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Abstract  The design and application of multiple 
tools to map soil micronutrients is key to efficient 
land management. While collecting a representa-
tive number of soil samples is time consuming and 
expensive, digital soil mapping could provide maps 
of soil properties fast and reliably. The objective of 
this research was to predict the spatial distribution 
of soil micronutrients within the piedmont plain in 
northeastern Iran using random forest (RF) and sup-
port vector regression (SVR) algorithms. Sixty-eight 
locations with different land uses were sampled to 
determine the content of iron, manganese, zinc and 
copper in the topsoil (0–20  cm). Forty-one digital 
covariates were used as input to the models and were 
derived from a digital elevation model, open-source 

remote sensing (RS) data (Landsat 8 OLI and Sen-
tinel 2A MSI images), WorldClim climate database 
and maps of soil properties. Covariates were grouped 
into 11 scenarios: I–III, based on RS data; IV–VI, 
including RS, topographic, climate and soil covari-
ates; VII, VIII and IX, based only on topographic, 
climate and soil covariates, respectively; X and XI, 
based on recursive feature elimination and expert 
opinion, respectively. The RF algorithm gave 91, 94, 
91 and 108% normalized root mean squared error 
values for iron, manganese, zinc and copper, respec-
tively, for the validation dataset with scenario XI. The 
most important digital covariates for micronutrients 
prediction with both RF and SVR models were pre-
cipitation seasonality, mean annual temperature and 
the mean saturation index based on Sentinel 2A MSI 
data. Digital maps produced at 30 m spatial resolution 
using scenario XI could be used to effectively identify 
micronutrient deficiencies and excess hotspots.
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Introduction

Soil nutrients are key factors for crop production and 
play important roles in plant growth but can limit pro-
duction where insufficient amounts prevail (Miran 
et al. 2021; Sharma et al. 2022). Soil nutrients content 
is susceptible to modification by human activities, 
and is therefore difficult to be assessed, particularly 
at the catchment scale or even at the hillslope scale 
(Wang et  al. 2008). The essential nutrients, without 
which plant growth will not be possible, come from 
the mineral components of the soil. Depending on the 
amount of nutrients needed by the plant, the distinc-
tion can usually be made between macronutrients and 
micronutrients (Blume et al. 2016a). The determina-
tion of soil nutrient contents, both micronutrients and 
macronutrients, is indispensable as sustainable agri-
cultural production requires optimum levels (Kaya 
and Başayiğit 2022). The real pressure of micronutri-
ent deficiencies in arable land will be on the achieve-
ment of optimum crop growth and yield, but also on 
human populations with high dietary dependence on 
crops grown in these areas.

Regarding human health, the levels of micronu-
trients should be at the optimum as both deficiency 
and excess have negative effects. Deficiency of micro-
nutrients in humans can cause serious diseases such 
as anemia and neutropenia (Denton-Thompson and 
Sayer 2022).

The spatial variability of micronutrient levels in 
the topsoil is influenced by the complex interactions 
between climate, time, soil parent material and phys-
icochemical properties, topography, vegetation, land 
use, and possibly exogenous inputs from industry 
(Srisomkiew et  al. 2022). Therefore, a better under-
standing of the dynamic variation of micronutrients 
and the factors contributing to their levels in the soil 
is paramount (Zhu et al. 2021).

Developing adequate agricultural management 
strategies and policies, along with minimising the 
environmental impact on farming revenue, requires 
detailed site-specific soil knowledge (Snapp 2022). 
While measuring the factors affecting soil micronu-
trient distribution in agricultural areas in arid and 
semi-arid regions is often difficult, it is crucial to 

understand the factors influencing their availabil-
ity and concentration for proper management of soil 
fertility and land use. The presence of calcium in 
the form of calcium carbonate (CaCO3) compounds, 
particularly in arid and semi-arid areas, can result in 
the conversion of soil micronutrients into an unavail-
able form (Blume et al. 2016b). Thus, plant-available 
micronutrient maps are critical in arid regions where 
both irrigated-rainfed annual crops and perennial fruit 
plants farming are practiced. It is crucial to develop 
more precise management practices that provide 
micronutrients for these crops (Naimi et al. 2021).

