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Abstract: Background/Objectives: This study aims to investigate the association of movement
behaviors with irisin, sclerostin, and bone turnover markers in young pediatric cancer survivors.
Methods: A total of 116 young pediatric cancer survivors (12.1 ± 3.3 years; 42% female) were
recruited. Time spent in movement behaviors over at least seven consecutive 24 h periods was
measured by accelerometers (wGT3x-BT accelerometer, ActiGraph). Blood samples were collected at
rest and serum was analyzed for irisin, sclerostin, cross-linked telopeptide of type I collagen (CTX),
procollagen type I amino-terminal propeptide (P1NP), total osteocalcin (OC), alkaline phosphatase
(ALP), 25-hydroxyvitamin D, parathyroid hormone (PTH), calcium, phosphorous, and magnesium.
Results: Irisin and sclerostin were not significantly correlated with bone turnover markers. Sedentary
time was negatively correlated with the P1NP (r = −0.411, p = 0.027) and total OC (r = −0.479,
p = 0.015) Z-scores, whereas moderate-to-vigorous physical activity was positively correlated with the
P1NP (r = 0.418, p = 0.024) and total OC (r = 0.478, p = 0.016) Z-scores. Moreover, total physical activity
was positively correlated with the total OC Z-score (r = 0.448, p = 0.025). Finally, the uncoupling
index [CTX/P1NP] was positively correlated with sedentary time (r = 0.424, p = 0.012) and negatively
correlated with light physical activity (r = −0.352, 0.041). Conclusions: Reducing sedentary time
and increasing physical activity may favor bone formation over resorption in young pediatric
cancer survivors.
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1. Introduction

Cancer survival refers to the time span from diagnosis to the rest of a person’s life [1].
It has experienced a remarkable increase in youth during the last decades in developed
countries, with a 5-year survivorship rate of 85% in children and 82% in adolescents [2].
However, cancer treatments are linked to impaired bone mass accretion during childhood
and adolescence, increasing the likelihood of osteoporosis later in life [3]. This impairment
is caused by an alteration in bone turnover, which during bone accretion must favor bone
formation over bone resorption, with bone turnover markers reflecting such alterations in
this dynamic process [4].

Physical activity (PA) is known to improve bone mineral density in young survivors of
pediatric cancer [5]; however, its role on bone turnover markers has been less investigated.
Previous studies have shown that PA seems to induce changes in bone turnover markers in
healthy adolescents [6], in part because osteocytes, the transducers of mechanical signal
arising from PA, communicate with both osteoclasts and osteoblasts [7]. For instance,
higher levels of bone formation markers (procollagen type I N-terminal propeptide [P1NP]
and alkaline phosphatase [ALP]) and lower levels of bone resorption markers (collagen
type I cross-linked C-telopeptide [CTX] and parathormone [PTH]) have been related to
more steps per day in pubertal females [8]. Likewise, moderate-to-vigorous PA (MVPA)
has also been associated with higher ALP in pubertal females [9]. In addition, soccer
participation is associated with higher levels of P1NP in male pubertal [10] and female
adolescent athletes [11], whereas basketball participation is associated with higher levels of
total osteocalcin (OC) in female young adults [12], compared to non-osteogenic sport or
controls. Similarly, Eliakim et al. [13] found an increase in bone formation (total OC, ALP,
and P1NP) and a decrease in bone resorption (N-terminal telopeptide cross-link [NTX])
after a 5-week weight-bearing exercise program in adolescent males. However, following
a single plyometric exercise bout, both ALP and NTX increased in prepubertal boys [14].
Regarding young pediatric cancer survivors, Mogil et al. [15] found an increase in the
receptor activator of nuclear factor-kappa B ligand, a marker of bone resorption, after a
12-month intervention of whole-body vibration.

Animal studies have also demonstrated that PA stimulates the production of irisin by
muscles, which promotes bone remodeling by increasing sclerostin expression in osteo-
cytes [16]. In this regard, Jurimae et al. [17] reported a positive association between irisin
and sclerostin in adolescent females. However, another study reported that, unlike their
adult counterparts, adolescent swimmers did not show a significant irisin response to a
high-intensity interval swimming trial [18]. Likewise, no significant post-exercise changes
in sclerostin have been observed in pubertal males and females [14,19]. Sclerostin, a Wnt
antagonist secreted by osteocytes, inhibits bone formation by competitively binding to
the LRP-5 receptor on bone cells [20]. Additionally, recent studies indicate that sclerostin
exerts an indirect catabolic effect on bone by raising the RANK/OPG mRNA ratio, which
promotes osteoclastic activity and bone resorption [21]. In this regard, sclerostin has been
associated with CTX in adolescent females [17].

