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A B S T R A C T 

In this paper, we propose a system for authenticating local bee pollen against fraudulent samples using 
image processing and classification techniques. Our system is based on the colour properties of bee pollen 
loads and the use of one-class classifiers to reject unknown pollen samples. The latter classification tech­
niques allow us to tackle the major difficulty of the problem, the existence of many possible fraudulent 
pollen types. 

Also presented is a multi-classifier model with an ambiguity discovery process to fuse the output of the 
one-class classifiers. The method is validated by authenticating Spanish bee pollen types, the overall 
accuracy of the final system of being 94%. Therefore, the system is able to rapidly reject the non-local pol­
len samples with inexpensive hardware and without the need to send the product to the laboratory. 

1. Introduction 

The bee-keeping sector has a notable socio-economic relevance 
in Europe, according to the FAO Agricultural Statistics Division. 
Although honey is the most important bee product, there are other 
well-known products that result from bee-keeping activity, such as 
pollen or royal jelly. Bee pollen production, for both domestic and 
foreign markets, is considered by many bee-keepers a means of 
diversification and increasing their income. Furthermore, bee pol­
len products are considered an important food supplement, and 
can be used in medical treatments, although they are not scientif­
ically recognised. 

Bee-keepers, bee-keeping associations, and laboratories are 
interested in detecting fraud in pollen, and require tools to stan­
dardize and authenticate bee pollen origin in order to guarantee 
its nutritive and health benefits. Microscopic analysis of pollen 
grains, which form bee pollen loads, is a precise method of identi­
fying origin. However, this process requires the laboratory work of 
melissopalynology experts, and is thus time consuming and costly. 
There have been many attempts to automate pollen grain identifi­
cation by computer algorithms but there is no inexpensive, com­
plete, and automated process (Allen, 2006; Boucher et al., 2002; 
France et al., 2000; Rodríguez-Damián et al., 2006). 

Experts use macroscopic identification of bee pollen loads by 
means of such properties as colour. This method, although it cannot 
guarantee complete accuracy, can provide an initial, reliable idea of 
bee pollen origin (Kirk, 1994). Also, some melissopalynology ex­
perts separate pollen load samples by colour as a previous step to 
final microscopic identification (Campos et al., 1997; de Sá Otero 
et al., 2002). This process is carried out manually by experts who 
spend more than an hour separating each sample, an indication of 
the difficulty and subjectivity involved. Thus, the development of 
a completely automated, inexpensive system which can recognize 
external pollen load properties, such as colour, can bring about a 
twofold improvement in bee pollen origin authentication: (a) rec­
ognition of local bee pollen by non-experts (bee-keeping associa­
tions, for instance) and (b) reduction of laboratory work by 
experts through separating the pollen loads automatically. 

Developing an automatic system to recognize and separate the 
pollen loads by colour is a highly complex task, requiring a specific 
solution. Even within a single pollen type, colour variability is high 
due to environmental characteristics, such as humidity during the 
plant growth, as well as the drying process of the pollen, or the pres­
ence of impurities. In addition, classification of known local pollen 
loads must be made against all other world pollen types. This is an 
important obstacle to the designing of an automated system, since 
colour data cannot be collected from all existing bee pollen types. 
In order to overcome these main difficulties, we propose a novel 
bee pollen load classification system based on image processing 
and one-class classification. The use of computer vision and 



classification techniques is not new in the development of food qual­
ity control systems and has performed well in many situations 
(Meryetal.,2010; Kangand Sabarez, 2009; Du and Sun, 2004,2006). 

In our case, the well-known mean shift algorithm (Comaniciu 
and Meer, 2002) is used to filter and homogenize pollen load col­
our information. Moreover, one of principal novelties of our pro­
posed method is the use of one-class classification (Moya et al., 
1993; Ritter and Gallegos, 1997; Chandola et al., 2009; Tax, 
2001), which was introduced as a classification paradigm for 
detecting anomalies or outliers in data distribution; that is, when 
there is enough data to model the positive classes but there is lim­
ited data on the negative classes. This characteristic is ideal for 
dealing with our problem, since local pollen types can be modelled, 
but not all possible fraudulent pollen types. The application field of 
one-class classification is enormous, from the fraud detection (Tan-
iguchi et al., 1998; Phua et al., 2004) to image processing area 
(Pokrajac et al., 2007; Augusteijn and Folkert, 2002). 

In addition to one-class classification, a multi-classifier algorithm 
was designed to aggregate one-class classifier outputs, given a 
unique response with a confidence measure. Unlike existing 
schemes, our fusion algorithm incorporates an ambiguity discovery 
mechanism to find pollen types with identical colour properties, in 
the case of which the system must behave with sufficient robustness. 

