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Abstract: Background/Objectives: Three-dimensional bioprinting technology has enabled great
advances in the treatment of articular cartilage (AC) defects by the biofabrication of biomimetic
constructs that restore and/or regenerate damaged tissue. In this sense, the selection of suitable cells
and biomaterials to bioprint constructs that mimic the architecture, composition, and functionality of
the natural extracellular matrix (ECM) of the native tissue is crucial. In the present study, a novel
cartilage-like biomimetic hybrid construct (CBC) was developed by 3D bioprinting to facilitate and
promote AC regeneration. Methods: The CBC was biofabricated by the co-bioprinting of a bioink
based on hyaluronic acid (HA) and alginate (AL) loaded with human mesenchymal stromal cells
(hMSCs), with polylactic acid supporting the biomaterial, in order to mimic the microenvironment
and structural properties of native AC, respectively. The CBC was biologically in vitro characterized.
In addition, its physiochemical characteristics were evaluated in order to determine if the presence of
hMSCs modified its properties. Results: Results from biological analysis demonstrated that CBC
supported the high viability and proliferation of hMSCs, facilitating chondrogenesis after 5 weeks
in vitro. The evaluation of physicochemical properties in the CBCs confirmed that the CBC developed
could be suitable for use in cartilage tissue engineering. Conclusions: The results demonstrated
that the use of bioprinted CBCs based on hMSC-AL/HA-bioink for AC repair could enhance the
regeneration and/or formation of hyaline cartilaginous tissue.

Keywords: hyaluronic acid; mesenchymal stromal cell; bioprinting; construct; cartilage tissue
engineering

1. Introduction

Articular cartilage (AC) tissue injuries remain a major challenge in orthopedic surgery
since its regenerative capacity is limited, given its poor cellularity and avascular nature [1,2].
A range of options such as medication, rest, physiotherapy, and surgery are currently used
to treat cartilage damage and repair [3]. Focal lesions of AC are surgically treated using
techniques such as the microfracture, the abrasion arthroplasty, the debridement, the
implantation of allografts, autologous chondrocytes (ACIs), matrix-induced chondrocyte
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transplantation (MACI), or autologous matrix-induced chondrogenesis (AMIC) [4–8]. Each
of these methods has specific strengths and limitations [3,9,10]. Although the current
clinical approaches have achieved limited success, these treatments often involve a limited
recovery of joint function associated with the formation of inadequate tissue. Repair
procedures after cartilage injury can lead to the excessive secretion and deposition of
natural extracellular matrix (ECM) proteins that can result in fibrocartilage formation
with lower mechanical strength than native hyaline cartilage [4,5,7,11–13]. Therefore, the
regeneration of hyaline cartilage remains the fundamental goal in the treatment of cartilage
injuries. Recently, tissue engineering has emerged as an interdisciplinary field focused on
developing new therapeutic approaches for cartilage regeneration. This involves creating
biological substitutes that can restore, maintain, or enhance the function of damaged
tissue. Generally, this is performed by culturing the cells in a three-dimensional (3D)
structure, which mimics the composition and architecture of the ECM of the native AC
being developed in order to be locally implanted in the injured AC, trigging and supporting
the regeneration process [14,15]. Three-dimensional bioprinting enables the manufacture
of individualized scaffolds with controllable micro-structures that provide cells a suitable
microenvironment, biochemical stimulus, and mechanical support, which would eventually
facilitate cell behavior including growth, proliferation, and differentiation [16,17].

Bioinks, bioprintable materials used in 3D bioprinting processes, can be divided into
two categories: scaffold-based bioinks and scaffold-free bioinks. In the scaffold-based
bioink, cells are loaded into hydrogels or similar exogenous materials, which are then
bioprinted to create 3D structures [18,19]. In contrast, scaffold-free bioinks are composed of
aggregates such as tissue spheroids [20–22], cell pellet [23], and tissue strands [24], where
cells are bioprinted without the necessity of an external biomaterial [18,19]. Numerous
researchers have reported the manufacturing of biomimetic constructs from hydrogels
loaded with living cells [25–34]. The hydrogels provide an appropriate biomimetic microen-
vironment for cell proliferation, migration, differentiation, and adhesion [35]. In addition,
hydrogels are biocompatible and biodegradable and have rich water content, which supply
a matrix that can resemble natural components of the native ECM of AC [26,27,36–42].
However, despite these advances, the use of hydrogels has limitations such as their variabil-
ity to obtain adequate mechanical properties. For this reason, the bioprinting of biomimetic
hybrid constructs by the simultaneous deposition of hydrogels loaded with living cells
and supporting biomaterials may offer a novel and more suitable strategy generating 3D
structures that mimic the structural and compositional heterogeneity of native AC [43,44].

The bioprinting of cartilage constructs is generally extrusion based, which is the
most common and affordable bioprinting method [17,45,46]. Alternatively, inkjet [47,48],
laser-induced forward transfer (LIFT) [49], and 3D bioprinting provide a higher resolution,
though they come at a considerably higher cost [50]. Each of these methods has specific
strengths, weaknesses, and limitations [51].