Although PA and bone turnover marker levels and their associations have been inves-
tigated in healthy children [22], they have been less examined in young pediatric cancer
survivors. Specifically, to our best of knowledge, irisin, sclerostin, and their relationships to
PA and bone turnover markers are unknown in this population. Therefore, the aim of the
study was to investigate the associations of PA with irisin, sclerostin, and bone turnover
markers in young survivors of pediatric cancer. It was hypothesized that higher levels of
PA would be associated with higher levels of irisin, sclerostin, and bone formation markers
and lower levels of bone resorption markers.

2. Materials and Methods
2.1. Design

This cross-sectional study was conducted under the umbrella of the iBoneFIT project [23].
This trial is a multicenter, parallel-group randomized controlled study designed to assess
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the impact of a 9-month online exercise program on bone health in young survivors of
pediatric cancer. Participants were recruited from Pediatric Oncology and Hematology
Units at “Virgen de las Nieves” Hospital in Granada and “Reina Sofia” Hospital in Cordoba,
Spain. Eligible participants were aged 6–18 years, free from active cancer treatment,
diagnosed at least a year before enrollment, and had prior exposure to radiotherapy and/or
chemotherapy. Due to COVID-19, data collection was split into two waves: (a) October
2020 to February 2021, and (b) December 2021 to March 2022.

Although we recruited 116 young pediatric cancer survivors (12.1 ± 3.3 years old,
mean ± SD; 42% female), the sample sizes slightly vary for some variables due to missing
data (i.e., some survivors were unable to perform some of the tests, or declined a particular
test during their assessment) (Figure 1).
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Figure 1. Flowchart of the study. PA, physical activity; PTH, parathyroid hormone; ALP, alkaline
phosphatase; CTX, collagen type I cross-linked C-telopeptide; P1NP, procollagen type I N-terminal
propeptide; OC, osteocalcin.

Written informed consent from parents and assent from survivors were obtained prior
to trial participation. The iBoneFIT project received approval from the Ethics Committee on
Human Research of the Regional Government of Andalusia (Reference: 4500, 19 December
2019). In addition, an amendment of the trial protocol was approved to obtain one more
blood tube for bone biomarkers (Reference: 4500, 1 December 2021). The iBoneFIT project
adhered to the ethical standards outlined in the Declaration of Helsinki (2013 revision). The
trial was registered at isrctn.com (Reference: isrctn61195625, 2 April 2020) and is reported
following the STROBE checklist (see Supplementary Table S1) [24].

2.2. Measures
2.2.1. Anthropometrics and Somatic Maturity

Participants’ weights were measured using an electronic scale (SECA 861, Hamburg,
Germany) with an accuracy of 100 g. Height (cm) was assessed with a precision stadiometer,
while sitting height was measured with a SECA 225 (Hamburg, Germany) to the nearest
0.1 cm. Body mass index (BMI) was calculated by dividing body mass (kg) by height (m2),
and participants were categorized as overweight or obese based on sex- and age-specific
BMI cut-offs established by Cole et al. [25]. Somatic maturity was measured using the
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prediction of years before (negative values) or after (positive values) peak height velocity
using validated algorithms for boys and girls [26].

2.2.2. Clinical Data

Medical record abstraction yielded information regarding diagnoses, the duration from
treatment completion to baseline data collection, and treatment exposures (radiotherapy,
chemotherapy, and/or surgery, whether used individually or in combination). Due to
collinearity with treatment exposure, diagnosis was excluded from the analysis. The time
since treatment completion was treated as a continuous variable, while treatment exposure
was classified as a dichotomous variable (radiotherapy: yes/no). Daily calcium intake (mg)
was assessed using a validated food frequency questionnaire [27].