The proposed method has been validated for the authentication 
of the most common Spanish pollen types, Cistus ladanifer, Rubus, 
Echium, and Quercus ilex, with respect to non-Spanish pollen types 
(de Sá Otero et al., 2002). In total, a dataset of around 2000 in­
stances has been used to validate the trained system. In addition, 
a comparison of one-class classifier approaches has been done with 
four different algorithms: a Gaussian estimator, a Parzen classifier, 
a support vector data description (SVDD), and a k-nearest neigh­
bours (kNN) technique. The classifiers were validated using ROC 
analysis and classification accuracy indicators. 

This paper is structured as follows. In Section 2, the bee pollen 
images and the system used to acquire the images are described. 
Also, the proposed method, formed by image processing algo­
rithms and one-class and multi classifiers is given in the same sec­
tion. The developed experiments are presented and analyzed in 
Section 3. Finally, in Section 4, some concluding remarks and pro­
posals for future work are made. 

2. Materials and methods 

2.1. Bee pollen problem description 

Different samples of Spanish bee pollen loads were obtained 
from bee-keepers to build the authentication models and validate 
them against non-local samples. Samples belonging to the four lo­
cal pollen types (Rubus, Echium, Cistus ladanifer, and Quercus ilex) 
and non-local samples were identified and grouped by experts. 
Images where these pollen loads samples appear are in Fig. 1. In 
this figure it can be observed how, even for experts, colour separa­
tion is difficult and subjective, and how non-local samples can be 
misleading (image on the right of the figure). 

A computer vision system was used to take images from each of 
the pollen load samples, as shown in Fig. 2. It is composed of an 
inexpensive camera, an LED illumination system, and a tray for 
sample placement. This set of images is the input of the system 
and the pollen loads appearing in those images must be identified 
as local or unknown pollen types. 

2.2. Outline of the proposed method 

An overview of the proposed system can be observed in the 
diagram of Fig. 3. In this diagram, the initial acquired image of 
the pollen loads by computer vision hardware as explained in 

Section 2.1 can be seen. This image is segmented and processed 
by the mean shift algorithm (see Section 2.3). 

Then, the colour instances of the pollen loads are used to train a 
multi-classifier model based on one-class classifiers (one for each 
local pollen type). See Sections 2.4, 2.5, and 2.6 for the methods 
used in this part of the system. 

Finally, the multi-classifier outputs the authentication of each 
colour instance, classifying them as a known local or non-local 
(outlier) pollen type. 

2.3. Image processing 

In the following sections we will describe the segmentation and 
selection of the colour space (Section 2.3.1) as well as the used im­
age filtering algorithm (Section 2.3.2). 

2.3.1. Segmentation algorithm and colour space 
First, the well-known Otsu segmentation algorithm (Otsu, 

1979) is applied to the gray-scale image to extract the pollen loads 
from the background. Then, a morphological opening operation is 
applied to the thresholded binary image (Gonzalez and Woods, 
2008). This operation removes those small objects having less than 
50 connected pixels in a 8-connected neighbourhood. 

Pixels extracted in the latter phase are to be analysed by the 
remaining processing algorithms. Their colour information can be 
represented in several ways. The most common is the RGB space 
where colours are represented by their red, green, and blue compo­
nents in an orthogonal Cartesian space. However, the RGB space 
does not lend itself to mimicking the higher level processes which 
allow human colour perception. Colour is better represented in 
terms of hue, saturation, and intensity, as HSI or HSV spaces do 
(Lucchese and Mitra, 2001). 

However, the latter colour spaces are not perceptually uniform. 
The CIE L*u* v* and L*a*b* are ideal for colour recognition because of 
the following three properties: (a) separation of achromatic infor­
mation from chromatic information, (b) uniform colour space, and 
(c) similarity to human visual perception (Wyszecki and Stiles, 
1982). In these colour spaces, for instance, the Euclidean distance 
between two colour points can be easily calculated, as in Eq. (1). 
This property will ease the work of the classification algorithms 

D12 = ^(U2-LX)2 + (u*2-u\)2 + (v*2-v\)2 (1) 

Although there are many other possible colour spaces, e.g. CIE 
YUV or CIECAM02, we have used the CIE L*u* v* colour space be­
cause of its good results in different colour computerised applica­
tions (Chen et al., 2004; Gókmen et al., 2007). 

2.3.2. Mean shift filtering 
Each extracted pollen load from the image has many different 

L'u'v* colour values, possibly as many as pixels contained in the 
load. This has a negative impact on pollen load colour authentica­
tion, since human experts customarily identify each pollen load as 
a unique colour. Therefore, there is a need for a image processing 
algorithm before applying the classification methods. The goal is 
to homogenize and smoothen the large quantity of different colour 
points of a pollen load in just a few unique and representative col­
our instances. 