Accurately estimating micronutrients content at 
any scale requires a wide range of methods capable 
of monitoring the soil surface. Alloway (2013) used 
the diethylenetriaminepentaacetic acid (DTPA) test 
to measure the available micronutrients in soil, which 
refers to the portion of micronutrients that are read-
ily available for plant uptake. Digital soil mapping 
(DSM), a sub-science of pedometry, has been recently 
used to map soil characteristics (Lark et  al. 2014). 
The DSM uses data science and predictive modelling 
approaches to establish the relationships between dig-
ital covariates, location-based soil observations and 
soil properties (Wadoux et  al. 2021). Malone et  al. 
(2022) obtained a data matrix based on the intersec-
tion of continuous and categorical soil data in a geo-
graphic setting with a pedologically meaningful set of 
environmental layers. Machine learning (ML) models 
are used to establish linear or nonlinear relationships 
in data sets to obtain a model equation (Nussbaum 
2022). Remote sensing and DSM were employed to 
study the spatial variability of soil properties and soil 
nutrients (Miran et al. 2021). The successful integra-
tion with DSM has led to active work on global (FAO 
and ITPS 2018), continental (Hengl et al. 2017) and 
regional (Zhang et  al. 2020; Vasu et  al. 2021; Kaya 
and Başayiğit 2022) scales for the diagnosis of the 
spatial distribution of soil micronutrients associated 
with soil fertility. The DSM methods are cost-effec-
tive and allow the creation of high spatial resolution 
(≤ 30 m) maps characterised by high accuracy. How-
ever, there is limited information on the potential use 
of RS-based estimators of soil nutrients in arid and 
semi-arid regions (Kaya and Başayiğit 2022). Soil 
data for spatial analysis is lacking in arid and semi-
arid regions, making it difficult for establishing land 
use management processes and policies (Smith et al. 
2019).
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In recent times the number of environmental 
covariates used as input to DSM is increasing but 
covariate selection to limit the number of input covar-
iates has been highlighted (Liang et al. 2020; Wadoux 
et al. 2021). Without a doubt, increasing the number 
of digital covariates improves ML model accuracy, 
but this approach increases uncertainty in the input 
data that makes the results difficult to interpret in soil 
science. Thus, there is a need to balance covariate 
parsimony and model performance through an appro-
priate covariate selection on case-based reasoning 
and pedological relevance (Liang et al. 2021; Wadoux 
et  al. 2020). The abundance of digital data and the 
use of expert knowledge as a primary driver in the 
various areas of soil science have several implications 
for DSM that are yet to be documented. As a matter 
of fact, “scenario” and “grouping” strategies based 
on digital surrogates of soil formation factors can be 
used in evaluating digital covariates, especially in 
DSM (Wadoux et al. 2021).

Despite the availability of methodological 
approaches to integrate different types of ML mod-
els and digital covariates grouping approaches into 
the DSM methodology (Hengl et al. 2017; Zhu et al. 
2021), the estimation of soil micronutrient content 
with DSM has rarely been studied.

The specific objectives of the current study were 
to: (i) construct a digital map (30 m × 30 m grid scale) 
of micronutrients in the topsoil using two ML algo-
rithms (Random forests and Support vector regres-
sion) at the Piedmont site in Iran; (ii) include an 
expert opinion to overcome the challenge of select-
ing digital covariates in DSM; (iii) assess the digital 
maps created by the two ML algorithms using a qual-
itative soil scientist approach, and (iv) investigate the 
soil and environmental factors associated with micro-
nutrient variability.

Materials and methods

Study area

The case study area, which covers ~ 100 km2 in the 
Neyshabur plain of Khorasan-e-Razavi province, 
is located in the semi-arid region of Northeast Iran 
(Fig.  1). It is bounded by latitudes 36 02′ N and 36 
08′ N, and longitudes 58 53′ E and 59 04′ E, with an 
average daily temperature of 14.5 °C and an average 

annual precipitation of 233.7 mm (Bagherzadeh et al. 
2016). The geological composition of the area mainly 
consists of low levels of Piedmont fan and valley 
terrace deposits, and the major soil types are Enti-
sols and Aridisols according to the Soil Survey Staff 
(2014).

2.2. Reference dataset.
A total of 68 sites were selected according to a 

stratified scheme. A portable handheld Global Posi-
tioning System (GPS) device was used to log the 
coordinates of the sampling sites. Triplicate com-
posite samples were collected for each site surface 
within the top 0–20 cm layer by a soil auger during 
the summer 2018. The air-dried soil samples were 

Fig. 1   Location of the case study area in Northeast Iran (top) 
and the spatial distribution of the soil samples used for training 
and validation overlaid on a Sentinel 2A MSI false-colour band 
combination
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crushed and particles with diameters less than 2 mm 
were obtained by sieving. Soil  iron (Fe), copper 
(Cu), manganese (Mn), and zinc (Zn) were extracted 
with DTPA solution (0.005  M DTPA + 0.01  M 
CaCl2 + 0.1 M triethanolamine, pH 7.3) and measured 
with an atomic absorption spectrophotometer (Perkin 
Elmer, AAnalyst 700, USA) (Lindsay and Norvell 
1978).

Covariates used for DSM

Forty-one digital covariates that may affect micronu-
trient content were used (Fig. 2).

Topographic and remote‑sensing based covariates

A digital elevation model (DEM) was the source of 
the topographic digital covariates (ALOS PALSAR 
2021). The terrain attributes were calculated from a 
30 m × 30 m spatial resolution of the DEM (Table 1). 
Different sources of RS data provided the vegetation-
based and soil-based digital covariates that represent 
organisms and parent material (Kaya and Başayiğit 
2022). Four different years (2018, 2019, 2020, and 
2021) of Landsat 8 OLI sensor, Collection 2 Level 2 
Science Product, 160 path, 35 Row, and Collection 
2 level satellite images were used in the study. The 
Landsat 8 Surface Reflectance (SR) Science Prod-
ucts were produced using the Land Surface Reflec-
tance Code (LaSRC) specialised software (Sayler 
and Zanter 2021). The calibration parameters were 

obtained from the Landsat SR data product provided 
by Earth Explorer (EE-https://​earth​explo​rer.​usgs.​
gov/). The ArcGIS 10.8-Arctoolbox—Spatial Ana-
lyst-Map Algebra-Raster Calculator tool (ESRI 2021) 
was used to process the selected bands. Furthermore, 
Sentinel 2A MSI sensor, Level 2A Bottom of Atmos-
phere, R020 orbit number defining the “Track”, 
T40SFF ID of the area that has been visualised defin-
ing the “Granule”, indicate the satellite images from 
three different recent years (2019, 2020, and 2021) 
that were used (Table 1) (ESA 2015). Mean synthesis 
bands were produced from the bands of both satellite 
images of different years, but for the same seasons.