Among biomaterials used as cell carriers, hyaluronic acid (HA) is one of the most
promising natural polymers for cartilage tissue engineering (CTE). In osteoarthritic chon-
drocytes, HA enhances cellular metabolic activity, thereby promoting biosynthesis at the
cellular level [52–54], playing a critical role during chondrogenesis and maintaining car-
tilage homeostasis [55,56]. In addition, it has been demonstrated that HA plays a role
in the migration and proliferation of chondrocytes through its interaction with specific
cell surface receptors such as CD44 [57,58]. Several studies have demonstrated that HA
improves cell functionality in both chondrocytes and mesenchymal stromal cells (MSCs),
promoting the chondrogenic phenotype and hyaline-specific matrix deposition [32,59–64],
as well as suppressing genes associated with cartilage inflammation [65]. Moreover, HA
is one of the main glycosaminoglycan (GAGs) present in the cartilage ECM and exhibits
suitable properties such as biocompatibility, biodegradability, and non-toxicity [66–68].
Despite these advantages, HA presents a limited gelation capacity, which results in poor
rheological properties for maintaining cell suspension [69,70]. In this context, HA has been
mixed with other biomaterials, such as alginate (AL), to develop more viscous formulations
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suitable for use as bioinks [71,72]. AL is considered a gold standard in CTE due to its
easy handling, excellent rheological properties for bioprinting, fast gelation kinetics, and
abilities to preserve the rounded cell shape that is essential for promoting the chondrogenic
phenotype [73–76]. Thus, HA and AL can be combined because HA promotes cellular
activity, while AL provides the appropriate rheological properties for the bioprintability of
the bioink.

Regarding the supporting biomaterials, thermoplastic polymers such as polylactic acid
(PLA) are some of the most promising biomaterials in CTE [77]. PLA provides excellent
mechanical properties, thermoplastic processability, and biological properties, such as bio-
compatibility and biodegradability, which are all strongly influenced by its stereochemistry
and molecular weight [77]. PLA also has excellent bioresorption capabilities, allowing the
integration of the polymer with host cells and tissues [78]. Upon contact with biological
media, PLA is degraded by simply hydrolyzing the ester bond into lactic acid, which is
converted into pyruvate in the tricarboxylic acid cycle and excreted in the form of carbon
dioxide and water. These degradation products are either metabolized intracellularly or
excreted through urine and breath [79]. This process is primarily influenced by the char-
acteristics of the polymer such as crystallinity, molecular weight, etc., and the conditions
of hydrolysis, including pH and temperature [80]. Numerous studies have demonstrated
that PLA, when used as a scaffold in tissue engineering, supports cell proliferation and
growth [81–83]; also, its low price makes it an ideal choice for use in 3D bioprinting [84–86].
Its use in biomedical applications has been approved by the main health agencies such as
the Federal Drug Administration (FDA, USA) and the European Medicine Agency (EMA,
European Union) [87]. Moreover, PLA has been reported to be an effective scaffold agent
alone or in combination with hydrogels [84,88].

Furthermore, for the bioprinting of biomimetic hybrid construct, the selection of a cell
type to combine with the hydrogels is crucial to formulate suitable bioinks. hMSCs are
regarded as an attractive cell type for cartilage regeneration because they are multipotent
stem cells, with a high capacity to self-renew and differentiate into various cell types,
including cartilaginous lineage [89–92]. hMSCs have been used as therapeutic agents not
only for their healing capacities performed through engraftment and differentiation but
also through paracrine signaling. These cells are capable of secreting soluble factors, which
are indispensable for the viability, proliferation, and differentiation of cells surrounding
a defect, for hyaline cartilaginous ECM stimulation, and for modulating the immune
response [93,94]. Moreover, hMSCs overcome the limitations of chondrocytes, which are
the only highly specialized cells found in mature AC [95]. The main limitation of in vitro
chondrocytes culture is the dedifferentiation that occurs during expansion in monolayer
culture. Chondrocytes do not maintain their characteristic phenotype, and, as a result, their
capacity to regenerate damaged cartilage is compromised [96]. Additionally, the scarcity
of donor tissue presents another challenge to the use of autologous chondrocytes [12].
Among the sources of hMSCs, adipose tissue presents several advantages in comparison
to other tissues (i.e., bone marrow), including easier access, less invasiveness [97], and
a greater cell yield per unit of tissue as well [98]. Specifically, Hoffa’s fat pad tissue has
been demonstrated to contain multipotent and highly clonogenic adipose-derived stem
cells [99,100].