One of the best methods for discontinuity-preserving smooth-
ening in image processing is the mean shift algorithm, proposed 
in Comaniciu and Meer (2002), and in line with the feature space 
analysis. The main strengths of the mean shift algorithm are: (a) 
it is an application independent tool, (b) it is suitable for real data 
analysis, (c) it does not assume any prior shape on data clusters, (d) 
it can handle arbitrary feature spaces, and (e) it has only one 
parameter, the bandwidth selection window size, to be chosen. 
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Fig. 1. Different images of pollen load samples which were taken with our vision system. Left and central images belong to known pollen types (Rubus, Cistus ladanifer, 
Quercus ilex, and Echium, respectively). Right images are non-local samples and must be rejected by the system. 

Fig. 2. On the left, some separated pollen load samples are shown. On the right, the computer vision system used to get images is presented. 

The mean shift procedure, originally presented by Fukunaga 
and Hostetler (1975), is a procedure for locating the maxima of a 
density function given discrete data sampled from that function. 
It is also an iterative method, starting with an initial estimate or 
points x, and a G kernel function. This kernel function determines 
the weight of nearby points for the re-estimation of the mean. De­
note by y¡ with j = 1,2,... the sequence of successive locations of 
the kernel G: 

30+i = ; 
5>C(II¥II) 

±c(\m\)2 

of 3-dimensional vectors (pixels). The space of the lattice is known 
as the spatial domain, while the colour is the range domain. For 
both, the mean shift algorithm will work with the Euclidean metric 
defined in the previous section for the colour space. When both do­
mains are concatenated, the dimensions of the joint spatial-range 
domain have to be compensated by proper normalization. Thus, 
the multivariate kernel is defined as the product of two radially 
symmetric kernels, and the Euclidean metric allows a single band­
width parameter for each domain: 

(2) *»»(*) = m " (3) 

is the weighted mean aty,- computed with the kernel G andy! is the 
centre of the initial position of the kernel. 

Taking this theory as a base, Comaniciu and Meer (2002) extend 
the mean shift procedure for filtering and segmenting images. A 
colour image is typically represented as a two-dimensional lattice 

where Xs is the spatial part, xr is the range part of a feature vector, 
k(x) the common profile used in both domains, hs and hr the kernel 
bandwidths, and Cthe normalization constant. As the normal kernel 
always provides satisfactory results, the user just has to provide one 
parameter h = (hs, hr), which controls the size of the kernel, and then 
the smoothening resolution. 
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Fig. 3. The diagram of the new discernment methodology, based on computer vision and one-class classification, is shown. The processing chain provides with a final 
authentication output starting from the image acquisition step. 

Nevertheless, replacing the pixel in the centre of the window by 
the average of the pixels in the window blurs the image. Disconti­
nuity-preserving smoothening techniques, on the other hand, 
reduce the amount of smoothening near abrupt changes. The mean 
shift algorithm uses a bilateral filtering which works in the joint 
spatial-range domain. The data are independently weighted in 
the two domains and the centre pixel is computed as the weighted 
average of the window. 

The kernel in the mean shift procedure moves toward the max­
imum increase in joint density gradient, while bilateral filtering 
uses a fixed static window. 

Finally, the mean shift filtering algorithm works as follows. Let 
x, and z„ ¡' = 1 n be the (p + 2)-dimensional input and filtered 
image pixels in the joint spatial-range domain. Being the super­
scripts s and r the spatial and range components of a vector, 
respectively, and c the point of convergence, for each pixel: 

1. Initialize j = 1 and yf>1 = x,. 
2. Compute y,j+1 according to Eq. (2) until convergence, y = y¡,c. 
3. Assign z,: = (x?,y[c). 

The spatial bandwidth has a distinct effect on the output when 
compared to the range (colour) bandwidth. Only features with 
large spatial support are represented in the filtered image when 
hs increases. On the other hand, only features with high colour con­
trast survive when hr is large. 

2.4. One-class classification 

In pollen authentication, there is limited data to model the non­
local pollen types (negative classes or outliers). Although it is pos­
sible to model the local pollen types, we cannot do the same with 
all possible existing fraudulent pollen types from around the 
world. One-class classification has been selected as an appropriate 
paradigm to deal with this problem. 

