-related marketing problems are effectively examined through the lens

of ABMs. ABM is more appropriate than other quantitative tools when a complex and dynamic

environment, such as a social network, is involved, and when the marketing measure of interest is

an emergent result of consumer interactions, such as new conversions or revenue (Rand and Rust

2011). ABM also works well when the marketing research questions emphasize the heterogeneity

of customers, and when the decision processes of those customers can be affected by different

individual characteristics, seasonal behavior, media consumption, and the number and type of

friends, with which they discuss the brand or the product.

Rand and Rust (2011) noted that the patterns of growth in the market that result from the

interaction of many consumers are more complex than any individual’s adoption decision.
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Because of this complexity, marketing studies are increasingly using ABM when analyzing new

product growth (Garcia 2005, Delre et al. 2010), marketing adoption policies (Libai et al. 2013,

Trusov et al. 2013), and targeting strategies (Haenlein and Libai 2013). Traditionally, many ABM

models in the marketing literature have been used to advance marketing theory (Watts and Dodds

2007, Goldenberg et al. 2001; 2010), but ABMs can be calibrated using real data, and then can be

used to develop insight into real-world applications (Stonedahl and Rand 2014). In this sense, a

decision support system (DSS) can be built using ABM to help managers make real tactical and

strategic decisions about marketing programs. The realism of ABM facilitates the understanding

of the model and can make the DSS more comprehensible to stakeholders, since the model

creates an ontology that is very close to the real world.

In this paper, we will explore a framework for creating an agent-based DSS to provide

marketers and researchers with a new and powerful tool to help make WOM decisions and to

better understand WOM phenomena. Using this framework we can situate customers (users)

within a social network and give them their own individual states and actions (Wilensky and Rand

2015), and we can use this agent-based DSS to answer many of the questions of our brand

manager from the beginning of this paper. Specifically, an agent-based DSS can assist marketers

and managers to: (1) understand adoption dynamics and customer engagement (the way other

people are affected by the engaged costumers, directly or indirectly), (2) leverage

customer-to-customer interactions to improve business performance and (3), test and evaluate the

effects of WOM and social value on revenue and product adoption in hypothetical market

scenarios. The agent-based DSS can create market level outcomes by allowing the incorporation

of individual behavioral rules (Libai et al. 2010) through a computational social network, which is

representative of the real social network of costumers (Newman et al. 2006). These rules describe

the typical activity of a customer and how they decide to adopt products or services by using

diffusion information models (Rogers 2003) such as those based on cascade models (Goldenberg

et al. 2001) and personal thresholds (Granovetter 1978, Watts and Dodds 2007).

Since the time of Little (1970), there has been a robust set of marketing models and DSSs for
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marketing (Wierenga et al. 2008, Lilien et al. 2013). Some DSSs were specifically built for

modeling frameworks and decision-making processes in WOM (Lovett et al. 2013, De Bruyn and

Lilien 2008), electronic online WOM activities (Dellarocas 2006, Cheung and Thadani 2012), and

viral marketing (Van der Lans et al. 2010). This previous research shows that DSSs provide

managerial benefits such as improving the decision making of marketers, enabling the exploration

of more decisions, and updating the mental models of decision makers (Lilien 2011). However,

many successful academic marketing models have a low level of practical use (Lilien 2011).

Although models can produce significant benefits, many managers are reluctant to use them based

solely on their objective quality in academic publications. Even in 1970, Little already noted that

“most failures come from trying to deploy sophisticated, black-box optimization models in DSS

environments because managers were unwilling to implement recommendations they did not

understand”. According to Lilien (2011), researchers must reduce the gap between the users’

mental models and implemented decision models, which means helping DSS users understand

and internalize the factors driving the model results and its managerial recommendations.

Building on this research, our framework emphasizes the creation of an agent-based DSS that

encourages the participation of all stakeholders in the model creation process, and constructs the

model iteratively to enable feedback from the stakeholders along the way (Voinov and Bousquet

2010). Moreover, our framework favors computational methods that facilitate the understanding

of the models, and data-driven validation which allows both modelers and marketers to gain

confidence in the DSS recommendations (Sargent 2005, Oliva 2003). In specific, our study

presents a set of methodological guidelines, steps, and decisions to generate the models in the

light of large datasets (Leeflang et al. 2015), with a clear focus on the managerial adoption of

their results. A decisive step for ensuring this managerial adoption is its validation and testing as

decision makers are often concerned with whether each model and its results are correct (Sargent

2005, Oliva 2003, Stonedahl and Rand 2014). Given the growth and availability of new data

forms, we encourage modelers to follow a data-driven automated calibration process as the main

validation tool and to use metaheuristics for automated model calibration (Miller 1998, Chica
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et al. 2016). We present the reasons why metaheuristics (Talbi 2009) are recommended here and

the criteria and steps to design the most appropriate metaheuristic calibration method for each

specific setting.

Additionally, we demonstrate the application of the agent-based DSS framework to a real

hedonic freemium app, Animal Jam (www.animaljam.com). We follow the general guidelines and

recommendations to construct the DSS and we show how to generate agent-based models using

the app data. The DSS forecasts the number of new daily premium adoptions (macro-level

simulation) and the specific users who are going to convert in a given time horizon (micro-level

forecast). Within this application, we examine different diffusion mechanisms including an

agent-based version of the Bass model (Bass-ABM) (Rand and Rust 2011, Bass 1969) and the

complex contagion model of Centola and Macy (2007). To our knowledge, this is the first work in

marketing to use the complex contagion model. In the complex contagion model, adoption is

contingent primarily on the absolute number of people you know that have adopted. We also use a

metaheuristic automated calibration tool to tune the parameters of the models with respect to

historical data. We then use the validated model to explore targeting and referral marketing

policies (Schmitt et al. 2011, Haenlein and Libai 2013) and evaluate their impact on premium

market expansion through WOM and customer engagement.

FRAMEWORK AND STEPS TO BUILD A DECISION SUPPORT SYSTEM

Our framework presents guidelines, design steps, and specific recommendations for creating

an agent-based DSS for WOM market scenarios. The basic foundation for the DSS framework

that we propose is an individual-level model which captures the social interaction dynamics of the

customers, as embedded in a social network. Figure 1 shows the main four guidelines and three

main steps to consider when building the agent-based DSS. The four guidelines are: (G1) to

follow an iterative and participatory modeling process with marketers and stakeholders, (G2) to

analyze and use all the available data to build the DSS, (G3) to employ data-driven calibration to

increase users’ confidence, and (G4) to minimize the complexity and the number of parameters in
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the model in order to increase ease of understanding. These guidelines are not necessarily steps to

be followed in order, but rather guiding principles to keep in mind during the construction of the

DSS that will maximize the probability of its adoption by marketers. We will describe the specific

steps for creating the agent-based DSS in a few paragraphs.

(“Insert Figure 1 about here”)

The first guideline G1 encourages the modeler to follow an implementable iterative

model-building process (Leeflang et al. 2015) with a participatory element. This process must

involve marketing managers and stakeholders, which is a key ingredient in facilitating better

decisions, with less conflict and more success (Voinov and Bousquet 2010). G1 is also related to

the trialability aspect of innovation adoption (Rogers 2003), since if marketers and stakeholders

are able to try out the DSS, they are more likely to adopt its use consistently in practice.

Given the growing importance of digital data for companies, guideline G2 discusses how all

available data should be used when constructing the DSS. This data serves as an input for the

creation of the DSS and may include information about the real social network of potential

customers, seasonal information about customer use, empirical data on product or service

adoption, and WOM volume or sentiment.