To date, although much advancement in CTE strategies using 3D bioprinting systems
have been reported, the bioprinting of a construct composed of a component of AC ECM,
such as HA [101–104], with appropriate cell and structural properties that lead to hyaline
cartilage tissue generation is still a challenge. Accordingly, in this study, we successfully de-
veloped a cartilage-like biomimetic hybrid construct (CBC) by 3D bioprinting as an effective
approach to treat and support the regeneration of AC defects and to be applied affordably
in the clinical area. The bioprinting of CBCs was performed using bioink, formulated with
HA and AL and loaded with hMSCs, which were simultaneously bioprinted with PLA.
Then, the CBC was crosslinked post-bioprinting with calcium chloride, obtaining a novel
tissue-engineered product, which mimicked the environment and structural properties of
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native AC. The functionality of the CBCs was evaluated by testing their cell viability, prolif-
eration, and chondrocyte differentiation by protein and gene expression assays, comparing
them with a control CBC based on hMSC-AL-bioink (a construct without HA). Moreover,
the physicochemical properties of the designed CBCs such as their porosity, degradation,
swelling, surface electrical properties, conductivity, and environmental scanning electron
microscopy were assessed compared to cell-free CBCs.

2. Materials and Methods
2.1. Isolation and Culture of hMSCs

hMSCs were isolated from infrapatellar fat pad (IFP) of patients with osteoarthritis
during joint replacement surgery. Ethical approval for the study was obtained from the
Ethics Committee (number: 02/022010) of the Clinical University Hospital of Málaga,
Spain. Informed patient consent was obtained for all samples used in this study. The fat
tissue was minced and digested using an enzymatic solution of 1 mg/mL collagenase
type IA (Sigma-Aldrich, St. Louis, MO, USA) and incubated on a shaker at 37 ◦C for 1 h.
After digestion, collagenase was removed by a single wash in sterile phosphate-buffered
saline (PBS; Sigma-Aldrich, St. Louis, MO, USA), followed by two additional washes
in Dulbecco’s Modified Eagle Medium (DMEM; Sigma-Aldrich, St. Louis, MO, USA)
supplemented with 10% fetal bovine serum (FBS; Invitrogen, Waltham, MA, USA). The
cell pellet was resuspended in DMEM (Sigma-Aldrich, St. Louis, MO, USA) containing
10% FBS and 1% penicillin/streptomycin (Sigma-Aldrich, St. Louis, MO, USA), added to
tissue culture flasks, and cultured at 37 ◦C in 5% CO2. At 80% of confluency, the cells were
released with TriPLE (Invitrogen, Waltham, MA, USA) and subcultured. The medium was
changed regularly every 3 days, and cells were used at passage 4 for all the experiments.

2.2. Preparation of hMSC-Loaded Bioinks

The hMSC-loaded AL/HA-bioink (hMSC-AL/HA-bioink) was developed by prepar-
ing a solution of AL (2% w/v; molecular weight of AL: 216.12 g/mol; Sigma) and HA
(1% w/v; molecular weight: 1000 kDa; Bioiberica S.A.U., Barcelona, Spain) Both materi-
als were sterilized by short cycle autoclaving prior to preparation. This techniques has
been previously shown to be effective in the sterilization of materials such as HA against
some types of bacteria without affecting rheology, physicochemical properties, and print-
ability [105], and it has also been used for the sterilization of the AL in other previous
works [40,76,106]. hMSCs were then suspended in 1 mL of AL/HA-bioink at the concen-
tration of 1 × 106 cells/mL, resulting in the hMSC-AL/HA-bioink, which was packed into
syringes (3 cc). Additionally, two other bioinks were also formulated as controls: (i) an
hMSC-AL-bioink without HA and (ii) an AL/HA-bioink without cells.

2.3. Biofabrication of Cartilage-like Biomimetic Hybrid Construct by 3D Bioprinting

The CBCs were bioprinted using REGEMAT V2 bioprinter (REG4Life, REGEMAT
3D, Granada, Spain) under aseptic conditions, as previously described [70] (Figure 1A).
Briefly, PLA (Smart Materials 3D; tensile strength: 55.5 Mpa, specific gravity: 1.24 g/cm3,
glass transition temperature: 60 ◦C, hardness: 85 shore D, diameter: 1.75 mm) was first
deposited by head (at 200 ◦C) in a layer-by-layer manner to generate the framework, which
was previously designed using software REGEMAT 3D designer v1.4.4 (porous cylinder-
type structure, 5 mm high × 10 mm wide structure; 375 µm pore size) (Figure 1B,C).
The selected pore size was based on previous studies of CTE (120–870 µm) [107]. After
depositing 4 layers of PLA, the hMSC-AL/HA-bioink was injected between PLA strands
obtaining the constructs, which were then physically crosslinked using a bath of 100 mM
calcium chloride (CaCl2; Panreac, Barcelona, Spain), loaded into another syringe, for
30 min [108] (Figure 1C,D). In addition, two types of control constructs were bioprinted
from hMSC-AL-bioink and AL/HA-bioink. It was biofabricated for as many constructs as
needed for the following analytical studies.
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Figure 1. Three-dimensional bioprinting of CBCs based on hMSC-AL/HA-bioink. (A) REGEMAT
Bioprinter system and bioinks. (B) Design of CBCs using REGEMAT software designer. (C) Scheme of
dispensing and crosslinking of bioink in the PLA framework: hMSC-AL/HA-bioink (pink), calcium
solution (blue), and crosslinked hMSC-AL/HA-bioink (purple). (D) Steps of biofabrication procedure
of CBCs based on hMSC-AL/HA-bioink by 3D bioprinting.