One-class classification is different from conventional binary or 
multi-class classification. This distinction lies in the absence of the 
negative class (normally called outlier) or in the vagueness of its 

definition and sampling (Tax, 2001; Chandola et al., 2009). Origi­
nally, the term was given by Moya et al. (1993) and some authors 
refer to this problem as outlier detection (Ritter and Gallegos, 
1997), novelty detection (Bishop, 1994), or concept learning (Jap-
kowicz et al., 1995). 

This absence or limitation of the negative data makes the prob­
lem harder to solve than conventional classification problems. The 
goal of one-class classification is to define a classification boundary 
around the positive class (also called target) which maximizes the 
number of accepted true positive instances and minimizes the 
number of rejected true negative instances. 

The one-class classification techniques used for anomaly or out­
lier detection can primarily be grouped in two categories: density-
based and boundary-based classifiers (Tax, 2001). Within the first 
group are Gaussian models or Bayesian networks (Siaterlis and 
Maglaris, 2004, 2001). One of the boundary-based classifiers is 
the well-known kNN, modified for the case of one-class classifica­
tion (Byers and Raftery, 1998; Eskin et al., 2002), or support vector 
machines (Ratsch et al., 2002; Tax and Duin, 2004). 

We have used four different approaches of the latter two groups 
to test them in the system: the Gaussian and Parzen classifiers, 
which can be considered density-based classifiers, and SVDD and 
kNN, which are the most representative algorithms of the bound­
ary-based classifiers. 

2.4.1. Gaussian model 
The training dataset being a set of p-dimensional instances 

x,,! = l , . . . ,n , this model simply calculates a Gaussian one-class 
classifier by estimating the mean x and the covariance matrix Sn 

of the dataset distribution. The classifier uses the Mahalanobis dis­
tance (x - UnfS^ (x - ¡in) to estimate the fitness of each instance 
to the target class. In addition, a threshold 0pn needs to be defined 
during the training phase by means of a target acceptance rate 
which is normally given as a parameter. 

Each new testing instance z will be evaluated for acceptance or 
rejection as target by the following Eq. (4): 

z is accepted as target if (x - pLn)
TSn

l(x - pLn) < 0pn (4) 



2.4.2. Parzen classifier 
The goal of this classifier is to fit a Parzen density estimation on 

the training dataset x. The Parzen density estimation (Parzen, 
1962) is a mixture of Gaussian kernels centred on each training in­
stance x¡ with diagonal covariance matrices. The only parameter to 
be estimated in the model is the width of the kernel h, equal for all 
kernels. This means that the Parzen density estimator assumes 
equally weighted features. The optimization of this h parameter 
is usually performed by maximum likelihood estimation. 

2.4.3. Support vector data description (SVDD) 
The main idea of SVDD is to obtain a spherical shaped boundary 

around the training dataset x which can enclose as many samples 
as possible while having the minimum volume. The sphere is char­
acterised by its centre c and radius R>0. Minimization of the 
sphere volume is achieved by minimizing its square radius R2. To 
improve the generality of the model, some samples are located 
outside the sphere but larger distances from the centre should be 
penalized. Thus, slack variables are included in the optimization 
of the variables which will determine the hypersphere. For the 
mathematical details, please refer to seminal paper of Tax and Duin 
(2004). 

Given a new sample z, we compare its distance to the centre of 
the sphere with the radius of the sphere R. If z is inside the hyper­
sphere, it belongs to the target class. Otherwise, it is an outlier. 

2.4.4. One-class kNN 
Distance-based one-class classifiers are based on the assump­

tion that normal data instances occur in dense neighbourhoods 
while anomalies occur far from their closest neighbours. kNN, orig­
inally provided by Dasarathy (1991), is the best-known distance 
classifier. The basics of the algorithm for one-class classification 
is that the anomaly score of a data instance is defined as the dis­
tance with its feth nearest neighbour in a given dataset. 

Nearest neighbour classifiers always require the definition of 
distance or similarity measures between two data instances. For 
continuous features, the Euclidean distance is the most popular 
choice. For our problem we have chosen k = 1 as the parameter 
of the algorithm; i.e., each new instance z will be considered as tar­
get or outlier depending on the classification of its closest neigh­
bour in the training data. 

In multi-class anomaly detection, which is the taxonomy of our 
problem, training data contains only labelled instances belonging 
to multiple normal classes. A test instance is considered anomalous 
if it is not classified as normal by any of the classifiers (see plots of 
Fig. 4). A confidence score with the prediction made by the classi­
fier is normally provided. If none of the classifiers are confident in 
classifying the test instance, the instance is declared to be anoma­
lous (Chandola et al., 2009). We have followed this kind of ap­
proach, as will be described in Section 2.5. 

