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a b s t r a c t

Objective: In this paper we address the problem of recognising the movement intentions of patients

restricted to a medical bed. The developed recognition system will be used to implement a natural

human–machine interface to move a medical bed by means of the slight movements of patients with

reduced mobility.

Methods and material: Our proposal uses pressure map sequences as input and presents a novel system

based on artificial neural networks to recognise the movement intentions. The system analyses each

pressure map in real-time and classifies the raw information into output classes which represent these

intentions. The complexity of the recognition problem is high because of the multiple body

characteristics and distinct ways of communicating intentions. To address this problem, a complete

processing chain was developed consisting of image processing algorithms, a knowledge extraction

process, and a multilayer perceptron (MLP) classification model.

Results: Different configurations of the MLP have been investigated and quantitatively compared. The

accuracy of our approach is high, obtaining an accuracy of 87%. The model was compared with five

well-known classification paradigms. The performance of a reduced model, obtained by through feature

selection algorithms, was found to be better and less time-consuming than the original model. The

whole proposal has been validated with real patients in pre-clinical tests using the final medical bed

prototype.

Conclusions: The proposed approach produced very promising results, outperforming existing

classification approaches. The excellent behaviour of the recognition system will enable its use in

controlling the movements of the bed, in several degrees of freedom, by the patient with his/her

own body.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The recognition of movement intentions to control medical

beds can significantly improve the patient wellbeing in hospitals.

Patients, who are physically handicapped and are restricted to

stay in bed for long periods of time, need frequent changes to

avoid the side effects of a static position (e.g. scares). Currently,

patients are moved in hospitals by nurses and health care

personnel, also by relatives. Moving a patient requires significant

physical effort and causes back, neck, and shoulder injuries in

nurses and support staff. For instance, some sources estimate that

85% of nurses will suffer back injury at some point in their

careers [1].

Consequently, there is a social demand for the development of

a medical bed system that will allow patients with reduced

mobility to undertake the most common postural changes, both

lateral and sitting, with a natural communication between patient

and bed. Previous experiences aimed at improving the living

conditions of long-stay bed patients failed. For example, existing

cabled or wireless remote controllers are not accessible for people

with reduced mobility, and voiced commanded interfaces are too

imprecise, require adaptation, and may also become confused by

ambient noise in the hospital room [2].

The medical bed system we propose here is based on the use of

a pressure matrix laid on the bed. Pressure sensors distributed on

the matrix will collect the pressure exerted by the body of the
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patient. This information must be acquired and processed in real-

time with the aim at detecting the user’s intention to move.

Feedback control is smooth and continuous, resulting in a natural

interface between the bed and the patient. The user only needs to

perform slight intentions in the usual way, and the bed will follow

his/her movements.

However, in order to achieve the final medical bed, a recogni-

tion system to detect and classify the movement intentions has to

be developed. This is not a simple task because not all the patients

realise their movement intentions in the same way. In addition,

the system is forced to work with many patients with different

somatotype characteristics, and distinct ways of communication

intentions, even for the same patient. Several references and

research can be found in the literature addressing the analysis

and classification of static pressure maps on beds and chairs

[3–7]. Nevertheless, there is not any research to recognise,

continuously and in real-time, intentions from the pressure maps.

And certainly, neither of them is devoted to develop a classifica-

tion system to serve as a natural bed control interface.

The goal of this paper is to develop a novel recognition system

able to transform sequences of pressure maps from sensors

information into intentions of movement, valid and robust for

the majority of patients. We propose a recognition system based

on artificial neural networks (ANNs) and with a complementary

processing chain composed of segmentation, image analysis

algorithms, and an extraction process of spatial and dynamic

features. A multilayer perceptron (MLP) has been chosen as the

ANN classification model. The reasons for this choice were: (a) the

excellent prediction performance of ANNs in a wide range of

applications, from control to business contexts [8–10]; (b) reliable

references in many different medical applications such as early

detection of health condition in patients [11], analysis of employ-

ment history as a health risk factor [12], classification of cardiac

valve disorders [13] or medical image analysis [14]; (c) their use

in similar applications [7,6]; and (d) the low computational

requirements of the MLP that will allow us to embed the system

into the low-cost electronics of a medical bed. Different config-

urations of MLPs were designed and tested to find the most

suitable parameters values.

In addition, we applied feature selection methods to reduce

the complexity of the initial model and the requirements of the

system for its future integration with the medical bed. Further-

more, and to prove the strength of our approach, we ran a

complete set of pre-clinical tests with many different patients.

Thanks to this experimentation, we have the ability to compare

our results against well-known classification techniques. These

classifiers also belong to different paradigms: classification rules,

decision trees, instance-based classifier, probabilistic functions

and ensemble of classifiers.

The paper is structured as follows. In Section 2 we present a

general description of the medical system as well as a study of

related work. Next, in Section 3, an overview of the complete

model to solve the recognition problem is given. In Section 4, the

image analysis, the spatial and dynamic feature extraction, and

the feature selection algorithms are described. The ANN-based

classification model is discussed in Section 5. The method and

materials used for the database collection and experimentation,

the results, and their analyses are depicted in Section 6. Finally,

some concluding remarks and suggestions for further improve-

ments are discussed in Section 7.

2. Preliminaries

In this section we first introduce the innovative medical

system for which the recognition system has to be designed.

Finally, some existing state-of-the-art approaches to solve similar

problems are reviewed.

2.1. System and problem description

The proposed innovative medical bed is a complex system

composed of different elements such as a sophisticated bed frame

with Fowler1 and lateral positioning, nine motorised actuators to

achieve the complex positioning, a pressure matrix embedded

into the mattress, and a low cost microprocessor and electronics

for embedded software [see the computer-aided design (CAD)

model of the bed in Fig. 1].