2.4. CBC Maturation in Cell Culture

CBCs based on hMSC-AL/HA-bioink and control constructs based on hMSC-AL-bioink
were cultured at 37 ◦C and 5% CO2 atmosphere with high-glucose DMEM (Sigma) supple-
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mented with 10% FBS (Lonza, Norwest, NSW, Australia) and 1% penicillin/streptomycin
(Sigma) for a maximum of 5 weeks.

2.5. Flow Cytometry Analysis

The immunophenotype of hMSCs was analyzed by flow cytometry using fluorescence-
activated cell sorter (FACS). Cells were washed and resuspended in PBS (Sigma) with 2%
bovine serum albumin (BSA, Sigma) and 2 mM ethylenediaminetetraacetic acid (EDTA;
Sigma). Cells were incubated in the dark for 30 min at 4 ◦C with the appropriate fluorochrome-
conjugated monoclonal antibodies. The markers used were CD73-APC, CD90-FITC, CD105-
PE, CD45-PerCP, CD19-APC, and HLA-DR-FITC (Miltenyi Biotec, Macquarie Park, NSW,
Australia). After incubation, cells were washed in PBS and analyzed in a FACS Canto II
cytometer (BD Biosciences, Franklin Lakes, NJ, USA).

2.6. Cell Differentiation STAINING Assay

For adipogenic, osteogenic, and chondrogenic differentiation, hMSCs were cultured for
two weeks in Adipogenic MSC Differentiation Bullet kit, Osteogenic MSC Differentiation
Bullet kit (Lonza), and NH ChondroDiff Medium (Miltenyi), respectively. Differentiated
cell cultures were stained with Oil Red O (Amresco, Solon, OH, USA) for adipogenic differ-
entiation, Alizarin Red (Lonza) for osteogenic differentiation, or Toluidine Blue (Sigma) for
chondrogenic differentiation and imaged using an optical microscope (Leica DM 5500B;
Leica Microsystems, L’Hospitalet de Llobregat, Spain).

2.7. Cell Viability Assay

The live/dead kit assay (Thermo Fisher Scientific, Waltham, MA, USA) was used to
evaluate cell viability of cells embedded in CBCs and control constructs based on hMSC-AL-
bioink, following manufacturer’s instructions. Stained constructs from day 1, 3, 5, 7, 14, and
21 days in culture were observed using a confocal microscope (Nikon Eclipse Ti-E; Nikon
Instruments Europe B.V., Amsterdam, The Netherlands) by two different filters. Green
fluorescence was visualized in live cells and red fluorescence in dead cells. Confocal images
were analyzed with Image J software (v. 1.52i, National Institutes of Health, Bethesda, MD,
USA). The percentage of viable cells were obtained by counting six regions of each sample
(n = 3).

2.8. Cell Proliferation

The proliferation rate of cells (n = 3) into CBCs and control constructs based on hMSC-
AL-bioink were assessed by colorimetric Alamar Blue (aB) assay (Thermo Fisher Scientific)
at initial and final culture time (day 0 and day 21, respectively), following manufacturer’s
instructions. Fluorescence intensity was measured with an excitation wave length of 530 nm
and emission of 590 nm using a spectrophotometer (Synergy HT, BIOTEK, San Diego, CA,
USA). The absorbance data were represented as fold increase to initial culture time.

2.9. Biochemical Assay

CBCs and control constructs based on hMSC-AL-bioink were digested in 1 mL of
papain solution (125 mg/mL papain in 0.1 M sodium phosphate with 5 mM Na2 EDTA and
5 mM cysteine HCl at pH 6.5) for 16 h at 60 ◦C, followed by centrifugation at 10,000 rpm for
5 min. The supernatant was used for chemical assay. The amount of GAGs was measured
by the dimethylmethylene blue (DMMB) colorimetric assay. The supernatant was mixed
with DMMB solution to bind GAGs. The GAG content was calculated based on a standard
curve of chondroitin sulfate from shark cartilage (Sigma) at 530 nm using a microplate
spectrophotometer and normalized with cell-free hybrid constructs. The DNA content was
determined by a Hoechst assay and calculated using thymus DNA for a standard curve
(Sigma). The supernatant was reacted with the Hoechst dye for 30 min in the dark. The
intensity of fluorescence was screened with a 96-well plate reader (excitation at 360 nm and
emission at 460 nm).
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For type II collagen quantification, samples were digested by pepsin (1 mg/mL) in
0.5 N acetic acid for 48 h at 4 ◦C, followed by adding 1 mg/mL pancreatic elastase solution
at 4 ◦C for 24 h. Finally, the samples were neutralized with 1 M Tris base. Insoluble
material was removed by centrifugation at 10,000 rpm at room temperature for 5 min,
and the supernatant was collected for assay. Quantitative analysis was performed using
a commercially available type II collagen ELISA kit (Chondrex, Woodinville, WA, USA),
according to manufacturer’s instruction and measured on microplate spectrophotometer at
490 nm.