Guideline G3 states that data-driven model calibration is the cornerstone of the validation of

the agent-based DSS. This validation is vital to increase the confidence of stakeholders in the DSS

recommendations (Sargent 2005). The modeling process of the DSS is aimed at enhancing

marketers knowledge and understanding of the WOM dynamics by identifying the impact of the

solutions and supporting marketing decisions for the WOM program. It is also important for the

model to be understandable to encourage stakeholder use of the DSS. Therefore, guideline G4

declares that modelers should use the minimum number of parameters and minimum number of

mechanisms that enable satisfactory and valid results (Terano 2008) within the DSS. By creating

minimal models the researcher is more likely to facilitate the understanding of the models by

stakeholders, and at the same time is more likely to create a valid model. As Axelrod (1997)

explained, keep it simple, stupid.
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Taking into account these four guidelines, we describe a framework for the creation of the

DSS, based on three main building steps, which are summarized in Figure 1. These steps are to:

(S 1) specify the marketing objective and the basic components of the DSS, (S 2) create the model

of the WOM dynamics through a social network, and (S 3) use metaheuristics to perform a

data-driven calibration of the model. In the following subsections, we will explain each of the

steps in turn.

S1. Specify the Decision Support System Objective and Design the Basic Components of the

Agent-Based Model

To understand WOM dynamics we need to specify a framework upon which to build the

agent-based DSS and to embed the adoption dynamics. We recommend the use of ABM (Macal

and North 2005, Epstein 2006) because it can effectively model the aggregate consequences of

WOM on the basis of local interactions among individual members of a population (Libai et al.

2013, Goldenberg et al. 2001). Web Appendix A goes into considerable detail about why ABM is

appropriate as the basis of the DSS, but in brief, ABM provides the ability to model a large

number of heterogeneous individuals interacting across a complex social network where the

agents take their own actions that affect their decisions about how to spread WOM. During this

construction step S 1, five sub-steps should be taken to define: (S 1A) the objectives of the system,

(S 1B) the model architecture, (S 1C) the updating behavior of the agents, (S 1D) the granularity of

the agents, and (S 1E) seasonality of user behavior. Though designing a model architecture is

important for any DSS, we focus here on the decisions points that should be considered by

someone interested in developing a DSS for a WOM program.

S1A: Establish a clear objective. The first step when building the agent-based DSS is to

keep in mind the main marketing objectives and the potential WOM programs that the

stakeholders would like to explore. This is based on the design principle of building the model

toward the question that the model is meant to answer in an incremental fashion (Wilensky and

Rand 2015). Additionally, the intended use of the models should be defined as precisely as

possible (Leeflang et al. 2015) and every decision should be made with this in mind throughout
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all of the building steps of the DSS. In many cases, managers start with a default question along

the lines of which users should I incentivize in order to maximize the adoption of my product?

S1B: KPIs definition and initial adoptions. Agent-based DSS are discrete-time simulations

which end after several time steps. When a time step ends, the simulation collects the key

performance indicators (KPIs) of interest at each time step and returns them as the output of the

DSS (e.g., the time-series of product-service adopters). Typically, in many WOM campaigns, the

basic assumption is that some users have already adopted the product or the service (De Bruyn

and Lilien 2008). This is usually modeled through the use of a binary state, i.e., an agent is

labeled as a non-adopter or adopter. Then, it is necessary to define how these initial adoptions are

chosen. It could be through random choice, or potentially influenced by some empirical data. A

default option is to start by defining a single KPI (e.g., number of purchases or total adoptions)

and then running the model to examine the adoption of the product in a baseline condition without

any WOM program. Afterwards, one can see how incentivizing users affects the adoption rate.

S1C: Individual updating rule. The individuals of an agent-based DSS can act

asynchronously or synchronously within the simulation. Also, the individual updates can be

affected by competing contagions and other aggregate-level marketing efforts (Manchanda et al.

2008). Synchronous updates occur when no individual reveals their new state until all individuals

have had a chance to change their state. This is usually set to occur during a particular

system-level event which represents the time step of the model. Asynchronous updates occur

when individuals act and immediately reveal their state (Wilensky and Rand 2015). Synchronous

updates are useful when interactions between individuals involved in the adoption process are not

constant, but rather some time lag exists between when they adopt and when the information

about adoption can be passed on to others. This could be the case if there are no signs of

conspicuous consumption, for instance, and the adoption decision only becomes obvious once

users’ discuss their adoptions. Asynchronous update rules make the behavior of the simulation

similar to traditional continuous diffusion models such as the original formulation of the Bass

model (Bass 1969); this is because an asynchronous update is closer to assuming that the number
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of adopters at time t not only depends on the number of adopters at time t − 1 but also on the

instantaneous number of adopters at time t (Rand and Rust 2011). As a result, the default

guideline is to use asynchronous updates for most agent-based DSSs.

S1D: Granularity. An important question is to decide the granularity and mapping of the

individuals within the model. This requires specifying the temporal scale of the market context

and the number of real customers represented by an agent within the model. At one extreme this

could be modeling every real customer with exactly one agent, and at the other extreme it could

mean representing thousands of customers with one agent. This decision is made based on the

needed granularity of the DSS to make decisions. For instance, is it necessary to make decisions

about individual behavior, or is segment or population-level behavior a good enough

representation? In addition, the computational resources needed to run the model should be taken

into consideration (Wilensky and Rand 2015). The default rule is to find a good trade-off between

these two factors by always representing the fundamental level of information, necessary to

answer the WOM marketer’s questions. For instance, if the question is about which exact

individuals to incentivize then a one-to-one mapping is often needed.

S1E: Seasonal features. The heterogeneity and flexibility of agent-based DSSs permit an

easy inclusion of seasonal patterns of behavior. As seasonality affects product adoptions (Peers

et al. 2012, Guidolin and Guseo 2014), it is important to model seasonal effects when

constructing an agent-based DSS. The modeler can define seasonality effects in production

acquisition, service usage, or digital access at a given time step. The modeler can define a

time-varying parameter that controls the probability of a particular event occurring at any

particular time. At each time step in the simulation, the DSS can first consider if a customer takes

an action, such as accessing the service or using the product, by drawing a random number from a

uniform distribution and by comparing it to these seasonality parameters. The default suggestion

for this step is to analyze the data and base the seasonality processes directly on this data.
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S2. WOM Dynamics in a Social Network

Social networks play a fundamental role in the way information reaches consumers, channel

members, and suppliers (Goldenberg et al. 2009, Van den Bulte and Joshi 2007). This is because

the individual adoption decisions of customers normally depend on two factors: (a) external

influence (by salespeople, advertising, promotions, and other marketing efforts) and (b) internal

influence (affected by WOM or by observing conspicuous consumption of someone in their social

network) (Libai et al. 2010). A social network is generally defined by a set of actors and the

relationships (ties) among them. The social network properties of an individual can impact the

success of marketing actions, such as pricing or promotion strategies (Godes and Mayzlin 2009).

Within this step S 2 of our framework we define three sub-steps: (S 2A) generate the social

network structure, (S 2B) define the social influence between individuals, and (S 2C) model how

information dynamics occur in the social network.

S2A: Social network generation. The social network defines the relationship between

different consumers or users. Although it is a common approach to approximate a real social

network with a synthetically generated preferential attachment network (Barabási and Albert

1999), many studies have provided evidence that most of the real-world social networks have

distinct structural properties from synthetically generated social networks (Newman 2003,

Stonedahl et al. 2010). Given the growth of online data and social media platforms, at least partial

information and data about the social networks used by customers frequently exists about the

customer base. Whenever possible, the DSS should be designed to take into account all the

existing information about the real social network of the marketing context (G2 guideline).