Climate and soil‑related covariates

Climate-based digital covariates from the “World-
Clim 2” dataset (Fick and Hijmans 2017) are pre-
sented in Table  1. The raw covariates which have a 
spatial resolution of 30 arc-second, were converted to 
the EPSG:32640 projection system and resampled to 
30 m × 30 m spatial resolution.

The spatial distribution maps of relevant soil 
properties, such as soil particle size fractions and 
pH, were generated at 30 m × 30 m pixel resolution 
using geostatistical analysis (ordinary kriging) with 
the “Geostatistical Wizard” tool in ArcGIS 10.8. 
(ESRI 2021). These generated raster maps were 
used as environmental covariates. The mapping pro-
cess was performed with the spherical semi-vario-
gram model at points that were on average 530  m 

Fig. 2   Grouping of digital covariates to constitute the sce-
narios and modelling process (I: RS-Landsat 8 OLI, II: RS-
Sentinel 2A MSI, III: RS(All), IV: RS (All) + Topographic, 
V: RS (All) + Topographic + Climate, VI: RS (All) + Topo-

graphic + Climate + Soil, VII: Topographic, VIII: Climate, IX: 
Soil, X: Recursive Feature Elimination, XI: Covariates selec-
tion by expert opinion and the modelling process workflow

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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Table 1   List of covariates used in the study

a Sentinel 2A MSI ProductID  information
S2A_MSIL2A_20190703T064631_N0212_R020_T40SFF_20190703T112808
S2A_MSIL2A_20200707T064631_N0214_R020_T40SFF_20200707T112619
S2A_MSIL2A_20210831T064631_N0301_R020_T40SFF_20210831T094435
b Landsat 8 OLI ProductIDinformation
LC08_L2SP_160035_20180630_20200831_02_T1
LC08_L2SP_160035_20190703_20200827_02_T1
LC08_L2SP_160035_20200721_20200911_02_T1
LC08_L2SP_160035_20210825_20210901_02_T1

Auxiliary variables Environmental covariate

Digital elevation model (DEM) Elevation (m) (https://​search.​asf.​alaska.​edu/; ALOS PAL-
SAR 2021)

Hengl and Reuter (2008) and Gruber and 
Peckham (2009)

Slope (%)
Profile curvature
Planform curvature
Topographic wetness index (TWI)
Flow Accumulation
Stream power index (SPI)

Remote sensing data (RS) Sentinel 2A MSIa Modified secondary soil-adjusted vegetation index (MSAVI2) (Mponela et al. 2020)
Topsoil grain size index (Xiao et al. 2006)
Saturation index (Hounkpatin et al. 2018)
Normalized clay index (Brown et al. 2017)
Normalized difference vegetation index— (NDVI) (Brown et al. 2017)
Green normalized difference vegetation index (GNDVI) (Gitelson et al. 1996)
Band 2-blue (central wavelength: 490 nm)-10 m
Band 3-green (central wavelength: 560 nm)-10 m
Band 4-red (central wavelength: 665 nm)-10 m
Band 5-vegetation red-edge (central wavelength: 705 nm)-20 m
Band 6-vegetation red-edge (central wavelength: 740 nm)-20 m
Band 7-vegetation red-edge (central wavelength: 783 nm)-20 m
Band 8-near infrared (NIR) (central wavelength: 842 nm)-10 m
Band 8a-vegetation red-edge (central wavelength: 865 nm)-20 m
Band 11-shortwave infrared (SWIR) (central wavelength: 1610 nm)-20 m
Band 12-shortwave infrared (SWIR) (central wavelength: 2190 nm)-20 m

Landsat 8 OLIb Topsoil grain size index (Xiao et al. 2006)
Saturation index (Hounkpatin et al. 2018)
Normalized clay index (Brown et al. 2017)
Normalized difference vegetation index—(NDVI) (Brown et al. 2017)
Green normalized difference vegetation index (GNDVI) (Gitelson et al. 1996)
Band 2-blue (450–515 nm)-30 m
Band 3-green (525–600 nm)-30 m
Band 4-red (630–680 nm)-30 m
Band 5-near infrared (NIR) (845–885 nm)-30 m
Band 6-SWIR 1 (1560–1660 nm)-30 m
Band 7-SWIR 2 (2100–2300 nm)-30 m

Climatic variables (CL) BIO-1- mean annual temperature (MAT) (°C)
BIO-12-annual precipitation (mm)
BIO-15-precipitation seasonality
Total solar radiation (kJ m−2 year−1)

Soil attributes (S) Clay map produced with Kriging (%)
Sand map produced with Kriging (%)
pH map produced with Kriging

https://search.asf.alaska.edu/
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apart to calculate the lag size and the average dis-
tance between the points. The “Spatial Statistics 
tools—Analysis model—Average nearest neigh-
bour” tool in ArcGIS was used to determine the lag 
size value.

Grouping of the digital covariates

All covariates were processed to conform to the 
same areal extent, grid size resolution (30  m), and 
grid centred using the nearest neighbour resampling 
function of the ArcGIS 10.8 (ESRI 2021) software.
(EPSG:32640) coordinate reference system was used.