2.2.3. Movement Behaviors

Total PA, MVPA, and light PA (LPA), and sedentary behavior (SB) were measured using
the wrist-worn triaxial ActiGraph wGT3x-BT accelerometer (ActiGraph GT3X, Pensacola,
FL, USA) for seven consecutive days (24 h/d). Participants were instructed to wear the
devices continuously on their nondominant wrist, except during water activities. The
accelerometers were set to a sampling frequency of 90 Hz, and the raw data were processed
using the GGIR R open-source package. The Euclidean norm of the raw acceleration
minus one G was calculated, with negative values rounded to zero, along with the angle
of the device’s z-axis, to estimate physical activity parameters [28]. Non-wear time was
determined using the standard deviation (SD) of the raw accelerations recorded across the
three axes of the accelerometer, as described in previous studies [29]. This non-wear time
was then imputed based on the accelerations recorded on the remaining days within the
same time window. Appropriate thresholds were used to identify PA intensities and SB (i.e.,
MVPA: 200 mili-g [mg], LPA: 35–200 mg, SB: 35 mg) [30]. A day was considered valid if the
accelerometer recorded data for at least 23 h, and participants were required to wear it for
a minimum of 16 h. Only participants with at least one valid day (only one survivor) were
included, and sensitivity analyses indicated similar outcomes when compared to survivors
with at least three valid weekdays and one weekend day. Daily averages for MVPA, LPA,
and SB were calculated as the mean over all 7 days. The wGT3x-BT accelerometer has been
previously validated in a young population [31].

Using the bone-specific physical activity questionnaire, the osteogenic activity was
reported by the participants considering which sport they had practiced throughout their
lifespan and the last year. This tool has been validated to assess the osteogenic characteris-
tics of previous sports and physical activities on the skeleton [32].

2.2.4. Blood Analyses

Samples of venous blood were taken in the morning after fasting overnight. Serum
samples were stored at −80 ◦C until they were analyzed. Calcium (mg/dL), phospho-
rous (mg/dL), magnesium (mg/dL), PTH (pg/mL), ALP (U/L), total OC (µg/L), and
25-hydroxyvitamin D [25(OH)D, ng/mL] were analyzed following the same laboratory pro-
tocol at the Clinical Analysis Unit of each University Hospital. Specifically, 25(OH)D was
determined with the two-site immunoassay (Roche Diagnostics SL, Barcelona, Spain). The
intra- and inter-assay precision coefficients of variation were 6.9% and 7.2% for 25(OH)D.

CTX (µg/L), P1NP (µg/L), irisin, and sclerostin were analyzed at the Instituto de
Investigación Biosanitaria of Granada following standard protocols. CTX was analyzed by
enzyme immunoassay (Elecsys b-CrossLaps; Roche Diagnostics, Basel, Switzerland), and
P1NP was analyzed by immunoassay on an autoanalyzer COBAS 601 (Roche Diagnostics,
Basel, Switzerland). The intra- and inter-assay precision coefficients of variation were 2.0%
and 2.9% for CTX, and 5.1% and 6.5% for P1NP. Irisin was determined using an ELISA kit
using a specific irisin/FDNC5 monoclonal antibody (R&D Systems Inc., Minneapolis, MN,
USA). This assay had intra- and inter-assay CVs of 2.5 and 8.7%, respectively, and the lowest
detection limit was 0.25 ng/mL. Sclerostin was analyzed by using a quantitative sandwich
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ELISA developed by Biomedica (Vienna, Austria). Two samples of known concentrations
were tested six times to assess intra-assay variability (4%), and two samples of known
concentrations were tested in three assays to assess inter-assay variability (3%). Sclerostin
measurements are reported throughout in picograms per milliliter, and lower limit of
detection was less than 36.7 pg/mL.

Using reference data of healthy children and adolescents [33], the age- and sex-specific
Z-scores of CTX, P1NP, and total OC were calculated. In order to assess the resorption
and formation processes of bone remodeling, two uncoupling indexes were calculated:
the ratio of CTX to P1NP, and the ratio of CTX to total OC [34]. A positive uncoupling
index indicates that bone remodeling was unbalanced in favor of resorption. A negative
uncoupling index indicates an imbalance favoring formation.