Therefore, the default rule of this step is that, if the actual social network is known, then that

should be used. Otherwise, the modeler is encouraged to use all the available information to guide

the network generation by replicating the properties of the real-world social network. There are

methods that can take partial social network information into account in order to generate more

realistic social networks. For instance, generalized random networks enable the specific of degree

distribution (Milo et al. 2004, Viger and Latapy 2005) and/or the clustering coefficient of the
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social network (Serrano and Boguná 2005, Newman 2009). If no social network properties are

known, the marketer can use one of the synthetic networks that does not take any information into

account, but (s)he should consider whether it is worth creating a DSS for WOM if no social

network information is available, as the social network is a critical component of understanding

WOM programs.

S2B: Social influence. Many standard social network models assume that all consumers exert

the same influence on each other, but in reality we know that is not the case. It is useful to

consider the role of social influence between the WOM actors. One typical approach is to enrich

the WOM process by modeling heterogeneous social influence by a weighted social network. To

do this, the links of the social network are weighted based on the social influence between

customers. If all the links have the same weights, then the model collapses to the traditional

model with homogeneous influence. The default rule is to always include these social influence

differences which can be inferred from data analysis after the implementation of marketing

social-based activities by the company. For instance, it may be possible to observe when two

users are talking with each other and use that information as a model of social influence. When

not available, modelers can first equally set these weights for all the customers and later, run a

sensitivity analysis to evaluate the effect of changing the weights.

S2C: Information diffusion model. Apart from designing the network structure, it is

important to model the WOM dynamics that occur through the medium of the network. The

probability that a particular individual chooses between one product alternative or another is

increased according to the relative number of others choosing the same alternative and the

influence of those others on the focal individual (Watts and Dodds 2007, Goldenberg et al. 2001,

Trusov et al. 2013, Van den Bulte and Joshi 2007). Threshold (Granovetter 1978, Watts and

Dodds 2007) and cascade models (Goldenberg et al. 2001; 2010) are common individual-level

diffusion mechanisms used in marketing for modeling an individual’s decision. Stochastic

cascade models hypothesize that when each individual adopts a product they have a small

probability of influencing any of their social neighbors to adopt the product. In the threshold
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model, each individual observes the fraction of neighbors that have adopted and then adopts if

this fraction exceeds a certain threshold. In both cases, it is also possible to add an external

influence parameter, which can encourage adoption of the product independent of social

influence. Unless data analysis suggests a more appropriate approach, it makes sense to start with

something similar to an agent-based version of the Bass model (Bass-ABM) (Rand and Rust

2011), which assumes independence of the internal (customer-to-customer interactions through

WOM) and external effects (Libai et al. 2010). This model is a form of a cascade model, and is

already well-accepted in the marketing literature.

S3. Data-driven Model Calibration by Metaheuristics

Automated calibration is a data-rich and computationally intensive process that uses an error

measure to compare real-world data to model-data, and then tunes the parameters of the model in

order to identify a set of parameters which best match the data (Oliva 2003, Sargent 2005,

Stonedahl and Rand 2014). Automated calibration attempts to discover the best parameters of the

model that fit the model to the data. This evaluation of the model fitting is done by running the

computational model and comparing its outputs to the data. This means that automated

calibration requires an error measure and an optimization method to modify the parameters in a

systematic way in order to minimize the error measure. Our framework presents the building

steps to calibrate the agent-based DSS that was created in the previous two steps, using

metaheuristic methods (Talbi 2009).

Metaheuristics are a family of approximate non-linear optimization techniques that provide

acceptable solutions in a reasonable time even when problems are hard and complex (Talbi 2009).

When calibrating a complex system such as an agent-based DSS, metaheuristics are preferred

compared to gradient-based methods or mathematical programming for two main reasons: (1) we

can only make minimal assumptions about the non-analytical simulation model (i.e., the

relationship between all parameters and all outputs in the ABM framework is unknown), and (2)

the objective function (i.e., a function that formulates the goal to achieve when optimizing) is

time-consuming and needs to be run many times in order to accurately compare the simulated
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model to real marketing data. This makes it difficult to create a closed-form solution, and

computationally too expensive to conduct a full search of the parameter space.

One well-known type of metaheuristic is the genetic algorithm (GA) (Goldberg and Holland

1988), which are powerful search methods that have already been applied to marketing

problems (Luo 2011, Venkatesan et al. 2004). Metaheuristics can be classified according to

various characteristics (Talbi 2009): nature-inspired versus not nature-inspired, deterministic

versus stochastic, population-based versus single-solution based search, and iterative versus

greedy. But the relevant issue when building an agent-based DSS is to find the most suitable

metaheuristic for the particular WOM setting, which can be difficult, since there are two

contradictory goals that must be taken into account when choosing and designing the

metaheuristic. On the one hand, there is a goal of maximizing the exploration of the parameter

space (diversification) and, on the other hand, there is a goal of exploiting the best solutions

discovered so far (intensification). In the next five steps we will discuss these and other criteria to

select the most appropriate metaheuristic calibration method.

S3A: KPI selection for calibration. The first step is to identify one or more KPIs to compare

the output of the DSS with real data. These KPIs can be the number of adoptions, WOM volume

and/or sentiment, or the sales of a brand. Depending on the number of KPIs in conflict, modelers

must choose between single-objective (only one KPI) and multi-objective metaheuristics (when

more than one KPI needs to be optimized at the same time and they are potentially in

conflict) (Talbi 2009, Chica et al. 2010). An additional option when more than one KPI exists is

to include stakeholders knowledge to weight and value the KPIs within the calibration process by

using preference relations or units of importance between the defined KPIs (Chica et al. 2011).

This enables the creation of a single KPI by taking a weighted sum of multiple KPIs. However, in

the spirit of keeping things simple, the best place to start is calibrate the DSS with a single KPI

and later, move to a more advanced approach, if needed.

S3B: Deviation measure. The metaheuristic deviation measure evaluates the quality of a set

of parameters by comparing the model results for that set of parameters to historical data. A
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modeler can use different error or deviation measures and this choice can significantly affect the

calibration performance (Stonedahl and Rand 2014). A traditional approach is to use single

point-based measures (e.g., root mean square error (RMSE), Euclidean distance, or mean absolute

percentage error (MAPE), among others). The selection of the specific measure depends on the

problem and data characteristics (e.g., trends in historical data or number of KPI datasets). The

default rule of this step is to use RMSE or Euclidean distance to calibrate a simple set of KPIs for

a match of a typical series of historical data points. If the goal is to favor general trends over

specific data matches, then we suggest using MAPE since it decreases the effect of big isolated

data point errors within the model calibration (Chai and Draxler 2014).

S3C: Hold-out approach. Independent of the choice of metaheuristic, modelers are

encouraged to use a hold-out approach when calibrating the model. As explained in Stonedahl

and Rand (2014), the modeler divides the whole historical dataset of KPIs into two datasets:

training and test, with their corresponding environmental variables. The environmental variables

are those variables that will not change from run to run of the models as they do not belong to the

set of parameters to be calibrated. The calibration of the model is then accomplished by

identifying, using the training dataset, the model parameters that minimize the chosen deviation

measure. Later, the model’s validity is examined by using the same set of parameters but for the

test dataset. More advanced approaches such as k-fold cross-validation can be also used (Witten

and Frank 2005). By default, the rule is to always use, at least, a basic hold-out approach to make

sure the calibrated model is generalizable to data that was not used to train the model.

