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ABSTRACT
In this paper, we consider an appropriate ordering of the Laurent monomials 𝑥𝑖𝑦𝑗 , 𝑖, 𝑗 ∈ ℤ that allows us to study sequences of
orthogonal Laurent polynomials of the real variables 𝑥 and 𝑦 with respect to a positive Borel measure 𝜇 defined on ℝ2 such that
({𝑥 = 0} ∪ {𝑦 = 0}) ∩ supp(𝜇) = ∅. This ordering is suitable for considering the multiplication plus inverse multiplication operator
on each variable (𝑥 + 1

𝑥
and 𝑦 + 1

𝑦
), and as a result we obtain five-term recurrence relations, Christoffel–Darboux and confluent

formulas for the reproducing kernel and a related Favard’s theorem. A connection with the one-variable case is also presented,
along with some applications for future research.

1 Introduction

Orthogonal Laurent polynomials with respect to a positive Borel
measure supported on the real line were introduced for the first
time in [1], and also implicitly in [2] in relation to continued
fractions and the solution of the strong Stieltjes moment problem
(see also chronologically [3–7]). However, it is useful to note
that they can be viewed as orthogonal polynomials with respect
to varying weights, which have been extensively used in the
theory of constructive approximation (see, e.g., [8] where they
appear in the context of continuous T-fractions). The case when
the measure is supported on the unit circle is greatly simplified
(see, e.g., [9]). An extensive bibliography has been produced
after these works, giving rise to a theory close to the well-
known theory of orthogonal polynomials on the real line (see,
e.g., [10–15]), with applications in moment problems, recurrence
relations, reproducing kernels, Favard’s theorem, interpolation
and quadrature formulas along with denseness and convergence,
linear algebra and inverse eigenvalue problems, Krylov methods,
model reduction, linear prediction, system identification, and so

forth. This theory has been also considered for positive Borel
measures supported on the unit circle (for the first time [16]),
giving rise in particular to the well-known CMV theory ([17],
see also, e.g., [9, 18]) that has produced an important impulse
in the theory of orthogonal polynomials on the unit circle (see
[19]). In particular, in the context of quadrature formulas on
the real line, the advantages of considering rules based on
Laurent polynomials instead of ordinary polynomials have been
shown deeply in the literature, theoretically and numerically.
For example, from a theoretical point of view, the theory of
Orthogonal Laurent Polynomials has allowed the development
of the Theory of Strong Moment Problems (see Subsection
5.2). From a numerical point of view, a comparison between
quadrature formulas on the real half-line based on orthogonal
polynomials and orthogonal Laurent polynomials is carried out
in [13], and it is shown there that when the integrand presents
singularities near the subset of integration, the results of the
classical Gaussian quadrature rules are significantly improved
when quadrature formulas based on Laurent polynomials are
used.
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In the one-variable case, there are few weight functions on the
real line that give rise to explicit expressions for the corresponding
orthogonal Laurent polynomials. In practice, these orthogonal
Laurent polynomials are computed recursively from a three-
term recurrence relation that holds for an arbitrarily ordered
sequence of monomials {𝑥𝑖}𝑖∈ℤ (induced from what is known in
the literature as “generating sequence”). In the particular case of
the “balanced” ordering,

ℒ = span

{
1, 𝑥,

1

𝑥
, 𝑥2,

1

𝑥2
, …

}
, (1)

this recurrence is given by the following (see [12, 14]).

Theorem 1. Let 𝜔 be a positive Borel measure on ℝ+ and
let {𝜓𝑘}𝑘≥0 be the sequence of orthonormal Laurent polynomials
induced by the inner product ⟨𝑓, 𝑔⟩𝜔 = ∫ ∞

0
𝑓(𝑥)𝑔(𝑥)𝑑𝜔(𝑥) and

the balanced ordering (1). Then, setting 𝜓−1 ≡ 0, there exist two
sequences of positive real numbers {Ω𝑛}𝑛≥0 and {𝐶𝑛}𝑛≥0 such that
for all 𝑛 ≥ 0,

𝐶𝑛𝜓𝑛+1(𝑥) = (Ω𝑛𝑥 − 1)𝜓𝑛(𝑥) − 𝐶𝑛−1𝜓𝑛−1(𝑥) if n is even,

𝐶𝑛𝜓𝑛+1(𝑥) =
(
1 −

Ω𝑛

𝑥

)
𝜓𝑛(𝑥) − 𝐶𝑛−1𝜓𝑛−1(𝑥) if n is odd.

Furthermore, 𝜓0 ≡ 1√
𝑚0

, Ω0 =
𝑚0

𝑚1

, and 𝐶0 =
√

𝑚2𝑚0−𝑚2
1

𝑚1

, 𝑚𝑘 =⟨𝑥𝑘, 1⟩ being corresponding moments for 𝜔, 𝑘 ∈ ℤ.

On the other hand, the general theory of multivariate orthogonal
polynomials is still far from being considered an established
field and has experienced delayed development, especially in
fundamental aspects. In 1865, Hermite [20] explored a two-
variable generalization of Legendre polynomials, marking the
initial appearance of orthogonal polynomial families in multiple
variables in the literature. However, it was not until 1926 that a
study on families of orthogonal polynomials in two variables on
the unit disk and the triangle appeared in the classic monograph
by Appell and Kampé de Fériet [21]. Since that moment, various
authors have contributed to the development of the general
theory of polynomials in several variables; see, for example,
[22–24].

Based on a vectorial representation, Kowalski [25, 26] proposed a
novel approach in the study of polynomials in multiple variables.
This perspective has allowed the development of a basic algebraic
theory, which can be found in the monograph by Dunkl and
Xu [27]. In particular, it has been possible to extend funda-
mental properties to multiple variables, such as the three-term
relation, Favard’s theorem or the Christoffel–Darboux formula.
Themonograph [27] comes highly recommended as reference for
gaining insight into the current state of the art in multivariate
orthogonal polynomials.

Orthogonal polynomials in several variables find diverse appli-
cations across fields like physics, quantum mechanics, and
signal processing. One prominent application lies in optics and
ophthalmology. Zernike polynomials are orthogonal polynomials
on the unit disk [28] and were introduced by Fritz Zernike (Nobel
prize for physics in 1953) in 1934 to address optical challenges

related to telescopes and microscopes. In the year 2000, the
Optical Society of America adopted them as the standard pattern
in ophthalmic optics.

The purpose of this paper is to consider for the first time in
the literature (as far as we know) the theory of sequences of
orthogonal Laurent polynomials in several real variables. The
advantages of considering orthogonal Laurent polynomials (or
more generally, orthogonal rational functions) instead of ordinary
orthogonal polynomials have been shown in a wide variety of
contexts in the literature of the one-variable case. The growing
interest in the study of orthogonal polynomials in several vari-
ables undoubtedly motivates to consider generalizations to more
general kind of functions than ordinary polynomials, mainly due
to their possible applications in many problems like cubature
rules, Fourier orthogonal series and summability of orthogonal
expansions, moment problems, and so forth.

In [29], multivariate orthogonal Laurent polynomials in the
unit torus are studied. The authors provide an ordering for the
monomials, focusing specifically on the moment matrix, Fourier
series, Christoffel–Darboux formulas, and related concepts. They
work with complex variables and prove three-term relations but
they do not find a Favard-type theorem. The study explores also
Christoffel-type perturbations of the measure through multipli-
cation by Laurent polynomials. Both discrete and continuous
deformations of the measure result in a Toda-type integrable
hierarchy. In contrast, the variables in this paper are real and the
ordering considered is not the same as the one used in [29] so the
results obtained here are not included in it.

For simplicity, we will restrict to the case of two real variables,
but all the results can be extended to more variables by using
a somewhat more involved notation. Here, the basic key is to
start from an appropriate ordering for the Laurent monomials
𝑥𝑖𝑦𝑗 , 𝑖, 𝑗 ∈ ℤ that is inspired on the “balanced case” (i.e., usually
considered in the literature), but now for both real variables
simultaneously. The vectorial representation of the Laurent
polynomials is necessary for the proof of the main results.

The paper has been organized as follows. An appropriate ordering
of the Laurent monomials 𝑥𝑖𝑦𝑗 , 𝑖, 𝑗 ∈ ℤ for the construction of
Laurent polynomials sequences of two real variables with respect
to a linear functional is considered in Section 2. We concentrate
in the positive-definite case, dealing with orthogonality with
respect to a positive Borel measure 𝜇 defined on ℝ2 such that
({𝑥 = 0} ∪ {𝑦 = 0}) ∩ supp(𝜇) = ∅. Five-term recurrence relations
are obtained involving multiplication by 𝑥 + 1

𝑥
and 𝑦 + 1

𝑦
. In

Section 3, we deduce a Favard’s theorem andChristoffel–Darboux
and confluent formulas for the reproducing kernel, whereas in
Section 4 we present a connection with the one-variable case
when 𝜇 is supported in a rectangle and it is of the form 𝑑𝜇(𝑥, 𝑦) =
𝑑𝜇1(𝑥)𝑑𝜇2(𝑦). Some conclusions are finally carried out.

We end this introduction with some remaining notation through-
out the paper. We denote by 𝐸[⋅] the integer part function, by 𝛿𝑘,𝑙

the Kronecker delta symbol, by𝑛,𝑚 the space of (real) matrices
of dimension 𝑛 ×𝑚,𝑛 being the space of square (real) matrices
of dimension 𝑛, by 𝑛 the identity matrix of dimension 𝑛, by𝑛,𝑚

and 𝑛 the zero matrices in 𝑛,𝑚 and 𝑛, respectively, and by
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diag(𝑎1, … , 𝑎𝑛) ∈ 𝑛 the diagonal matrix with ordered entries in
the main diagonal 𝑎1, … , 𝑎𝑛.

2 Orthogonal Laurent Polynomials of Two Real
Variables: Five-Term Relations

In the one-variable situation, it is usual to consider a nested
sequence of subspaces of Laurent polynomials {ℒ𝑛} such that
ℒ0 = span {1}, ℒ𝑛 ⊂ ℒ𝑛+1, dim (ℒ𝑛) = 𝑛 + 1 for all 𝑛 ≥ 0, and⋃

𝑛≥0
ℒ𝑛 = ℒ (see, e.g., [12, 30]).

Having in mind the “balanced” ordering (1) in the one-variable
situation

ℒ0 = span {1}, ℒ2𝑘 = span

{
1

𝑥𝑘
, … , 𝑥𝑘

}
,

ℒ2𝑘−1 = ℒ2𝑘−2 ⊕ span {𝑥𝑘}, ∀ 𝑘 ≥ 1

(see, e.g., [4, 6, 13, 14] for the real line case, and [16–19] for the unit
circle case), we can proceed by defining the sequence

𝑐𝑛 = (−1)𝑛+1 ⋅ 𝐸

[
𝑛 + 1

2

]
, ∀ 𝑛 ≥ 0 (2)

and considering the Laurent monomials

𝑝𝑚,𝑛(𝑥, 𝑦) = 𝑥𝑐𝑚𝑦𝑐𝑛 , ∀ 𝑚, 𝑛 ≥ 0

and the infinite matrix

𝑝0,0 = 𝑥𝑐0𝑦𝑐0 = 1 𝑝1,0 = 𝑥𝑐1𝑦𝑐0 = 𝑥 𝑝2,0 = 𝑥𝑐2𝑦𝑐0 = 1

𝑥
𝑝3,0 = 𝑥𝑐3𝑦𝑐0 = 𝑥2 ⋯

𝑝0,1 = 𝑥𝑐0𝑦𝑐1 = 𝑦 𝑝1,1 = 𝑥𝑐1𝑦𝑐1 = 𝑥𝑦 𝑝2,1 = 𝑥𝑐2𝑦𝑐1 = 𝑦

𝑥
𝑝3,1 = 𝑥𝑐3𝑦𝑐1 = 𝑥2𝑦 ⋯

𝑝0,2 = 𝑥𝑐0𝑦𝑐2 = 1

𝑦
𝑝1,2 = 𝑥𝑐1𝑦𝑐2 = 𝑥

𝑦
𝑝2,2 = 𝑥𝑐2𝑦𝑐2 = 1

𝑥𝑦
𝑝3,2 = 𝑥𝑐3𝑦𝑐2 = 𝑥2

𝑦
⋯

⋮ ⋮ ⋮ ⋮ ⋱

(3)

Setting = span {𝑥𝑖𝑦𝑗 ∶ 𝑖, 𝑗 ∈ ℤ}, the space of Laurent polynomi-
als of real variables 𝑥 and 𝑦, we can order these elements 𝑝𝑛,𝑚 by
antidiagonals in (3) as

 = span

⎧⎪⎨⎪⎩ 𝑝0,0
⏟⏟⏟
𝑛+𝑚=0

, 𝑝1,0, 𝑝0,1
⏟⎴⏟⎴⏟

𝑛+𝑚=1

, 𝑝2,0, 𝑝1,1, 𝑝0,2
⏟⎴⎴⏟⎴⎴⏟

𝑛+𝑚=2

, 𝑝3,0, 𝑝2,1, 𝑝1,2, 𝑝0,3
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

𝑛+𝑚=3

, 𝑝4,0, 𝑝3,1, 𝑝2,2, 𝑝1,3, 𝑝0,4
⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟

𝑛+𝑚=4

, …

⎫⎪⎬⎪⎭ (4)

and define

𝑛 = span
{
𝑝𝑖,𝑗 ∶ 𝑖 + 𝑗 ≤ 𝑛

}
, for all 𝑛 ≥ 0,

dim(𝑛) =
(𝑛 + 1)(𝑛 + 2)

2
,  =

⋃
𝑛≥0

𝑛. (5)

Consider

𝜙𝑘(𝑥, 𝑦) =

⎛⎜⎜⎜⎜⎜⎜⎝

𝑝𝑘,0(𝑥, 𝑦)

𝑝𝑘−1,1(𝑥, 𝑦)

⋮

𝑝0,𝑘(𝑥, 𝑦)

⎞⎟⎟⎟⎟⎟⎟⎠
∈ 𝑘+1,1, ∀ 𝑘 ≥ 0, (6)

that is, the components of the vector𝜙𝑘 are the 𝑘 + 1 linearly inde-
pendent Laurent monomials of 𝑘∖𝑘−1, ordered as they appear
in the expansion (4). So, we can interpret 𝑛 = span {𝜙0, … , 𝜙𝑛},
for all 𝑛 ≥ 0 so that if𝜓𝑘 ∈ 𝑘 for some 𝑘 ≥ 0, then𝜓𝑘 =

∑𝑘

𝑙=0
𝐶𝑙𝜙𝑙

where 𝐶𝑙 ∈ 1,𝑙+1 are constant matrices (𝐶𝑘 being the leading
coefficient matrix).