Pressure maps are obtained from the pressure matrix consist-

ing of 1664 capacitive pressure sensors (64 columns and 26 rows)

fixed to the bed, having a sampling frequency of 10 pressure maps

per second and a pixel depth of 2 bytes. The actuators of the bed

are controlled by the bed electronics according to the decision

made by the software. A diagram of a general view of the system

with the three main components, i.e. pressure sensors, intelligent

software, and actuator system of the mechanical bed, is shown in

Fig. 2.

The most critical element in the new medical bed is designing

the intelligent software, which is the scope of this paper. As

addressed in Section 1, the interpretation of patient intentions is

complex because of many reasons. Patients with reduced mobility

are not able to perform abrupt movements, only slight and

natural intentions. It is also clear that recognising intentions in

a sequence of pressure maps for a great number of different

patients with different somatotype characteristics is not an easy

task. Furthermore, the same patient may present distinct ways of

communicating his/her intentions at different times. Also, the

difficulty of the problem is worsened by the fact that bed

configurations may change with the movements of the patient

thus changing also their influence on the resulting pressure map.2

In Fig. 3 we can observe four pressure maps of the same move-

ment intention (right movement intention) which are very dif-

ferent to each other.

Fig. 1. The CAD model of the mechanical bed that was designed and used for

this work.

1 Fowler position is a medical standard position. The patient is placed in a

semi-upright sitting position (45–601) and may have knees either bent or not.

There are several types of Fowler positions, as low, semi, and high [15].
2 This problem will not be tackled in this work since its solution involves the

use of the actuators of the medical bed and the control system which will be

designed in future work.
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The recognition software devoted to identify patient intentions

has also to be embedded into a low-cost microcontroller. It will be

able to interpret sequences of pressure maps (10 fps.) obtained

from the sensors matrix for a wide variety of patient complexions,

with sizes ranging from 1.40 m to 2.00 m, and weights from 45 kg

to 120 kg. Basically, the software must be able to recognise five

movement intentions in real-time:

� rest: the patient wants to stay in the current position.

� sit up: the patient needs to be incorporated from a supine

position to a Fowler or semi Fowler position.

� lean back: starting from a sitting position, the patient needs to

come back to a resting position, leaning back on the bed.

� right: the patient wants to be laid on his/her right side.

� left: the patient wants to be laid on his/her left side.

2.2. Related work

Although we have highlighted the existence of related work in

the literature (Section 1), there is not any similar work where an

intention of movement has to be recognised real-time from pressure

maps. In this section we will discuss the developments done in the

closest works. These works can be divided in two main groups

depending on the application: (a) beds and (b) chairs or seats.

In the first case, many articles involving the use of pressure

sensors attached to a bed have been found. For instance, in [5]

authors developed a automated system able to estimate the pose

of a patient when he/she is in supine, right lateral, left lateral, or

sitting position on a pressure mattress. They proposed a system

composed by a dimensionality reduction step using principal

component analysis (PCA) and an ANN model to classify the input

features. However, they only addressed static pressure maps at a

determined instant. Also, the behaviour of the system using

different patients is not robust and there is not any comparison

against other methods.

A system to estimate the posture of the patient and some

abrupt movements is proposed in [16]. It is based on a template

construction and a matching process between the saved templates

and the new incoming pressure instance. No quantitative methods

for experimentation are provided. Other authors have worked

with pressure information to estimate respiratory rate [17] or

infant behaviour [18]. In both cases, there is not any comparison

methodology, and there is a lack of estimation accuracy.

However, we can find more complete and interesting research

regarding the use of pressure maps on chairs and seats. Tan et al.

[3] applied PCA to solve the problem of classifying sitting

postures. The system is able to perform a static posture estima-

tion with an accuracy of 96% for familiar users and 79% for

unfamiliar users. Another recognition system for seated postures

is proposed in [6]. In this case, problem-dependent features that

measure geometric and physical variabilities are extracted from

pressure maps. Then, four different classifiers are compared to

each other: simple logistic, naive Bayes (NB), ANNs, and support

vector machines (SVM). The simple logistic algorithm achieved

the best performance (82%) followed by the ANN with an

Fig. 2. Overall view of the proposed medical bed with their main components. From the pressure maps (input information), the recognition software is able to identify the

movement intention of the patient and move the bed consequently (output of the system). The recognition software proposed in this work will be used embedded into the

control electronics.

Fig. 3. Four pressure maps from four different patients performing the same intention of movement (right intention). Note the high variability in the patients’ patterns.
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accuracy of 79%. Unfortunately, the recognition of dynamic

intentions is postponed for future work.

A complete sensing seat system for human authentication is

developed in [7]. Trucks, cars, or security in offices are referred as

possible applications. The compared classification methods were:

the minimum distance classifier, SVM, PCA, probabilistic ANN,

MLP, and Kohonen self-organising maps (KSOM). Authors claimed

that efficiency, in terms of memory space and computing time,

has to be taken into account. Thus, they decided to employ the

MLP and KSOM classifiers instead of SVM and PCA. The MLP

achieved the best accuracy: 93% for recognition and 96% for

rejection. However, the system needed the cooperation of the

subject in order to work properly.

Finally, some posture analysis on chairs for recognising a

child’s interest level is done in [4] where ANNs and hidden

Markov models are used. The obtained accuracy is 76% when

tested with real data.

3. The proposed system for recognising patient intentions

In this section, we describe our proposed solution for recog-

nising the patient intentions. As stated, this model will be used for

the medical bed described in Section 2.1. An overview of the

processing chain is presented in Fig. 4. We start with a segmenta-

tion step aimed at identifying the location of body parts in a

single image. Next, we apply a feature extraction process to

identify distinguishing characteristics in the segmented body

parts (spatial features). Each pressure map in the sequence is

analysed with the aim of extracting statistical and physical

features of the most important body parts.