S3D: Search method selection. The knowledge of the modeler about possible good

parameters’ values and the features of the parameter space can be used to decide which

metaheuristic to use. The modeler’s knowledge should be used to help constrain the search space

and help create a metaheuristic that can explore the restricted parameter space in-depth, a process

called intensification (Talbi 2009). When knowledge about the best configuration parameters is

scarce, population-based metaheuristics enable a wider search for the best set of parameters’

values. Additionally, iterative metaheuristics (i.e., such as GAs that start with a complete solution
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or population and transform it at each iteration using search operators) are more flexible if

different parameter ranges and types exist when calibrating (e.g., integer, real, or binary). This is

because the solution is built at the start and the process does not need to be customized for each

type of parameter (Talbi 2009). Greedy and constructive metaheuristics (e.g., GRASP (Feo and

Resende 1995) or iterated local search (Lourenço et al. 2003)) are suggested when there is a high

number of dependencies between parameters and hard optimization problem constraints (Chica

et al. 2010). The main reason is a greedy metaheuristic starts from an empty solution and

constructively assigns at each step a parameter value for the calibration problem until a complete

solution is obtained. As a default recommendation, when modeler knowledge is limited it makes

sense to use as a default one of the population-based metaheuristics, such as the previously

mentioned GAs (Holland 1975), ant colony optimization (Dorigo et al. 1996), or particle swarm

optimization (Kennedy 2010). In general, we recommend iterative metaheuristics given the

unusual presence of hard parameter constraints in this kind of DSS.

S3E: Automated sensitivity analysis. Sensitivity analysis reveals those parameters to which

the model behavior is highly sensitive (Saltelli et al. 2008). Together with calibration, it is a key

ingredient for model testing and verification (Oliva 2003). Miller (1998) initially pointed out GAs

as an appropriate tool for sensitivity analysis because of their capability to explore a wider range

of parameter settings with a higher resolution and to also consider potentially complex or

non-linear interactions between them. Specifically, population-based metaheuristics offer not only

a final calibration solution but an archive of evaluated model calibration solutions for the model.

Automated sensitivity analysis can be performed on these solutions to discover hidden properties

related to the model design (Chica et al. 2016). The default rule is to use metaheuristics that

emphasize diversity, often in the form of stochastic population-based metaheuristics, to assist in

the sensitivity analysis of the model.

APPLICATION TO A FREEMIUM BUSINESS MODEL

Freemium business models offer a service or a product free of charge but a premium is
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charged for advanced features, functionality, or related products and services (Anderson 2009).

Over the past decade, freemium has become an important business model for digital-based

products and services including software, games, and websites (Teece 2010). The 2015 freemium

app monetization report of App Annie (an app analytics firm) & IDC (International Data

Corporation) stated that freemium app revenues grew by over 70% while paid app revenues

declined by 19% from 2013. WOM often plays a large role in freemium app adoption, since many

of these apps are game-related or have a built-in social network component Bapna and Umyarov

(2015). We will examine in this section the application of our agent-based DSS framework for

WOM to one real-world, hedonic, freemium app.

The importance of WOM in freemium models is not new. Cheng and Tang (2010) showed that

the optimal price of commercial software increases with the network intensity of the software,

which can be enhanced by free trials. Oestreicher-Singer and Zalmanson (2013) studied the

premium services of Last.fm, an online music website, and found that the willingness to pay for

premium services is strongly associated with the level of community participation of the user, i.e.,

social behavior. Bapna and Umyarov (2015) showed that peer influence caused more than a 50%

increase in the probability of adopting premium services due to the influence coming from an

adopting friend. They also found that users with a smaller number of friends experienced stronger

relative increase in the adoption likelihood due to influence from their peers as compared to the

users with a larger number of friends. Other studies presented relevant conclusions on the

importance of WOM programs for managing freemium business models. For instance, Lee et al.

(2013) examined consumer referral behavior and showed that referral invites recruit consumers

who later convert to premium consumers. Therefore our paper makes a vital contribution to this

literature by illustrating how a general DSS for WOM can help managers gain insight into many

of these questions for their particular datasets that have previously been explored by marketers.

App Data and the Main Marketing Questions

In this section, we will explore the specific application of our framework to a freemium app

called Animal Jam (http://www.animaljam.com). It is a multi-platform social online game for kids
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where users interact online with other users. Basic users can freely access and play with the game

and interact with other users both premium and basic, but premium users receive additional

benefits such as weekly in-game currency allowances (called diamonds and gems), the ability to

adopt virtual pets, access to all of the avatars, and premium-only adventures. WildWorks, the

developer of Animal Jam, was interested in making better marketing decisions for expanding their

premium market. They wanted to determine whether or not WOM played a large role in the

adoption of premium services by freemium users. This knowledge could then potentially be used

for a number of different purposes, including how to design a reward-based marketing campaign

to maximize the spread of positive WOM about premium membership, which might, in turn,

increase overall adoption rates and revenue.

Generally, referral rewards are designed to motivate consumers to spread positive WOM

about products and services and to turn customers into an element of the sales force (Biyalogorsky

et al. 2001). Lee et al. (2013) examined rewarding through referrals in the context of a freemium

software service. They explored the question of the right referral bonus incentive to offer to free

users. Contrary to the belief that more is better, they found, by maximizing the average consumer

referral rate and changing the referral incentives, that there exists an optimal incentive point for

referrals that is not simply as much as possible. Clearly then the decisions related to how to

implement an optimal referral program are not straightforward. In our case and to help Animal

Jam managers with their marketing goals, a DSS was constructed using the guidelines and steps

described above, in order to: (1) replicate and forecast the conversion rate from freemium to

premium members, and (2) evaluate incentivization-based marketing campaigns and measure the

additional customer acquisition created by amplified WOM.

The company provided us with daily conversion and subscription data of their users in 2012.

This data included 1.4 million game users and their social network to analyze and is valuable as it

gives us the opportunity to properly design the DSS and to validate the models with respect to

historical trends. For the quantitative models’ validation we restricted the whole data of 1.4

million users to only those ones active during the months of the study (i.e., from 40,000 to 50,000
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basic and premium users).

In the following sections, we will explain how we built a DSS for Animal Jam utilizing our

framework to help answer the main questions of interest to managers. Note that, in addition to the

detail provided in this section, we present the documentation, verification, and validation details

of the DSS for Animal Jam in Web Appendix B. Furthermore, the reader can freely access the

agent-based DSS source code at https://bitbucket.org/mchserrano/socialdynamicsfreemiumapps.

The graphical user interface of the DSS with its main functionalities is also available at a major

ABM repository https://www.openabm.org/model/5191. These tools provide researchers with the

ability to see the actual code, as well as run the model to explore their own scenarios of interest.

We show some screenshots of the DSS in Web Appendix E.

S1: Definition of the DSS Objective and Designing Basic Components

During this step, we paid close attention to guideline G2 by using the data provided by the

company and to guideline G4 by simplifying the DSS design.

S1A: Establish a clear objective. The main goal in building the Animal Jam DSS is to

forecast the adoption of the premium services by users of the app. Since the incentive programs

of managers’ interest often focus on individual-level policies (e.g., targeting specific users) we

should consider a DSS based on a very granular model. The DSS should be able to forecast both

the total number of new daily premium adoptions of the app (macro-level forecast) and whether a

specific user is likely to become a premium user in a given time horizon (micro-level forecast).

S1B: KPIs definition and initial adoptions. There is one central KPI: the number of

premium adoptions of the basic users of the app. This KPI has to be forecasted daily or weekly as

a conversion rate for the total number of users of the app. As noted by guideline G1, an iterative

process with stakeholder participation was followed here to find the correct KPI, necessary to

answer the WOM marketer’s questions. During this process, we discovered there was an interest

in not only forecasting the aggregate conversion rate, but also in forecasting particular individuals

who were likely to convert in the near future. To begin to calibrate our model we defined an initial

adoption rate (α) which reflects the number of initial premium adopters of the app. The
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simulation of the DSS will then start with a ratio α = 0.0406 which corresponds to the 4.06% of

premium users of the real app at the starting simulation date.