Observe that 𝜙0 ≡ 1 and for all 𝑙 ≥ 1,

𝜙2𝑙(𝑥, 𝑦) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥−𝑙𝑦0

𝑥𝑙𝑦

𝑥−(𝑙−1)𝑦−1

⋮

𝑥𝑦𝑙

𝑥0𝑦−𝑙

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 𝜙2𝑙−1(𝑥, 𝑦) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥𝑙𝑦0

𝑥−(𝑙−1)𝑦

𝑥𝑙−1𝑦−1

⋮

𝑥𝑦−(𝑙−1)

𝑥0𝑦𝑙

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

3 of 16

 14679590, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sapm

.12783 by U
niversidad D

e G
ranada, W

iley O
nline L

ibrary on [19/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Thus,

𝑥𝜙2𝑙(𝑥, 𝑦) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑝2𝑙−2,0 ∈ 2𝑙−2∖2𝑙−3

𝑝2𝑙+1,1 ∈ 2𝑙+2∖2𝑙+1

𝑝2𝑙−4,2 ∈ 2𝑙−2∖2𝑙−3

⋮

𝑝0,2𝑙−2 ∈ 2𝑙−2∖2𝑙−3

𝑝3,2𝑙−1 ∈ 2𝑙+2∖2𝑙+1

𝑝1,2𝑙 ∈ 2𝑙+1∖2𝑙

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

1

𝑥
𝜙2𝑙(𝑥, 𝑦) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑝2𝑙+2,0 ∈ 2𝑙+2∖2𝑙+1

𝑝2𝑙−3,1 ∈ 2𝑙−2∖2𝑙−3

𝑝2𝑙,2 ∈ 2𝑙+2∖2𝑙+1

⋮

𝑝4,2𝑙−2 ∈ 2𝑙+2∖2𝑙+1

𝑝0,2𝑙−1 ∈ 2𝑙−1∖2𝑙−2

𝑝2,2𝑙 ∈ 2𝑙+2∖2𝑙+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7)

𝑥𝜙2𝑙−1(𝑥, 𝑦) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑝2𝑙+1,0 ∈ 2𝑙+1∖2𝑙

𝑝2𝑙−4,1 ∈ 2𝑙−3∖2𝑙−4

𝑝2𝑙−1,2 ∈ 2𝑙+1∖2𝑙

⋮

𝑝0,2𝑙−3 ∈ 2𝑙−3∖2𝑙−4

𝑝3,2𝑙−2 ∈ 2𝑙+1∖2𝑙

𝑝1,2𝑙−1 ∈ 2𝑙∖2𝑙−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

1

𝑥
𝜙2𝑙−1(𝑥, 𝑦) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑝2𝑙−3,0 ∈ 2𝑙−3∖2𝑙−4

𝑝2𝑙,1 ∈ 2𝑙+1∖2𝑙

𝑝2𝑙−5,2 ∈ 2𝑙−3∖2𝑙−4

⋮

𝑝4,2𝑙−3 ∈ 2𝑙+1∖2𝑙

𝑝0,2𝑙−2 ∈ 2𝑙−2∖2𝑙−3

𝑝2,2𝑙−1 ∈ 2𝑙+1∖2𝑙

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (8)

𝑦𝜙2𝑙(𝑥, 𝑦) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑝2𝑙,1 ∈ 2𝑙+1∖2𝑙

𝑝2𝑙−1,3 ∈ 2𝑙+2∖2𝑙+1

𝑝2𝑙−2,0 ∈ 2𝑙−2∖2𝑙−3

⋮

𝑝2,2𝑙−4 ∈ 2𝑙−2∖2𝑙−3

𝑝1,2𝑙+1 ∈ 2𝑙+2∖2𝑙+1

𝑝0,2𝑙−2 ∈ 2𝑙−2∖2𝑙−3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

1

𝑦
𝜙2𝑙(𝑥, 𝑦) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑝2𝑙,2 ∈ 2𝑙+2∖2𝑙+1

𝑝2𝑙−1,0 ∈ 2𝑙+1∖2𝑙

𝑝2𝑙−2,4 ∈ 2𝑙+2∖2𝑙+1

⋮

𝑝2,2𝑙 ∈ 2𝑙+2∖2𝑙+1

𝑝1,2𝑙−3 ∈ 2𝑙−2∖2𝑙−3

𝑝0,2𝑙+2 ∈ 2𝑙+2∖2𝑙+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (9)

and

𝑦𝜙2𝑙−1(𝑥, 𝑦) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑝2𝑙−1,1 ∈ 2𝑙∖2𝑙−1

𝑝2𝑙−2,3 ∈ 2𝑙+1∖2𝑙

𝑝2𝑙−3,0 ∈ 2𝑙−3∖2𝑙−4

⋮

𝑝2,2𝑙−1 ∈ 2𝑙+1∖2𝑙

𝑝1,2𝑙−4 ∈ 2𝑙−3∖2𝑙−4

𝑝0,2𝑙+1 ∈ 2𝑙+1∖2𝑙

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

1

𝑦
𝜙2𝑙−1(𝑥, 𝑦) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑝2𝑙−1,2 ∈ 2𝑙+1∖2𝑙

𝑝2𝑙−2,0 ∈ 2𝑙−2∖2𝑙−3

𝑝2𝑙−3,4 ∈ 2𝑙+1∖2𝑙

⋮

𝑝2,2𝑙−5 ∈ 2𝑙−3∖2𝑙−4

𝑝1,2𝑙 ∈ 2𝑙+1∖2𝑙

𝑝0,2𝑙−3 ∈ 2𝑙−3∖2𝑙−4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10)

It follows from (7)–(8) and (9)–(10) that if 𝜓𝑘 ∈ 𝑘∖𝑘−1, then
𝑥𝜓𝑘 ∈ 𝑘+2,

1

𝑥
𝜓𝑘 ∈ 𝑘+2 and 𝑦𝜓𝑘 ∈ 𝑘+2,

1

𝑦
𝜓𝑘 ∈ 𝑘+2, respec-

tively. However, the key fact in what follows is that all the
components of the vectors (𝑥 + 1

𝑥
)𝜓𝑘 and (𝑦 + 1

𝑦
)𝜓𝑘 are in

𝑘+2∖𝑘+1.

A Laurent system in two variables {𝜑𝑛}𝑛≥0 is a sequence of vectors
of increasing size

𝜑𝑛 ∈ 𝑛+1,1, 𝜑𝑛 ∈ 𝑛∖𝑛−1, ∀ 𝑛 ≥ 0

such that the components in the vector 𝜑𝑛 are linearly indepen-
dent. It is clear that in this case

𝜑𝑛 =
𝑛∑

𝑖=0

𝐴
(𝑛)

𝑖 𝜙𝑖, with 𝐴
(𝑛)

𝑖 ∈ 𝑛+1,𝑖+1 constant matrices,

𝐴
(𝑛)
𝑛 being regular. (11)

Let us consider a linear functional 𝐿 defined in  by 𝐿(𝑥𝑖𝑦𝑗) =
𝜇𝑖,𝑗 for 𝑖, 𝑗 ∈ ℤ and extended by linearity. It can be defined over
product of vectors in the following way:

𝐿(𝑓 𝑔𝑇) =
(
𝐿(𝑓𝑖 𝑔𝑗)

)
𝑖=1,…,𝑘; 𝑗=1,…,𝑚

∈ 𝑘,𝑚, where

𝑓 = [𝑓1, … , 𝑓𝑘]
𝑇 and 𝑔 = [𝑔1, … , 𝑔𝑚]𝑇. (12)

Definition 1. ALaurent system {𝜑𝑛}𝑛≥0 is a systemof orthogonal
Laurent polynomials with respect to the linear functional 𝐿 if for
all 𝑛 ≥ 0

𝐿(𝜑𝑛𝜑
𝑇
𝑘
) = 𝑛+1,𝑘+1, 𝑘 = 0, … , 𝑛 − 1

𝐿(𝜑𝑛𝜑
𝑇
𝑛 ) = 𝑛 ∈ 𝑛+1 with𝑛 an invertible matrix.

(13)

In the case when𝑛 = 𝑛+1 for all 𝑛 ≥ 0, {𝜑𝑛}𝑛≥0 is called a system
of orthonormal Laurent polynomials.
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Observe that the orthogonality conditions are equivalent to

𝐿(𝜙𝑘𝜑
𝑇
𝑛 ) = 𝑘+1,𝑛+1, 𝑘 = 0, … , 𝑛 − 1

𝐿(𝜙𝑛𝜑
𝑇
𝑛 ) = 𝑛 ∈ 𝑛+1 with 𝑛 an invertible matrix.

(14)

For 𝑛 ≥ 0, 𝑘, 𝑙 ≥ 0, we define the matrices

M𝑘,𝑙 = 𝐿(𝜙𝑘 𝜙𝑇
𝑙
)

and the matrix

M𝑛 =
(
M𝑘,𝑙

)𝑛

𝑘,𝑙=0
with Δ𝑛 = detM𝑛.

We callM𝑛 amoment matrix. Observe that

Δ0 = ||𝜇0,0
||, Δ1 =

||||||||
𝜇0,0 𝜇1,0 𝜇0,1

𝜇1,0 𝜇2,0 𝜇1,1

𝜇0,1 𝜇1,1 𝜇0,2

||||||||,

Δ2 =

||||||||||||||||

𝜇0,0 𝜇1,0 𝜇0,1 𝜇−1,0 𝜇1,1 𝜇0,−1

𝜇1,0 𝜇2,0 𝜇1,1 𝜇0,0 𝜇2,1 𝜇1,−1

𝜇0,1 𝜇1,1 𝜇0,2 𝜇−1,1 𝜇1,2 𝜇0,0

𝜇−1,0 𝜇0,0 𝜇−1,1 𝜇−2,0 𝜇0,1 𝜇−1,−1

𝜇1,1 𝜇2,1 𝜇1,2 𝜇0,1 𝜇2,2 𝜇1,0

𝜇0,−1 𝜇1,−1 𝜇0,0 𝜇−1,−1 𝜇1,0 𝜇0,−2

||||||||||||||||
, …

Proposition 1. Asystemof orthogonal Laurent polynomialswith
respect to the linear functional 𝐿 exists, if and only if, Δ𝑛 ≠ 0 for all
𝑛 ≥ 0.

Proof. Using that 𝜑𝑛 =
∑𝑛

𝑖=0
𝐴𝑖𝜙𝑖 , we have

𝐿(𝜙𝑘𝜑
𝑇
𝑛 ) =

𝑛∑
𝑘=0

𝐿(𝜙𝑘𝜙
𝑇
𝑖 )𝐴

𝑇
𝑖 =

𝑛∑
𝑘=0

M𝑘,𝑖𝐴
𝑇
𝑖 .

The orthogonality conditions (14) are equivalent to the following
linear system of equations:

M𝑛

⎛⎜⎜⎜⎝
𝐴𝑇

0

⋮

𝐴𝑇
𝑛−1

𝐴𝑇
𝑛

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝
0

⋮

0

𝑛

⎞⎟⎟⎟⎠ .

The system has a unique solution if the matrix M𝑛 is invertible,
that is, if Δ𝑛 ≠ 0. □

Definition 2. A linear functional 𝐿 defined in  given by (4) is
called quasi-definite if there exists a system of orthogonal Laurent
polynomials with respect to 𝐿. 𝐿 is positive-definite if it is quasi-
definite and 𝐿(𝜓2) > 0, ∀ 𝜓 ∈ , 𝜓 ≠ 0.

Proposition 2. If 𝐿 is a positive-definite moment functional
then there exists a system of orthonormal Laurent polynomials with
respect to 𝐿.

Proof. Suppose that 𝐿 is positive-definite. Let 𝑎 = (𝑎0, … , 𝑎𝑛),
with 𝑎𝑗 ∈ 1,𝑗+1, be an eigenvector of the matrixM𝑛 correspond-
ing to eigenvalue 𝜆. Then, on the one hand, 𝑎𝑇 M𝑛 𝑎 = 𝜆‖𝑎‖2.
On the other hand, 𝑎𝑇 M𝑛 𝑎 = 𝐿(𝜓2) > 0, where 𝜓 =

∑𝑛

𝑗=0
𝑎𝑇

𝑗 𝜙𝑗 .

It follows that 𝜆 > 0. Since all the eigenvalues are positive, Δ𝑛 =
det(M𝑛) > 0.

As a consequence, there exists a system {𝜑𝑛}𝑛 of orthogonal
Laurent polynomials with respect to 𝐿 with 𝑛 = 𝐿(𝜑𝑛 𝜑𝑇

𝑛 ).
For any nonzero vector 𝑣, 𝜓 = 𝑣𝜑𝑛 is a nonzero element
of 𝑛. Then, 𝑣𝑛 𝑣𝑇 = 𝐿(𝜓2) > 0, so 𝑛 is a positive-
definite matrix. If we define �̃�𝑛 = (1∕2

𝑛 )−1𝜑𝑛, then
𝐿(�̃�𝑛 �̃�𝑇

𝑛 ) = (1∕2
𝑛 )−1𝐿(𝜑𝑛 𝜑𝑇

𝑛 )(1∕2
𝑛 )−1 = 𝑛+1. This proves that

{�̃�𝑛}𝑛 is a system of orthonormal Laurent polynomials with
respect to 𝐿. □

From now on, we will deal with a positive Borel measure 𝜇(𝑥, 𝑦)

on ℝ2, 𝐷 ∶= supp(𝜇) such that ({𝑥 = 0} ∪ {𝑦 = 0}) ∩ 𝐷 = ∅. We
consider the induced inner product

⟨𝑓, 𝑔⟩𝜇 = ∬
𝐷

𝑓(𝑥, 𝑦)𝑔(𝑥, 𝑦)𝑑𝜇(𝑥, 𝑦), 𝑓, 𝑔 ∈ 𝐿
𝜇

2

=
{

ℎ ∶ ℝ2 → ℝ ∶ ∬
𝐷

ℎ2(𝑥, 𝑦)𝑑𝜇(𝑥, 𝑦) < ∞
}

, (15)

and we assume the existence of the moments

𝜇𝑖,𝑗 = ⟨𝑥𝑖, 𝑦𝑗⟩𝜇, ∀ 𝑖, 𝑗 ∈ ℤ. (16)

Consider the inner product

⟨𝑓, 𝑔𝑇⟩ =
(⟨𝑓𝑖, 𝑔𝑗⟩𝜇)𝑖=1,…,𝑘; 𝑗=1,…,𝑚

∈ 𝑘,𝑚, where

𝑓 = [𝑓1, … , 𝑓𝑘]
𝑇 and 𝑔 = [𝑔1, … , 𝑔𝑚]𝑇. (17)

From orthogonalization to 𝑛 = span {𝜙0, … , 𝜙𝑛} with respect
to the inner product (17), for all 𝑛 ≥ 0, we can obtain an
equivalent system 𝑛 = span {𝜑0, … , 𝜑𝑛} verifying 𝜑0 ∈ 0, 𝜑𝑙 ∈𝑙∖𝑙−1, 𝜑𝑙 ⟂ 𝑙−1, for all 𝑙 = 1, … , 𝑛, and ⟨𝜑𝑘, 𝜑

𝑇
𝑘
⟩ = 𝑘+1, for all

𝑘 = 0, … , 𝑛. If this procedure is repeated for all 𝑛 ≥ 0, we get
{𝜑𝑘}𝑘≥0, a family of orthonormal Laurent polynomials of two real
variables with respect to the measure 𝜇.