The 41 digital covariates were combined into a ras-
ter stack, and the R “raster” package (Hijmans 2020) 
was used to extract the values at the 68 soil sample 
locations (Fig. 2). Eleven scenarios (Fig. 2) were set 
as combinations of input digital covariates (RS-based, 
topographic, climatic and soil) considering the parsi-
mony approach in the modelling process (Wadoux 
et  al. 2021; Azizi et  al. 2022). Some scenarios used 
a single dataset (for example Scenario I use only 
Landsat 8 OLI-based digital covariates) while oth-
ers involved the integration of multiple datasets (for 
example scenario VI have all RS-based, topographic, 
climate and soil digital covariates). Scenario X con-
sisted of digital covariates selected with the “rfe” 
(recursive feature elimination) function (Kuhn 2020). 
In scenario XI, after identifying the reasonable digi-
tal covariates according to expert opinion, the Vari-
ance Inflation Factor (VIF) was calculated using the 
MINITAB software (V. 17.1.0) to assess the multicol-
linearity among covariates. Digital covariates with a 
VIF value greater than ten were removed. Then, the 
Spearman rank correlation coefficient was calculated 
to determine the degree of association between the 
soil micronutrients and the reasonable digital covari-
ates. Correlations were performed in the R “stats” 
package (R Core Team 2022). Finally, the expert 
opinion scenario XI was created by considering the 
VIF results and the Spearman correlation values 
(Naimi et al. 2021; Azizi et al. 2022).

The modelling process

The random forest (RF) algorithm (R package “ran-
domForest”, Liaw and Wiener 2002), and the sup-
port vector regression (SVR) algorithm (R package 

“e1071”, Meyer et  al. 2020) were used to predict 
soil micronutrients by regression, separately for each 
covariate scenario (Fig.  2). The reference dataset of 
micronutrient concentration was split into a training 
set (70%, n = 47) and a validation set (30%, n = 21). 
The models were trained on the training dataset and 
their performances were evaluated on the validation 
dataset.

Random forest

The study used the RF method (Breiman 2001), 
which was an advanced version of bagging that 
involves constructing many uncorrelated regres-
sion trees and combining their predictions. The opti-
mal value of the “mtry” parameter was determined 
through a parameter tuning process using the “train” 
function in the “caret” package (Kuhn 2020) in the 
R Core Environment software (Version 4.2.1). The 
results of the process are reported in the GitHub 
repository (Kaya 2022). Default values were used for 
other parameters such as “ntree”. The “importance” 
function of the “randomForest” package was used to 
assess the relative importance of each digital covari-
ate. The mean square error (MSE) was adopted in 
the out-of-bag (OOB) analysis of regression models. 
During the analysis the software calculated two indi-
cators: %IncMSE (increase in mean standard error) 
and IncNodePurity. The %IncMSE was determined 
by comparing the MSE values of each regression 
tree, both with and without the relevant predictor. The 
mean difference between the with and without the 
relevant predictor is then normalized by the standard 
deviation of the differences. IncNodePurity represents 
the average reduction in node impurity achieved by 
splitting the predictors during the tree-building pro-
cess. The node impurity is measured by the residual 
sum of squares (Breiman 2001).

Support vector regression

Support vector machine was developed by Cortes and 
Vapnik (1995). It is commonly used for classification 
problems but can also be used for regression prob-
lems as demonstrated in Drucker et al. (1997) as well 
as applied to soil modelling by Pasolli et al. (2011). 
The relationship between a dependent variable y (soil 
micronutrient concentration) and independent vari-
ables x (the set of digital covariates) is expressed as:
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To handle non-linear relationships between y and 
x, the data were transformed into a higher-dimen-
sional space through kernel techniques. The radial 
basis function (RBF) kernel, which is a Gaussian 
function, was used for this purpose (Pasolli et  al. 
2011). The values of “gamma” and “cost” param-
eters were initially determined using the repeated 
tenfold cross-validation option (Kuhn 2020; Meyer 
et  al. 2020) and subsequentially optimised through 
a parameter searching process (Kaya 2022). Fol-
lowing Yigini et al. (2018), the importance of each 
digital covariate in the model was calculated.

Model performance evaluation

The performance statistics of normalised root mean 
square error (NRMSE) and mean absolute per-
centage error (MAPE) were calculated and model 
performances were evaluated in the training and 
validation sets. The NRMSE is given as (Zambrano-
Bigiarini 2020):

where n is the sample size, Pi and Oi are the predicted 
and observed values, respectively, and the Norm‑
constant was set to the default value of the standard 
deviation of the observations. The “nrmse” function 
in the “hydroGOF” R package (Zambrano-Bigiarini 
2020) was used to estimate NRMSE. The MAPE is 
expressed as a percentage as (Gopp and Savenkov 
2019):

The agreement between observed and modelled 
values using scenario XI was also evaluated with 
Taylor diagrams which aggregate the correlation 
coefficient (r), the standard deviation of measured 
data (SD), and the RMSE (Wadoux et al. 2022). The 
“TaylorDiagram” function of the R package “ope-
nair” (Carslaw and Ropkins 2012) was used. The 

(1)y = f (x) + e

(2)NRMSE = 100 ×

⎛
⎜⎜⎜⎜⎝

�∑n

i=1 (Oi−Pi)
2

n

Normconstant

⎞⎟⎟⎟⎟⎠

(3)MAPE =

(
1

n

n∑
i=1

|Oi − Pi|
Oi

)
× 100

“scatterPlot” function of R package “openair” with 
method “hexbin” was used to show the relation-
ship between the observed and the predicted values 
(Carslaw and Ropkins 2012; Carr et al. 2021).