S1C: Individual updating rule. We used an asynchronous update rule in the model to better

replicate the WOM dynamics of the app, following the default rule of this framework step. Within

the same time step (day), the individuals can make decisions and update their states

asynchronously. This more closely mirrors the real app, where as soon as someone becomes a

premium member they can influence their neighbors who are online.

S1D: Granularity. After a preliminary exploration of granularity, we defined one individual

of the ABM framework to correspond to two real app users active during the months of the

forecast. Therefore, our simulation consists of 20,000 individuals (with 812 of them being initial

premium adopters) that map to 40,000 active real users of the app during the months of the study.

This assumption was made in order to decrease the computational cost of the model without

giving up too much resolution.

S1E: Seasonal features. We found a strong seasonality in the app dynamics after analyzing

the time series of premium conversions in the historical data (guideline G2). The app seasonality

shows that during weekends people tend to have more activity than on weekdays. The observation

seems obvious as it is a hedonic app, aimed at kids, normally played by users when they have

more free time. Please note that the seasonality of the Animal Jam DSS is crucial as app users

cannot adopt premium content and/or talk with their direct friends on the app if they do not access

the app on a particular day. We define seasonality within the model by grouping the probability of

using the app in to two seasonality parameters: the probability of using the app on a weekday (γ0)

and the probability of using the app on a weekend (γ1). This simplification is in line with

guideline G4 to keep the model as simple as possible without losing accuracy (Terano 2008,

Wilensky and Rand 2015).

S2: Replicating the WOM Diffusion Process through a Social Network

The analysis of the freemium app data shows there is a clear difference in friendship patterns

between basic and premium users, observed in the degree density graphs (guideline G2). The fact
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that premium members show such a different pattern of social behavior lends credence to the

related literature on freemium business models that show that the social activity of users is related

to their conversion (Bapna and Umyarov 2015, Lee et al. 2013). Further supporting the

importance of social effects is the observation that having more premium members as friends

increases the likelihood that one will adopt. Specifically from analyzing the app data we see that

(a) less than 1% of users without a premium friend subscribe, (b) the chance of conversion triples

(from 0.8% to 2.3%) if a user goes from having zero premium friends to just one, and (c) the

incremental impact on adoption of having premium friends is higher the fewer friends you have.

Using these insights and the S 2 step of the framework we constructed a WOM diffusion model

for the DSS, which we will explore in the next few paragraphs.

S2A: Social network generation. By analyzing the real social network we obtained a

distribution degree which represents the social relations of the app users. One interesting fact

about this distribution degree is that the app limits the number of friends any user can have to 100

friends and, as a result, the degree distribution is heavily bi-modal. As a result, there is a group of

users who have very few friends and another group clustered around the upper limit of 100

friends, which is enforced by the Animal Jam app, with fewer users in between these extremes.

Using this information we employed the generalized random networks algorithm of Viger and

Latapy (2005) to generate a social network of individuals with similar distribution degree to the

real social network of users in the real app. Though we have the actual network information of the

model, and could have used that, by using a synthetic network, we are able to scale the size of the

network to the size of the population being simulated. Web Appendix B provides more

information about the degree distribution of the generated social network.

S2B: Social influence. Following the S 2, for each link between two individuals i and j of the

social network, two different weights, τi, j and τ j,i. These two weights generate a bidirectional

influence, where the social influence of i when (s)he talks with j can be different than when j

talks to i. When τi, j > k (or τi, j < k) the influence of i on j is increased (or decreased) according to

the weight. Initially for the model and because we do not have specific information about the
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social influence between the users, we set the influence τi j to 1 for all the links. However, we did

investigate using communication records from the real game to model social influence, but in this

case, it did not appear to improve the results.

S2C: Information diffusion model. Our data analysis and the existing work on freemium

apps (Bapna and Umyarov 2015) highlights the marginal impact of additional premium friends

when a user already has a large number of premium friends. This fact suggests the use of a

complex contagion model (Centola and Macy 2007) as the diffusion model for the agent-based

DSS, since this model mimics a similar pattern of adoption. The model is called a complex

contagion model because successful transmission depends upon interaction with multiple carriers.

The complex contagion model is similar to the threshold model but the main difference is that in

the threshold model, the threshold φ describes the exposure amount necessary to convert relative

to the number of friends an individual has, where in the complex contagion model the threshold φ

is the absolute (not relative) number of exposures necessary to convert. We also implemented an

agent-based Bass Model (Bass-ABM) (Rand and Rust 2011)). The Bass-ABM translates the

hazard rates of the Bass model to probabilities for a single consumer, and embeds the consumer in

a social network, where the decision to adopt also depends on the fraction of neighbors that have

converted. Finally, an extended complex contagion model is considered. This new diffusion

model adds an external influence probability, which similar to the Bass-ABM, explicitly includes

an influence outside the network. Web Appendix B provides more details about these three

diffusion models: Bass-ABM, traditional complex contagion model, and extended complex

contagion model having an external influence probability.

S3: Designing the Data-Driven Calibration Method

We describe here how to design the automated metaheuristic calibration for the DSS of the

Animal Jam (step S 3 of the framework). This step is used to validate the model (guideline

G3) (Sargent 2005). The parameters of the agent-based DSS must be calibrated to adequately fit

the historical data of premium adoptions. The size of the parameters set P∗ to be calibrated is

either three or four, depending on the diffusion model: two probability values for seasonality
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(γ0, γ1 ∈ [0, 1]), and the external and internal influence coefficients ( p̂, q̂ ∈ [0, 1]) in the Bass-like

model, or the minimum threshold of premium friends for the complex contagion (φ ∈ [0,m],

where m is the maximum number of friends). Table 1 shows the list of parameters to be calibrated

for all the considered diffusion models. The decisions necessary to design the most appropriate

metaheuristic calibration method are discussed in the following paragraphs (step S 3).

(“Insert Table 1 about here”)

S3A: KPI selection for calibration. We use a single KPI of interest, the aggregated number

of new premiums (adoptions) per day in the app. We could instead use individual conversions as

the KPI but it turns out that calibrating using the aggregate patterns also creates an accurate tool

for micro-level targeting as we will explore in the validation section of the experimentation. The

quality of the calibration solutions generated by the metaheuristic are evaluated by calculating the

difference between the historical new premium users and the model output in a daily setting. This

model output is obtained by running a Monte-Carlo (MC) model simulation of 15 runs for each

parameters setting, which was sufficient to account for the model’s variability.

S3B: Deviation measure. A single-point approach is followed to calculate the deviation

between the real and simulated new premium values. We use the Euclidean distance as the

objective function of the metaheuristic after running a preliminary experiment to check the

goodness of fit to the seasonal trend using this measure.

S3C: Hold-out approach. A hold-out approach over the whole dataset is carried out as

recommended by the default rule of the framework. From a dataset of three months of daily

conversions, two datasets are generated: 60 days of historical premium daily conversions as a

training set and 31 days for the test dataset. Therefore, the metaheuristic calibrates the models’

parameters using the training data to fit historical data and then, this calibrated model is used to

predict premium conversions on the test dataset in order to validate the model generalization.

S3D: Search method selection. We did not have any particular model knowledge for the set

of parameters we were exploring. Additionally, there is not any hard constraint on the relationship
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between the parameters and each of the three diffusion models has a set of parameters of different

types. For instance, the threshold φ of the complex contagion model is an integer parameter while

the seasonality parameters γ0 and γ1 are real. Therefore, and following the default rule of this

framework step, we used a high diversity, iterative, and population-based metaheuristic (e.g., a

GA (Holland 1975, Goldberg and Holland 1988)).

S3E: Automated sensitivity analysis. We are also interested in understanding the ranges of

each parameter that seem to provide the highest validity and the actual forecasts for the freemium

app. For instance, the values for the threshold parameter of the complex contagion model can

provide interesting insights about the how many freemium friends a focal friend needs to convert.