Remark 1. Observe that 𝜑𝑛 is uniquely determined up to left
multiplication by orthogonal matrices. Indeed, if 𝑄𝑛+1 ∈ 𝑛+1 is
an orthogonal matrix and �̃�𝑛 = 𝑄𝑛+1𝜑𝑛 then �̃�𝑛 ⟂ 𝑛−1 and

⟨�̃�𝑛, �̃�
𝑇
𝑛 ⟩ = ⟨𝑄𝑛+1𝜑𝑛, 𝜑

𝑇
𝑛𝑄

𝑇
𝑛+1⟩ = 𝑄𝑛+1⟨𝜑𝑛, 𝜑

𝑇
𝑛 ⟩𝑄𝑇

𝑛+1 = 𝑛+1.

From (7)–(8), we get(
𝑥 + 1

𝑥

)
𝜙𝑛 = 𝐵

(𝑛)
𝑛+2,1𝜙𝑛+2 + 𝐵

(𝑛)
𝑛+1,1𝜙𝑛+1 + 𝐵

(𝑛)
𝑛−1,1𝜙𝑛−1 + 𝐵

(𝑛)
𝑛−2,1𝜙𝑛−2,

where by introducing 𝑧𝑠 = (0 ⋯ 0 1 0) ∈ 1,𝑠 for all 𝑠 ≥ 3, it
follows for all 𝑛 ≥ 2 that

𝐵
(𝑛)
𝑛−2,1

=
[ 𝑛−12,𝑛−1

]
∈ 𝑛+1,𝑛−1, 𝐵

(𝑛)
𝑛−1,1

=
[𝑛+1,𝑛−1|𝑧𝑇

𝑛+1

]
∈ 𝑛+1,𝑛,

𝐵
(𝑛)
𝑛+1,1

=
[𝑛,𝑛+2

𝑧𝑛+2

]
∈ 𝑛+1,𝑛+2, 𝐵

(𝑛)
𝑛+2,1

=
[𝑛+1|𝑛+1,2

]
∈ 𝑛+1,𝑛+3.

(18)

These formulas are also valid to define 𝐵
(0)

𝑖,1 and 𝐵
(1)

𝑗,1 for 𝑖 = 1, 2

and 𝑗 = 0, 2, 3 if we interpret0,2 = 2,0 = ∅ and 𝑧2 = (1 0). Here,
the second subindex in the𝐵(𝑛)

𝑠,1 ∈ 𝑛+1,𝑠+1 matrices with 𝑠 ∈ {𝑛 −
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2, 𝑛 − 1, 𝑛 + 1, 𝑛 + 2} is used to separate the case of multiplication
by (𝑦 + 1

𝑦
), see further. So, it is clear from (11) that

(
𝑥 + 1

𝑥

)
𝜑𝑛(𝑥, 𝑦)

= 𝐴
(𝑛)
𝑛

[
𝐵

(𝑛)
𝑛+2,1𝜙𝑛+2 + 𝐵

(𝑛)
𝑛+1,1𝜙𝑛+1 + 𝐵

(𝑛)
𝑛−1,1𝜙𝑛−1 + 𝐵

(𝑛)
𝑛−2,1𝜙𝑛−2

]
+ lower terms, (19)

where by “lower terms” we understand linear combinations of
{𝜙0, … , 𝜙𝑛+1}.

The main reason why multiplication by 𝑥 + 1

𝑥
should be con-

sidered is the fact that 𝐵
(𝑛)
𝑛+2,1 is full rank. This also holds for

multiplication by 𝑦 + 1

𝑦
, as we will see further, but it is easy

to check from (7)–(10) that this property is not satisfied when
considering multiplication by 𝑥 + 1

𝑦
or 𝑦 + 1

𝑥
. So, for certain

constant matrices 𝐶
(𝑛+2)

𝑘
∈ 𝑛+3,𝑘+1, it holds that 𝜙𝑛+2(𝑥, 𝑦) =∑𝑛+2

𝑘=0
𝐶

(𝑛+2)

𝑘
𝜑𝑘(𝑥, 𝑦) with 𝐶

(𝑛+2)
𝑛+2 = (𝐴

(𝑛+2)
𝑛+2 )−1 and then(

𝑥 + 1

𝑥

)
𝜑𝑛(𝑥, 𝑦) = 𝐴

(𝑛)
𝑛 𝐵

(𝑛)
𝑛+2,1

𝜙𝑛+2(𝑥, 𝑦) + lower terms

= 𝐴
(𝑛)
𝑛 𝐵

(𝑛)
𝑛+2,1

(∑𝑛+2

𝑘=0
𝐶

(𝑛+2)

𝑘
𝜑𝑘(𝑥, 𝑦)

)
+ lower terms

= 𝐴
(𝑛)
𝑛 𝐵

(𝑛)
𝑛+2,1

𝐶
(𝑛+2)
𝑛+2

𝜑𝑛+2(𝑥, 𝑦) + lower terms.

The matrix

𝐷
(𝑛)
𝑛+2,1 ∶= 𝐴

(𝑛)
𝑛 𝐵

(𝑛)
𝑛+2,1𝐶

(𝑛+2)
𝑛+2 = 𝐴

(𝑛)
𝑛 𝐵

(𝑛)
𝑛+2,1

(
𝐴

(𝑛+2)
𝑛+2

)−1

∈ 𝑛+1,𝑛+3

has (full) rank 𝑛 + 1.

In short, we have proved that(
𝑥 + 1

𝑥

)
𝜑𝑛(𝑥, 𝑦) =

𝑛+2∑
𝑘=0

𝐷
(𝑛)

𝑘,1
𝜑𝑘(𝑥, 𝑦) where 𝐷

(𝑛)

𝑘,1
∈ 𝑛+1,𝑘+1

and𝐷
(𝑛)
𝑛+2,1 being of (full) rank 𝑛 + 1. Now, using the orthogonality

conditions and the property (𝑥 + 1

𝑥
)𝜑𝑘(𝑥, 𝑦) ∈ 𝑘+2, it follows

that

𝐷
(𝑛)

𝑘,1
=

⟨(
𝑥 + 1

𝑥

)
𝜑𝑛(𝑥, 𝑦), 𝜑

𝑇
𝑘
(𝑥, 𝑦)

⟩
=

⟨
𝜑𝑛(𝑥, 𝑦),

(
𝑥 + 1

𝑥

)
𝜑𝑇

𝑘
(𝑥, 𝑦)

⟩
= 0 if 𝑘 < 𝑛 − 2.

This implies the following five-term recurrence relation that
holds for 𝑛 ≥ 2:(

𝑥 + 1

𝑥

)
𝜑𝑛(𝑥, 𝑦) = 𝐷

(𝑛)
𝑛+2,1𝜑𝑛+2(𝑥, 𝑦) + 𝐷

(𝑛)
𝑛+1,1𝜑𝑛+1(𝑥, 𝑦)

+𝐷
(𝑛)
𝑛,1𝜑𝑛(𝑥, 𝑦) + 𝐷

(𝑛)
𝑛−1,1𝜑𝑛−1(𝑥, 𝑦) + 𝐷

(𝑛)
𝑛−2,1𝜑𝑛−2(𝑥, 𝑦), (20)

with

𝐷
(𝑛)
𝑠,1 =

⟨(
𝑥 + 1

𝑥

)
𝜑𝑛(𝑥, 𝑦), 𝜑

𝑇
𝑠 (𝑥, 𝑦)

⟩
∈ 𝑛+1,𝑠+1,

𝑠 ∈ {𝑛 − 2, … , 𝑛 + 2} (21)

and leading coefficient matrix 𝐷
(𝑛)
𝑛+2,1 of (full) rank 𝑛 + 1. More-

over, for 𝑠 ∈ {𝑛 − 2, …𝑛 + 2}

𝐷
(𝑛)
𝑠,1 =

⟨(
𝑥 + 1

𝑥

)
𝜑𝑛(𝑥, 𝑦), 𝜑

𝑇
𝑠 (𝑥, 𝑦)

⟩

=
⟨
𝜑𝑛(𝑥, 𝑦),

(
𝑥 + 1

𝑥

)
𝜑𝑇

𝑠 (𝑥, 𝑦)

⟩

=
⟨
𝜑𝑛,

(
𝐷

(𝑠)
𝑠+2,1𝜑𝑠+2 + 𝐷

(𝑠)
𝑠+1,1𝜑𝑠+1 + 𝐷

(𝑠)
𝑠,1𝜑𝑠 + 𝐷

(𝑠)
𝑠−1,1𝜑𝑠−1 + 𝐷

(𝑠)
𝑠−2,1𝜑𝑠−2

)𝑇
⟩

=
(
𝐷

(𝑠)
𝑛,1

)𝑇

,

so we have proved that

𝐷
(𝑛)
𝑠,1 =

(
𝐷

(𝑠)
𝑛,1

)𝑇

, 𝑠 ∈ {𝑛 − 2, …𝑛 + 2}. (22)

This implies, in particular, that 𝐷
(𝑛)
𝑛,1 is symmetric and that the

tailed coefficient matrix 𝐷
(𝑛)
𝑛−2,1 ∈ 𝑛+1,𝑛−1 in (20) is also of full

rank, equal to 𝑛 − 1.

Concerning the initial conditions, we may observe that the
recurrence (20) is also valid for 𝑛 = 0, 1 by setting 𝜑−1 ≡ 𝜑−2 ≡ 0.
Indeed, recall first that

𝜙0(𝑥, 𝑦) ≡ 1, 𝜙1(𝑥, 𝑦) =

(
𝑥

𝑦

)
, 𝜙2(𝑥, 𝑦) =

⎛⎜⎜⎜⎝
1∕𝑥

𝑥𝑦

1∕𝑦

⎞⎟⎟⎟⎠,

𝜙3(𝑥, 𝑦) =

⎛⎜⎜⎜⎜⎜⎝

𝑥2

𝑦∕𝑥

𝑥∕𝑦

𝑦2

⎞⎟⎟⎟⎟⎟⎠
.

For 𝑛 = 0, we can findmatrices𝐷(0)

𝑖,1 ∈ 1,𝑖+1, 𝑖 = 0, 1, 2 such that
(20) holds. From (11), we can write

(
𝑥 + 1

𝑥

)
𝐴

(0)
0 =

[
𝐷

(0)
2,1𝐴

(2)
2

]
𝜙2 +

[
𝐷

(0)
1,1𝐴

(1)
1 + 𝐷

(0)
2,1𝐴

(2)
1

]
𝜙1

+
[
𝐷

(0)
0,1𝐴

(0)
0 + 𝐷

(0)
1,1𝐴

(1)
0 + 𝐷

(0)
2,1𝐴

(2)
0

]
𝜙0,

where 𝐴
(𝑖)

𝑖 are regular, for 𝑖 = 0, 1, 2. Hence, since

(
𝑥 + 1

𝑥

)
𝐴

(0)
0 = 𝐵

(0)
2,1𝐴

(0)
0 𝜙2 + 𝐵

(0)
1,1𝐴

(0)
0 𝜙1,

it follows that

𝐷
(0)
2,1 = 𝐵

(0)
2,1𝐴

(0)
0

(
𝐴

(2)
2

)−1

𝐷
(0)
1,1 =

(
𝐵

(0)
1,1𝐴

(0)
0 − 𝐷

(0)
2,1𝐴

(2)
1

)(
𝐴

(1)
1

)−1

𝐷
(0)
0,1 = −

(
𝐷

(0)
1,1𝐴

(1)
0 + 𝐷

(0)
2,1𝐴

(2)
0

)(
𝐴

(0)
0

)−1

.

(23)
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Similarly when 𝑛 = 1, we can find matrices 𝐷
(1)

𝑖,1 ∈ 2,𝑖+1, 𝑖 =
0, 1, 2, 3 such that (20) holds. By one hand, we can write from (11)(

𝑥 + 1

𝑥

)[
𝐴

(1)
0

𝜙0 + 𝐴
(1)
1

𝜙1

]
=

[
𝐷

(1)
3,1

𝐴
(3)
3

]
𝜙3 +

[
𝐷

(1)
3,1

𝐴
(3)
2

+ 𝐷
(1)
2,1

𝐴
(2)
2

]
𝜙2

+
[
𝐷

(1)
3,1

𝐴
(3)
1

+ 𝐷
(1)
2,1

𝐴
(2)
1

+ 𝐷
(1)
1,1

𝐴
(1)
1

]
𝜙1

+
[
𝐷

(1)
3,1

𝐴
(3)
0

+ 𝐷
(1)
2,1

𝐴
(2)
0

+ 𝐷
(1)
1,1

𝐴
(1)
0

+ 𝐷
(1)
0,1

𝐴
(0)
0

]
𝜙0

with 𝐴
(𝑖)

𝑖 regular matrices for 𝑖 = 0, … , 3. By other hand,(
𝑥 + 1

𝑥

)[
𝐴

(1)
0 𝜙0 + 𝐴

(1)
1 𝜙1

]
= 𝐴

(1)
1 𝐵

(1)
3,1𝜙3 +

[
𝐴

(1)
0 𝐵

(0)
2,1 + 𝐴

(1)
1 𝐵

(1)
2,1

]
𝜙2

+𝐴
(1)
0 𝐵

(0)
1,1𝜙1 + 𝐴

(1)
1 𝐵

(1)
0,1𝜙0.

Hence,

𝐷
(1)
3,1 = 𝐴

(1)
1 𝐵

(1)
3,1 ⋅

(
𝐴

(3)
3

)−1

𝐷
(1)
2,1 =

(
𝐴

(1)
0 𝐵

(0)
2,1 + 𝐴

(1)
1 𝐵

(1)
2,1 − 𝐷

(1)
3,1𝐴

(3)
2

)
⋅
(
𝐴

(2)
2

)−1

𝐷
(1)
1,1 =

(
𝐴

(1)
0 𝐵

(0)
1,1 − 𝐷

(1)
3,1𝐴

(3)
1 − 𝐷

(1)
2,1𝐴

(2)
1

)
⋅
(
𝐴

(1)
1

)−1

𝐷
(1)
0,1 =

(
𝐴

(1)
1 𝐵

(1)
0,1 − 𝐷

(1)
3,1𝐴

(3)
0 − 𝐷

(1)
2,1𝐴

(2)
0 − 𝐷

(1)
1,1𝐴

(1)
0

)
⋅
(
𝐴

(0)
0

)−1

.