2.10. RT-PCR Analysis

Total messenger RNA (mRNA) of cells in CBCs and control constructs based on hMSC-
AL-bioink (a construct without HA) was isolated using TriReagent (Sigma) and reverse
transcribed into cDNA using the Reverse Transcription System kit (Promega, Madison, WI,
USA). The quantitative real-time polymerase chain reaction (qRT-PCR) was conducted us-
ing a SYBR green master mix (Promega) according to the manufacturer’s recommendations.
Gene expression levels for aggrecan (ACAN), type II collagen (COL2A1), Sox transcription
factor 9 (SOX9), type X collagen (COL10A1), and the RUNX2 gene (RUNX2) of the CBCs
were normalized to the housekeeping gene glyceraldehyde 3-phosphate dehydrogenase
(GAPDPH) and showed a fold change relative to the value of the control constructs. The
primer sequences are reported in a previous work [109]. All the samples were analyzed in
triplicate for each gene.

2.11. Physicochemical Characterization
2.11.1. Porosity Analysis

The porosity of CBCs based on hMSC-AL/HA-bioink and cell-free CBCs based on
AL/HA-bioink was determined by the solvent replacement method. Briefly, the dry
samples were submerged in 20 mL absolute ethanol and then weighed after removing the
excess of ethanol with tissue paper. The porosity of samples was obtained by the following
equation [110,111]:

Porosity =
W2 − W1
ρ× V

× 100 (1)

where W2 is the weight of ethanol-absorbed samples, W1 is the weight of dry samples, ρ is
the ethanol density, and V is the volume of samples.

2.11.2. Swelling Test

The water uptake capacity of the CBCs based on hMSC-AL/HA-bioink and cell-free
CBCs based on AL/HA-bioink was determined by swelling dried sample (with known
weights) in 15 mL PBS (pH 7.4) at 37 ◦C. At predetermined intervals, samples were taken out,
surface adsorbed water was removed by filter paper, and the wet weight was recorded. Each
measure was carried out in triplicate. The swelling ratio was calculated as follows [112]:

Swelling ratio (%) =
Ws − Wd

Wd
× 100 (2)

where Ws is the weight of the samples at the swelling state, and Wd is the initial mass of
dried samples.

2.11.3. In Vitro Degradation Analysis

Before beginning in vitro degradation, CBCs based on hMSC-AL/HA-bioink and cell-
free CBCs based on AL/HA-bioink were pre-wetted by immersion in PBS (pH = 7.4 ± 0.05)
at 37 ◦C. Once equilibrium was reached, samples were weighed and recorded as W0.
Samples were then incubated in 15 mL PBS at 37 ◦C. At specific time intervals, samples
were removed and dried in a vacuum oven at 50 ◦C for 60 min, and their dry weight
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was recorded. The samples were then returned to containers containing PBS [113]. The
degradation (%) was calculated in triplicate according to the following equation [114]:

Degradation ratio (%) =
W0 − Wt

W0
× 100 (3)

where W0 is the initial mass of sample, and Wt is the mass of degraded sample measured
at time t after drying at 50 ◦C in vacuum oven for 60 min.

2.11.4. Surface Electrical Properties

Sample preparation for zeta potential (ζ) and conductivity analysis of CBCs based
on hMSC-AL/HA-bioink and cell-free CBCs based on AL/HA-bioink was performed as
previously reported [43]. Briefly, samples were dried (10 mg dried mass) at 50 ◦C for 24 h.
Then, they were suspended in double-distilled water and sonicated for 1 h at 50% frequency
for further analysis. ζ was determined by electrophoresis measurements using a Zetasizer
Nano ZS (Malvern Instruments Ltd., Malvern, UK). Furthermore, the surface electrical
properties of samples as a function of pH variation (from 4 to 8, at constant 10−3 M KNO3
concentration) and ionic strength (from 10−1 to 10−5 M KNO3, at pH = 6) were studied.
Values are reported as the mean ± SD (n = 9).

On the other hand, electrical conductivity of CBCs based on hMSC-AL/HA-bioink
and cell-free CBCs based on AL/HA-bioink was measured with a conductometer Crison
EC-Meter BASIC 30+ (Crison Instruments, Alella, Barcelona, Spain). An electrode was
dipped into a glass vial of sample. Data were expressed as mean ± SD (n = 3).