2.2.5. Statistical Analysis

The descriptive characteristics of the participants are presented as the mean ± standard
deviation (SD) or percentages. All variables were checked for normality using the Shapiro–
Wilk test and a visual check of the histograms, Q-Q, and box plots.

We utilized the method established by Bieglmayer and Kudlacek [35] to calculate the
balance and rate of bone turnover as indirect indicators of the overall effect on bone. This
approach compares the multiples of medians (MoMs) for formation markers (P1NP or total
OC) and resorption markers (CTX), providing a measure of how much an individual’s
results deviate from the median. Specifically, the MoM for each marker was computed
using serum concentrations. The bone turnover balance was calculated using the following
formula: Bone Turnover Balance = MoMF/MoMR, where MoMF represents the MoM of
P1NP (or total OC) as the formation marker, and MoMR denotes the MoM of CTX as the
resorption marker [35]. Additionally, the MoM values were also used to calculate the bone
turnover rate, i.e., how fast or slow the turnover occurs, based on the following equation:
Bone Turnover Rate =

√
(MoMF

2 + MoMR
2) [35]. This standardization method represents

the balance of bone formation and resorption, along with the rate of bone turnover, though
it does not directly represent the bone remodeling unit and is not a direct assessment at the
tissue level.

Bivariate correlation analysis was performed to examine the relationships of scle-
rostin and irisin levels with the CTX, P1NP, and total OC Z-scores. Likewise, bivariate
correlation analysis was conducted to examine the relationships of PA variables with the
uncoupling indexes.

All the analyses were performed using the IBM SPSS Statistics for Windows version
20.0 (IBM Corp: Armonk, NY, USA), and the level of significance was set to p < 0.05.

3. Results

The distribution of cancer types for the whole sample is shown in Supplementary
Table S2. Most participants were diagnosed with acute lymphoblastic leukemia (38.8%),
lymphoma (12.1%), and central nervous system tumors (9.5%).

Descriptive characteristics of our sample are presented by sex in Table 1. Briefly, the
mean age was 12.1 ± 3.3 years, and 42.2% were female. Among of them, 17.9% met the PA
recommendations, 7.9% met the calcium intake recommendations, and 35.1% presented
25(OH)D sufficiency. Regarding bone turnover markers, the averages were as follows: CTX
Z-score = −0.08 ± 0.09; P1NP Z-score = −0.15 ± 0.15; and total OC Z-score = −0.18 ± 0.14.

The four-field plots are depicted in Figure 2. There were differences in confidence
ellipses based on either the CTX/P1NP or CTX/total OC data. The distributions of par-
ticipants among the features of fast resorption, fast formation, slow formation, and slow
resorption for CTX-P1NP (and for CTX-total OC in brackets) were 30% (19.2%), 35% (42%),
15% (15.4%), and 20% (23.1%), respectively.



Nutrients 2024, 16, 3914 6 of 14

Table 1. Descriptive characteristics of the participants included in the study.

Total N Girls N Boys N

Age (years) 12.1 (3.3) 116 12.2 (3.5) 49 12.0 (3.2) 67
Body mass (kg) 46.6 (18.0) 116 45.2 (18.3) 49 47.6 (17.9) 67
Stature (cm) 147.5 (17.1) 116 145.3 (16.0) 49 149.0 (17.7) 67
Body mass index (Z-score) 0.9 (1.1) 116 0.8 (1.1) 49 1.0 (1.2) 67

Underweight 3.5 4 6.1 3 1.5 1
Normal weight 61.2 71 65.4 32 58.2 39
Overweight 20.7 24 16.3 8 23.9 16
Obese 14.6 17 12.2 6 16.4 11

Years from peak height velocity −0.8 (2.7) 116 0.0 (2.9) 49 −1.3 (2.5) 67
Time from treatment completion (years) 5.0 (3.8) 113 5.2 (4.1) 48 4.9 (3.6) 65
Radiotherapy exposure (yes/no, %) 28/72, 38.9 116 24/76, 31.6 49 30/70, 42.9 67