(24)
As a consequence, we can give from (22) a matrix represen-
tation with respect to {𝜑𝑘}

∞
𝑘=0

of the multiplication plus inverse
multiplication operator:(

𝑥 + 1

𝑥

)
⋅ (𝜑0 𝜑1 𝜑2 𝜑3 𝜑4 𝜑5 ⋯)

𝑇

= 1 ⋅ (𝜑0 𝜑1 𝜑2 𝜑3 𝜑4 𝜑5 ⋯)
𝑇
, (25)

where 1 is the block symmetric matrix given by

1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐷
(0)
0,1 𝐷

(0)
1,1 𝐷

(0)
2,1 1,4 1,5 1,6 1,7 1,8 ⋯(

𝐷
(0)
1,1

)𝑇

𝐷
(1)
1,1 𝐷

(1)
2,1 𝐷

(1)
3,1 2,5 2,6 2,7 2,8 ⋯(

𝐷
(0)
2,1

)𝑇 (
𝐷

(1)
2,1

)𝑇

𝐷
(2)
2,1 𝐷

(2)
3,1 𝐷

(2)
4,1 3,6 3,7 3,8 ⋯

4,1

(
𝐷

(1)
3,1

)𝑇 (
𝐷

(2)
3,1

)𝑇

𝐷
(3)
3,1 𝐷

(3)
4,1 𝐷

(3)
5,1 4,7 4,8 ⋯

5,1 5,2

(
𝐷

(2)
4,1

)𝑇 (
𝐷

(3)
4,1

)𝑇

𝐷
(4)
4,1 𝐷

(4)
5,1 𝐷

(4)
6,1 5,8 ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(26)
A very similar analysis can be done from (9)–(10) when consid-
ering multiplication by 𝑦 + 1

𝑦
, we omit most of the details. It is

important to point out that the corresponding 𝐵
(𝑛)
𝑠,2 matrices in the

relation(
𝑦 + 1

𝑦

)
𝜙𝑛 = 𝐵

(𝑛)
𝑛+2,2𝜙𝑛+2 + 𝐵

(𝑛)
𝑛+1,2𝜙𝑛+1 + 𝐵

(𝑛)
𝑛−1,2𝜙𝑛−1 + 𝐵

(𝑛)
𝑛−2,2𝜙𝑛−2

are given in this case (compare with (18)) for all 𝑛 ≥ 2 by

𝐵
(𝑛)
𝑛−2,2

=
[2,𝑛−1

𝑛−1

]
∈ 𝑛+1,𝑛−1, 𝐵

(𝑛)
𝑛−1,2

=
[
�̃�𝑇
𝑛+1

|𝑛+1,𝑛−1

]
∈ 𝑛+1,𝑛,

𝐵
(𝑛)
𝑛+1,2

=
[

�̃�𝑛+2

𝑛,𝑛+2

]
∈ 𝑛+1,𝑛+2, 𝐵

(𝑛)
𝑛+2,2

=
[𝑛+1,2|𝑛+1

]
∈ 𝑛+1,𝑛+3,

where �̃�𝑠 = (0 1 0 ⋯ 0) ∈ 1,𝑠 for all 𝑠 ≥ 3 and �̃�2 = (0 1).
These formulas are again valid for 𝑛 = 0, 𝑠 ∈ {1, 2} and 𝑛 = 1,
𝑠 ∈ {0, 2, 3}. Thus,

𝐷
(𝑛)
𝑛+2,2 ∶=

[𝑛+1,2|𝐴(𝑛)
𝑛

]
⋅ 𝐶

(𝑛+2)
𝑛+2 = 𝐴

(𝑛)
𝑛 ⋅ 𝐵

(𝑛)
𝑛+2,2 ⋅

(
𝐴

(𝑛+2)
𝑛+2

)−1

∈ 𝑛+1,𝑛+3,

also has (full) rank 𝑛 + 1. The analog of (19) is(
𝑦 + 1

𝑦

)
𝜑𝑛(𝑥, 𝑦) = 𝐴

(𝑛)
𝑛

[
𝐵

(𝑛)
𝑛+2,2𝜙𝑛+2 + 𝐵

(𝑛)
𝑛+1,2𝜙𝑛+1 + 𝐵

(𝑛)
𝑛−1,2𝜙𝑛−1 + 𝐵

(𝑛)
𝑛−2,2𝜙𝑛−2

]
+ lower terms. (27)

The corresponding five-term recurrence is now, for 𝑛 ≥ 2:(
𝑦 + 1

𝑦

)
𝜑𝑛(𝑥, 𝑦) = 𝐷

(𝑛)
𝑛+2,2𝜑𝑛+2(𝑥, 𝑦) + 𝐷

(𝑛)
𝑛+1,2𝜑𝑛+1(𝑥, 𝑦)

+𝐷
(𝑛)
𝑛,2𝜑𝑛(𝑥, 𝑦) + 𝐷

(𝑛)
𝑛−1,2𝜑𝑛−1(𝑥, 𝑦) + 𝐷

(𝑛)
𝑛−2,2𝜑𝑛−2(𝑥, 𝑦), (28)

with

𝐷
(𝑛)
𝑠,2 =

⟨(
𝑦 + 1

𝑦

)
𝜑𝑛(𝑥, 𝑦), 𝜑

𝑇
𝑠 (𝑥, 𝑦)

⟩
∈ 𝑛+1,𝑠+1,

𝑠 ∈ {𝑛 − 2, … , 𝑛 + 2}. (29)

Equation (28) is again valid for 𝑛 = 0, 1. The analog of (23) is

𝐷
(0)
2,2 = 𝐵

(0)
2,2𝐴

(0)
0

(
𝐴

(2)
2

)−1

𝐷
(0)
1,2 =

(
𝐵

(0)
1,2𝐴

(0)
0 − 𝐷

(0)
2,2𝐴

(2)
1

)(
𝐴

(1)
1

)−1

𝐷
(0)
0,2 = −

(
𝐷

(0)
1,2𝐴

(1)
0 + 𝐷

(0)
2,2𝐴

(2)
0

)(
𝐴

(0)
0

)−1

.

(30)

As in (22), it holds

𝐷
(𝑛)
𝑠,2 =

(
𝐷

(𝑠)
𝑛,2

)𝑇

for 𝑠 ∈ {𝑛 − 2, … , 𝑛 + 2} (31)

and hence, 𝐷(𝑛)
𝑛,2 is symmetric and the tailing coefficient matrix

𝐷
(𝑛)
𝑛−2,2 ∈ 𝑛+1,𝑛−1 in (28) is also of full rank, equal to 𝑛 − 1.

The matrix representation with respect to {𝜑𝑘}
∞
𝑘=0

of themultipli-
cation plus inverse multiplication operator in the variable 𝑦 is(

𝑦 + 1

𝑦

)
⋅ (𝜑0 𝜑1 𝜑2 𝜑3 𝜑4 𝜑5 ⋯)

𝑇 = 2 ⋅ (𝜑0 𝜑1 𝜑2 𝜑3 𝜑4 𝜑5 ⋯)
𝑇
,

(32)
where 2 is a block symmetric matrix like 1 in (26) but replacing
the second subindexes 1 in the 𝐷

(𝑛)
𝑠,1 matrices by 2.

The results of this section can be summarized in the following.

Theorem 2. Let {𝜑𝑘}𝑘≥0 be a family of orthonormal Laurent
polynomials with respect to the measure 𝜇. Then, for all 𝑛 ≥ 0 there
exist constant matrices 𝐷

(𝑛)

𝑠,𝑖 ∈ 𝑛+1,𝑠+1, 𝑠 ∈ {𝑛 − 2, … , 𝑛 + 2}, 𝑖 ∈
{1, 2} given by (21) and (29) when 𝑛 ≥ 2, 𝑠 ∈ {0, 1, 2} if 𝑛 = 0 and
𝑠 ∈ {0, 1, 2, 3} if 𝑛 = 1, such that the following five-term relations
hold: (

𝑥 + 1

𝑥

)
𝜑𝑛(𝑥, 𝑦) = 𝐷

(𝑛)
𝑛+2,1𝜑𝑛+2(𝑥, 𝑦) + 𝐷

(𝑛)
𝑛+1,1𝜑𝑛+1(𝑥, 𝑦)

+𝐷
(𝑛)
𝑛,1𝜑𝑛(𝑥, 𝑦) + 𝐷

(𝑛)
𝑛−1,1𝜑𝑛−1(𝑥, 𝑦) + 𝐷

(𝑛)
𝑛−2,1𝜑𝑛−2(𝑥, 𝑦),
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(
𝑦 + 1

𝑦

)
𝜑𝑛(𝑥, 𝑦) = 𝐷

(𝑛)
𝑛+2,2𝜑𝑛+2(𝑥, 𝑦) + 𝐷

(𝑛)
𝑛+1,2𝜑𝑛+1(𝑥, 𝑦)

+𝐷
(𝑛)
𝑛,2𝜑𝑛(𝑥, 𝑦) + 𝐷

(𝑛)
𝑛−1,2𝜑𝑛−1(𝑥, 𝑦) + 𝐷

(𝑛)
𝑛−2,2𝜑𝑛−2(𝑥, 𝑦) (33)

with 𝜑−1 ≡ 𝜑−2 ≡ 0. Moreover, for 𝑖 ∈ {1, 2}, 𝐷(𝑛)

𝑠,𝑖 = (𝐷
(𝑠)

𝑛,𝑖 )
𝑇 , for all

𝑛 ≥ 2, 𝑠 ∈ {𝑛 − 2, 𝑛 − 1, 𝑛}, 𝐷(1)

0,𝑖 = (𝐷
(0)

1,𝑖 )
𝑇 and the matrices 𝐷

(𝑛)

𝑛+2,𝑖

and 𝐷
(𝑛)

𝑛−2,𝑖 are full rank.

We conclude this section with the following elementary result
that will be used in the next section.

Lemma 1. For all 𝑛 ≥ 1, the matrices

𝐷
(𝑛)
𝑛+2 ∶=

[
𝐷

(𝑛)
𝑛+2,1

𝐷
(𝑛)
𝑛+2,2

]
∈ 2(𝑛+1),𝑛+3 and 𝐵

(𝑛)
𝑛+2 ∶=

[
𝐵

(𝑛)
𝑛+2,1

𝐵
(𝑛)
𝑛+2,2

]
∈ 2(𝑛+1),𝑛+3

have full rank, equal to𝑛 + 3. This full rank properties are also valid
for 𝑛 = 0, but in this case they are equal to 2, instead of 3.

Proof. The result trivially follows for the matrix 𝐵
(𝑛)
𝑛+2 since we

have already seen that

𝐵
(𝑛)
𝑛+2,1 = [𝑛+1|𝑛+1,2] ∈ 𝑛+1,𝑛+3, 𝐵

(𝑛)
𝑛+2,2 = [𝑛+1,2|𝑛+1] ∈ 𝑛+1,𝑛+3.

We can write

𝐷
(𝑛)
𝑛+2 =

(
𝐴

(𝑛)
𝑛 𝑛+1,2

𝑛+1,2 𝐴
(𝑛)
𝑛

)
⋅
(
𝐴

(𝑛+2)
𝑛+2

)−1

,

so the result follows directly by using Sylvester inequality (see,
e.g., [31, p. 13]). Finally, the result for 𝑛 = 0 holds since

𝐷
(0)
2 = 𝐵

(0)
2 ⋅

(
𝐴

(2)
2

)−1

. □

3 Favard’s Theorem and Christoffel–Darboux
Formula

From the results of Section 2, we have all the necessary technical
modifications to adapt the proofs of Favard’s theorem and
Christoffel–Darboux formula presented in [27, Section 3.3] for the
ordinary polynomials in several variables to the Laurent case.

Our first observation is that since for all 𝑛 ≥ 1, the matrix 𝐷
(𝑛)
𝑛+2 ∈

2(𝑛+1),𝑛+3 defined in Lemma 1 is of full rank 𝑛 + 3, it has a left
inverse(

𝐷
(𝑛)

𝑛+2

)𝑇

=

( (
𝐷

(𝑛)

𝑛+2,1

)𝑇 (
𝐷

(𝑛)

𝑛+2,2

)𝑇
)

∈ 𝑛+3,2(𝑛+1),

(
𝐷

(𝑛)

𝑛+2,𝑖

)𝑇

∈ 𝑛+3,𝑛+1, 𝑖 = 1, 2,

that is, not unique. This means(
𝐷

(𝑛)

𝑛+2

)𝑇

⋅ 𝐷
(𝑛)
𝑛+2 =

(
𝐷

(𝑛)

𝑛+2,1

)𝑇

⋅ 𝐷
(𝑛)
𝑛+2,1 +

(
𝐷

(𝑛)

𝑛+2,2

)𝑇

⋅ 𝐷
(𝑛)
𝑛+2,2 = 𝑛+3.

We need also the following auxiliary result.

Proposition 3. Let (𝐷
(𝑛)

𝑛+2)
𝑇 be a left inverse of 𝐷

(𝑛)

𝑛+2. Then, there
exists constant matrices 𝐸𝑖

𝑛 ∈ 𝑛+3,𝑛+3−𝑖 , 𝑖 = 1, 2, 3, 4 such that

𝜑𝑛+2 =

[(
𝑥 + 1

𝑥

)(
𝐷

(𝑛)

𝑛+2,1

)𝑇

+
(
𝑦 + 1

𝑦

)(
𝐷

(𝑛)

𝑛+2,2

)𝑇
]
𝜑𝑛

+𝐸1
𝑛𝜑𝑛+1 + 𝐸2

𝑛𝜑𝑛 + 𝐸3
𝑛𝜑𝑛−1 + 𝐸4

𝑛𝜑𝑛−2.

Proof. If we add (20) multiplied on the left by (𝐷
(𝑛)

𝑛+2,1)
𝑇 and (28)

multiplied on the left by (𝐷
(𝑛)

𝑛+2,2)
𝑇 , we get

[(
𝑥 + 1

𝑥

)(
𝐷

(𝑛)

𝑛+2,1

)𝑇

+
(
𝑦 + 1

𝑦

)(
𝐷

(𝑛)

𝑛+2,2

)𝑇
]
𝜑𝑛

=

[(
𝐷

(𝑛)

𝑛+2,1

)𝑇

𝐷
(𝑛)
𝑛+2,1 +

(
𝐷

(𝑛)

𝑛+2,2

)𝑇

𝐷
(𝑛)
𝑛+2,2

]
𝜑𝑛+2

+

[(
𝐷

(𝑛)

𝑛+2,1

)𝑇

𝐷
(𝑛)
𝑛+1,1 +

(
𝐷

(𝑛)

𝑛+2,2

)𝑇

𝐷
(𝑛)
𝑛+1,2

]
𝜑𝑛+1

+

[(
𝐷

(𝑛)

𝑛+2,1

)𝑇

𝐷
(𝑛)
𝑛,1 +

(
𝐷

(𝑛)

𝑛+2,2

)𝑇

𝐷
(𝑛)
𝑛,2

]
𝜑𝑛

+

[(
𝐷

(𝑛)

𝑛+2,1

)𝑇

𝐷
(𝑛)
𝑛−1,1 +

(
𝐷

(𝑛)

𝑛+2,2

)𝑇

𝐷
(𝑛)
𝑛−1,2

]
𝜑𝑛−1

+

[(
𝐷

(𝑛)

𝑛+2,1

)𝑇

𝐷
(𝑛)
𝑛−2,1 +

(
𝐷

(𝑛)

𝑛+2,2

)𝑇

𝐷
(𝑛)
𝑛−2,2

]
𝜑𝑛−2.

So, the result follows by considering

𝐸𝑖
𝑛 = −

[(
𝐷

(𝑛)

𝑛+2,1

)𝑇

𝐷
(𝑛)

𝑛+2−𝑖,1 +
(
𝐷

(𝑛)

𝑛+2,2

)𝑇

𝐷
(𝑛)

𝑛+2−𝑖,2

]
∈ 𝑛+3,𝑛+3−𝑖 , 𝑖 = 1, 2, 3, 4.

□

Now we are in position to prove a Favard-type theorem by
following the ideas presented in [27, Section 3.3]. We concentrate
in the positive-definite case.