2.12. Scanning Electronic Microscopy (SEM)

To analyze internal microstructure of CBCs based on hMSC-AL/HA-bioink and cell-
free CBCs based on AL/HA-bioink, the samples were fixed in cold 2.5% glutaraldehyde
and rinsed in PBS, followed by a dehydration process through a graded series of ethanol
(30–100%), and finally critically point-dried in an Emscope CPD 750 critical point dryer.
Hybrid constructs were attached to aluminum SEM specimen mounting stubs (Electron Mi-
croscopy Sciences, Hatfield, PA, USA) and sputter-coated with a gold palladium alloy using
a Sputter Coater 108 Auto. Finally, samples were examined using a scanning electron micro-
scope eSEM (FEI Quanta 400, OR, USA)and a field emission scanning electron microscope
JSM-7001F (JEOL Ltd., Tokyo, Japan). Images were taken at several magnifications.

2.13. Mechanical Testing of the Scaffolds

The compression modulus was measured using a universal testing machine (AGS-X
Shimadzu, Kyoto, Japan) at a constant approaching speed from 0 to 0.1 mm. Measure-
ments were conducted under controlled temperature and humidity conditions to minimize
potential variations in material properties (n = 5).

2.14. Statistical Analysis

All data were represented as mean ± SD. The two-tailed Student’s t-test was used to
determine differences between conditions. p-values < 0.01 (**) and <0.05 (*) were considered
statistically significant in all cases.

3. Results
3.1. CBC Biofabrication

The biofabrication of CBCs was based on a co-deposition of bioink formulated from
HA and AL loaded with hMSCs mimicking the microenvironment and composition of the
ECM of native AC with a PLA framework used as the mechanical support of the structure.
CBCs based on hMSC-AL/HA-bioink, control constructs based on hMSC-AL-bioink, and
cell-free CBCs based on AL/HA-bioink were successfully bioprinted by the combination of
two procedures, Fused Deposition Model (FDM) and Injection Volume Filling (IVF), which
are incorporated in the REGEMAT 3D V2 system. Each bioink was injected between PLA
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frames in a layer-by-layer manner, resulting in a 5 mm high × 10 mm wide structure. Then,
constructs were immediately crosslinked with a calcium chloride bath (Figure 1C).

3.2. Flow Cytometry Analysis

Following the recommendation of the International Society for Cellular Therapy
(ISCT), the hMSCs were characterized according to the minimal criteria for defining multi-
potent mesenchymal stromal cells. Flow cytometry analysis of the hMSCs revealed a high
expression of CD90 (99.47%), CD73 (99.5%), and CD105 (99.89%) markers while showing
a negative or low expression of CD45 (0.51%), CD19 (2.17%), and HLA (0.01%) markers
(Figure 2).

 
Figure 2. Phenotypic characterization of hMSCs. FACS characterization of hMSCs showed a positive
expression of the surface markers CD90, CD73, and CD105 and negative or low expression of CD45,
CD19, and HLA.

3.3. Cell Differentiation Staining Assay

The plasticity potential of the isolated cells was assessed to evaluate their ability to
differentiate into chondrocytes, adipocytes, and osteoblasts. hMSCs were cultured under
standard in vitro differentiating conditions for two weeks. Adipogenic differentiation was
confirmed by the presence of lipid deposits stained with Oil Red. Osteogenic differentia-
tion was determined by calcific deposition using Alizarin Red S staining. Chondrogenic
differentiation was assessed by the presence of proteoglycans stained with Toluidine Blue.
Thus, cells isolated from the IFP demonstrated the ability to differentiate into various
mesenchymal tissue types, including adipocytes, chondrocytes, and osteoblasts (Figure 3).
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Figure 3. Cell differentiation staining assay. The differentiation potential of hMSCs obtained from
IFP towards osteogenic, adipogenic, and chondrogenic lineage was confirmed by Alizarin red S,
Oil Red O, and Toluidine Blue staining, respectively. Scale bar: 200 µm. Images were taken at 10×
magnification.

3.4. Cell Viability

The viability of hMSCs in the CBC based on hMSC-AL/HA-bioink and in the control
constructs based on hMSC-AL-bioink were analyzed at day 1, 3, 5, 7, 14, and 21 using
life/dead staining assay. Confocal images showed a uniform distribution of cells within
the CBC and in the control construct for the entire study period. hMSCs were embedded
throughout the AL and AL/HA bioinks between the PLA strands (Figure 4A), being the
majority viable cells (green-stained cells). After the bioprinting process (day 1), around
90% of living cells in the CBC and more than 80% of living cells in the control construct
were observed. Long-term analysis also indicated that cell viability remained high (>85%)
throughout the 14 days in the culture, slightly increasing from days 1 to 3 (Figure 4B). There
is a significant difference in the control group between days 3, 7, and 21 compared to day 1.
Additionally, significant differences were observed between the control construct group
and the CBC groups, but only at day 21.