The evolution of the features between a pair of pressure maps

separated by a determined time window is computed (dynamic

features). The latter values are the input of the ANN-based

classification model. The classification model will need to identify

transitions or changes between these features at different time

instants. The output of the model will be one of the five classes

explained in Section 2.1. An example describing how the system

performs is presented in Fig. 5.

With respect to the time window used to calculate the

dynamic features, it is valuable to remember that the high frame

rate (10 fps) provided by the physical pressure matrix is over

killing in this application. This is because of the evolution

between two consecutive pressure maps are almost impercepti-

ble. For that reason, we maintain the frame rate of 0.1 s but a

definition of a time window of 1 s is needed.3 Consequently, our

system computes the evolution of two pressure maps, separated

by one time window, every 0.1 s. This approach provides a good

compromise between time resolution and responsiveness.

In the next sections we will analyse each component of the

system in detail: the preprocessing and segmentation algorithms,

the feature extraction process, and feature selection algorithms to

reduce the complexity and size of the system (Section 4), and the

ANN classification model (Section 5).

4. Image processing and feature extraction

First, the image processing algorithms used to analyse the

pressure maps are described. In the next sections, the complete

feature extraction process is explained in detail, i.e. spatial

features from each pressure map and dynamic features to

measure the evolution of the latter. In Section 4.4 we also discuss

about the feature selection algorithms used to reduce the com-

plexity of the system.

4.1. Pre-processing and image segmentation

The first pre-processing step is achieved by thresholding the

incoming pressure map and is done using a known minimum value.

Those pressure values that are lower than the fixed value come from

the electrical noise of the sensors and from external pressure like the

fabric of the mattress. This threshold provides good results with all

the analysed sequences. Next, we apply a 2�2 median filter to

reduce noise and make the pressure maps smoother. This simple

noise removal approach proved sufficient in an environment where

noise is typically caused by defective sensors only.

The most important process in this part of the system is the

segmentation algorithm to locate the different body parts. We

have taken advantage of prior medical knowledge and experts to

identify the most important body parts that influence the classi-

fication decision. The algorithm is able to create segments within

the pressure map in seven body parts: (a) head, (b) back, (c) glutei,

(d) left elbow, (e) right elbow, (f) left heel, and (g) right heel.

The applied segmentation algorithm is mainly based on

pressure profiles analysis and region growing algorithms. Two

pressure profiles are calculated for each incoming pressure map.

The first is obtained by adding the pressure of the columns of the

pressure map. The second is generated from the rows addition.

See Fig. 6 where two pressure profiles have been calculated from

the pressure map of Fig. 7. The vertical lines are the boundaries of

the bounding boxes and were calculated by the algorithm.

The algorithm starts analysing the horizontal pressure profile

in order to divide the profile into four main areas: head, back,

glutei and heels (see the first image profile of Fig. 6). This is done

by the following steps:

� First, the algorithm looks for patient’s glutei. It localises the

highest pressure region and the valleys that enclose the glutei.

� When the glutei region is identified, the algorithm searches for the

back. Starting from the first column of the glutei in the horizontal

profile, the algorithm goes backward till a pressure fall is found.

This pressure fall corresponds to the neck, if the head’s pressure

exists, and also to the first column of the back in the profile.

� The head can be in the pressure map or not. Using a region

growing algorithm, we extract the pressure area that is

enclosed by the beginning of the whole pressure map and

the first column of the back region, calculated in the

previous step.

� Finally, the aim is to find the horizontal profile columns where

heels are. This is done by obtaining the pressure area of the

horizontal pressure profile that is between the end of the

pressure map and the end of the glutei area.

Fig. 4. Spatial features and dynamic features (evolution of the spatial features) are

calculated from a sequence of pressure maps. The ANN classification model is in

charge of recognise intentions (classes) from the dynamic features.

3 The value of 1 s was set after a preliminary experimentation on the most

suitable value.
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At this point, the algorithm has the column boundaries of the

four areas. Now, the segmentation algorithm needs to divide the

heels’ area into two different heels and extract elbows from back

and glutei areas by obtaining the rows of the vertical pressure

profile. The algorithm works as follows:

� The complete heels segmentation must take into account that

sometimes both heels are merged in only one pressure area.

Also, the algorithm needs to discover if one or two heels are

missing. The local minima are found by the algorithm to

perfectly segmentate the heels. See the second image of Fig. 6

where the vertical pressure profile of the heels area is

computed as well as the found boundaries.

� Later, elbows are separated from the trunk (back and glutei) of

the body by a region growing algorithm which will segmentate

the main pressure area from the pressure belonging to elbows

and hands.

When the segmentation algorithm has finished, the corners’

coordinates of each bounding box are localised. An example of

Fig. 6. Vertical and horizontal profiles of the pressure map of Fig. 7. The boundaries of the different body parts (vertical lines) have been calculated by the segmentation

algorithm.

Fig. 5. A diagram showing an example of the processing chain of the proposed recognition system. From the initial input, features are calculated to obtain the desired

output by the ANN-based model, i.e. the class associated to one of the movement intentions.

M. Chica et al. / Computers in Biology and Medicine 42 (2012) 364–375368



segmented pressure map can be seen in Fig. 7. This information

will be the input of the spatial feature extraction algorithm. As we

will see in the experimentation section, the robustness of the

whole system and therefore, the segmentation algorithm, is very

high. Also, the use of a segmentation algorithm mainly based on

pressure profiles will guarantee us a low computational time

which is a pre-requisite of the system.