Results

Statistics of soil micronutrients and correlations with 
digital covariates

Descriptive statistics of micronutrients concentration 
in the topsoil are shown in Table 2. Slight to moderate 
alkaline conditions prevailed in the study area. Micro-
nutrients concentration exhibited positive skewness 
for both the training and validation datasets.

Results highlighted statistically significant 
(p < 0.05) correlation between the four micronutri-
ents concentration and four digital covariates from 
distinct groups (remote sensing, topography, climate, 
and soil). Spearman correlation coefficients indicated 
a significant correlation between Fe and Zn (r = 0.22, 
p < 0.05), Clay (r =  − 0.28, p < 0.05), Sand (r = 0.17, 
p < 0.05), and Elevation (r = 0.43, p < 0.05) (Figure 
S1). Manganese was significantly correlated with Cu 
(r = 0.34, p < 0.05), pH (r:  − 0.35, p < 0.05), BIO-15 
(precipitation seasonality) (r = 0.31, p < 0.05), and 
solar radiation (r = 0.29, p < 0.05) (Figure S1). Copper 
showed a significantly positive correlation with the 
different spectral bands, but it had a strong negative 
correlation with BIO-12 (r =  − 0.23, p < 0.05), and a 
positive correlation with BIO-1 (r = 0.27, p < 0.05) 
(Figure S1). Zinc demonstrated a significantly nega-
tive correlation with the different spectral bands, 
while it showed a strong positive relationship with the 
BIO-12 (annual precipitation) (r = 0.42, p < 0.05) and 
negative correlation with BIO-1 (mean temperature) 
(r =  − 0.53, p < 0.05) (Figure S1).

Evaluation of model performances

In the expert opinion scenario (scenario XI), the 
lowest MAPE value was obtained for Fe, and the 
highest value for Zn in the validation dataset with 
both models (Table 3). The lowest NRMSE values 
were obtained for Fe and Zn and the highest values 
for Cu in the validation datasets with the RF model 
for scenario XI (Table 3). Using the same scenario, 
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relatively higher NRMSE values were obtained for 
Fe, Mn, and Zn while relatively lower values were 
obtained for Cu in the validation sets with the SVR 
model compared to the RF model (Table  3). Sce-
narios based on Landsat 8 OLI (scenario I) and 
Sentinel 2A MSI (scenario II) satellite images pro-
duced similar results in the estimation of the micro-
nutrient contents for both ML algorithms (Table 3). 
With the RF model, high model accuracy in pre-
dicting Fe and Zn was obtained using scenario VI 
that included soil properties as covariates.

Examination of the Taylor diagrams indicated 
lower RMSE values for Fe and Cu (Fig. 3a, c) and 
higher RMSE values for Mn and Zn (Fig.  3b, d). 
Generally, the ML models performed better with 
the training datasets compared with the validation 
datasets for all micronutrients.

Importance of the environmental covariates for 
random forests and support vector regression

The findings of this study indicated that the dis-
tribution of micronutrients in the study area was 
largely influenced by climate-based and topogra-
phy-based digital covariates (Figures  S2 and S3). 
The RF model revealed that BIO1- Mean Annual 

Temperature (MAT) was the most important predic-
tor of the four micronutrients (Figures S2a, c, e, g) 
based on the %IncMSE indicator. The same digital 
covariate emerged as the most important predictor 
based on the IncNodePurity indicator except for Zn 
(Figure S2b, d, f, h).

With the SVR modelling, the most important 
predictors differed among micronutrients (Figure 
S3a–d). The model results indicated that, while cli-
matic covariates were more important for Cu (Fig-
ure S3a) and Mn (Figure S3c), topographic digital 
covariates were found to be important for Fe (Fig-
ure S3b). In the case of Zn, the saturation index pro-
duced from Sentinel 2A MSI bands was found to be 
the most important digital covariate (Figure S3d).

Spatial prediction of soil micronutrients

The scenario XI was chosen as the best for generating 
micronutrient maps. Therefore, the models based on 
this scenario were applied to the raster stack to pro-
duce micronutrient maps.

Maps produced by the RF model (Fig. 4a, d, g, j) 
exhibited spatial heterogeneity of micronutrient con-
centration while maps based on SVR models (Fig. 4b, 
e, h, k) were fairly smoothing distributed with poor 

Table 2   Descriptive statistics of measured micronutrients concentration (mg kg−1)

N number of samples, SD Standard Deviation, CV Coefficient of Variation, Max. Maximum, Min. Minimum

Dataset Variable Mean SD CV (%) Min Median Max Skewness Kurtosis

All datasets (N = 68) pH 7.90 0.19 2.43 7.50 7.90 8.30 − 0.01 − 0.59
Fe 2.31 0.68 29.23 1.24 2.28 4.22 0.66 0.20
Mn 7.18 4.06 56.51 1.64 6.04 21.06 1.61 2.53
Zn 2.84 3.78 133.05 0.28 1.09 13.94 1.68 − 0.34
Cu 1.16 0.28 24.81 0.72 1.13 1.94 0.47 − 0.34