Theorem3 (Favard). Let and𝑛 be given by (3)–(5), {𝜑𝑛}
∞
𝑛=0 be

an arbitrary sequence in  written in the form (11) with 𝜙𝑘 defined
in (6) for all 𝑘 ≥ 0, 𝜑𝑛 ∈ 𝑛∖𝑛−1, for all 𝑛 ≥ 1 where 𝜑0 ≡ 1 and
set 𝜑−2 ≡ 𝜑−1 ≡ 0.

Suppose that for all 𝑛 ≥ 0, there exist matrices𝐷(𝑛)

𝑘,𝑖
∈ 𝑛+1,𝑘+1, 𝑖 =

1, 2, 𝑘 ∈ {𝑛 − 2, … , 𝑛 + 2}when 𝑛 ≥ 2, 𝑘 ∈ {0, 1, 2}when 𝑛 = 0 and
𝑘 ∈ {0, 1, 2, 3} when 𝑛 = 1, such that

1. the 𝐿-polynomials 𝜑𝑛 satisfy the recurrences (33) with 𝐷
(𝑛)

𝑠,𝑖 =
(𝐷

(𝑠)

𝑛,𝑖 )
𝑇 , for all 𝑛 ≥ 2, 𝑠 ∈ {𝑛 − 2, 𝑛 − 1, 𝑛}, 𝐷(1)

0,𝑖 = (𝐷
(0)

1,𝑖 )
𝑇 and

𝑖 ∈ {1, 2};

8 of 16 Studies in Applied Mathematics, 2024
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2. the matrices in the relation satisfy the rank conditions:

rank𝐷
(𝑛)

𝑛+2,𝑖 = rank𝐷
(𝑛+2)

𝑛,𝑖 = 𝑛 + 1, 𝑛 ≥ 0, 𝑖 = 1, 2,

rank𝐷
(𝑛)
𝑛+2 = 𝑛 + 3, 𝑛 ≥ 1

rank𝐷
(0)
1 = 2

with 𝐷
(𝑛)
𝑛+2 ∈ 2(𝑛+1),𝑛+3 introduced in Lemma 1 and 𝐷

(0)
1 ∈

2 given by

𝐷
(0)
1 ∶=

[
𝐷

(0)
1,1

𝐷
(0)
1,2

]
∈ 2 . (34)

Then, there exist a linear functional 𝐿 which defines a positive-
definite functional on  and which makes {𝜑𝑛}

∞
𝑛=0 an orthonormal

basis in .
Proof. We first prove that {𝜑𝑛}

∞
𝑛=0 forms a basis of . Using the

expression (11), it suffices to prove that the leading coefficient
𝐴

(𝑛)
𝑛 is regular, for all 𝑛 ≥ 0. For 𝑛 ≥ 2, we see that comparing the

coefficient matrices of 𝜙𝑛+2 in (19), (27) and (20), (28) we get

diag
(
𝐴

(𝑛)
𝑛 , 𝐴

(𝑛)
𝑛

)
⋅ 𝐵

(𝑛)
𝑛+2 = 𝐷

(𝑛)
𝑛+2 ⋅ 𝐴

(𝑛+2)
𝑛+2 ,

where 𝐵
(𝑛)
𝑛+2, 𝐷

(𝑛)
𝑛+2 are the matrices of rank 𝑛 + 3 that have been

introduced in Lemma 1. To prove that rank𝐴
(𝑛)
𝑛 = 𝑛 + 1 we pro-

ceed by induction by showing that from the two initial conditions
𝑛 = 0, 1 (that holds by hypothesis) we get that if rank𝐴

(𝑛)
𝑛 =

𝑛 + 1, then rank𝐴
(𝑛+2)
𝑛+2 = 𝑛 + 3. Indeed, if 𝐴(𝑛)

𝑛 is invertible, then
diag(𝐴(𝑛)

𝑛 , 𝐴
(𝑛)
𝑛 ) is also invertible,

rank
(
diag

(
𝐴

(𝑛)
𝑛 , 𝐴

(𝑛)
𝑛

)
⋅ 𝐵

(𝑛)
𝑛+2

)
= rank𝐵

(𝑛)
𝑛+2 = 𝑛 + 3,

and hence, rank (𝐷
(𝑛)
𝑛+2 ⋅ 𝐴

(𝑛+2)
𝑛+2 ) = 𝑛 + 3. By using Sylvester

inequality, we get

rank𝐴
(𝑛+2)
𝑛+2 ≥ rank

(
𝐷

(𝑛)
𝑛+2 ⋅ 𝐴

(𝑛+2)
𝑛+2

) ≥ rank𝐷
(𝑛)
𝑛+2

+ rank𝐴
(𝑛+2)
𝑛+2 − (𝑛 + 3) = rank𝐴

(𝑛+2)
𝑛+2 .

So, we conclude rank𝐴
(𝑛+2)
𝑛+2 = rank (𝐷

(𝑛)
𝑛+2 ⋅ 𝐴

(𝑛+2)
𝑛+2 ) = 𝑛 + 3 and

the induction is complete.

Since {𝜑𝑛}
∞
𝑛=0 is a basis of , the linear functional 𝐿 defined on 

by 𝐿(1) = 1 and 𝐿(𝜑𝑛) = 0, for all 𝑛 ≥ 1 is well-defined. We now
use induction to prove that

𝐿(𝜑𝑘𝜑
𝑇
𝑗 ) = 0, for all 𝑘 ≠ 𝑗. (35)

For 𝑛 ≥ 0, assume that (35) hold ∀ 𝑘, 𝑗 such that 0 ≤ 𝑘 ≤ 𝑛

and 𝑗 > 𝑘. The induction process is directly obtained from
Proposition 3 since we have for all 𝑙 > 𝑛 + 1 that

𝐿(𝜑𝑛+1𝜑
𝑇
𝑙
) = 𝐿

[(
𝐷

(𝑛−1)

𝑛+1,1

)𝑇

𝜑𝑛−1

(
𝑥 + 1

𝑥

)
𝜑𝑇

𝑙

]

+ 𝐿

[(
𝐷

(𝑛−1)

𝑛+1,2

)𝑇

𝜑𝑛−1

(
𝑦 + 1

𝑦

)
𝜑𝑇

𝑙

]
= 0.

Let us see finally that 𝑛 ∶= 𝐿(𝜑𝑛𝜑
𝑇
𝑛 ) = 𝑛+1. Notice from (20)

that

𝐷
(𝑛)
𝑛+2,1𝑛+2 = 𝐿

[(
𝑥 + 1

𝑥

)
𝜑𝑛𝜑

𝑇
𝑛+2

]
= 𝐿

[
𝜑𝑛

((
𝑥 + 1

𝑥

)
𝜑𝑛+2

)𝑇
]

= 𝑛

(
𝐷

(𝑛+2)
𝑛,1

)𝑇

= 𝑛𝐷
(𝑛)
𝑛+2,1, ∀ 𝑛 ≥ 0.

Weget a similar result from (28)whenmultiplying by (𝑦 + 1

𝑦
), and

both relations can be written together as

𝐷
(𝑛)
𝑛+2 ⋅𝑛+2 = diag(𝑛 , 𝑛) ⋅ 𝐷

(𝑛)
𝑛+2. (36)

We proceed again by induction over 𝑛. It is clear from construc-
tion that it holds for 𝑛 = 0 and the proof is concluded if we prove
it for 𝑛 = 1. Indeed, in such case if we suppose that the property
holds for all 0 ≤ 𝑘 ≤ 𝑛 + 1, it follows from (36) that 𝐷(𝑛)

𝑛+2 ⋅𝑛+2 =
𝐷

(𝑛)
𝑛+2. Since𝐷

(𝑛)
𝑛+2 is of full rank it has a left inverse, so𝑛+2 = 𝑛+2.

Taking 𝑛 = 0, 1 in (20) we see that

𝐿

[(
𝑥 + 1

𝑥

)
𝜑0𝜑

𝑇
1

]
= 𝐷

(0)
2,1𝐿[𝜑2𝜑

𝑇
1 ] + 𝐷

(0)
1,1𝐿[𝜑1𝜑

𝑇
1 ] + 𝐷

(0)
0,1𝐿[𝜑0𝜑

𝑇
1 ]

= 𝐷
(0)
1,1𝐿[𝜑1𝜑

𝑇
1 ]

and

𝐿

[(
𝑥 + 1

𝑥

)
𝜑0𝜑

𝑇
1

]
= 𝐿[𝜑3]

(
𝐷

(1)
3,1

)𝑇

+ 𝐿[𝜑2]
(
𝐷

(1)
2,1

)𝑇

+ 𝐿[𝜑1]
(
𝐷

(1)
1,1

)𝑇

+ 𝐿[𝜑0]
(
𝐷

(1)
0,1

)𝑇

=
(
𝐷

(1)
0,1

)𝑇

= 𝐷
(0)
1,1

.

The same argument can be used to prove 𝐿[(𝑦 + 1

𝑦
)𝜑0𝜑

𝑇
1 ] =

𝐷
(0)
1,2𝐿[𝜑1𝜑

𝑇
1 ] = 𝐷

(0)
1,2, so we get 𝐷

(0)
1 𝐿[𝜑1𝜑

𝑇
1 ] = 𝐷

(0)
1 with 𝐷

(0)
1 intro-

duced in (34). Thus, the proof follows since 𝐷
(0)
1 is regular. □

Let us introduce now the reproducing kernel

𝑛(𝑥1, 𝑦1, 𝑥2, 𝑦2) =
𝑛∑

𝑘=0

𝜑𝑇
𝑘
(𝑥1, 𝑦1)𝜑𝑘(𝑥2, 𝑦2). (37)

This definition is clearly independent on the election of the
orthonormal family {𝜑𝑛}𝑛≥0 (recall it is uniquely determined up
to left multiplication by orthogonal matrices). The name repro-
ducing kernel is justified as in the ordinary polynomial situation
because it is easy to verify the reproducing property 𝜓(𝑥, 𝑦) =⟨𝜓(𝑢, 𝑣),𝑇

𝑛(𝑥, 𝑦, 𝑢, 𝑣)⟩, ∀ 𝜓 ∈ 𝑛. The extension of the well-
known Christoffel–Darboux formula for the ordinary polynomial
situation (see [27, Section 3.6.1]) is given by the following.

Theorem 4 (Christoffel–Darboux). Under the above condi-
tions, it holds

𝑛(𝑥1, 𝑦1, 𝑥2, 𝑦2) =
Ω𝑛,1 + Λ𝑛,1 + Λ𝑛−1,1(
𝑥1 +

1

𝑥1

)
−

(
𝑥2 +

1

𝑥2

) =
Ω𝑛,2 + Λ𝑛,2 + Λ𝑛−1,2(
𝑦1 +

1

𝑦1

)
−

(
𝑦2 +

1

𝑦2

) ,
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whenever 𝑥1 +
1

𝑥1

≠ 𝑥2 +
1

𝑥2

in the first equality, 𝑦1 +
1

𝑦1
≠ 𝑦2 +

1

𝑦2

in the second one, and where for 𝑖 = 1, 2 and 𝑘 ≥ 0,

Λ𝑘,𝑖 = 𝜑𝑇
𝑘+2

(𝑥1, 𝑦1)
(
𝐷

(𝑘)

𝑘+2,𝑖

)𝑇

𝜑𝑘(𝑥2, 𝑦2) − 𝜑𝑇
𝑘
(𝑥1, 𝑦1)𝐷

(𝑘)

𝑘+2,𝑖
𝜑𝑘+2(𝑥2, 𝑦2),

Ω𝑘,𝑖 = 𝜑𝑇
𝑘+1

(𝑥1, 𝑦1)
(
𝐷

(𝑘)

𝑘+1,𝑖

)𝑇

𝜑𝑘(𝑥2, 𝑦2) − 𝜑𝑇
𝑘
(𝑥1, 𝑦1)𝐷

(𝑘)

𝑘+1,𝑖
𝜑𝑘+1(𝑥2, 𝑦2).

(38)

Proof. From (20) and (22), we can write for all 𝑘 ≥ 2 and 𝑥1 +
1

𝑥1

≠ 𝑥2 +
1

𝑥2

,

[(
𝑥1 +

1

𝑥1

)
−

(
𝑥2 +

1

𝑥2

)]
𝜑𝑇

𝑘
(𝑥1, 𝑦1)𝜑𝑘(𝑥2, 𝑦2)

= Λ𝑘,1 +Ω𝑘,1 − Λ𝑘−2,1 −Ω𝑘−1,1.

Taking 𝑛 = 0, 1 in (20) it follows that the relation also holds for
𝑘 = 0 and 𝑘 = 1, respectively (recall 𝜑−1 ≡ 𝜑−2 ≡ 0), if we define
Λ−2,1 = Λ−1,1 = Ω−1,1 = 0. So,

𝑛∑
𝑘=0

[(
𝑥1 +

1

𝑥1

)
−

(
𝑥2 +

1

𝑥2

)]
𝜑𝑇

𝑘
(𝑥1, 𝑦1)𝜑𝑘(𝑥2, 𝑦2) = Ω𝑛,1 + Λ𝑛,1 + Λ𝑛−1,1

and the first equality of the statement is deduced. The second
equality follows in a similar way from (28) and (31). □

Corollary 1 (Confluent formula). Under the above conditions
it holds

𝑛(𝑥, 𝑦, 𝑥, 𝑦) =
𝑥2

𝑥2 − 1

[
Ω̃𝑛,1 + Λ̃𝑛,1 + Λ̃𝑛−1,1

]
=

𝑦2

𝑦2 − 1

[
Ω̃𝑛,2 + Λ̃𝑛,2 + Λ̃𝑛−1,2

]
whenever 𝑥2 ≠ 1 in the first equality, 𝑦2 ≠ 1 in the second one, and

Λ̃𝑘,1 = 𝜑𝑇
𝑘+2

(𝑥, 𝑦)
(
𝐷

(𝑘)

𝑘+2,1

)𝑇 𝜕

𝜕𝑥
𝜑𝑘(𝑥, 𝑦) − 𝜑𝑇

𝑘
(𝑥, 𝑦)𝐷

(𝑘)

𝑘+2,1

𝜕

𝜕𝑥
𝜑𝑘+2(𝑥, 𝑦),

Λ̃𝑘,2 = 𝜑𝑇
𝑘+2

(𝑥, 𝑦)
(
𝐷

(𝑘)

𝑘+2,2

)𝑇 𝜕

𝜕𝑦
𝜑𝑘(𝑥, 𝑦) − 𝜑𝑇

𝑘
(𝑥, 𝑦)𝐷

(𝑘)

𝑘+2,2

𝜕

𝜕𝑦
𝜑𝑘+2(𝑥, 𝑦),

Ω̃𝑘,1 = 𝜑𝑇
𝑘+1

(𝑥, 𝑦)
(
𝐷

(𝑘)

𝑘+1,1

)𝑇 𝜕

𝜕𝑥
𝜑𝑘(𝑥, 𝑦) − 𝜑𝑇

𝑘
(𝑥, 𝑦)𝐷

(𝑘)

𝑘+1,1

𝜕

𝜕𝑥
𝜑𝑘+1(𝑥, 𝑦),

Ω̃𝑘,2 = 𝜑𝑇
𝑘+1

(𝑥, 𝑦)
(
𝐷

(𝑘)

𝑘+1,2

)𝑇 𝜕

𝜕𝑦
𝜑𝑘(𝑥, 𝑦) − 𝜑𝑇

𝑘
(𝑥, 𝑦)𝐷

(𝑘)

𝑘+1,2

𝜕

𝜕𝑦
𝜑𝑘+1(𝑥, 𝑦).