Movement behaviors and nutrition
SB (min/day) 624.9 (103.0) 110 621.1 (107.2) 48 627.8 (100.5) 62
LPA (min/day) 256.3 (64.0) 110 261.3 (74.4) 48 252.4 (54.9) 62
MVPA (min/day) 41.7 (25.8) 110 36.4 (25.2) 48 45.8 (25.7) 62
Total PA (min/day) 297.9 (84.0) 110 9.7 (13.6) 48 298.2 (75.8) 62
Meeting PA recommendations (yes/no, %) 25/85, 17.9 110 9/39, 18.4 48 16/46, 23.9 62
Osteogenic PA since birth 6.8 [0.3–18.5] 108 5.3 [0.2–13.5] 45 9.0 [0.7–20.6] 63
Calcium intake (mg/day) 785.5 (437.2) 116 702.2 (388.6) 49 846.4 (462.9) 67
Meeting calcium recommendations
(yes/no, %) 11/105, 7.9 116 3/46, 6.1 49 8/59, 11.9 67

Bone metabolism
Calcium (mg/dL) 9.8 (0.5) 103 9.8 (0.5) 42 9.9 (0.5) 61
Phosphorus (mg/dL) 4.4 (0.7) 94 4.3 (0.7) 39 4.5 (0.7) 55
Magnesium (mg/dL) 1.9 (0.2) 77 1.9 (0.2) 34 1.9 (0.2) 43
PTH (pg/mL) 46.4 (17.8) 21 50.9 (20.4) 8 43.6 (16.2) 13
ALP (U/L) 224.77 (102.6) 97 191.6 (96.4) 42 250.1 (100.7) 55
Sclerostin (pg/mL) 101.4 (58.0) 36 108.7 (82.6) 16 95.8 (26.8) 20
Irisin (ng/mL) 7.4 (0.9) 36 7.5 (0.9) 16 7.3 (0.8) 20
25(OH)D (ng/mL) 19.9 (8.7) 37 19.2 (8.2) 17 20.5 (9.2) 20

Sufficiency (n, %) 13, 35.1 37 6, 35.3 17 7, 35 20
Bone turnover markers
CTX (µg/L) 1.5 (0.5) 50 1.3 (0.4) 23 1.7 (0.5) 27
P1NP (µg/L) 490.9 (218.9) 36 415.1 (210.2) 16 551.5 (211.3) 20
Total OC (µg/L) 71.1 (32.4) 28 56.5 (34.2) 11 80.5 (28.2) 17
CTX (Z-score) −0.08 (0.09) 45 −0.10 (0.11) 21 −0.07 (0.09) 24
P1NP (Z-score) −0.15 (0.15) 31 −0.17 (0.17) 14 −0.14 (0.14) 17
Total OC (Z-score) −0.18 (0.14) 25 −0.24 (0.19) 10 −0.15 (0.08) 15

Data are presented as the mean (standard deviation), median (interquartile range), or as frequencies (associated
percentages), as indicated. SB, sedentary behavior; LPA, light physical activity; MVPA, moderate-to-vigorous
physical activity; PA, physical activity; PTH, parathyroid hormone; ALP, alkaline phosphatase; CTX, collagen
type I cross-linked C-telopeptide; P1NP, procollagen type I N-terminal propeptide; OC, osteocalcin. World Health
Organization physical activity recommendations: ≥60 min/day MVPA. International Osteoporosis Foundation
calcium intake recommendations: ≥1000 mg/day for participants between 6 and 8 years old; ≥1300 mg/day
for participants older than 8 years. Vitamin D status was defined as follows [36]: Sufficiency, ≥20 ng/mL;
Insufficiency, <12 ng/mL.

Concentrations of resorption and formation markers were mathematically transformed
to obtain the balance and rate of bone turnover. Four-field plots were built up and the
reference data of bone turnover were represented by 95% confidence ellipses [35]. The
upper left field of the graph represents dominant resorption together with high turnover.
The left bottom field symbolizes slow resorption. The right bottom field corresponds to
slow formation. The upper right field typifies fast bone formation.
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Table 2 shows correlations between the movement behavior variables, irisin, sclerostin,
and bone biomarkers. SB was negatively correlated with the P1NP (Table 2; r = −0.411,
p = 0.027) and total OC (Table 2; r = −0.479, p = 0.015) Z-scores. On the contrary, MVPA
was positively correlated with the P1NP (Table 2; r = 0.418, p = 0.024) and total OC (Table 2;
r = 0.478, p = 0.016) Z-scores. Moreover, total PA was positively correlated with the total
OC Z-score (Table 2; r = 0.448, p = 0.025). Finally, no correlation was found between any of
the movement behavior variables and sclerostin or irisin.