2.5. Fusion of the classifiers 

C being a set of known local bee pollen load types, the training 
data will contain instances belonging to ||C|| classes. In order to use 
one-class classifiers and be able to reject unknown pollen load 
types, the system in ||C|| binary sub-problems must be decom­
posed. Thus, ||C|| one-class classifiers/i,/2,.. ./¡|c|| based on densities 
or distances must be trained, and an ensemble scheme has to be 
built to fuse them in a multi-class prediction. 

Therefore, for each pollen colour instance x we first map each 
one-class classifier output fi(x) to a posterior probability 
P{y = c\x). These probabilities are also normalised in the range 
[0,1]. The posterior probability of the each classifier's target can 
be considered as the confidence CF0C{y = c\x) that one instance x 
belongs to the class c. 

In order to classify an incoming pollen load sample as one of the 
\C\ possible pollen types a multi-classifier is constructed. It com­
pares the confidence CF0C(y|x) of all the one-class classifiers and 
provides a global prediction from the most reliable one-class clas­
sifier. The multi-classifier prediction m is given by: 
<D = maxCF0C(c|x) (5) 

However, it is also necessary to estimate the confidence of the 
multi-classifier prediction. To do this we first introduce two 
parameters as done in Goh et al. (2005): 

Toc = CF0C(0)\x) (6) 

Tm = Toc - maxu.c<.nc^coCFoc(c\x) (7) 

Although Toc is the highest confidence factor from the \C\ binary 
one-class classifiers and determines the multi-classifier prediction 
class co, Toc might not be sufficient to estimate the global confidence 
of the multi-classifier prediction. For this reason, we introduce the 
use of the multi-class margin Tm. Wrong predictions could have 
high Toc but small Tm but correct predictions must have higher mul­
ti-class margin values Tm. 

There is a better separation of correct from erroneous predic­
tions if the multi-class margin variable is used (Goh et al., 2001; 
Schapire and Singer, 1999). After preliminary experimentation, 
we set both parameters Toc and Tm to 0.5 and 0.01, respectively 
for all the paper experimentation, to be used in the final decision 
of the multi-classifier as in the rule of Eq. (8). 

<D is accepted, if Toc > 0.5 and Tm > 0.001, 
outlier, otherwise 

2.6. Ambiguity discovery 

Sometimes one or more bee pollen types could have exactly the 
same colour description as another. In that case, the multi-classifi­
cation system must be able to detect, during the training phase, 
that one incoming local pollen type is identical to one already 
existing. This mechanism is called ambiguity discovery. 

The ambiguity discovery process starts if a new pollen type is 
included in the training process and its corresponding one-class 
classifier is trained and fused in the multi-classifier scheme, 
increasing not only the previous error rate, but also the mis-classi­
fication with an existing pollen type. Mathematically, sm, being a 
sensitivity-specificity error of a multi-classifier before the inclu­
sion of the new pollen type, and sm2 the error of a multi-classifier 
after the inclusion of the classifier of the new pollen type, AE will 
be the difference between them. The ambiguity discovery process 
is launched every time the AE parameter is higher than a fixed va­
lue. In our case we have used the F-measure (van Rijsbergen, 1979) 
as the sm, error measure. 

Where AE exceeds a threshold value, ambiguity discovery is 
triggered and the process works as follows: 

1. The confusion matrix of the new multi-classifier for the testing 
data is computed. 

2. The maximum value of (A,,!,) is calculated with i ¥=), A being 
the vector of real classes and L the vector of predicted classes. 

3. The user is consulted about merging the conflicting classes c, 
and c¡ into a unique class c¡. 

4. The multi-classifier is trained according to the response of the 
user in the third step. 

3. Results and discussion 

We first show the software prototype used to test and validate 
the system as well as the results of the image processing 
algorithms applied (Section 3.1). Then, and using the features 
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Fig. 4. On the right, a graph showing a one-class classification problem is presented. The left graph shows a multi-class classification based anomaly detection problem 
(Chandola et al., 2009). 

resulting from the latter algorithms, an experiment testing the 
one-class classifiers and the final multi-classifiers is run. The 
performance indicators used to compare the classification 
algorithms are given in Section 3.2. The analysis of the results 
are commented on Sections 3.3 and 3.4. 

3.1. Framework prototype and image processing results 

A software prototype was developed to manage the created 
local pollen types, train and adjust the models, and validate the 
whole system (see Fig. 5). All the algorithms tested in this section 
are embedded in this platform. This software was programmed in 
MATLAB using some functions of the dd_tools library (Tax, 2011). 

A set of images in TIFF format and resolution of 1024 x 768 pix­
els were loaded and processed by the software following the steps 
described in Section 2.3: pre-processing, segmentation of the im­
age, and mean shift filtering. 