Proof. Since𝜑𝑇
𝑠 (𝑥1, 𝑦1)(𝐷

(𝑘)

𝑠,𝑖 )
𝑇𝜑𝑘(𝑥1, 𝑦1) is a scalar function for 𝑠 ∈

{𝑘 + 1, 𝑘 + 2} and 𝑖 ∈ {1, 2}, we can write (compare with (38))

Λ𝑘,𝑖 = 𝜑𝑇
𝑘+2

(𝑥1, 𝑦1)
(
𝐷

(𝑘)

𝑘+2,𝑖

)𝑇

[𝜑𝑘(𝑥2, 𝑦2) − 𝜑𝑘(𝑥1, 𝑦1)]

−𝜑𝑇
𝑘
(𝑥1, 𝑦1)𝐷

(𝑘)

𝑘+2,𝑖[𝜑𝑘+2(𝑥2, 𝑦2) − 𝜑𝑘+2(𝑥1, 𝑦1)],

Ω𝑘,𝑖 = 𝜑𝑇
𝑘+1

(𝑥1, 𝑦1)
(
𝐷

(𝑘)

𝑘+1,𝑖

)𝑇

[𝜑𝑘(𝑥2, 𝑦2) − 𝜑𝑘(𝑥1, 𝑦1)]

−𝜑𝑇
𝑘
(𝑥1, 𝑦1)𝐷

(𝑘)

𝑘+1,𝑖[𝜑𝑘+1(𝑥2, 𝑦2) − 𝜑𝑘+1(𝑥1, 𝑦1)].

Also, (𝑥1 +
1

𝑥1

) − (𝑥2 +
1

𝑥2

) = (𝑥1 − 𝑥2)
𝑥1𝑥2−1

𝑥1𝑥2

, so if

𝑥1 +
1

𝑥1

≠ 𝑥2 +
1

𝑥2

,

𝑛(𝑥1, 𝑦1, 𝑥2, 𝑦2) =
Ω𝑛,1 + Λ𝑛,1 + Λ𝑛−1,1(
𝑥1 +

1

𝑥1

)
−

(
𝑥2 +

1

𝑥2

) =
𝑥1𝑥2

𝑥1𝑥2 − 1

×𝜑𝑇
𝑛+1(𝑥1, 𝑦1)

(
𝐷

(𝑛)
𝑛+1,1

)𝑇

⋅
𝜑𝑛(𝑥2, 𝑦2) − 𝜑𝑛(𝑥1, 𝑦1)

𝑥1 − 𝑥2

−𝜑𝑇
𝑛 (𝑥1, 𝑦1)𝐷

(𝑛)
𝑛+1,1 ⋅

𝜑𝑛+1(𝑥2, 𝑦2) − 𝜑𝑛+1(𝑥1, 𝑦1)

𝑥1 − 𝑥2

+𝜑𝑇
𝑛+2(𝑥1, 𝑦1)

(
𝐷

(𝑛)
𝑛+2,1

)𝑇

⋅
𝜑𝑛(𝑥2, 𝑦2) − 𝜑𝑛(𝑥1, 𝑦1)

𝑥1 − 𝑥2

−𝜑𝑇
𝑛 (𝑥1, 𝑦1)𝐷

(𝑛)
𝑛+2,1 ⋅

𝜑𝑛+2(𝑥2, 𝑦2) − 𝜑𝑛+2(𝑥1, 𝑦1)

𝑥1 − 𝑥2

+𝜑𝑇
𝑛+1(𝑥1, 𝑦1)

(
𝐷

(𝑛−1)
𝑛+1,1

)𝑇

⋅
𝜑𝑛−1(𝑥2, 𝑦2) − 𝜑𝑛−1(𝑥1, 𝑦1)

𝑥1 − 𝑥2

− 𝜑𝑇
𝑛−1(𝑥1, 𝑦1)𝐷

(𝑛−1)
𝑛+1,1 ⋅

𝜑𝑛+1(𝑥2, 𝑦2) − 𝜑𝑛+1(𝑥1, 𝑦1)

𝑥1 − 𝑥2

]
.

The first equality follows letting (𝑥2, 𝑦2) → (𝑥1, 𝑦1) = (𝑥, 𝑦) and
the second one is obtained in a similar way. □

4 A ConnectionWith the One-Variable Case

Consider the rectangle  = [𝑎, 𝑏] × [𝑐, 𝑑], 0 < 𝑎 < 𝑏 < ∞, 0 <

𝑐 < 𝑑 < ∞, and a positive Borel measure on  that can be
factorized in the form 𝑑𝜇(𝑥, 𝑦) = 𝑑𝜇1(𝑥)𝑑𝜇2(𝑦). Let ⟨⋅, ⋅⟩𝜇 be the
inner product given by (15) and ⟨⋅, ⋅⟩𝜇𝑖

the corresponding inner
products for the measures 𝑑𝜇𝑖 , 𝑖 = 1, 2:

⟨𝑓, 𝑔⟩𝜇1
= ∫

𝑏

𝑎

𝑓(𝑥)𝑔(𝑥)𝑑𝜇1(𝑥), 𝑓, 𝑔 ∈ 𝐿
𝜇1

2

=

{
ℎ ∶ [𝑎, 𝑏] → ℝ ∶ ∫

𝑏

𝑎

ℎ2(𝑥)𝑑𝜇1(𝑥) < ∞

}
,

⟨𝑓, 𝑔⟩𝜇2
= ∫

𝑑

𝑐

𝑓(𝑦)𝑔(𝑦)𝑑𝜇2(𝑦), 𝑓, 𝑔 ∈ 𝐿
𝜇2

2

=

{
ℎ ∶ [𝑐, 𝑑] → ℝ ∶ ∫

𝑑

𝑐

ℎ2(𝑦)𝑑𝜇2(𝑦) < ∞

}
.

Notice that the corresponding moments 𝑚(𝑖)

𝑘
are strictly positive,

for all 𝑘 ∈ ℤ and 𝑖 ∈ {1, 2}. Let us denote by {𝜓
(𝑖)
𝑛 }𝑛≥0 for 𝑖 = 1, 2

the families of orthogonal Laurent polynomials in one variable
with respect tomeasures𝜇𝑖 and the “balanced” ordering (1). Thus,
we can prove how from these two families we can construct an
orthonormal basis of Laurent polynomials in two variables.

Proposition 4. Under the above conditions, let 𝜑𝑛,𝑘 be given by

𝜑𝑛,𝑘(𝑥, 𝑦) = 𝜓
(1)

𝑛−𝑘
(𝑥)𝜓

(2)

𝑘
(𝑦), for all 𝑛 ≥ 0 and 𝑘 ∈ {0, 1,⋯, 𝑛}.

Then the set
{
𝜑𝑛,𝑘 ∶ 𝑛 ≥ 0, 𝑘 = 0, … , 𝑛

}
is an orthonormal basis of

.
Proof. Recall𝑘 = span {𝜙0, … , 𝜙𝑘}. It is clear from the construc-
tion of the ordering (3) and (4)–(6) that 𝜓(1)

𝑛−𝑘
(𝑥) ∈ 𝑛−𝑘∖𝑛−𝑘−1,

𝜓
(2)

𝑘
(𝑦) ∈ 𝑘∖𝑘−1 and 𝜓

(1)

𝑛−𝑘
(𝑥)𝜓

(2)

𝑘
(𝑦) ∈ 𝑛∖𝑛−1. Thus, for fixed

𝑛 ≥ 0 and 𝑘, 𝑙 ∈ {0, … , 𝑛}, it is clear from Fubini’s theorem that

⟨𝜓(1)

𝑛−𝑘
(𝑥)𝜓

(2)

𝑘
(𝑦), 𝜓

(1)

𝑛−𝑙
(𝑥)𝜓

(2)

𝑙
(𝑦)⟩𝜇 = ⟨𝜓(1)

𝑛−𝑘
(𝑥), 𝜓

(1)

𝑛−𝑙
(𝑥)⟩𝜇1 ⋅ ⟨𝜓(2)

𝑘
(𝑦), 𝜓

(2)

𝑙
(𝑦)⟩𝜇2 = 𝛿𝑘,𝑙 .
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Also for 𝑛 ≠ 𝑚, 𝑛,𝑚 ≥ 0, 𝑘 ∈ {0… , 𝑛}, and 𝑙 ∈ {0… ,𝑚}, we get by
the same reason

⟨𝜓(1)

𝑛−𝑘
(𝑥)𝜓

(2)

𝑘
(𝑦), 𝜓

(1)

𝑚−𝑙
(𝑥)𝜓

(2)

𝑙
(𝑦)⟩𝜇 = ⟨𝜓(1)

𝑛−𝑘
(𝑥), 𝜓

(1)

𝑚−𝑙
(𝑥)⟩𝜇1 ⋅ ⟨𝜓(2)

𝑘
(𝑦), 𝜓

(2)

𝑙
(𝑦)⟩𝜇2 = 0.

This concludes the proof. □

The aim of this section is to make use of Theorem 1 and Propo-
sition 4 to obtain explicitly the relations (33) in this particular
situation. We start with the following.

Lemma 2. Let {Ω(2)
𝑛 }𝑛≥0 and {𝐶

(2)
𝑛 }𝑛≥0 be the sequences of positive

real numbers appearing in Theorem 1, associated with the measure
𝑑𝜇2. Then, under the above conditions the family {𝜑𝑛}𝑛≥0 satisfies
the recurrence relations

𝐶
(2)
2𝑚𝜑𝑛,2𝑚+1(𝑥, 𝑦) =

(
Ω

(2)
2𝑚𝑦 − 1

)
𝜑𝑛−1,2𝑚(𝑥, 𝑦)

−𝐶
(2)
2𝑚−1𝜑𝑛−2,2𝑚−1(𝑥, 𝑦), for 0 ≤ 2𝑚 − 1 ≤ 𝑛 − 2,

𝐶
(2)
2𝑚+1𝜑𝑛+1,2𝑚+2(𝑥, 𝑦) =

(
1 − Ω

(2)
2𝑚+1

𝑦

)
𝜑𝑛,2𝑚+1(𝑥, 𝑦)

−𝐶
(2)
2𝑚𝜑𝑛−1,2𝑚(𝑥, 𝑦), for 0 ≤ 2𝑚 ≤ 𝑛 − 1,

𝐶
(2)
0 𝜑1,1(𝑥, 𝑦) =

(
Ω

(2)
0 𝑦 − 1

)
𝜑0,0(𝑥, 𝑦).

(39)

Proof. From Theorem 1, we have

𝐶
(2)
2𝑚𝜓

(2)
2𝑚+1(𝑦) =

(
Ω

(2)
2𝑚𝑦 − 1

)
𝜓

(2)
2𝑚(𝑦) − 𝐶

(2)
2𝑚−1𝜓

(2)
2𝑚−1(𝑦),

and multiplying in both sides of this equality by 𝜓
(1)

𝑛−(2𝑚+1)
(𝑥) we

get from Proposition 4 the first relation in (39). We can prove the
second and third relations in (39) proceeding in a similarway. □

Remark 2. A similar result can be proved involving only the
coefficients {Ω(1)

𝑛 }𝑛≥0 and {𝐶
(1)
𝑛 }𝑛≥0 related to the measure 𝑑𝜇1, we

omit these details. It should be clear to the reader that despite the
recurrence in Lemma 2 only involves the coefficients related to
the measure 𝑑𝜇2, there is no relation between the families {𝜑𝑛}𝑛≥0

and {�̃�𝑛}𝑛≥0 associated with two measures of the form 𝑑𝜇(𝑥, 𝑦) =
𝑑𝜇1(𝑥)𝑑𝜇2(𝑦) and 𝑑�̃�(𝑥, 𝑦) = 𝑑�̃�1(𝑥)𝑑𝜇2(𝑦), respectively, since
the influence of the first measure is due to

𝜑0,0 ≡ 1√
𝑚

(1)
0 𝑚

(2)
0

,

𝜑𝑛,0(𝑥, 𝑦) =
1√
𝑚

(2)
0

𝜓
(1)
𝑛 (𝑥), 𝜑𝑛,1(𝑥, 𝑦)

= 1

𝐶
(2)
0

√
𝑚

(2)
0

(
Ω

(2)
0 𝑦 − 1

)
𝜓

(1)
𝑛−1(𝑥), ∀ 𝑛 ≥ 1. (40)

From Lemma 2, we see actually how the combination of (40) and
the relations in (39) let us compute the full sequence {𝜑𝑛}𝑛≥0.

Next, let us see how explicit expressions for the matrices 1 and2 in (25)–(26) and (32), respectively, can be found fromLemma 2.
We present a proof for 2, the corresponding for 1 follows in a
similar way.

Theorem 5. Under the above conditions, let us introduce the
constants

Γ𝑙 =
𝐶

(2)

𝑙
𝐶

(2)

𝑙+1

Ω
(2)

𝑙+1

> 0, Δ𝑙 = (−1)𝑙𝐶
(2)

𝑙

(
1

Ω
(2)

𝑙

− 1

Ω
(2)

𝑙+1

)
,

Ξ𝑙 = Ω
(2)

𝑙
+ 1

Ω
(2)

𝑙

+

(
𝐶

(2)

𝑙

)2

Ω
(2)

𝑙+1

+

(
𝐶

(2)

𝑙−1

)2

Ω
(2)

𝑙−1

> 0, ∀ 𝑙 ≥ 0,

with 𝐶
(2)
−1 = 0 and Ω

(2)
−1 an arbitrary nonzero constant. Then, the

matrix 2 in (32) is explicitly given for all 𝑛 ≥ 1 by

𝐷
(𝑛−1)
𝑛+1,2 =

(𝑛,2 | diag(Γ0, Γ1, … , Γ𝑛−1)
)
,

𝐷
(𝑛−1)
𝑛,2 =

(𝑛,1 | diag(Δ0, Δ1, … , Δ𝑛−1)
)
,

𝐷
(𝑛−1)
𝑛−1,2 = diag(Ξ0, … , Ξ𝑛−1).

The matrices 𝐷(𝑛−1)
𝑛−2,2 (𝑛 ≥ 2) and 𝐷

(𝑛−1)
𝑛−3,2 (𝑛 ≥ 3) are the transpose of

𝐷
(𝑛−2)
𝑛−1,2 and 𝐷

(𝑛−3)
𝑛−1,2 .

Proof. The initial conditions 𝐷(𝑛)
𝑠,2 with 𝑛 = 0 (𝑠 = 0, 1, 2) and 𝑛 =

1 (𝑠 = 0, 1, 2, 3) are deduced by direct computations derived from
Theorem 1 and Proposition 4, in an analog procedure as in (23)–
(24).