The use of a population-based metaheuristic has the advantage of performing an automatic

sensitivity analysis since it generates a large set of solutions to the problem (Chica et al. 2016).

This enables the exploration of the already evaluated set of parameters and allows the

examination of non-linear interactions between the parameters.

The recommended metaheuristic characteristics given by the latter steps suggest that a GA

can work well when calibrating the DSS for the Animal Jam app. In a nutshell, a GA evolves a

population of solutions (chromosomes) each of which represents a model’s parameter set. These

solutions are evolved until achieving the best possible design (parameters of the model) for a

given modeling goal (i.e., correctly matching historical data). We detail the remaining GA

components and the GA parameters in Web Appendix C. Finally, it is important to remark that the

designed GA calibration method is independently run to calibrate each of the the three diffusion

models: Bass-ABM, original complex contagion, and complex contagion with external influence

coefficient. We can then use the accuracy of the macro-level forecasting of the premium adoption

of the app to adjudicate which model does the best job of describing the real WOM behavior.

VALIDITY AND PERFORMANCE OF THE MODELS FOR THE FREEMIUM APP

Modelers and managers need to know how well the DSS models replicate the real-world data

after the calibration. The agent-based DSS for the app case provides two different forecast levels:
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macro- and micro-level forecasts. We first analyze the agent-based DSS to examine its ability to

replicate macro-level historical data, i.e., the number of daily new adoptions provided by the

calibrated models. Later, we examine the models’ performance when forecasting the most likely

users to adopt premium in the near future (micro-level forecast).

Model Calibration Results for Macro-level Forecast

The GA run for calibrating the DSS for Animal Jam ends when 20, 000 different parameter

settings (solutions) have been tested. This is the stopping criteria of the GA and is sufficient for

finding a good quality solution. We also run the overall GA calibration method 15 times per

model because the GA itself is non-deterministic. At the end of all the runs, the metaheuristic

calibration method returns the mean and standard deviation values of the Euclidean distance

between the real and simulated data.

The Bass-ABM presents the best fitting within the set of three diffusion models of the DSS.

The GA calibration of the Bass-ABM, ends with a Euclidean mean value of 358.72 and a standard

deviation of 2.01. By following the hold-out approach, we examine the calibrated Bass-ABM

model on the test dataset by obtaining an Euclidean mean value of 339.01 and 9.09 for the

standard deviation. The DSS with a complex contagion model obtains mean values of 447.16 and

420.54 for the training and test datasets, respectively. The standard deviation is again higher for

the test dataset: 20.37 for test while obtaining 4.75 for training dataset. Finally, the complex

contagion variant with the external influence coefficient obtains similar results to the original

complex contagion model. Its Euclidean mean values are 441.53 (training) and 416.76 (test)

while its standard deviation values are 5.46 (training) and 19.49 (test). The low standard deviation

values indicate that the 15 GA runs were sufficient to obtain quality results.

By using the population-based results we can directly perform a sensitivity analysis and

observe the parameters’ range to better understand the strength of the social influence when

adopting premium services. Web Appendix D presents boxplots of the parameters’ distributions

for the three diffusion models. From this sensitivity analysis we can see that the threshold

parameter of both complex contagion models (φ) is mostly set to three friends by the calibration
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process. In the case of the complex contagion model with external influence probability, the range

of good values for the external influence coefficient ( p̂) is much wider than in the Bass-ABM.

This fact means that the influence of the external influence coefficient for the complex contagion

model is less critical than for the Bass-ABM and also reinforces the above-mentioned conclusion

of low differences between both complex contagion models. We can also notice that the

GA-based calibration method focuses on very specific seasonality and internal influence

coefficient values to provide a good model fit for the complex contagion model. On the other

hand, the Bass-ABM results are more robust with respect to a wider range of values for the

internal influence coefficient and seasonality parameters (q̂, γ0, and γ1).

Web Appendix D provides additional analysis of the temporal evolution of premium

adoptions. It shows in more detail that the Bass-ABM model’s predictions better match the total

number of adopters at the end of the simulation period than the other models. Thus, the

Bass-ABM outperforms both of the complex contagion models in the training and test datasets.

As a result, the Bass-ABM is the diffusion model of preference for macro-level forecasting in the

Animal Jam case although performance differences between the three models are not large.

Finally, these premium adoption results for the Animal Jam setting suggest that the introduction

of an external influence coefficient p̂ does not improve the performance results of the traditional

complex contagion model, which indicates that the internal diffusion forces for that model capture

most of the behavioral patterns.

Micro-level Forecast: Models Comparison

One of the main interests of the managers was a better understanding of how to target and

incentivize basic users. The objective was to identify those users who could easily be convinced

to become premium users. To carry this out, we created a model that could make micro-level

predictions. We applied the Bass-ABM and traditional complex contagion models to identify

those basic users who are more likely to adopt the premium membership after one month. In this

comparison we did not include the complex contagion with external influence coefficient as there

were no significant performance changes with respect to the traditional complex contagion model.
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However, we did build a simple logistic model with a ridge estimator (le Cessie and van

Houwelingen 1992) using the Weka toolkit implementation (Witten and Frank 2005) and a

random classifier as a baseline to help understand the performance of the agent-based DSS. The

logistic model was designed to use one independent variable (number of premium friends of a

user) and one dependent variable (if the user is adopting or not after one month). Again, a

hold-out approach is followed by using 75% of the data for training and 25% for testing.

To validate the micro-level forecast performance of the agent-based DSS we defined a set of

app users in the initial time period of one month and we label which of those users will eventually

adopt. This dataset has 10,798 app users (basic users at the beginning of the month). We label

those users who will adopt the premium membership after one month (718 from the total number

of 10,798 users). The set of 718 premium adopters is called the true positives (TPs). The true

negatives (TNs) are those who never convert in this month (the remaining 10,080 app users). We

also calculated the false negative (FN) and false positive (FP) rates of the models. A FP occurs

when a user is incorrectly predicted as a premium adopter when she actually never converts to

premium. A FN is the opposite case where the user is incorrectly predicted to be a non-adopter

when she does adopt. A good way to summarize this analysis is by using the receiver operating

characteristic (ROC) curve and the area under the curve (AUC) (Witten and Frank 2005).

The ROC curve provides a way to represent the trade-off between FPs and TPs for different

values of the rejection threshold by showing the relation between the sensitivity and specificity of

the forecast. The AUC summarizes the area under the ROC in the entire range [0, 1] of the FP

rate. The higher the AUC value, the lower the FP rate for a given TP rate, i.e., the model performs

better since it identifies true positives more frequently with less false positives. Figure 2 shows

the ROC curves for Bass-ABM, complex, logistic, and random models. Additionally, its legend

shows the AUC values. Complex contagion achieves a higher forecast performance than the

Bass-ABM. In fact, the complex contagion model achieves better results than the logistic model.

AUC values are also in line with the curves: complex contagion has the highest AUC value (0.73)

which surpasses both the Bass-ABM (0.60) and the logistic model (0.71).
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(“Insert Figure 2 about here”)

TARGETING AND INCENTIVE POLICIES USING THE DSS

Using the DSS to Increase Social Influence via Rewards

Before examining specific targeting policies, we use the DSS to understand how reward

campaigns can increase the amplified WOM in the Animal Jam setting. This allows us to better

understand how conversions lead to other conversions. This step constitutes a test of the

agent-based DSS behavior and provides first insights for the app managers by exploring different

social influences within a set of app users. In order to accomplish this goal we use the calibrated

Bass-ABM, i.e., the diffusion model that fits the macro-level data the best.