3.5. Cell Proliferation

Cell proliferation in CBCs based on hMSC-AL/HA-bioink and control constructs based
on hMSC-AL-bioink was analyzed at initial and final time points of culture. Figure 4C
shows that the proliferation rate of cells in CBCs is equal or comparable to the control
constructs at both 0 and 21 days. After 21 days, cells exhibited an increase in growth in
comparison to day 0. Although there were no significant differences between the control
constructs and CBCs, significant differences were observed within each group over time,
i.e., the metabolic activity of the cells increases over time for both conditions.
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Figure 4. Cell viability and proliferation of hMSCs in control constructs based on hMSC-AL-bioink
and CBCs based on hMSC-AL/HA-bioink. (A) Representative image of hMSCs in control constructs
and CBCs after 1, 3, 5, 7, 14, and 21 days in culture, showing live (green) and dead (red) cells. (B) Per-
centage of hMSC viability in control constructs and CBCs with respect to time in culture. (C) Cell
proliferation inside the CBCs based on hMSC-AL/HA-bioink (black) and control constructs based
on hMSC-loaded AL-bioink (white). Error bars represent standard deviations (n = 3). (*) p < 0.05;
(***) p < 0.005; (#) p < 0.05. Scale bar: 100 µm.
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3.6. Chondrogenesis of hMSCs in CBCs

The capacity of hMSC-AL/AH-bioink to enhance chondrogenic differentiation and,
therefore, cartilage formation in hybrid constructs was evaluated. Figure 5A shows the
gene expression of hMSCs in CBC based on hMSC-AL/HA-bioink, after 5 weeks in culture,
compared to hMSCs in control constructs based on hMSC-AL-bioink (without HA). For
that, COL2A1, ACAN, SOX9, COL10A1, and RUNX2 genes were analyzed. Results from
qPCR analysis revealed an increase in mRNA levels of hyaline cartilage-specific genes
such as COL2A1, ACAN, and SOX9 from hMSCs bioprinted in CBCs based on hMSC-
AL/HA-bioink in comparison to those bioprinted in the control group based on hMSC-AL-
bioink, while the expression of the hypertrophic marker gene COL10A1 was decreased in
CBCs. The results for RUNX2 expression (an essential transcription factor for osteoblast
differentiation) showed a slight decrease in CBCs. No significant differences were observed
in the expression of any of the genes (p > 0.05).
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Figure 5. Chondrogenesis of hMSCs in CBCs based on hMSC-AL/HA-bioink and in control constructs
based on hMSC-AL-bioink after 5 weeks in culture. (A) Gene expression levels of hyaline-specific
chondrogenic marker genes (COL2A1, ACAN, and SOX9) and other genes such as COL10A1 and
RUNX2 from cells in CBCs based on hMSC-AL/HA-bioink compared to cells of control constructs.
(B) Quantitative analysis of GAGs. (C) Quantitative analysis type II collagen in the total extract per
construct. Values represent mean ± SD (n = 3).

hMSC chondrogenic differentiation was also analyzed at the protein level by measur-
ing the production of the main components of chondrogenic matrix (GAGs and collagen
II) after 5 weeks in culture. Results from biochemical assays indicated that GAG con-
tent in CBC based on hMSC-AL/HA-bioink (2.31 µg/construct) was slightly higher than
those in the control construct based on hMSC-AL-bioink (2.15 µg/construct). Similarly,
the amount of type II collagen was also higher in CBC based on hMSC-AL/HA-bioink
(17.4 ng/construct) compared to the control construct (14.0 ng/construct), but, in both
cases, such difference was not significant (p > 0.05) (Figure 5B,C).

3.7. Physicochemical Characterization of CBCs

The physicochemical characterizations of CBCs based on hMSC-AL/HA-bioink and
cell-free CBCs based on AL/HA-bioink were conducted to evaluate whether the addition
of cells modified the characteristics of the CBCs.

3.7.1. Porosity

Porosity is an important characteristic of constructs for TE, as it influences degra-
dation, swelling capacity, and mechanical properties. The porosity of CBCs based on
hMSC-AL/HA-bioink was higher than cell-free CBCs based on AL/HA-bioink, measuring
18 ± 2.4% and 2 ± 0.9%, respectively.
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3.7.2. Swelling Test

The water absorption ability was evaluated by immersing the samples in PBS at 37 ◦C
for 120 days. Figure 6 shows the swelling behavior of CBCs based on hMSC-AL/HA-bioink
and cell-free CBCs based on AL/HA-bioink. Low rates of swelling in both CBCs based on
hMSC-AL/HA-bioink and cell-free constructs can be seen. The maximum swelling rate of
CBCs based on hMSC-AL/HA-bioink was reached after 3 h, with a swelling percentage
of 3.0 ± 0.4%, whereas the cell-free constructs reached their maximum swelling after 24 h,
with a swelling percentage of 5.4 ± 0.5%. Afterward, the samples started to lose weight,
and their swelling ratio seemed to stabilize with time.
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3.7.3. In Vitro Degradation Analysis