Table 2. Bivariate correlations between physical activity, calcium intake, and bone biomarkers.

CTX (Z) P1NP (Z) Total OC (Z) ALP PTH 25(OH)D Irisin Sclerostin

SB 0.005 −0.411 * −0.479 * −0.350 * −0.418 0.177 0.193 −0.130
LPA −0.117 0.257 0.367 0.279 * 0.521 * −0.323 0.002 0.090
MVPA 0.156 0.418 * 0.456 * 0.374 ** 0.405 −0.038 −0.219 0.051
Total PA −0.043 0.336 0.433 * 0.330 * 0.541 * −0.251 −0.067 −0.088
Osteogenic PA
(since birth) −0.101 −0.097 0.275 −0.022 −0.091 −0.001 −0.125 −0.087

Osteogenic PA
(last year) −0.072 0.026 0.007 −0.030 −0.214 −0.020 −0.003 −0.067

Sclerostin 0.334 0.290 0.341 0.123 0.115 0.082 0.234 -

SB, sedentary behavior; LPA, light physical activity; MVPA, moderate-to-vigorous physical activity; PA, physical
activity; PTH, parathyroid hormone; ALP, alkaline phosphatase; CTX, collagen type I cross-linked C-telopeptide;
P1NP, procollagen type I N-terminal propeptide; OC, osteocalcin. Boldface indicates statistical significance.
* p < 0.050. ** p < 0.001.

Bivariate correlation analyses of sclerostin and irisin with movement behaviors are
shown in Figure 3. Sclerostin and irisin were not significantly correlated with the CTX, P1NP,
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or total OC Z-scores (Figure 3). Finally, SB was positively correlated with the uncoupling
index [CTX/P1NP] (Figure 4A; r = 0.424, p = 0.012), whereas LPA was negatively correlated
with the uncoupling index (Figure 4B; r = −0.352, p = 0.041).
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4. Discussion

The main finding of this study was that higher levels of sedentary time were associated
with lower levels of bone formation markers (i.e., P1NP, total OC, and ALP), whereas higher
levels of LPA, MVPA, and total PA were associated with higher levels of bone formation
in young pediatric cancer survivors. Of note, higher levels of LPA and total PA were
associated with PTH levels, a marker that calcium is released from the bone into circulation
and therefore contributes to bone resorption. Moreover, the associations between the PA
variables and the uncoupling index show that sedentary time favored bone resorption,
whereas LPA favored bone formation throughout the bone remodeling cycle. Finally, irisin
and sclerostin were not associated with either bone turnover markers or PA variables.
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As expected, since childhood and adolescence are stages of rapid growth and bone
turnover [37], the present data are characterized by fast bone formation and resorption, with
bone formation being dominant over resorption in the CTX/P1NP ratio (30 vs. 35%) and the
CTX/total OC ratio (19.2 vs. 42%). The lower difference between CTX and P1NP compared
to CTX and total OC, might be due to the total OC endocrine actions on the human body
(i.e., glucose homeostasis, musculoskeletal functioning, brain development, male fertility,
hepatic steatosis, and arterial calcification) [38]. The total OC encompasses carboxylated
and undercarboxylated forms, with the undercarboxylated form having several endocrine
functions which promote a higher expression from osteoblasts. These results together
suggest that bone modeling in young pediatric cancer survivors was occurring as usual in
healthy children and adolescents; however, the resting levels of each bone turnover marker
were below the sex- and age-normative values.

Our results showed no association of irisin and sclerostin with bone turnover markers.
This finding partially disagreed with a previous study that found a positive association
between sclerostin and CTX levels in adolescent girls [17]. This could be explained by the
lower levels of sclerostin in our sample of young pediatric cancer survivors (mean 101.4
vs. 117.9 pg/mL), which might influence the catabolic activity on the bone. Going through
this pathway, irisin has been positively related to sclerostin in female adolescents [17]. In
this sense, our sample presented lower levels of irisin compared to previous studies in
children and adolescents (mean 7.4 vs. 13.2 and 16.2 ng/mL, respectively) [39], which
might compromise sclerostin expression in osteocytes [16].