For 𝑛 ≥ 2, we have to consider separately the cases that involves
the two-term relation for 𝜓

(2)
0 and 𝜓

(2)
1 in Theorem 1. So, from

Theorem 1 and Proposition 4 we can write

𝐶
(2)
0

𝜑𝑛,1 =
(
Ω

(2)
0

𝑦 − 1
)
𝜑𝑛−1,0 ⇒

1

𝑦
𝜑𝑛−1,0 = Ω

(2)
0

𝜑𝑛−1,0 − 𝐶
(2)
0

1

𝑦
𝜑𝑛,1

(41)
and

𝐶
(2)
1 𝜑𝑛+1,2 =

(
1 −

Ω
(2)
1

𝑦

)
𝜑𝑛,1 − 𝐶

(2)
0 𝜑𝑛−1,0 ⇒

1

𝑦
𝜑𝑛,1

= 1

Ω
(2)
1

𝜑𝑛,1 −
𝐶

(2)
1

Ω
(2)
1

𝜑𝑛+1,2 −
𝐶

(2)
0

Ω
(2)
1

𝜑𝑛−1,0. (42)

If we substitute in (41) the term 1

𝑦
𝜑𝑛,1 in (42) and we add 𝑦𝜑𝑛−1,0

we get (
𝑦 + 1

𝑦

)
𝜑𝑛−1,0 = Ξ0𝜑𝑛−1,0 + Δ0𝜑𝑛,1 + Γ0𝜑𝑛+1,2.

In a similar way, we can write (42) with 𝑛 replaced by 𝑛 − 1 as

𝑦𝜑𝑛−1,1 = 𝐶
(2)
1 𝑦𝜑𝑛,2 +Ω

(2)
1 𝜑𝑛−1,1 + 𝐶

(2)
0 𝑦𝜑𝑛−2,0 (43)

and we also have from Theorem 1 and Proposition 4 the relation

𝑦𝜑𝑛,2 =
𝐶

(2)
2

Ω
(2)
2

𝜑𝑛+1,3 +
1

Ω
(2)
2

𝜑𝑛,2 +
𝐶

(2)
1

Ω
(2)
2

𝜑𝑛−1,1. (44)

If we substitute in (43) the terms 𝑦𝜑𝑛,2 in (44) and 𝑦𝜑𝑛−2,0 in (41)
with 𝑛 replaced by 𝑛 − 1 we get(

𝑦 + 1

𝑦

)
𝜑𝑛−1,1 = Γ1𝜑𝑛+1,3 + Δ1𝜑𝑛,2 + Ξ1𝜑𝑛−1,1 + Δ0𝜑𝑛−2,0.
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For the general case 𝑛 ≥ 3 and 𝑙 = 2, 3, … , 𝑛 − 1, we start writing
the first equation of (39) as

1

𝑦
𝜑𝑛−1,2𝑚(𝑥, 𝑦) = −𝐶

(2)
2𝑚

1

𝑦
𝜑𝑛,2𝑚+1(𝑥, 𝑦) +Ω

(2)
2𝑚𝜑𝑛−1,2𝑚(𝑥, 𝑦)

−𝐶
(2)
2𝑚−1

1

𝑦
𝜑𝑛−2,2𝑚−1(𝑥, 𝑦) (45)

and the second equation of (39) as

1

𝑦
𝜑𝑛,2𝑚+1(𝑥, 𝑦) =

1

Ω
(2)
2𝑚+1

[
−𝐶

(2)
2𝑚+1𝜑𝑛+1,2𝑚+2(𝑥, 𝑦) + 𝜑𝑛,2𝑚+1(𝑥, 𝑦)

− 𝐶
(2)
2𝑚𝜑𝑛−1,2𝑚(𝑥, 𝑦)

]
,

1

𝑦
𝜑𝑛−2,2𝑚−1(𝑥, 𝑦) =

1

Ω
(2)
2𝑚−1

[
−𝐶

(2)
2𝑚−1𝜑𝑛−1,2𝑚(𝑥, 𝑦) + 𝜑𝑛−2,2𝑚−1(𝑥, 𝑦)

− 𝐶
(2)
2𝑚−2𝜑𝑛−3,2𝑚−2(𝑥, 𝑦)

]
.

(46)
Thus, if we substitute (46) in (45) and we add the term
𝑦𝜑𝑛−1,2𝑚(𝑥, 𝑦) from the first equation of (39) we get

(
𝑦 + 1

𝑦

)
𝜑𝑛−1,2𝑚(𝑥, 𝑦) = Γ2𝑚𝜑𝑛+1,2𝑚+2(𝑥, 𝑦) + Δ2𝑚𝜑𝑛,2𝑚+1(𝑥, 𝑦)

+Ξ2𝑚𝜑𝑛−1,2𝑚(𝑥, 𝑦) + Δ2𝑚−1𝜑𝑛−2,2𝑚−1(𝑥, 𝑦) + Γ2𝑚−2𝜑𝑛−3,2𝑚−2(𝑥, 𝑦).

A similar relation is obtained for
(
𝑦 + 1

𝑦

)
𝜑𝑛−1,2𝑚−1(𝑥, 𝑦), yielding

for all 𝑙 = 2, 3, … , 𝑛 − 1 and 𝑛 ≥ 3,(
𝑦 + 1

𝑦

)
𝜑𝑛−1,𝑙(𝑥, 𝑦) = Γ𝑙𝜑𝑛+1,𝑙+2(𝑥, 𝑦) + Δ𝑙𝜑𝑛,𝑙+1(𝑥, 𝑦)

+Ξ𝑙𝜑𝑛−1,𝑙(𝑥, 𝑦) + Δ𝑙−1𝜑𝑛−2,𝑙−1(𝑥, 𝑦) + Γ𝑙−2𝜑𝑛−3,𝑙−2(𝑥, 𝑦). □

As it is indicated in [30, Section 2], the families {𝜓𝑘}𝑘≥0 of orthogo-
nal Laurent polynomials in the one-variable case computed from
Theorem 1 are related to the families of ordinary polynomials sat-
isfying Laurent orthogonal conditions (that have been considered
in the literature, e.g. by Sri Ranga and collaborators, see [32–35]).
So, we can make use of some of the results available in those
references to get explicit expressions for the coefficients {Ω𝑛}𝑛≥0

and {𝐶𝑛}𝑛≥0 related to some particular absolutely continuous
measures, like

𝑑𝜔1(𝑥) =
𝑑𝑥√

(𝑏 − 𝑥)(𝑥 − 𝑎)
, 𝑑𝜔2(𝑥) =

𝑑𝑥√
𝑥
, 𝑑𝜔

𝜇

3 (𝑥) =
[(𝑏 − 𝑥)(𝑥 − 𝑎)]

𝜇− 1

2(√
𝑏 −

√
𝑎
)
𝑥𝜇

𝑑𝑥,

𝑑𝜔4(𝑥) =
𝑥

(
1 +

√
𝑎𝑏

𝑥

)2

√
(𝑏 − 𝑥)(𝑥 − 𝑎)

𝑑𝑥, 𝑑𝜔5(𝑥) =
𝑑𝑥(

𝑥 +
√

𝑎𝑏
)√

(𝑏 − 𝑥)(𝑥 − 𝑎)
, 𝑑𝜔𝜅

6(𝑡) =
1

2𝜅
√

𝜋

(
1 + 1

𝑡

)
𝑒
−

(
log(𝑡)

2𝜅

)2

𝑑𝑡,

with 𝑥 ∈ (𝑎, 𝑏), 0 < 𝑎 < 𝑏 < ∞, 𝑡 > 0, 𝜅 > 0, and𝜇 > −1∕2. Thus,
if the measure 𝑑𝜇(𝑥, 𝑦) = 𝑑𝜇1(𝑥)𝑑𝜇2(𝑦) defined on the rectan-
gle  is of the form 𝜇1, 𝜇2 ∈ {𝜔𝑖}

6
𝑖=1, we can recover directly

from the results of this section the recurrence relations for
{𝜑𝑛}𝑛≥0 explicitly.

5 Applications for Future Research

We conclude this paper with two applications to the Theory of
Orthogonal Laurent Polynomials of Two Real Variables that we
have introduced for future research.

5.1 Applications to Cubature Formulas

Let us suppose that we are interested in the numerical estimation
of integrals of the form 𝐼𝜇(𝑓) = ∬

𝐷
𝑓(𝑥, 𝑦)𝑑𝜇(𝑥, 𝑦), being 𝜇 a

positive Borel measure supported on 𝐷 ⊂ ℝ2 such that ({𝑥 =
0} ∪ {𝑦 = 0}) ∩ 𝐷 = ∅. The multidimensional analog of the well-
known Gaussian quadrature formulas for the one-dimensional
case are called Gaussian cubature formulas, see, for example, [27]
(Sections 3.7– 3.8), [36–38] and references therein. These rules are
of the form

𝐼𝑛(𝑓) =
𝑛∑

𝑖=1

𝜆𝑖𝑓(𝑥𝑖), 𝑥𝑖 ⊂ 𝐷, 𝑥𝑖 ≠ 𝑥𝑗 for all 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1, … , 𝑛,

(47)
where {𝑥𝑖}

𝑛
𝑖=1 and {𝜆𝑖}

𝑛
𝑖=1 are called the set of nodes and weights

(or coefficients), respectively. As mentioned in the Introduction,
it has been numerically proven in the literature that when the
integrand presents singularities near the subset of integration,
quadrature formulas based onLaurent polynomials are preferable
to the classical Gaussian rules. Having this in mind and from
the results presented in this paper, it is of interest to consider
new techniques of numerical integration based on Laurent
polynomials of two (or more) real variables, which we could coin
as L-Gaussian cubature formulas.

The cubature rule 𝐼𝑛(𝑓) has (exact) degree of precision 𝑠 if
𝐼𝜇(𝑃) = 𝐼𝑛(𝑃) for all polynomials 𝑃 of degree less than or equal
to 𝑠, and it is not exact for some polynomial of degree 𝑠 + 1.
In the one-dimensional case, quadrature formulas are usually of
interpolatory type: for a fixed set of 𝑛 nodes, the rule is obtained
by integrating exactly the unique interpolatory polynomial to 𝑓

at these nodes in its Lagrange form, and the degree of precision
of the resulting rule is at least 𝑛 − 1. The set of nodes can be
adequately fixed to increase the degree of precision up to 2𝑛 − 1

(Gaussian quadrature formula, that always exist and it is unique).

The set of nodes in this case are the zeros of a 𝑛th orthogonal
polynomial with respect to 𝜇, and the corresponding weights are
positive, which is of interest due to convergence and stability
reasons. All these ideas have been translated successfully to the
Laurent case (see, e.g., [12]), where the rules are obtained by
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looking for exactness in subspaces of Laurent polynomials (in
particular, the balanced ones).

As indicated in the survey published by Cools et al. [36] in
2001 about cubature formulas, in more than one dimension
things look worse and there are more questions than answers.
However, some progress has been made, and several results of
a certain generality have been found. The algebraic manifold
generated by a polynomial 𝑃(𝑥, 𝑦) of exact degree 𝑠 is the set{
(𝑥, 𝑦) ∈ ℂ2 ∶ 𝑃(𝑥, 𝑦) = 0

}
. A cubature formula (47) of degree of

precision 𝑠 is interpolatory if the nodes do not lie on an algebraic
manifold of degree 𝑠 and the coefficients are uniquely determined
by the nodes (integrals of Lagrange Laurent polynomials). The
number of nodes 𝑛 should be in this case the number of linearly
independent polynomials of degree less than or equal to 𝑠 that,
in the bivariate case, is 1

2
(𝑠 + 1)(𝑠 + 2); but in more than one

dimension, 𝑛 might be lower since some of the weights may
vanish. This motivates the concept of interpolatory minimal
cubature rule: for fixed 𝑠, 𝑛 is minimal.

In the 𝑘-dimensional case, by a Gaussian cubature formula
(see Section 3.8 of [27]) we understand a rule having odd
degree of precision 2𝑝 − 1 (𝑝 ∈ ℕ) and minimal number of
nodes:

(
𝑝+𝑘−1

𝑘

)
. From 1970 until 2012, the only necessary and

sufficient result available in the literature for the existence of a 𝑘-
dimensional Gaussian cubature formula of degree 2𝑝 − 1was due
to Mysovskikh [39]: the rule exists if and only if the orthogonal
polynomials of degree 𝑝 have exactly

(
𝑝+𝑘−1

𝑘

)
common zeros

(nodes of the cubature). Similar to the one-dimensional case,
these common zeros can be computed as all joint eigenvalues of
𝑘 certain associated Jacobi matrices (see Theorem 3.7.2 in [27]).
The main drawback of this characterization is that it is known
that in many cases, orthogonal polynomials do not have distinct
common zeros, and only in a very few particular cases it is known
that they share common zeros (see Corollary 3.7.7 and Section 5.4
in [27]). Given these negative known results, we think that this
way does not seem appropriate for the construction of cubature
rules based on Laurent polynomials.

An alternative criterion was obtained in 2012 by Lasserre [38]:
a 𝑘-dimensional Gaussian cubature formula of degree 2𝑝 − 1

exists if and only if a certain overdetermined linear system of
equations has a solution. The coefficient matrix of this linear
system arises from expressing the product of two orthonormal
polynomials 𝑃1, 𝑃2 of degree 𝑝 in the basis of orthonormal
polynomials of degree up to 2𝑝. Therefore, it is an open question
whether Theorem 3.1 in [38] can be adapted to the orthonormal
basis of Laurent polynomials that we have introduced in this
paper. We should note in this regard a key difference in our
case, which is the fact that if 𝐿𝑠, �̃�𝑠 ∈ 𝑠∖𝑠−1, then 𝐿𝑠 ⋅ �̃�𝑠 ∈

2𝑠+2. This property for Laurent polynomials, which does not hold
obviously for ordinary polynomials, can be directly obtained from
the relations

𝑐2𝑠 + 𝑐2𝑡 = 𝑐2(𝑠+𝑡), 𝑐2𝑠−1 + 𝑐2𝑡−1 = 𝑐2(𝑠+𝑡)−1, 𝑐2𝑠 + 𝑐2𝑡−1

=

{
𝑐2(𝑡−𝑠)−1 if 𝑡 − 𝑠 > 0,

𝑐2(𝑠−𝑡) if 𝑡 − 𝑠 ≤ 0,
(48)

where we recall that the sequence {𝑐𝑛}𝑛≥0 is defined in (2).

In 2015, a further characterization for the existence of a 𝑘-
dimensional Gaussian cubature formula of degree 2𝑝 − 1 when
the nodes of the formula have Lagrange polynomials of degree
at most 𝑝, was given by Harris [37]. The main condition is that
the Lagrange polynomial at each node is a scalar multiple of the
reproducing kernel of degree 𝑝 − 1 evaluated at the nodes plus an
orthogonal polynomial of degree 𝑝. Stronger conditions are given
for the case where the cubature is exact for polynomials of degree
up to 2𝑝. In that paper, two particular Gaussian cubature rules are
constructed, based on Geronimus and Morrow-Patterson nodes.
We believe that this third approach could be another way to
characterize L-Gaussian cubature formulas. Actually, we can
extend to the Laurent context the main result of Harris paper
(Lemma 1 in [37]), which is an equivalence between a cubature
formula and a formula for the Lagrange polynomials for the nodes
(see Lemma 4 further). We need first the following technical
result which, in the ordinary polynomial situation, is trivial.

Lemma3. Every Laurent polynomial𝐿 ∈ 2𝑝−1 (𝑝 ∈ ℕ,𝑝 ≥ 2) is
a linear combination ofmonomials of the form 𝑙1 ⋅ 𝑙2, with 𝑙1 ∈ 𝑝−1

and 𝑙2 ∈ 𝑝 .