One area of interest to managers involves understanding how rewarding a user who converts

to premium could affect the conversion of other users via positive WOM. We simulate the

provision of rewards to a target set of users post-conversion, and then use the agent-based DSS to

explore the effect of social influence of the rewarded users on their friends. The idea being that if

managers reward users when adopting, the rewarded users are more likely to talk positively about

the benefits of a premium membership with their friends, increasing their influence over the

baseline rate. The revenue of these policies is measured by counting the successful referrals after

a given period of time. It is also important to notice that, in order to examine different types of

rewards (i.e., app bonus, extra software features, or gifts), we explore different amounts of social

influence by varying the social influence value per dollar value of the reward, i.e., we explore a

variety of results based on how much a reward causes a user to talk positively about conversion.

Additionally, we made use of a weighted social influence (per dollar of investment) between

the users to adjust the influence with their friends (parameter τi j defined in step S 2B). These

weights are included in the individual adoption probability rule of the Bass-ABM. This is done,

for each basic agent, by multiplying the fraction of her/his premium contacts by the social

influence weight of each contact. By using this method it is possible to amplify the influence of

each converted premium user with their friends during the simulation time. At the beginning of
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the simulation, all the social weights τi j are set to 1 which means that initially all users affect each

other uniformly. But when a basic user adopts premium content and is rewarded, her/his social

influence with other users is increased (value greater than 1).

Animal Jam, like most companies, does not empirically know the real social influence

between two friends when rewarding one of them because they had never implemented a similar

policy in the past. Thus to understand the potential range of effects, we ran a sensitivity analysis

to understand the market expansion results when considering different values for the social

influence weights. Marketers can look at these results, which include both pessimistic and

optimistic scenarios, and make their decisions accordingly. If the app company implements this

kind of reward policy in the near future it will be possible to analyze the app conversion data and

estimate a value for the social influence weight per dollar spent on reward.

(“Insert Figure 3 about here”)

The plot of Figure 3 shows the number of additional premium users during 31 days in the test

period by considering different increases in the social influence (x-axis of the plot) with respect to

no rewards (i.e., point (0, 0)). The main finding after analyzing this sensitivity analysis and

scenario is that increasing social influence between users by rewarding users when adopting

premium content has a positive non-linear impact on increasing the number of premium adopters

of the app, i.e., referrals can be quite successful. We can also see how the lift in additional

premium members does not have a linear behavior when increasing the social influence by

rewarding them at the time of adoption.

Targeting the Most Likely Users to Adopt Premium

Once the agent-based DSS is validated, and the effect of the initial post-conversion reward

polices has been explored, it is time to explore more complex WOM strategies and scenarios of

interest. This section tries to answer the main marketing questions of app managers: how can we

target and incentivize specific basic users to expand the premium market of the app? And, how
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many additional premium adopters can the amplified WOM of the incentivization policies

encourage to convert?

For instance, a policy which targets basic users, as opposed to rewarding premium

conversions, could be a profitable strategy. Instead of rewarding users after they convert as we did

in the previous section, we evaluate a marketing strategy to incentivize different groups of

non-converted users (basic users) to stimulate them to adopt premium and to increase the

amplified WOM of the app. We follow a similar targeting approach to the one of Haenlein and

Libai (2013) by studying the strategy to reward the most likely users to adopt, i.e., those expected

to generate more value (revenue leaders).

We jointly use the micro- and macro-levels of the agent-based DSS to select the best basic

users to target by running simulations to evaluate the implications of different targeting policies

for market expansion. To identify which users to target, we examine how likely each user is to

convert to a premium user on their own using the micro-level forecasting method of the ABM,

and then examine what the effect of rewarding those users is on the overall premium conversion

rate using the macro-level forecasting method. The complex contagion model is used for the

micro-level forecast to help determine which users to seed and the Bass-ABM for the macro-level

to examine the long-term impact of that seeding policy. These two models are used as they

outperformed the rest of the diffusion models during the validation phase of the DSS. The DSS

generates a group of the 2,000 most likely basic users to adopt. This user selection is done using

the micro-level DSS forecast.

After targeting the selected group of basic users with incentives, we ran different simulations

to forecast the additional premium conversions the company can obtain with respect to the case of

not applying any incentive policy. A sensitivity analysis is run for the parameter that affects the

weighted social influence (τi j). The exact effect of providing an incentive on the conversion rate is

not known. To solve this problem, we ran an additional sensitivity analysis on the lift in the

external influence coefficient p̂ when rewarding a target user.

Web Appendix D contains three heat-maps of the results after applying the targeting and
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incentive policies and running the DSS simulations. Each one is associated with a different way

of selecting the group of target users. The different groups are selected based on the complex

contagion model parameter φ which discriminates whether a user is forecast to adopt or not

depending on the minimum number of adopters within her/his friends. Concretely, we examine 1,

3, and 6 for that threshold φ (minimum premium friends). Under some conditions (high social

influence and high increase of the external influence coefficient), the incentivization policy

forecasts that the company would obtain more than 1, 000 additional premium conversions in one

month.

For instance, when considering a scenario of a 0.5 increase in the external influence coefficient

( p̂) and 1.8 for the social influence weight (τi j), we observe a considerable market expansion. In

this case, the runs of the macro-level version of the DSS (created with the Bass-ABM diffusion

model) result in an average of 686.8 additional premium conversions when targeting basic users

with a minimum of 1 premium friends, in 713.33 when targeting basic users with a minimum of 3

premium friends, and 819.86 when targeting basic users with a minimum of 6 premium friends

(see Web Appendix D). In general, the best expansion results are those when creating a target

group of users with 6 or more premium friends, but the three scenarios present similar results.

Managerial Implications of the DSS

We created this agent-based DSS directly in response to questions that the app managers had

about the best way to target and incentivize their basic users. Specifically we addressed the

following questions that they had:

• What is the importance of WOM and its role when free app users consider adopting

premium content? By analyzing the model’s performance and sensitivity analysis on the

diffusion parameters, the DSS showed that WOM influence has a significant effect on

premium market expansion. For instance, we found, as a result of the complex contagion

model, that the average user is likely to convert when three of their friends are premium.

• What is the effect of rewarding conversions and how does this affect market expansion? The
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exploration of different amounts of social influence, generated by rewards for conversion,

showed that there is also a great potential to amplify market expansion when implementing

such a strategy. However, we discovered that this fact exhibits a non-linear relationship, and

that the amount of expansion slows down as the value of influence per dollar goes up.

• What are the benefits of running incentivization campaigns that target basic users? The

agent-based DSS was able to evaluate the effect of different incentivization policies on

basic users. An important insight for marketers was the need to target users with a high

number of premium friends to generate more value through new premium adoptions: e.g.,

having six or more premium friends was the best tested policy.

FINAL DISCUSSION

WOM programs and viral marketing have been studied in the past (Dellarocas 2006,

De Bruyn and Lilien 2008, Van der Lans et al. 2010), and it has become clear that there are

important concerns modelers must take into account when building a successful WOM-related

DSS and to encourage a significant use by practitioners (Lilien 2011). Our methodological

framework proposes an agent-based DSS to model the WOM dynamics and considers several

guidelines that may allow the successful managerial adoption of their results. The cornerstone

method of the framework, ABM, has already shown that it can capture both the social network

structure and complex phenomena of customer interactions in previous research on WOM

programs (Libai et al. 2013, Schlereth et al. 2013, Haenlein and Libai 2013), but in this paper we

develop a generalizable way to build an agent-based DSS to assist WOM decisions and programs.