4.2. Spatial features

The initial features of the pressure maps have been decided after

a medical study comprising thousands of pressure map records.

These features must be extracted from different parts of the patient

body and are one the most critical elements of the processing chain.

If these features are not related with the patient intentions, the

classifier model will not be able to identify the slight movements.

After an extensive medical study we have initially considered

25 features. Note that we will refer to a body part as the section or

subimage of the pressure map enclosed by one of the bounding

boxes calculated by the segmentation algorithm. The 25 spatial

features are:

� Total pressure: Where pk is the pressure value of each pixel k

in the bounding box B:

TP¼
X

kAB

pk ð1Þ

There are seven features of this type, one for each body part:

TPhead, TPback, TPelbow1, TPelbow2, TPglutei, TPheel1 and TPheel2.

� Centre of mass: The centre of mass is defined as the pair of

coordinates ðCMx,CMyÞ:

CMx ¼

P

kABpkxk
P

kABpk
CMy ¼

P

kABpkyk
P

kABpk
ð2Þ

being ðxk,ykÞ the coordinates of the pressure pixel. There are

seven CM features, one for each body part: CMhead, CMback,

CMelbow1, CMelbow2, CMglutei, CMheel1 and CMheel2.

� Pressure distribution: This represents how the pressure area

is distributed with respect to the centre of mass. A similar

concept was used in [19] to detect edges and corners in

images.

� We first compute the variance, dx and dy, and the covariance

dxy in both spatial axis:

dx ¼

P

kABðxk�CMxÞ
2pk

P

kABpk
ð3Þ

dy ¼

P

kABðyk�CMyÞ
2pk

P

kABpk
ð4Þ

dxy ¼

P

kABðxk�CMxÞðyk�CMyÞpk
P

kABpk
ð5Þ

Next the covariance matrix cov is formed from the latter

values:

cov¼
dx dyx

dxy dy

 !

Finally, we calculate the eigenvalues l1 and l2 of the cov

matrix and summarise this information by computing the ratio

r between both eigenvalues:

r¼
l1
l2

ð6Þ

From the computation of the eigenvalues of the covariance

matrix we can obtain the predominant direction of the

pressure map region. For instance, if the pressure distribution

value r-1, the predominant direction of the pressure is the

one associated to the eigenvalue l1. If r-0, then the pressure

distribution direction is associated to l2. Otherwise, if r-1,

the pressure distribution is anisotropic, and there is no

principal direction.

This value is computed for the back and glutei, rback and rglutei,

since it was observed that can be quite important when the

patient intends to communicate his/her intentions.

� Pressure variation: This feature will measure the standard

deviation of the pressure in the bounding box:

s¼

P

kABðpk�pÞ

N
ð7Þ

where N is the number of pixels in the bounding box B, pk the

pressure value at each pixel k, and p is the mean value of the

pressure. Again, this feature is computed only for the glutei

and back body parts: sback and sglutei.

We summarise the complete set of spatial features extracted

for each pressure map in Table 1.

4.3. Dynamic features

The input of the classifier is obtained by calculating the

evolution of the spatial features between the initial and final

frames of a time window (1 s apart). The relative increment

between two features F1 and F2, rF , is calculated as follows:

rF ¼
F2�F1
F2þF1

2

ð8Þ

This formula was used in order to make the dynamic features

non-dimensional. In some cases, some spatial features can be

missing in some pressure maps because of the seven body parts

do not always appear. If one spatial feature is missing, the

computation of the corresponding dynamic feature is not done

and the evolution of the feature is null, setting rF to 0. The

system continues processing the remaining dynamic features. The

Table 1

Pool of the 25 spatial features to be used in our proposal. For each incoming

pressure map, the feature extraction algorithm is applied to calculate them from

the bounding boxes of the pressure map.

Head Back Elbows Glutei Heels

TPhead TPback TPelbow1 TPglutei TPheel1
TPelbow2 TPheel2

CMhead(x) CMback(x) CMelbow1ðxÞ CMglutei(x) CMheel1ðxÞ

CMelbow2ðxÞ CMheel2ðxÞ

CMhead(y) CMback(y) CMelbow1ðyÞ CMglutei(y) CMheel1ðyÞ

CMelbow2ðyÞ CMheel2ðyÞ

rback rglutei
sback sglutei

Fig. 7. A segmented pressure map after the application of the image analysis

algorithm. The bounding boxes are superimposed into the pressure map. The

profiles of Fig. 6 were obtained from this pressure map.
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system is robust to these missing features, as it will be shown in

Table 5, where many patients do not have all the features and the

missclassified instances are very low.

Finally, a normalisation algorithm (z-score standardisation) is

applied to the computed dynamic features to avoid the effects of

having different normal distributions.

4.4. Feature selection

Unfortunately, although the set of 25 features explained in

Section 4.2 was chosen after a complete medical study, it is usual

to have irrelevant features and useless information that degrade

the performance of the models both in speed, due to the high

dimensionality, and accuracy, due to irrelevant information [20].

Feature selection has the aim of choosing the smallest possible

subset of features ideally necessary to describe a problem. In

other words, it can be defined as a search process of P features

from an initial set S of N variables, with PrN. It aims at

eliminating irrelevant and/or redundant features and to obtain a

simpler classification system. In some problems, feature selection

results not only in faster performance, but also in more accurate

classification than using the whole set [21].

For a feature selection problem, the specific goal is trying to

reduce the initial pool of 25 features with just the most impor-

tant, without affecting the overall performance of the classifica-

tion model. To achieve this objective, we have applied a feature

selection algorithm based on ranking the most important fea-

tures. We experimented with two evaluation measures to achieve

this ranking:

� Relief [22]: The general idea of this method is to choose the

features that can be most distinguished between classes. These

are known as the relevant features. At each step of an iterative

process, an instance x is chosen at random from the dataset

and the weight for each feature is updated according to the

distance of x to its nearmiss and nearhit.