As explained in Section 2.3.2, the selection of an appropriate 
bandwidth parameter for the mean shift algorithm is not trivial. 
This selection depends on the kind of images used in the applica­
tion. Basically, the implemented mean shift algorithm receives 
the spatial bandwidth hs, the range bandwidth hr, and the mini­
mum segment area in number of pixels. The last parameter is fixed 
to a high value (20 pixels) in order not to segment a pollen load 
into different parts. 

The selection of the other two parameters is more complicated. 
High spatial bandwidths merge different bee pollen loads because 

they are normally close to each other. Low range bandwidths do 
not effectively aggregate the entire colour information of the pol­
len loads. We conducted a preliminary experiment with different 
values, and the set of bandwidths h = {hs, hr) = (15,20) is the best 
approach according to this study. Original and filtered pollen load 
images are shown in Fig. 6. 

3.2. Evaluation of the one-class authentication system 

From the processed and filtered images, a set of 3146 colour in­
stances, each with three input features (corresponding to the 
L'u'v* colour space values) and its class (one of the four pollen 
types or an outlier class), is created. Of this set of colour instances, 
400 are used for the training of the four one-class classifiers (100 
each pollen type), 800 to test the one-class classifiers (400 belong­
ing to the four known pollen types and 400 were outliers), and the 
remaining 1946 instances to validate the multi-classification sys­
tem. The three sets of instances are independent. We have summa­
rised the used data in Table 1. 

As remarked in the text, different pollen load types can have 
the same colour. In these cases, the system's ambiguity discovery 
process is brought into play, creating a new pollen type with the 
same colour properties. However, to validate the classifiers, the 
outlier instances are compounded by pollen types that can have 
similar, but not identical, colour properties to those of the local 
pollen types, in which case the ambiguity discovery process is 
not started. 
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Fig. 5. Screenshot of the software built in MATLAB to test the algorithms. This software could be also used by pollen experts and bee-keepers. 



Fig. 6. Result of applying the mean shift algorithm (h = (hs,hr) = (15,20)). On the left, the original image is shown. On the right, we present the filtered image. 

Table 1 
Description of the three independent datasets used to train, test the classifiers, and 
validate the whole system. 

Dataset name Total size Pollen types instances Outlier instances 

Training 
Test 
Validation 

400 
800 
1946 

400 
400 
1016 

0 
400 
930 

Table 2 
Evaluation measures obtained by the one-class classifiers for each of the four pollen 
types. Lower values mean better performance. 

Gaussian 
Parzen 
SVDD 
kNN 

Gaussian 
Parzen 
SVDD 
kNN 

Rubus 

FN rate 

0.1 
0.2 
0.1 
0.05 

FP rate 

0 
0 
0 
0 

Cistus ladanifer 

FN rate 

0.06 
0.25 
0.13 
0.06 

FP rate 

0 
0 
0 
0 

F-measure 

0.9474 
0.8889 
0.9474 
0.9744 

F-measure 

0.9691 
0.8571 
0.9305 
0.9691 

Echium 

FN rate 

0.19 
0.27 
0.1 
0.09 

FP rate 

0 
0 
0 
0 

Queráis ilex 

FN rate FP rate 

0.06 
0.06 
0.09 
0.01 

0 
0 
0 
0.0028 

F-measure 

0.8950 
0.8439 
0.9474 
0.9529 

F-measure 

0.9691 
0.9691 
0.9529 
0.9851 

In order to validate the classifier performance, classification 
accuracy, false negative and positive rates, F-measure, and confu­
sion matrix are calculated. A false negative (FN) occurs when the 
outcome of the classifier is incorrectly predicted as outlier when 
it is actually a target. A false positive (FP), on the other hand, occurs 
when the outcome is incorrectly predicted as target when it is 
actually an outlier. The FN rate measures the number of FNs out 
of the total number of negatives or outliers, and the FP rate calcu­
lates the fraction of FPs divided by the total number of positives or 
target instances (Witten and Frank, 2005). The F-measure provides 
a relation between the precision and recall of the classification re­
sults (van Rijsbergen, 1979). 

We have also used the receiver operating characteristic (ROC) 
curve analysis and the area under the curve (AUC) (Provost and 
Fawcett, 1997). The ROC curve provides a way to represent the 
trade-off between false and true positives for different values of 
the rejection threshold in anomaly detection and one-class classi­
fication problems (Bradley, 1997). It does not depend on the spe­
cific values of the classification rejection threshold. Also, the AUC 
summarizes the classification performance of the classifier in the 
entire range [0,1] of the FP rate, and can be interpreted as the 

probability of authenticating non-local pollen types (outliers) 
higher than local pollen types. It is calculated from the ROC curve. 