Training dataset (N = 47) Fe 2.25 0.66 29.17 1.24 2.14 4.22 0.72 0.57
Mn 7.21 4.20 58.25 2.82 5.86 21.06 1.64 2.67
Zn 2.69 3.60 133.82 0.3 1.06 13.9 1.71 1.74
Cu 1.19 0.28 24.12 0.72 1.22 1.94 0.31 − 0.38

Validation dataset (N = 21) Fe 2.47 0.71 28.98 1.4 2.42 3.94 0.56 − 0.16
Mn 7.11 3.82 53.69 1.64 6.2 18.08 1.6 2.88
Zn 3.18 4.23 133.04 0.28 1.42 13.94 1.69 1.6
Cu 1.11 0.29 26.33 0.74 1.04 1.82 0.92 0.55
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Table 3   Comparisons of 
the accuracy of the support 
vector regression (SVR) 
and random forest (RF) 
models for the training 
and the validation datasets 
(MAPE: %, NRMSE: %)

Model Scenario Training Validation Training Validation

Fe Mn

MAPE NRMSE MAPE NRMSE MAPE NRMSE MAPE NRMSE

RF I 11 49 19 91 28 54 54 108
II 12 48 19 91 25 54 58 114
III 12 48 18 89 26 55 55 110
IV 12 48 19 89 26 53 55 109
V 12 48 18 88 24 51 53 102
VI 12 47 19 88 23 50 51 100
VII 12 49 24 106 28 54 53 103
VIII 12 47 17 90 21 51 48 94
IX 11 47 24 98 23 51 43 81
X 12 47 18 86 23 49 57 104
XI 12 47 19 91 24 50 50 94

SVR I 14 73 17 92 11 57 42 96
II 20 88 21 97 11 55 44 99
III 19 84 21 98 7 10 51 97
IV 21 90 22 103 7 10 52 98
V 3 10 21 100 7 10 52 98
VI 6 41 22 100 7 10 52 98
VII 20 85 22 102 34 98 38 101
VIII 6 30 18 78 25 86 41 96
IX 8 57 18 92 19 65 40 97
X 6 41 22 102 7 10 52 98
XI 3 10 21 98 10 54 44 98

Zn Cu
RF I 109 49 178 93 11 50 30 117

II 113 51 232 94 10 46 27 116
III 116 49 233 91 10 48 27 114
IV 119 49 217 95 10 48 26 109
V 119 48 213 92 8 39 27 110
VI 91 38 241 84 8 38 27 112
VII 141 54 206 96 11 53 24 98
VIII 94 47 221 87 9 45 27 100
IX 68 36 223 79 10 49 27 108
X 87 46 304 100 8 37 26 112
XI 118 45 210 91 8 39 26 108

SVR I 45 23 218 99 11 63 25 104
II 44 10 260 98 3 14 24 101
III 44 10 232 96 3 10 24 102
IV 44 10 218 95 5 35 24 101
V 44 10 243 97 3 13 24 101
VI 44 10 244 96 3 10 24 102
VII 45 20 218 94 13 73 23 100
VIII 68 54 155 92 3 17 26 98
IX 43 10 170 84 18 87 26 104
X 79 54 263 107 3 10 24 102
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prediction of extreme values that were limited in the 
measured dataset. Considering the actual micronutri-
ent concentrations of the sampling sites (Fig. 4, c, f, I, 
l), the RF algorithm was found to be more useful than 
the SVR, particularly for areas with relatively higher 
micronutrient concentrations.

Discussion

Variation of micronutrients in the study area

The coefficient of variation of Fe in the dataset was 
29.23%, which is considered an average value, a 
value of 24.81% for Cu is considered moderate, and 
a value for Mn of 56.51% is considered very vari-
able, according to the limits reported by Wilding 
(1985) (Table 2). In the studied arid and semi-arid 
area, land use combined with the parent material 
and geochemical factors influence the spatial dis-
tribution of soil micronutrients (Keshavarzi et  al. 
2022). The weak correlations of topographical digi-
tal covariates (except elevation) with soil micronu-
trients were due to the fact that the topographical 
digital covariates exhibited low variability in the 
study area, as observed by Vasu et  al. (2021). All 
the micronutrients, except Mn, had a significant 
correlation with Clay, and only Fe did not have a 
significant correlation with pH (Figure S1). For-
oughifar et al. (2013) showed that the distribution of 
micronutrients in dry farming soils is related to clay 
content and pH value, which supports our findings.

In accordance to the breakpoints estab-
lished by Sharma et  al. (2022), the levels of Fe 
(< 4.5  mg  kg−1) in the study area are insuffi-
cient, while the levels of Cu (> 0.5  mg  kg−1), Mn 

(> 4.0 mg kg−1), and Zn (> 1.2 mg kg−1) in the mid-
dle and east of the study area are relatively suffi-
cient, particularly for Zn. This information can be 
used to address the soil micronutrient deficiencies 
in the region and make informed decisions about 
soil fertility management, particularly in areas of 
permanent crops. It was noted that, and as described 
by Keshavarzi et al. (2022), the study area has per-
manent crops located in the central, north-western, 
and north-eastern regions.