� Gain ratio: It evaluates the worth of a feature by measuring the

information gain ratio with respect to the class. Thus, it is a

feature selection algorithm based on information theory and

information gain (a variation of the MIFS algorithm [23]).

The results of applying the previous feature selection algo-

rithms and the reduced set of features is described in Section 6.3.3

of the experimentation.

5. The ANN classification model

The general structure of the ANN is given in the first section. In

the second section, the different MLP configurations are shown.

5.1. ANN paradigm

ANNs are a collection of simple, interconnected nodes, which

operate in parallel and store knowledge through connection

weights between adjacent nodes. There are many types of ANNs

[24]; including probabilistic ANNs, radial basis function networks,

learning vector quantisation, etc.

Here, we have adopted a MLP approach which offers signifi-

cant advantages in terms of computational requirements, mem-

ory usage, and time responsiveness. As already presented, they

have been used extensively in many different applications includ-

ing the most related with our problem (see Section 2.2). This type

of ANN has a layered, feed-forward network topology with its

neurons connected in such a manner that there are no feedback

loops. The MLP represents a deterministic mapping from the

inputs to the outputs, and it is known that, with enough hidden

neurons, the mapping exhibits the property of universal function

approximator [25].

Inside the neuron, a transfer function s transforms the input

value into the output of the neuron. The number of neurons in the

input layer is given by the number of dynamic features (25

features), whereas the number of neurons in the output layer is

equal to the number of movement intentions to be recognised (five

intentions). In addition to the input variables, there is a constant

input of 1.0, called the bias, which is fed to each of the hidden

layers. The bias is multiplied by a weight and added to the sum

going into the neuron. The final output of the classifier system, in

response to the applied input vector, is obtained by selecting the

intention in the output vector having the value closest to 1.

There are several important issues involved in the design of a

MLP. For example, the generalisation of the ANN, which is improved

by using the 20% of the training data to validate the model while it is

being trained. This validation set is used to detect the point when its

performance begins to decrease, which signals the fact that general-

isation has achieved a peak. Therefore, training on the input data

continues as long the training does not increase the model’s error on

the validation data. When the validation error increases, the training

is stopped. If the validation error never increases, the other stopping

criteria is reaching the maximum number of epochs.

However, there are also issues which include critical factors

such as the selection of the number of hidden layers, the number

of neurons in each layer, or the method used to find a globally

optimal solution that avoids local minima. We have compared

different values for these elements, designing 10 MLP configura-

tions that are described in the next section.

5.2. MLP configurations

The common parameters of all the MLP configurations are

shown in Table 2.

As commented in the previous section, 10 different MLP

configurations have been implemented with different values for

the number of hidden layers, the number of neurons in the hidden

layers, and the algorithm used for the MLP training. Consequently,

we have combined the different configuration values in 10

different algorithms. The resulting algorithms and their specific

parameters are detailed in Table 3. A comparison among them is

given in Section 6.3.1.

6. Experimentation

Firstly, the process to generate the database and validate the

model is shown. Then, the experiment conditions and the classifica-

tionmodels to be compared with our proposal are explained. Finally,

we present the results of the experimentation and analyse them.

6.1. Data collection and database generation

Sequences of pressure maps were recorded using real patients

laid on the medical bed prototype (see the real experimentation

environment in Fig. 8). Our objective was to create the database to

Table 2

Common parameter values used for all the MLP

configurations.

Parameter Value

Learning rate Z 0.3

Maximum number of epochs 5000

Transfer function tan-sigmoid
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train and test the behaviour of the proposed recognition system

independently from other external influences like the actuators

response or the changes in the bed position. Therefore, every

movement intention was captured using a fixed horizontal bed

position.

Patients were asked to perform their different movement

intentions to be processed afterwards by the training algorithm.

The movement intentions were repeated several times by the

same person at different times to achieve a good representation of

the inherent characteristics of each movement. After the record-

ing stage, these pressure sequences were tagged with the corre-

sponding intentions. Then the sequences were processed

following the algorithms described in Section 4. We obtained

and stored the extracted dynamic features in a database.

The database contains information from a very diverse pool of

patients with different somatotype. They have been selected from

a representative group of the population covering different ages,

reduced mobility, weights, from 55 kg to 100 kg, and heights,

from 1.60 m to 1.90 m. Women and men were present in equal

terms in the sample. On the whole, validation data were collected

from 20 patients. The collection data were converted into 1154

instances or movement decisions for the four basic movements or

classes, i.e. sit up, lean back, right, and left, and the rest position.

For each patient, we built instances for movement classes and for

the rest class at different moments. An intention of movement

usually takes 15 pressure maps or 1.5 s. Training and test

instances were formed by calculating the 25 features differences

defined in Section 4.2.

6.2. Experimental protocol

In order to test the quality of our MLP design, it was compared

with five well-known classifiers using the same database and

performance indicators. The classification models belong to dif-

ferent paradigms: classification rules, decision trees, instance-

based classifier, probabilistic functions and ensemble of classifiers:

� OneR: We found some references in the literature that state

that simple rules may achieve surprisingly high accuracy on

many datasets [26]. Therefore, we wanted to compare the

performance of our soft computing approach with a simple

and effective rule system. We used the OneR algorithm [27]

which creates one rule per class and classify instances on the

basis of a single attribute, called ‘‘1-rules’’. The rule extraction

algorithm treats all numerically valued attributes as contin-

uous and uses a straightforward method to divide the range of

values into several disjoint intervals.