Proof. We proceed by induction over 𝑝. It is immediate to prove
the result for 𝑝 = 2 and 𝑝 = 3. If we suppose that the property
holds for every Laurent polynomial in 2𝑝−3, since every Laurent
polynomial in 2𝑝−1 is a linear combination of 𝜙2𝑝−1, 𝜙2𝑝−2, and
𝜓 ∈ 2𝑝−3, it is clear that the proof follows if we prove the result
for 𝜙𝑠, 𝑠 ∈ {2𝑝 − 2, 2𝑝 − 1}. Actually, what we need is to prove it
for the first𝐸[

𝑠

2
] + 1 components of the vectors 𝜙𝑠. Otherwise, the

proof follows from the same reasoning by interchanging the roles
of the variables 𝑥 and 𝑦.

Let us start with the case 𝑠 = 2𝑝 − 1. We analyze the (𝑡 + 1)th
component of the vector 𝜙2𝑝−1 by using the first two relations in
(48) and by distinguishing two cases:

∙ Case 𝑝 = 2𝑘. If 𝑡 = 2𝜈with 0 ≤ 𝜈 ≤ 𝑘 − 1, then this monomial
is given by

𝑥𝑐4𝑘−1−𝑡 𝑦𝑐𝑡 = 𝑥𝑐2(𝑘+𝑘−𝜈)−1𝑦𝑐2𝜈 = 𝑥𝑐2𝑘−1

⏟⏟⏟
∈𝜙𝑝−1

⋅ 𝑥𝑐2(𝑘−𝜈)−1𝑦𝑐2𝜈

⏟⎴⎴⏟⎴⎴⏟
∈𝜙𝑝−1

,

whereas if 𝑡 = 2𝜈 + 1 with 0 ≤ 𝜈 ≤ 𝑘 − 1, then it is given by

𝑥𝑐4𝑘−1−𝑡 𝑦𝑐𝑡 = 𝑥𝑐2(𝑘+𝑘−1−𝜈)𝑦𝑐2𝜈+1 = 𝑥𝑐2𝑘
⏟⏟⏟
∈𝜙𝑝

⋅ 𝑥𝑐2(𝑘−1−𝜈)𝑦𝑐2𝜈+1

⏟⎴⎴⎴⏟⎴⎴⎴⏟
∈𝜙𝑝−1

.

∙ Case 𝑝 = 2𝑘 + 1. If 𝑡 = 2𝜈 with 0 ≤ 𝜈 ≤ 𝑘, then the corre-
sponding component of the vector 𝜙2𝑝−1 is given by

𝑥𝑐4𝑘+1−𝑡 𝑦𝑐𝑡 = 𝑥𝑐2(𝑘+1+𝑘−𝜈)−1𝑦𝑐2𝜈 = 𝑥𝑐2(𝑘+1)−1

⏟⎴⏟⎴⏟
∈𝜙𝑝

⋅ 𝑥𝑐2(𝑘−𝜈)−1𝑦𝑐2𝜈

⏟⎴⎴⏟⎴⎴⏟
∈𝜙𝑝−2

,

whereas if 𝑡 = 2𝜈 + 1 with 0 ≤ 𝜈 ≤ 𝑘 − 1, then it is given by

𝑥𝑐4𝑘+1−𝑡 𝑦𝑐𝑡 = 𝑥𝑐2(𝑘+𝑘−𝜈)𝑦𝑐2𝜈+1 = 𝑥𝑐2𝑘
⏟⏟⏟
∈𝜙𝑝−1

⋅ 𝑥𝑐2(𝑘−𝜈)𝑦𝑐2𝜈+1

⏟⎴⎴⏟⎴⎴⏟
∈𝜙𝑝

.

The case 𝑠 = 2𝑝 − 2 is similar. We analyze the (𝑡 + 1)th compo-
nent of the vector 𝜙2𝑝−2 again from the first two relations in (48)
and by distinguishing two cases:
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∙ Case 𝑝 = 2𝑘. If 𝑡 = 2𝜈with 0 ≤ 𝜈 ≤ 𝑘 − 1, then this monomial
is given by

𝑥𝑐4𝑘−2−𝑡 𝑦𝑐𝑡 = 𝑥𝑐2(𝑘−1+𝑘−𝜈)𝑦𝑐2𝜈 = 𝑥𝑐2(𝑘−1)

⏟⏟⏟
∈𝜙𝑝−2

⋅ 𝑥𝑐2(𝑘−𝜈)𝑦𝑐2𝜈

⏟⎴⏟⎴⏟
∈𝜙𝑝

,

whereas if 𝑡 = 2𝜈 + 1 with 0 ≤ 𝜈 ≤ 𝑘 − 1, then it is given by

𝑥𝑐4𝑘−2−𝑡 𝑦𝑐𝑡 = 𝑥𝑐2(𝑘−1+𝑘−𝜈)−1𝑦𝑐2𝜈+1 = 𝑥𝑐2(𝑘−1)−1

⏟⎴⏟⎴⏟
∈𝜙𝑝−3

⋅ 𝑥𝑐2(𝑘−𝜈)−1𝑦𝑐2𝜈+1

⏟⎴⎴⎴⏟⎴⎴⎴⏟
∈𝜙𝑝

.

∙ Case 𝑝 = 2𝑘 + 1. If 𝑡 = 2𝜈 with 0 ≤ 𝜈 ≤ 𝑘, then the corre-
sponding component of the vector 𝜙2𝑝−2 is given by

𝑥𝑐4𝑘−𝑡 𝑦𝑐𝑡 = 𝑥𝑐2(𝑘+𝑘−𝜈)𝑦𝑐2𝜈 = 𝑥𝑐2𝑘
⏟⏟⏟
∈𝜙𝑝−1

⋅ 𝑥𝑐2(𝑘−𝜈)𝑦𝑐2𝜈

⏟⎴⏟⎴⏟
∈𝜙𝑝−1

,

whereas if 𝑡 = 2𝜈 + 1 with 0 ≤ 𝜈 ≤ 𝑘 − 1, then it is given by

𝑥𝑐4𝑘−𝑡 𝑦𝑐𝑡 = 𝑥𝑐2(𝑘+𝑘−𝜈)−1𝑦𝑐2𝜈+1 = 𝑥𝑐2𝑘−1

⏟⏟⏟
∈𝜙𝑝−2

⋅ 𝑥𝑐2(𝑘−𝜈)−1𝑦𝑐2𝜈+1

⏟⎴⎴⎴⏟⎴⎴⎴⏟
∈𝜙𝑝−1

.

This concludes the proof. □

Lemma 4. Suppose that {𝜆𝑖}
𝑛
𝑖=1 are real numbers, {(𝑥𝑖, 𝑦𝑖)}

𝑛
𝑖=1 ⊂

𝐷 is a set of 𝑛 distinct points, 𝑝 ≥ 1 and let 𝑝−1 be the (𝑝 − 1)th
reproducing kernel (37). Define

𝑝 =
{
𝜂 ∈ 𝑝 ∶ ⟨𝜂, 𝜒⟩ = 0 for all 𝜒 ∈ 𝑝−1

}
and suppose that a corresponding set of Lagrange Laurent poly-
nomials {𝜁𝑖(𝑥, 𝑦)}

𝑛
𝑖=1 exist: 𝜁𝑖 ∈ 𝑝 , 𝜁𝑖(𝑥𝑗, 𝑦𝑗) = 𝛿𝑖,𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑛.

Suppose that for all 𝜓 ∈ 𝑝 , there exists 𝜂 ∈ 𝑝 such that

𝜓(𝑥, 𝑦) =
𝑛∑

𝑖=1

𝜓(𝑥𝑖, 𝑦𝑖)𝜁𝑖(𝑥, 𝑦) + 𝜂(𝑥, 𝑦) (49)

with

𝜁𝑖(𝑥, 𝑦) = 𝜆𝑖𝑝−1(𝑥, 𝑦, 𝑥𝑖, 𝑦𝑖) + 𝜂𝑖(𝑥, 𝑦), 𝜂𝑖 ∈ 𝑝, 𝑖 = 1, … , 𝑛.

(50)
Then,

𝐼𝜇(𝜓) = ∬
𝐷

𝜓(𝑥, 𝑦)𝑑𝜇(𝑥, 𝑦) = 𝐼𝑛(𝜓) =
𝑛∑

𝑖=1

𝜆𝑖𝜓(𝑥𝑖, 𝑦𝑖), for all 𝜓 ∈ 2𝑝−1.

(51)

Proof. Let 𝜓1 ∈ 𝑝−1. From the reproducing property, (50) and⟨𝜓1, 𝜂𝑖⟩ = 0, we have for all 𝑖 = 1, … , 𝑛 that

𝜆𝑖𝜓1(𝑥𝑖, 𝑦𝑖) = ⟨𝜓1, 𝜆𝑖𝑝−1(⋅, ⋅, 𝑥𝑖, 𝑦𝑖)⟩ = ⟨𝜓1, 𝜁𝑖 − 𝜂𝑖⟩ = ⟨𝜓1, 𝜁𝑖⟩.
If 𝜓2 ∈ 𝑝 it follows from (49) that

⟨𝜓1, 𝜓2⟩ = 𝑛∑
𝑖=1

𝜓2(𝑥𝑖 , 𝑦𝑖)⟨𝜓1, 𝜁𝑖⟩ + ⟨𝜓1, 𝜂⟩ = 𝑛∑
𝑖=1

𝜆𝑖𝜓1(𝑥𝑖 , 𝑦𝑖)𝜓2(𝑥𝑖 , 𝑦𝑖).

So, (51) holds for functions of the form 𝜓1𝜓2 and from Lemma 3,
it holds for all 𝜓 ∈ 2𝑝−1. □

It is a complicated problem to determine when a family of
Lagrange Laurent polynomials exists, but nevertheless, this

Lemma allowed Harris, in the ordinary polynomial case, to
construct two types of particular cubature formulas. In Har-
ris’ paper, this lemma is an equivalence, although what is
actually used to construct the cubature formulas is only this
implication (see Sections 5 and 6 in [37]). It remains an open
problem whether our generalization to the Laurent case can
also allow the construction of particular L-Gaussian cubature
formulas.

Some recent papers present alternative approaches to the con-
struction of cubature formulas that are also of interest. For
example, a characterization of cubature through Hankel opera-
tors is carried out in [40]. Algorithms to compute all minimal
cubatures for a given domain and a given degree are elaborated
there from moment theory. Also in [41], two new classes of
stable high-order (with nonnegative weights) cubature rules
are proposed by making use of a sufficiently large number of
nodes (larger than the number of basis functions for which the
cubature is exact) and that do not lie on an algebraic manifold
generated by a polynomial of the same degree as the degree
of accuracy of the cubature rule. This yields a linear system of
equations and cubature weights are selected from the space of
solutions minimizing certain norms related to the stability of
the procedure.

5.2 Multivariate Strong Moment Problems

In the univariate case, the order of a quadrature formula corre-
sponds to matching some of the moments of the measure. The
converse is also a problem of interest: given an infinite sequence
of moments, is it possible to recover the underlying measure?
Orthogonal polynomials and the analysis of the convergence of
quadrature formulas are connected with the solutions of this
problem. If a solution exists, it is of interest also to characterize
all the possible measures that solve the moment problem (inde-
terminate case) and to obtain conditions such that the solution
is unique (determinate case). There are several classical moment
problems associated with polynomials (see [42, 43]): starting
from a sequence {𝜇𝑘}𝑘≥0, to find conditions such that there exists
a positive Borel measure 𝜇 satisfying ∫ 𝑧𝑘𝑑𝜇(𝑧) = 𝜇𝑘, 𝑘 ∈ ℕ ∪

{0}. The most frequently studied situations are those where the
support of the measure is a compact interval (Hausdorff, see
[44]), the half-line (Stieltjes, see [45]), and the whole real line
(Hamburger, see [46, 47]).

An alternative to this problem is to use Laurent polynomials
instead of ordinary polynomials, considering the sequence of
moments {𝜇𝑘}𝑘∈ℤ. The problem in this case is usually called
strong moment problem, see [2, 12, 30, 48–50]. This variant is
linked to orthogonal Laurent polynomials and the construction of
quadrature formulas exact in subspaces of Laurent polynomials,
see, for example, these references.

Themultidimensionalmoment problemhas been also considered
in the literature (see, e.g. [51–55]). As indicated in [27] (Sec-
tion 3.2.3), the moment problem in several variables is much
more difficult than its one-variable counterpart, and it is still
not completely solved. However, some characterizations and
sufficient conditions for a sequence to be determinate have been
obtained (see, e.g., these references for further details).

14 of 16 Studies in Applied Mathematics, 2024
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Due to the absence of a Theory of Orthogonal Laurent Polynomi-
als in several variables up to now in the literature, multivariate
strong moment problems have not been considered yet. In this
respect, our results may represent a starting point to develop
this theory, being key to this to have obtained a way to order
the Laurent monomials in a suitable way, to have considered
the multiplication plus inverse multiplication operator on each
variable and to have deduced recurrence relations and the
corresponding Favard theorem.

6 Conclusions

We have introduced for the first time in the literature the theory
of sequences of orthogonal Laurent polynomials in two real
variables (𝑥, 𝑦) (for the sake of simplicity, but it can be generalized
to several variables) with respect to a positive Borel measure
𝜇 defined on ℝ2 such that ({𝑥 = 0} ∪ {𝑦 = 0}) ∩ supp(𝜇) = ∅.
We have considered an appropriate ordering for the Laurent
monomials 𝑥𝑖𝑦𝑗 , 𝑖, 𝑗 ∈ ℤ that lets us obtain five-term relations
involving multiplication by 𝑥 + 1

𝑥
and 𝑦 + 1

𝑦
. The corresponding

matrices representations of these operators are block symmetric
five diagonals. Our approach enables us to extend some known
results for the ordinary polynomials to the Laurent case. In this
respect, we have included a Favard’s theorem and Christoffel–
Darboux and confluent formulas. Also, a connection with the
one-variable case is done when the measure 𝜇 is a product
measure of separate variables defined on the rectangle  =
[𝑎, 𝑏] × [𝑐, 𝑑], 0 < 𝑎 < 𝑏 < ∞, 0 < 𝑐 < 𝑑 < ∞.

In the one-variable case, there are very few measures that
give rise to explicit expressions for sequences of orthogonal
Laurent polynomials. We could almost say that the only ones
are practically the weight functions {𝜔𝑖}

6
𝑖=1 mentioned at the end

of Section 4. In general, these families are computed making
use of Theorem 1, under the knowledge of the corresponding
moments. In the several-variables case, there is not any sequence
of orthogonal Laurent polynomials explicitly known, except in
the situations described in Section 4. However, these families
can always be obtained from the five-term relations obtained in
Section 2 as long as the moments (16) exist and are computable.
Also, unlike the situation in the one-variable case, there are
not known applications in the literature for the moment of
orthogonal Laurent polynomials in two or more real variables.
The introduction of the theory of orthogonal Laurent polynomials
of two real variables in this paper allows us to extend results
known for the univariate case to the multivariate. We have
included a section with two applications for future research. In
particular, cubature rules based on Laurent polynomials will be
explored in a forthcoming paper.
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