3.3. Analysis of the one-class classifiers 

In this section, we have analysed the performance of the four 
one-class classification paradigms, defined in Section 2.4, in the 
authentication of each of the selected local bee pollen types. These 
results were obtained by classifying the test dataset with the 
trained one-class classifiers. The classifiers were trained without 
rejecting any training instance as outlier (rejection threshold equal 
to 0%). In Table 2 the evaluation measures of the classifiers are 
shown for each pollen type. 

By observing the figures of Table 2, we arrive at the following 
analysis: 

• The kNN classifier is the best classifier in comparison with the 
other models for the authentication of the four pollen types, 
although for the classification of Cistus ladanifer the same 
results are achieved by the Gaussian classifier. 

• The SVDD is the second best classifier according to some met­
rics. However, it does not clearly outperformed the simple 
Gaussian classifier. The Parzen model does not reach the results 
of the other classifiers. 

• In general, the FP rate is almost null. This means that the clas­
sifiers are able to correctly identify all the outliers (non-local 
pollen types) without misclassifying them as local pollen types. 

• The FN rate is higher than the FP rate. Nevertheless, the FN rate 
is low, between 5% in the best classifier (the kNN) and 27% in 
the worst case (the Parzen model). 

• The F-measure shows similar results. The kNN classifier is the 
best except in one problem, the authentication of the Cistus 
ladanifer type. 

The ROC analysis will allow us to understand the performance 
of the classifiers without taking into account the rejection thresh­
old of the targets considered as outliers which biased the measures 
of the previous comparison. In Fig. 7 and Table 3 the ROC curves 
and the AUC values are presented. The ROC curves are shown for 
the most complicated pollen types: Rubus and Cistus ladanifer. In 
these cases, the Gaussian classifier (blue solid line) has the worst 
behaviour while the kNN and SVDD are always in the best position. 
In the Rubus problem, practically the same results are obtained by 
the kNN, SVDD, and the Parzen classifier (they are represented by 
means of the same dashed line). The AUC table (Table 3) also pre­
sents these results. The Gaussian classifier has the lowest perfor­
mance and the kNN and SVDD the best. However, the difference 
between all of them is low. 



3.4. Results of the multi-classification system 

Different multi-classification models, following the description 
of Section 2.5, are built using the previous one-class classification 
paradigms, as their performance indicators were very similar. 
Then, we compare four multi-classifiers in two different training 
conditions. The first condition is defined to use one-class classifiers 
having a 0% threshold rejection. The second one is devoted to use a 
10% rejection. The results of this section are calculated by applying 
the multi-classifiers to the validation dataset, totally independent 
of the training and test datasets. 

In Table 4 the performance measures of the multi-classifiers are 
shown. In the first block of figures, we have shown the accuracy 
and FP-FN rates when rejection threshold equals 0%. In the second 
block, a rejection threshold of 10% is used for obtaining the results. 

The kNN, with a rejection of 10%, is the model with the best re­
sults as it has low FP and FN rates, and also the highest accuracy. 
The multi-classifier formed by SVDD one-class classifiers is the sec­
ond-best model, outperforming the remaining two. 

Thus, it seems clear that the performance differences of the one-
class models are higher when solving the multi-classification prob­
lem, as it is of higher complexity. In this case, more powerful mod­
els as kNN and SVDD outperform the rest of the one-class 
classifiers. 

In Tables 5 and 6, the confusion matrices of the best multi-clas­
sifiers, SVDD with no rejection and kNN with a rejection of 10%, are 
shown. It can be seen that generally there is no mis-classification 
between the known pollen load types, just one instance in which 
the kNN multi-classifier is misclassified. The highest number of er­
rors is located in the right column. These are FNs as real pollen load 

ONE-CLASS CLASSIFIER ROC CURVES FOR RUBUS 

Table 3 
AUC measure of the four one-class classifiers. The higher the value, the better the 
classifier performance. 

0.1 0.15 

outlier* accepted (FPr) 

ONE-CLASS CLASSIFICATION ROC CURVES FOR CI5TU5 LADANIFER 

t 0.9 

I 

0 0.05 0,1 0.15 0.2 0.25 

outlieri accepted [FPr) 

Fig. 7. ROC curves of the one-class classification for Rubus and Cistus ladanifer types. 

Gaussian 
Parzen 
SVDD 
kNN 

AUC 

Rubus 

0.4482 
1 
1 
1 

Echium 

1 
1 
1 
1 

Cistus 

0.9891 
0.9936 
0.9939 
0.9939 

Quercus 

0.9999 
0.9999 
0.9999 
0.9999 

Table 4 
Evaluation measures of the final multi-classifier. Two cases are listed; considering 0%, 
and considering 10% of data as outliers when training the one-class classifiers. FN and 
FP rates are calculated taking all the known pollen types as the positive class and the 
outliers as the negative. Best values are highlighted in bold. 