� C4.5: This is an algorithm introduced by Quinlan [28] for

inducing decision trees from data. It determines a decision tree

that, on the basis of answers to questions about the non-

category features, predicts correctly the value of the class. C4.5

can manage continuous and unknown features. We run the

algorithm with a pruning mechanism with three folds and a

confidence factor of 0.25.

� k nearest neighbours (kNN): this is a instance-based classifier

[29] that classify new instances into a class comparing them

with the nearest instances of the training data (nearest

neighbours). The most common is the 1NN which uses the

closest training instance to compare.

� Naive Bayes (NB): The NB classifier technique [30] is based on

conditional probabilities and uses the Bayes’ theorem. This is a

formula that calculates a probability by counting the fre-

quency of values and combinations of values in the historical

data. It is particularly well suited when the dimensionality of

the input is high. Despite its simplicity, NB can often outper-

form more sophisticated classification methods.

� AdaBoost: AdaBoost is an algorithm for constructing a ‘‘strong’’

classifier as linear combination of ‘‘weak’’ classifiers. It has

been widely used with C4.5 as its classifier [31] showing

excellent results in many problems.

Cross-validation is used to evaluate and compare the designed

models of this study. It is a well-known statistical method which

is based on dividing data into two segments: one used to learn or

train a model and the other used to validate the model. In typical

cross-validation, the training and validation sets must cross-over

in successive rounds such that each data point has a chance of

being validated against. The most common form of cross-valida-

tion is k-fold cross-validation with k¼10. This is the method used

in this paper.

In 10-fold cross-validation the data is first partitioned into 10

equally (or nearly equally) sized segments or folds. Subsequently

10 iterations of training and test are performed such that within

each iteration a different fold of the data is withheld for validation

while the remaining nine folds are used for learning. In our case,

at each iteration the models were tested with instances from

completely different patients from those used in the training of

the model. For all the shown experiments, the performance of the

models is presented as the 10-fold cross-validation accuracy

(correctly classified intentions divided by the total number of

classified intentions).

Fig. 8. The mechanical bed used in the experimentation. Twenty different patients

helped in the data collection, obtaining 1154 final instances to train and test

the model.

Table 3

The different parameter values of the 10 MLP configurations compared in

this work.

Algorithm Number of

hidden layers

Number of neurons

in the hidden layers

Training

algorithm

MLP#1 1 10 Levenberg-Marquardt

MLP#2 1 15 Levenberg-Marquardt

MLP#3 2 f12;18g Levenberg-Marquardt

MLP#4 1 20 Levenberg-Marquardt

MLP#5 1 25 Levenberg-Marquardt

MLP#6 1 10 Bayesian regulation

MLP#7 1 15 Bayesian regulation

MLP#8 2 f12;18g Bayesian regulation

MLP#9 1 20 Bayesian regulation

MLP#10 1 25 Bayesian regulation
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The experiments included in this paper were conducted on

Intel Pentium TM Core 2 Duo at 2 GHz and 3 Gb of RAM memory,

and Windows XP as operating system.

6.3. Results and discussion

We present the experimentation results and the analysis of

them. First, we include a comparison between MLP configura-

tions. Then, the MLP is compared against five classification

paradigms and finally, the result of applying feature selection

algorithms is discussed.

6.3.1. Analysis of the different MLP configurations

The accuracy in the detection of the movement intentions

obtained in the different MLP configurations for the 10 data

partitions is shown in Table 4. Mean and standard deviation are

also specified in the last two rows.

The analysis of the experiments for the different MLP config-

urations showed that:

� Best results are obtained by the MLP#9 configuration, which

has 20 neurons in one hidden layer and was trained by the

Bayesian regulation algorithm.

� The Bayesian regulation algorithm always outperforms Leven-

berg–Marquardt configurations.

� Twenty neurons in one hidden layer seem to be sufficient to

solve the problem. Increasing the number of neurons in the

hidden layers does not seem to offer any significant advantage;

i.e. a MLP with 25 hidden nodes achieved lower accuracy

because of a poorer generalisation.

According to the results we have chosen the MLP#9 as our

reference ANN configuration since it has best performance, using

one hidden layer with 20 neurons. Its confusion matrix obtained

after classifying the test data of the 10 partitions (all instances in

the database) is shown in Table 5.

6.3.2. Comparison with other classification models

In Table 6, the results of the comparison between our MLP

algorithm with the other five classification techniques are shown.

The analysis of the results showed the following facts:

� The most important conclusion is that our ANN-based system

achieves the best performance, being around 3% more accurate

than the second classifier in performance, AdaBoost. The

difference with respect to the other classifiers is much higher,

outperforming C4.5 with an accuracy difference of 13%.

� The MLP offered the best results in all partitions except for the

P2 and P7 partition. The second best technique in the list is the

AdaBoost algorithm which is the best in the latter two

partitions. Although the performance of AdaBoost is worse

than our model, it seems to be much better than the other four

comparison techniques.

� The baseline classifier, OneR, and NB do not obtain good

performance in the experiments (55.42% and 68.69%), demon-

strating the complexity of the classification problem.

6.3.3. Analysis of the classification impact of the feature selection

In this section we present the results of applying selection

algorithms to the pool of 25 features used for the identification of

patient movements. In Table 7 we show the ranking of the

different features, classified in order of importance, according to

the obtained Relief and Gain Ratio measurements.

The main analysis is: (a) the centres of mass of the small body

parts, i.e. head, heels, and elbows, have a low feature ranking,

(b) the pressure of the elbows also has a low position in the

feature selection rankings, and (c) the X component of the centre

of mass of the glutei is low ranked in the Gain Ratio test, while

Table 4

Results obtained by the 10 different MLP configurations described in Section 5.2 for the 10 data partitions (accuracy in %). Mean (x) and standard deviation (s) are shown

in the last two rows of the table.