Model performance

The performance of the models based on the vari-
ous combinations of the digital covariates varied, but 
only more complex models with a more extensive set 
of covariates (e.g., remote sensing, topography, cli-
mate, and soil) were able to achieve relatively better 
performances in the training and validation datasets 
(Table 3, Table S1). The expert opinion (scenario XI) 
and RF caused a reduction in NRMSE values for the 
four micronutrients between 0.11% (Zn) and 8.29% 
(Mn) compared to the average values of scenarios 
I-X for the validation dataset (Table S1). The reduc-
tion was also observed for MAPE values with the RF 
model (Table S1). The reduction in the performance 
statistics values caused by scenario XI compared with 
the individual 10 scenarios is also quite variable for 
SVR (Table 3).

As previously shown by Miran et  al. (2021), the 
use of multispectral satellite data for mapping soil 
micronutrient content may also support the effec-
tiveness of scenario I and scenario II. For all nutri-
ents except Cu, RF yielded marginally better results 
than SVR. Miran et  al. (2021) obtained RMSE val-
ues of 1.65  mg  kg−1 for Fe, 1.66  mg  kg−1 for Mn, 
0.17 mg kg−1 for Zn, and 0.23 mg kg−1 for Cu using 

I: RS-Landsat 8 OLI, II: RS-Sentinel 24 MSI, III: RS(All), IV: RS (All) + Topographic, V: RS 
(All) + Topographic + Climate, VI: RS (All) + Topographic + Climate + Soil, VII: Topographic, 
VIII: Climate, IX: Soil, X: Recursive Feature Elimination, XI: Covariates selection by expert 
opinion. Abbreviations. NRMSE (%) Normalised Root Mean Square Error, MAPE (%) Mean 
Absolute Percentage Error

Table 3   (continued) Model Scenario Training Validation Training Validation

Fe Mn

MAPE NRMSE MAPE NRMSE MAPE NRMSE MAPE NRMSE

XI 43 10 234 95 3 10 23 96
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only Landsat 8 OLI satellite images in dry agricul-
tural areas in north-western Iran. Zhu et  al. (2021) 
used climate, topography, and vegetation-based digi-
tal covariates to predict micronutrient content in soil 
using a stepwise multiple linear regression model in 
a study area where micronutrient contents showed 
high variability. They obtained NRMSE values of 
87% for Fe and Mn, and 96% for Cu and Zn. Both 
the reflectance values of the bands and the vegetation 
indices derived from the ratios of certain bands can 
reflect the spatial response of vegetation to soil nutri-
ent conditions. Vegetation indices may be sufficient to 
discriminate between various vegetation characteris-
tics and their associated soil micronutrients concen-
tration. In this respect, the proximity of dates between 
the time of soil sampling and satellite image acquisi-
tion is very important. Digital covariates in Scenarios 
I and II may be an opportunity for spatial estimation 
of micronutrient content in rain-fed agricultural fields 
in arid and semi-arid areas.

It is important to underline the low NRMSE values 
for all micronutrients produced by the RF model in 
the scenario using only climate covariates (scenario 
VIII) (Table  3). This is surprising in the study area 
where relatively low climatic variation was measured. 
However, Zeraatpisheh et al. (2020) reported that pre-
cipitation that controls soil moisture and water flow, 
along with digital covariates representing climatic 
factors, were the most important digital covariates 
defining the spatial distribution of heavy metals in 
soils under similar climatic regions in the northeast of 
Iran. Najafi-Ghiri et  al. (2013) reported that the soil 
moisture regime was an important digital covariate to 
estimate micronutrient concentration in the calcare-
ous soil of Southern Iran.

Since measurements of soil properties are expen-
sive and time consuming, it is suggested that scenario 
III could be applied at the scale of exploratory studies 
to identify excess hotspots and areas of deficiencies of 
micronutrients for decision-making. Again, scenario 
III, which is easily obtained from RS-based freely 
accessible satellite images, can be used in combina-
tion with climate digital covariates (scenario VIII). 
Like our findings, Azizi et  al. (2022) suggested that 
RS + Topographic + Thematic maps (Geology-Geo-
morphology) scenario could be used to detect areas 
that may have heavy metal pollution in exploratory 
studies in western Iran.

Controlling factors of micronutrient patterns

While advances have been made in developing effec-
tive digital covariates for soil properties of interest 
(Chen et  al. 2022), modelling processes face chal-
lenges in a heterogeneous soil environment in which 
agricultural activities are carried out. Although it was 
known that soil formation was largely homogeneous 
at a relatively small spatial scale, and the effects of 
climate on soil formation were nearly uniform (Zhu 
et al. 2021), the climate digital covariates of this study 
were at the forefront of relative importance in the 
modelling. The low variance climate digital covari-
ates, due to their low spatial resolution (> 100  m), 
within our study region may have partially masked 
the effect of other covariates, which may carry infor-
mation about the local pedological control factors.

Droz et  al. (2021) reported that climate digital 
covariates (i.e., precipitation and temperature) were 
more important than the other digital covariates such 
as topographic-based factors in the modelling pro-
cess. Probably climate digital covariates control soil 
physicochemical processes, including the redox state 
of the soil, although their study focused on the esti-
mation of Cu on a European scale.