Building and Using the DSS for a Freemium App

We presented the application of the agent-based DSS framework to a real hedonic app,

Animal Jam. The DSS application illustrated how to use the modeling guidelines and model

construction steps to create a DSS for this particular app context, taking into account the data

provided by the company. The Bass-ABM and two variants of the complex contagion were used
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to model the premium adoption of the app. The use of the complex contagion model (Centola and

Macy 2007) came from the app data analysis since the adoption of premium content by a basic

user appears to require a minimum number of premium contacts. We are not aware of any other

study on marketing where adoption or WOM effects have been modeled using complex

contagion, but it works well in this context and we encourage future researchers to explore the use

of complex contagion models in other marketing research.

The use of a GA-based calibration method was helpful to validate the models of the DSS with

respect to the empirical app data and to understand parameter variations and appropriate values of

the models. The validation step showed that complex contagion achieves better results than the

Bass-ABM and simple logistic models when forecasting if a user is going to adopt premium

content in the near future (micro-level). Complex contagion supports the freemium model

hypothesis of Bapna and Umyarov (2015) where the authors showed that the effect of peer

influence is moderated by the number of friends of the user; but users with a smaller number of

friends are more susceptible. However, complex contagion performs slightly worse for

macro-level forecasting (fitting the historical premium evolution). Therefore, and although the

differences in the macro-level forecasts are not huge, the best DSS configuration for the Animal

Jam setting is to use the Bass-ABM to forecast the premium evolution of the market (macro) and

the complex contagion model to individually forecast if a user is adopting (micro).

We examined a set of scenarios and policies by using the DSS to understand how to better

expand the market by using different reward policies. We ran a sensitivity analysis to show that

WOM leads to more premium members and enhances the effects of traditional activities (e.g.,

promotions or rewards) as also demonstrated by Trusov et al. (2009), Wuyts et al. (2004). We

confirmed that, for this freemium app setting, the lift in premium adoptions when rewarding users

is not linear. This fact means when the social influence of users’ relations overcomes a certain

value, increasing the reward does not provide significantly increase premium expansion.

The joint use of micro- and macro-level forecasts in a validated DSS created a powerful

decision-making tool to run marketing policies for a freemium business model. Both micro- and
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macro-level forecasts are employed to simulate the effects of different targeting policies for the

most likely basic users to adopt, a strategy to target revenue leaders (Haenlein and Libai 2013)

(i.e., those expected to generate high profitability on their own). We compared three different

configurations for targeting a group of basic users and we observed a notable lift in the number of

additional premiums if incentives affect social influence and external influence considerably.

Limitations and Future Work

Our hope is this study enhances research and development into agent-based DSSs and

constitutes an important step toward the use of DSSs with high managerial success. In fact, there

are many ways researchers can expand the capabilities of the framework such as including

information about how influential a user is when targeting (Trusov et al. 2010). Following this

research line, practitioners could compare the premium expansion implications of targeting users

based on different social network features, similar to the high-degree and high-betweenness

seeding strategies suggested by Hinz et al. (2011). We also assume that the adoption model of

users is homogeneous across all users. Future work could explore the role of heterogeneity in

adoption processes.

Although we built a DSS for a particular freemium app following the guidelines and proposed

steps, the main purpose of this paper is to identify a set of guidelines and construction steps for

the creation of a DSS for WOM programs. In future work, we would like to extend our work by

considering more freemium scenarios and marketing insights such as the role of functionality and

content updates, the customer perceived value of new software features, or the impact of

including more social features versus non-social functionalities. We think a great deal of work is

still needed to fully understand the best freemium model practices, but we believe that the DSS

created here is a first step toward exploring these questions.
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Lourenço, Helena, Martin, Olivier, Stützle, Thomas, 2003. Iterated local search, in: Handbook of

metaheuristics. Springer, pp. 320–353.

Lovett, Mitchell, Peres, Renana, Shachar, Ron, 2013. On brands and word of mouth. Journal of



39

Marketing Research 50, 427–444.

Luo, Lan, 2011. Product line design for consumer durables: an integrated marketing and

engineering approach. Journal of Marketing Research 48, 128–139.

Macal, Charles, North, Michael, 2005. Tutorial on agent-based modeling and simulation, in:

Proceedings of the 37th conference on Winter simulation, ACM. pp. 2–15.

Manchanda, Puneet, Xie, Ying, Youn, Nara, 2008. The role of targeted communication and

contagion in product adoption. Marketing Science 27, 961–976.

Miller, John, 1998. Active nonlinear tests (ANTs) of complex simulation models. Management

Science 44, 820–830.

Milo, Ron, Kashtan, Nadav, Itzkovitz, Shalev, Newman, Mark, Alon, Uri, 2004. On the uniform

generation of random graphs with prescribed degree sequences. arXiv preprint

http://arxiv.org/abs/cond-mat/ .

Newman, Mark, Barabási, Alberto Laszlo., Watts, Duncan, 2006. The structure and dynamics of

networks. Princeton University Press.

Newman, Mark, 2003. The structure and function of complex networks. Society for Industrial

and Applied Mathematics (SIAM) review 45, 167–256.

Newman, Mark, 2009. Random graphs with clustering. Physical review letters 103, 058701.

Oestreicher-Singer, Gal, Zalmanson, Lior, 2013. Content or community? A digital business

strategy for content providers in the social age. Management Information Systems Quarterly

37, 591–616.

Oliva, Rogerio, 2003. Model calibration as a testing strategy for system dynamics models.

European Journal of Operational Research 151, 552–568.

Peers, Yuri, Fok, Denis, Franses, Philip Hans, 2012. Modeling seasonality in new product

diffusion. Marketing Science 31, 351–364.

Rand, William, Rust, Roland, 2011. Agent-based modeling in marketing: Guidelines for rigor.

International Journal of Research in Marketing 28, 181–193.



40

Rogers, Everett M., 2003. Diffusion of innovations. 5th Edition. The Free Press. Simon and

Schuster, New York.

Ryu, Gangseog, Feick, Lawrence, 2007. A penny for your thoughts: Referral reward programs

and referral likelihood. Journal of Marketing 71, 84–94.

Saltelli, Andrea, Ratto, Marco, Andres, Terry, Campolongo, Francesca, Cariboni, Jessica, Gatelli,

Debora, Saisana, Michaela, Tarantola, Stefano, 2008. Global sensitivity analysis: the primer.

John Wiley & Sons.

Sargent, Robert, 2005. Verification and validation of simulation models, in: Proceedings of the

37th conference on Winter simulation, pp. 130–143.

Schlereth, Christian, Barrot, Christian, Skiera, Bernd, Takac, Carsten, 2013. Optimal

product-sampling strategies in social networks: How many and whom to target?

International Journal of Electronic Commerce 18, 45–72.

Schmitt, Philipp, Skiera, Bernd, Van den Bulte, Christophe, 2011. Referral programs and

customer value. Journal of Marketing 75, 46–59.
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TABLES

Diffusion models Number of Seasonality Bass-ABM Complex contagion

of the DSS parameters parameters coefficients thresholds

γ0 ∈ [0, 1] γ1 ∈ [0, 1] p̂ ∈ [0, 1] q̂ ∈ [0, 1] φ ∈ [0,m]‡

Bass-ABM 4 X X X X -

Complex contagion 3 X X - - X

Complex contagion 4 X X - X X

with external influence

‡where m is the maximum number of friends an individual can have in the app.

Table 1: Set of model parameters P∗ to be calibrated by the GA.
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Figure 1: FOUR GUIDELINES AND THREE STEPS TO BUILD AN AGENT-BASED DSS FOR WOM PRO-

GRAMS.
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Figure 2: ROC ANALYSIS OF THE MODELS FOR THE MICRO-LEVEL FORECAST. AUC VALUES SHOWN

IN THE LEGEND.
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Figure 3: AN AGENT-BASED DSS SIMULATION OUTPUT OF ADDITIONAL PREMIUM ADOPTIONS WHEN

REWARDING ADOPTERS VERSUS THE SOCIAL INFLUENCE PER DOLLAR.