MLP configurations

Data partitions and

global measures

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

P1 71.62 74.32 91.89 66.22 64.86 71.62 79.73 71.62 72.97 74.32

P2 41.03 55.13 67.95 53.85 70.51 52.56 53.85 52.56 58.97 60.26

P3 83.33 73.08 92.31 87.18 80.77 89.74 94.87 96.15 93.59 94.87

P4 83.33 93.59 74.36 87.18 82.05 93.59 93.59 87.18 93.59 93.59

P5 83.93 76.79 78.57 75.89 83.04 77.68 80.36 84.82 86.61 84.82

P6 89.29 88.39 86.61 86.61 91.96 95.54 95.54 94.64 94.64 97.32

P7 86.61 80.36 89.29 86.61 81.25 91.07 87.5 88.39 87.5 82.14

P8 83.04 93.75 90.18 83.04 94.64 93.75 90.18 92.86 95.54 96.43

P9 89.29 93.75 91.96 92.86 89.29 89.29 90.18 97.32 93.75 91.96

P10 87.8 82.93 81.30 83.74 84.55 86.18 86.99 85.37 87.8 86.99

x 79.93 81.21 84.44 80.32 82.29 84.10 85.28 85.09 86.5 86.27

s 14.58 12.19 8.52 11.87 9.11 13.4 12.32 13.66 11.76 11.66

Table 5

Confusion matrix of the MLP#9 classified instances. Accuracy is shown in brackets

in %. The values are obtained from the sum of the classified instances of the 10 test

datasets. We can also observe the robustness of the segmentation algorithm and

the feature extraction process in the high classification accuracy.

Real classes

rest sit up lean right left

back

294 6 4 1 2 rest P

(95.77) (1.95) (1.3) (0.33) (0.65) r

7 113 0 9 2 sit up e

(5.34) (86.26) (0) (6.87) (1.53) d

13 2 64 3 2 lean i

(15.48) (2.38) (76.19) (3.57) (2.38) back c

10 37 0 173 6 right t

(4.42) (16.37) (0) (76.55) (2.65) e

10 6 2 2 223 left d

(4.12) (2.47) (0.82) (0.82) (91.77)
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rank is still high in the Relief measure. In contrast, the Y

component remains high in both tests.

Consequently, and based on the experiments, we have created

a new model composed of the most important 13 features

selected from the Gain Ratio and Relief tests. The new model

implies a 48% reduction with respect to the original 25 features.

This new model is referred as MLP#9-13 because it maintains the

same configuration than the best MLP configuration, MLP#9. See

the selected features in Table 8.

We have investigated the performance of our MLP model

trained with a reduced number of features (MLP#9–13) in

comparison with the original model (MLP#9). The last row of

Table 9 shows the accuracy, mean, and standard deviation of the

classification results of MLP#9 (left) and MLP#9–13 (right) with

the 10 independent partitions. In addition, we have redesigned

the five comparison classifier models only with the selected

features to be compared with the models that used the complete

set of 25 features (see Table 9 and Fig. 9).

Looking at the results, we can observe how the MLP#9–13

model offers better performance than the original MLP#9 model.

The improvement is in the order of 1.11%. This experimentation

shows that the reduction made by the feature selection algo-

rithms in the feature space do not result in a loss of accuracy; it

even increases the overall performance. Also, the reduced features

do not alter the ranking of the different classifiers methods. The

MLP method still remains well ahead of the next best classifier.

However, performance gains are more relevant in these classi-

fiers, being the NB classifier the one getting higher improvement.

In Table 10, we can also see a time comparison between using

the MLP with 25 features (MLP#9) and 13 features (MLP#9–13).

Obviously, there is an efficiency increase in the computation time

(20% faster with 13 input features). Thanks to the rapidness of the

MLP, it can be observed that the time needed to classify one instance

is not critical for the system in order to make a decision below 0.1 s.

The sum of the different confusion matrices of the 10 test folds

is shown in Table 11. We can compare it with the confusion

matrices obtained with the full feature set in Table 5. We notice

that, in the MLP#9–13 model, the number of misclassified

instances were reduced and that the diagonal of the confusion

matrix shows better results.

7. Concluding remarks and future work

In this paper, a novel and complete classification system based

on ANNs for recognising patient intentions on a bed was pro-

posed. The classification system will be used to develop a natural

human–machine interface to allow patients to control a

motorised bed with slight body movements.

The recognition system is able to perfectly segment the

pressure map of the patient. Then, a feature extraction process

is performed to obtain the most representative features of the

pressure maps. A MLP was successfully designed to transform

these features in classified intentions of movement. Different MLP

Table 7

Ranking output of the two feature selection algorithms used in this study. The

dynamic features are ordered by the importance given by the algorithms. The

horizontal line divides the final 13 selected features from the whole pool of 25

features.