Models of the multi-classifier 0% Rejected during training 

Gaussian 
Parzen 
SVDD 
kNN 

Gaussian 
Parzen 
SVDD 
kNN 

Accuracy (%) 

92.6002 
88.0267 
94.3988 
92.5488 

FN rate 

0.1516 
0.2441 
0.0978 
0.0108 

10% Rejected during training 

Accuracy 

88.0267 
92.6002 
93.7821 
94.6043 

FN rate 

0.2441 
0.1516 
0.1269 
0.0935 

FP rate 

0.0030 
0.0059 
0.0177 
0.1161 

FP rate 

0.0059 
0.0030 
0.0030 
0.0167 

type instances are classified as outliers (non-local pollen types). 
Nevertheless, as can be seen in Table 4, the FN rate is not high. 

In addition to the previous analysis, other remarkable facts can 
be obtained from the results: 

• The trade-off between the FP and FN rates is better than in the 
isolated one-class classifiers. This fact could be justified because 
of the confidence mechanism of the multi-classifier, which is 
able to discard instances classified by one of the one-class clas­
sifiers as local pollen types when they are not clearly confident 
about their decision. 

• Although accuracy is obtained when classifying all the classes 
(four known pollen types and outliers), the FP and FN rates 
are calculated between the classification of the instance as 
known pollen type (one of the four known types) or as outlier. 
There is almost no error among local pollen types. 

• If we compare the validation measures of the multi-classifiers 
and one-class classifiers we can observe how the overall results 
of the multi-classifiers are better than the isolated one-class 
classifiers. This indicates good behaviour of the fusion scheme 
of the known pollen type classifiers. 

Table 5 
Confusion matrix of the multi-classification system formed by the four one-class 
SVDD classifiers. 0% of the training data were considered as outliers during the 
training phase. 

Real pollen 
type 

Rubus 

Echium 
Cistus 
Quercus 
Outlier 

Total 

Predicted pollen 

Rubus 

243 

0 
0 
0 
2 

245 

Echium 

0 

370 
0 
0 
0 

370 

type 

Cistus 

0 

0 
267 

0 
9 

276 

Quercus 

0 

0 
0 

45 
7 

52 

Outlier 

38 

30 
19 
4 

912 

1003 

Total 

281 

400 
286 

49 
930 

1946 



Table 6 
Confusion matrix of the multi-classification system formed by the four one-class kNN 
classifiers. 10% of the training data were rejected as outliers during the training phase 
of the one-class classifier. 

Predicted pollen type Total 

Rubus Echium Cistus Cmercus Outlier 

Rubus 
Echium 
Cistus 
Quercus 
Outlier 

Total 

248 
0 
0 
0 
4 

252 

0 
357 
0 
0 
0 

357 

0 
0 
275 
0 
5 

280 

0 
0 
1 
48 
8 

57 

33 
43 
10 
1 
913 

1000 

281 
400 
286 
49 
930 

1946 

• One of the distance-based multi-classifiers, kNN, achieves bet­
ter results when discarding the 10% of the target instances. 
The remaining methods perform in different ways when reject­
ing subsets of target instances. 

4. Conclusion 

A complete novel chain of methods based on computer vision 
and classification techniques has been applied for the origin 
authentication of bee pollen loads. Colour properties have been fil­
tered by image processing algorithms, and different one-class clas­
sification models have been successfully used. The kNN one-class 
classification model obtained the best results in comparison with 
density classifiers and SVDD. 

In addition, a multi-classifier scheme has also been designed, 
improving the accuracy of the isolated one-class classification 
methods and merging the outputs of the classifiers. The best mul­
ti-classifier, formed by kNN one-class classifiers and rejecting some 
instances in the training phase, has achieved 94% accuracy. These 
models have been compared in the authentication of four Spanish 
pollen types against different outlier samples, and validated in 
1946 colours instances. An ambiguity discovery mechanism was 
also presented to include robustness in the final system. 

The results are very promising, and the use of the application 
prototype with the developed methods drastically reduce the time 
and effort spent by experts to several seconds. It also can be used 
by non-experts to detect fraudulent products. Future work will 
be devoted to: (a) studying the benefits of using another macro­
scopic features of pollen loads, (b) developing a low-cost system 
to analyse the microscopic features of the pollen grains to be used 
in conjunction with the system presented in this work, and (c) con­
sidering other colour spaces for the proposed methodology. 
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