Despite irisin being a myokine secreted by muscles in response to PA in animal studies,
we did not find any association between PA variables and irisin levels in young survivors
of pediatric cancer. In agreement with our results, Cai et al. [40] observed no association
between PA variables and irisin levels in healthy children. This finding could be attributed
to the overall low PA levels of our participants, who only accumulated 41.7 ± 25.8 min/day
of MVPA and of whom only 18% met the PA recommendations for children and adolescents.
In this regard, a previous study has shown that only strenuous exercise promotes irisin
expression in children [41].

A novel and interesting finding of the present study was that sedentary time was
negatively associated with bone formation markers (i.e., P1NP, total OC, and ALP), whereas
PA levels were positively associated with the same bone formation markers. Addition-
ally, sedentary time and LPA levels were positively and negatively associated with the
uncoupling index (CTX-P1NP), respectively. Altogether, increasing mechanical loading
through PA, even at light intensity, favored bone formation in young survivors of pediatric
cancer. These results are in line with Kambas et al. [8] who reported higher levels of P1NP
and ALP in healthy girls who practiced more PA compared to those who practiced less
PA (pedometer, steps/day). On the contrary, Pimentel et al. [42] found no association
of PA (2-axis accelerometer, MET/day) with P1NP and total OC levels in children with
normal weight. We speculate that survivors of pediatric cancer could improve their bone
metabolism by routine PA more easily due to higher muscle mass and testosterone in
response to PA, as well as PA levels at baseline. In this sense, mechanical loading of skeletal
muscle stimulates osteocytes, which in turn induce osteoblast activity [43].

In our study, MVPA levels showed the strongest association with bone formation mark-
ers. Generally, vigorous intensities exert higher benefits on bone health than moderate or
moderate-to-vigorous intensities in children and adolescents [44]. Likewise, cross-sectional
and longitudinal evidence in athletic populations has reported that sport participation
involving high mechanical loading (e.g., gymnasts, decathletes, and soccer players) showed
higher levels of bone formation and resorption markers than participation in lower impact
sports (e.g., swimmers) [11,45]. However, osteogenic PA variables (past and current) were
not associated with any bone marker in our sample. The missing effect of osteogenic PA
on bone metabolism could be attributed to the fact that young pediatric cancer survivors
participate less in organized sports, receive less social support to engage in PA, and perceive
themselves as less competitive in physical education at school after treatment [46,47].
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Higher LPA and MVPA levels were related to higher PTH levels in young survivors of
pediatric cancer. This finding agrees with the results of Pimentel et al. [42], who observed
higher PTH in children and adolescents who performed more PA (two-axis accelerometer,
MET/day). Intermittent increases in PTH have been shown to result in enhanced bone for-
mation in animal studies [48]. Nevertheless, this result should be taken with caution, since
only 35.1% of our sample had sufficient 25(OH)D levels. Of note, circulating calcium and
phosphorus levels were under the homeostatic limits considering participants’ age [49,50].

Strengths and Limitations

The present study has several limitations that should be noted. First, the cross-
sectional design prevents the establishment of cause-and-effect relationships, meaning that
the findings reported here must be confirmed in prospective studies. Second, the sample
size of participants with complete data for all variables studied is relatively small. Third, the
participants included in the study were those who chose to enroll in an exercise intervention
aimed at improving a bone mineral density. As a result, they may not represent all young
pediatric cancer survivors, which could lead to selection bias in the reported compliance
rates for physical activity recommendations. The present study also has strengths, such
as the use of relevant markers of bone turnover, calcium metabolism, myokines, and
osteokines. Furthermore, a triaxial accelerometer was used to objectively measure PA.

5. Conclusions

In this cross-sectional study with young pediatric cancer survivors, higher levels of
sedentary time and PA (LPA, MVPA, and total PA) are associated with lower and higher
levels of bone formation markers (P1NP, total OC, and ALP), respectively. Furthermore,
LPA and total PA are positively related with PTH levels. In light of these results, replacing
sedentary time with a more active lifestyle, even for LPA, seems to be of great importance to
optimize bone modeling after pediatric cancer treatment completion. Future intervention
studies should be conducted to confirm these findings in this population.
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