Relief Gain ratio

0.053 CMback(x) 0.400 TPglutei
0.049 TPback 0.384 TPhead
0.048 TPglutei 0.339 CMback(y)

0.046 CMglutei(y) 0.336 TPheel2
0.042 CMback(y) 0.332 TPback
0.042 rback 0.324 rback
0.039 sglutei 0.316 TPheel1
0.039 TPhead 0.297 rglutei
0.035 sback 0.293 CMglutei(y)

0.033 CMglutei(x) 0.291 sglutei
0.033 TPheel1 0.262 TPelbow1

0.029 rglutei 0.259 sback
0.022 TPheel2 0.220 CMback(x)

0.019 CMelbow1ðxÞ 0.213 TPelbow2

0.013 CMheel2ðyÞ 0.208 CMhead(y)

0.013 TPelbow2 0.206 CMglutei(x)

0.013 CMheel1ðyÞ 0.186 CMelbow1ðxÞ

0.012 CMheel2ðxÞ 0.182 CMelbow1ðyÞ

0.011 CMheel1ðxÞ 0.174 CMelbow2ðxÞ

0.008 CMelbow1ðyÞ 0.167 CMheel1ðyÞ

0.006 TPelbow1 0.138 CMelbow2ðyÞ

0.004 CMhead(y) 0.136 CMhead(x)

0.003 CMelbow2ðyÞ 0.129 CMheel1ðxÞ

0.002 CMhead(x) 0.120 CMheel2ðxÞ

0.001 CMelbow2ðxÞ 0.103 CMheel2ðyÞ

Table 6

Performance results of the OneR, NB, C4.5, 1NN, AdaBoost, and MLP algorithms

respectively (in %) for the 10 dataset partitions. Mean (x) and standard deviation

(s) are shown in the last two rows of the table.

Data

partitions

OneR NB C4.5 1NN AdaBoost

with C4.5

MLP

P1 55.41 47.3 63.51 51.35 72.97 72.97

P2 50 70.51 62.85 65.26 75.64 58.97

P3 57.14 85.71 92.86 77.14 88.57 93.59

P4 56.52 82.61 63.04 78.26 76.09 93.59

P5 63.39 78.57 77.68 73.21 83.93 86.61

P6 48.48 84.85 90.91 87.89 93.94 94.64

P7 40.18 65.18 72.32 59.82 89.29 87.5

P8 73.17 56.1 63.41 90.24 92.68 95.54

P9 62.71 55.93 79.66 69.49 84.92 93.75

P10 47.15 60.16 65.85 78.86 80.49 87.80

x 55.42 68.69 73.21 73.15 83.8 86.5

s 9.51 13.78 11.63 12.01 7.38 11.76

Table 8

A list with the 13 selected features after applying the feature selection algorithms.

Head Back Glutei Heels

TPhead TPback TPglutei TPheel1
TPheel2

CMback(x) CMglutei(x)

CMback(y) CMglutei(y)

rback rglutei
sback sglutei

Table 9

Comparison of the accuracy obtained by classifying the 10 independent test sets

with the whole set of features (25) and the reduced set (13). The given values are

the mean (x) and standard deviation (s) obtained from the runs on the 10

independent test data sets.

25 features 13 features

Classification models x (%) (s) x (%) (s)

OneR 55.41 9.51 55.41 9.51

NB 68.69 13.78 74.76 12.73

C4.5 73.21 11.63 78.97 11.28

1NN 73.15 12.08 79.63 11.17

AdaBoost with C4.5 83.85 7.38 84.74 9.89

MLP 86.5 11.76 87.61 9.55
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configurations have been compared to each other, and the best

configuration was a MLP with one hidden layer with 20 neurons,

trained by the Bayesian regulation algorithm.

Our model was tested with real patients, and the results

showed excellent performance on the test data, obtaining an

accuracy higher than 87%, which may be good enough for the

development of the future intelligent medical beds. We have

compared the MLP classifier against five well-known classifica-

tion paradigms. The MLP classifier always outperforms the other

classifiers, being a 3% better than the well-known AdaBoost

(ensemble of classifiers) and 13% better than C4.5 (decision trees).

We have observed how the MLP approach achieves good

classification rates for the five intentions. The rest class presents

the best results (more than the 95% of the test instances);

followed by the left class (92%). Accuracy becomes reduced in

the sit up and right classes. This is justified due to the fact that

some patients started their right intention with a rising move-

ment that could be incorrectly classified as a sit up intention.

In addition, feature selection algorithms to reduce the com-

plexity and time cost of the model were applied. The results

showed that the set of input features was reduced by 48%, and the

models improved their performance. The computation time was

also reduced by 20%. The feature selection algorithms considered

that the centres of mass of the elbows, heels, and head are not

very relevant to predict movement intentions since only small

displacements are done in these areas, removing the correspond-

ing features.

Future work will be devoted to online close the control loop

with the motorised actuators of the bed, according to the MLP

classification outputs. Furthermore, we expect that the system

will improve its accuracy when running online since, after a short

time, patients will train themselves on how to achieve a better

performance. We also intend to perform further improvements

in: (a) the classifier model, using evolutionary algorithms to

identify a near optimal design of the configuration and

Fig. 9. Boxplots showing the performance of the five tested algorithms in the 10 data partitions. On the left, the models created using the initial 25 features. On the right,

the classification models just with the reduced set of 13 features.

Table 10

Computation time of the MLP (with 25 and 13 features) in milliseconds. The time

was calculated using the computer described in Section 6.2.

Algorithm

name

Time for one

instance

Time for the whole set of instances

(1154)

MLP#9 0.02 24.16

MLP#9–13 0.02 20.36

Table 11

Confusion matrix of the MLP#9-13 classified instances using the reduced set of 13

features. The values are obtained from the sum of the classified instances of the 10

test datasets. Accuracy is in brackets in %.

Real classes

rest sit up lean right left

back

297 4 3 0 3 rest P

(96.74) (1.3) (0.98) (0) (0.98) r

8 118 0 5 0 sit up e

(6.11) (90.08) (0) (3.82) (0) d

8 7 68 0 1 lean i

(9.52) (8.33) (80.95) (0) (1.19) back c

2 38 0 181 5 right t

(0.88) (16.81) (0) (80.09) (2.21) e

18 7 10 1 207 left d

(7.41) (2.88) (4.12) (0.41) (85.19)
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architecture of the ANN (as done for example in [32]), and (b) in

the sensors layout and distribution.
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