Climate affects soil properties, vegetation, 
water retention, soil erosion, and soil organic car-
bon cycling (Blume et al. 2016a). The soils of the 
study area are mainly Entisols and Inceptisols, 
with a low pedogenic age and a strong resemblance 
to the underlying geological material. The min-
eral structure of the rocks and parent materials is 
shaped by the climate and contains micronutrients 
within the constraints of this structure. Differences 
in climatic factors that directly affect soil moisture 
can have significant effects on the valent forms of 
micronutrients in local areas (Blume et al. 2016b; 
Droz et  al. 2021). Precipitation can temporarily 
increase the soil water content and reduce the oxy-
gen diffusion in the water, leading to a decrease 
in available Cu. Under anaerobic conditions, bio-
logical activity can reduce Cu mobility by pre-
cipitating soluble Cu (II) to Cu (I). The temporal 
availability or absence of water can affect the Mn 
levels (Denton-Thompson and Sayer 2022). The 
BIO-15- Precipitation Seasonality was determined 
as an important digital covariate during the mod-
elling process with the SVR and RF algorithms 
for Mn. The concentration of Mn largely depends 
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on the soil pH, redox conditions, and active Mn 
reserves in the soil (Blume et al. 2016a). The most 
important process affecting redox conditions may 
be the periodicity of precipitation which was rep-
resented by BIO-15- Precipitation Seasonality dig-
ital covariate.

The effects of topographic factors location, 
slope, and elevation on soil micronutrient variabil-
ity have been outlined in Adhikari et  al. (2018). 
Under a Piedmont plain, topographic position can 
poorly affect the spatial distributions of soil micro-
nutrients in different land uses. Specifically, areas 
with higher topographic wetness index (TWI) val-
ues tend to receive more overland runoff and may 
exhibit higher moisture levels compared to the sur-
rounding region. This can lead to the deposition 
of micronutrients through runoff processes. How-
ever, topography had a relatively smaller effect on 
the prediction of the micronutrients because the 
amount of movement and leaching of the micro-
nutrients was very poor, especially under slight to 
moderate alkaline conditions in the study area as 
shown in Table 2.

Despite the same of the parent material, deposition 
and transport of soil, and different weather conditions 
changing at the micro-scale, management practices in 
different land use may affect micronutrient availabil-
ity and distribution.

Challenges and future perspectives for mapping soil 
micronutrients

Much work has been done on modelling studies 
to understand the processes that regulate nutri-
ent availability, soil properties, and environmen-
tal conditions (Heng et  al. 2017; FAO 2022a). 
Accordingly, soil mapping efforts should be based 
on a soil monitoring system that can accurately 
represent real soil conditions over time and at an 

appropriate scale. In the progress of data-driven 
soil mapping, the fact that the soil surface is cov-
ered during most of the year can be seen as a limi-
tation, especially in agricultural production areas 
(Tziolas et al. 2021). If the soil surface is covered, 
the integration of open-access digital data into the 
DSM process should be organised in such a way 
that it can spatially and radiometrically explain 
the heterogeneity in nutrient levels of crops grown 
on the land. Sufficient heterogeneity of vegetation 
characteristics captured by satellite imagery-based 
vegetation indices may contain more information 
on soil micronutrient content, since vegetation 
cover is often a comprehensive expression of vari-
ous factors such as soil and terrain. Higher spatial 
resolution may have a more critical value in esti-
mating the spatial variability of soil properties.

Future global initiatives (FAO 2022b) were rec-
ommended to be highly sensitive in terms of linking 
to decision-making and to include information on 
how to use it for end-user farmers (Chagumaira et al. 
2022).

Conclusions

This study characterised spatial patterns in micro-
nutrient content and the accompanying model-
ling uncertainties for part of the piedmont plain 
of northern Iran. Although the spatial variation of 
the climate digital covariates was low, it produced 
usefulness results for estimating the micronutrient 
content. The main findings of the spatial modelling 
of micronutrient contents in an agricultural system 
in an arid region were as follows.

In the final scenario (scenario XI), which was pre-
pared with the assistance of expert opinion, the Ran-
dom Forests model proved to be better than the Support 
Vector Regression model as it was able to reproduce 
the heterogeneity of the micronutrients and the extreme 
values using the scenario XI produced maps.

Integrated scenarios using Landsat 8 OLI and 
Sentinel-2 time series, climate digital covariates, 
and machine learning algorithms (scenario XI) 
can be progressed by applying them for explora-
tory studies in similar study areas where no soil 
micronutrient information is currently available. 

Fig. 3   Model results obtained using Scenario XI. a Iron (Fe), 
b Manganese (Mn), c Copper (Cu), d Zinc (Zn). In the Taylor 
diagram are reported the measured standard deviation (pur-
ple point), the contour of constant root mean squared error 
(RMSE, red circular dashed arcs), the contour of constant 
standard deviation (black circular dashed arc), and the contour 
of constant correlation coefficient (blue line). In the scatter 
plots, “counts” is the sample number

◂
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Fig. 4   Spatial distribution of soil micronutrients predicted by 
ML models using Scenario XI and measured in the reference 
dataset: Fe using RF model (a); Fe using SVR model (b); Fe 
measured (c); Mn using RF model (d); Mn using SVR model 

(e); Mn measured (f); Zn using RF model (g); Zn using SVR 
model (h); Zn measured (i); Cu using RF model (j); Cu using 
SVR model (k); Cu measured (l)
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In the future, the presence of soil scientists will be 
important in the process from the identification to 
the selection of specific digital covariate sets for 
micronutrients.
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