The degradation of CBCs based on hMSC-AL/HA-bioink and cell-free CBCs based
on AL/HA-bioink was expressed as the percentage of weight loss (Figure 7). This was
evaluated by measuring the weight change of the samples after immersion in PBS at 37 ◦C
for 120 days. The results indicate low percentages of degradation for both CBCs based
on hMSC-AL/HA-bioink and cell-free CBCs based on AL/HA-bioink after 120 days of
incubation. The degradation profile was higher for CBCs based on hMSC-AL/HA-bioink,
with a weight loss of 8.8 ± 0.6%, compared to 5.4 ± 1.6% for the cell-free CBCs.
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3.7.4. Surface Electrical Properties and Conductivity Analysis

The electrophoretic characterization of CBCs based on hMSC-AL/HA-bioink and cell-
free CBCs based on AL/HA-bioink is depicted in Figure 8. It can be observed a negative
ζ ionic strength range both in CBCs based on hMSC-AL/HA-bioink and cell-free CBCs
based on AL/HA-bioink (Figure 8A). The ζ showed a dependence on the ionic strength,
with a slight decrease in negative ζ as KNO3 concentration increased in both cases. Results
of ζ ranged from −8.2 ± 1.4 mV to −25.1 ± 2.9 mV and −8.3 ± 0.8 mV to −26.4 ± 2.1 mV
for CBCs based on hMSC-AL/HA-bioink and cell-free CBCs based on AL/HA-bioink,
respectively. On the other hand, Figure 8B shows the ζ values at different pHs ranging from
4 to 8 in the presence of 10−3 M KNO3 concentration at 25 ◦C. A negative ζ was maintained
across the pH range for both CBCs based on hMSC-AL/HA-bioink and cell-free CBCs
based on AL/HA-bioink. The ζ (in an absolute value) followed an increase as pH increased
from −11.2 ± 1.6 mV to −20.2 ± 1.5 mV for CBCs based on hMSC-AL/HA-bioink and
from −9.1 ± 0.6 mV to −20.4 ± 1.4 mV for cell-free CBCs based on AL/HA-bioink.
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Figure 8. Zeta potential (ζ, mV) of CBCs based on hMSC-AL/HA-bioink and cell-free CBCs based on
AL/HA-bioink. (A) ζ as a function of ionic strength at pH = 6 at 25 ◦C. (B) ζ as a function of pH in
the presence of 10−3 M KNO3 concentration at 25 ◦C. Values represent mean ± SD (n = 9).

Finally, the conductivity values for CBCs based on hMSC-AL/HA-bioink and cell-free
CBCs based on AL/HA-bioink were 160.0 ± 2.0 µS/cm and 75.7 ± 5.0 µS/cm, respec-
tively. These results indicated that the incorporation of hMSCs can greatly improve the
conductivity of CBCs.

3.8. SEM Microscopy Analysis

The microstructure of CBCs based on hMSC-AL/HA-bioink and cell-free CBCs was
analyzed by SEM. Images were taken on day 0, 7, and 21 with the optical microscope.
Figure 9 shows the internal distribution of the main components in bioprinted constructs.
SEM images of CBC based on hMSC-AL/HA-bioink revealed the presence of hMSCs, while
no cells are visible in cell-free CBCs. The hydrogel within the constructs is clearly observable
in the 150× magnification images. Over time, the micrographs showed improved cell
adhesion and cell growth in the constructs (Figure 9N,P,R).

3.9. Mechanical Test

The mechanical properties of scaffolds are crucial in the development of an effective
artificial substitute. The ability of a construct to withstand deformation under an applied
load is known as elastic or Young’s modulus (E). The result obtained in this test shows
that the CBCs have a Young’s modulus of 4.069 ± 0.567 MPa. This result indicates that
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the CBCs possess adequate stiffness to potentially function effectively as a scaffold in
tissue-engineering applications.
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AL/HA-bioink in cell culture conditions after 1 day. (B,H,N) CBCs based on hMSC-AL/HA-bioink
in cell culture conditions after 1 day. (C,I,O) Cell-free CBCs based on AL/HA-bioink in cell culture
conditions after 7 days. (D,J,P) CBCs based on hMSC-AL/HA-bioink in cell culture conditions after
7 days. (E,K,Q) Cell-free CBCs based on AL/HA-bioink in cell culture conditions after 21 days.
(F,L,R) CBCs based on hMSC-AL/HA-bioink in cell culture conditions after 21 days. Images were
taken at 150× (A–F; scale bar: 500 µm), 1500× (G–L; scale bar: 50 µm), and 5000× (M–R; scale bar:
20 µm).

4. Discussion

Three-dimensional bioprinting technology offers a therapeutic alternative in the treat-
ment of cartilage injuries [115]. The bioprinting of biomimetic hybrid constructs through
the controlled and simultaneous deposition of hydrogels, as cell carriers, and thermoplas-
tic polymers, as scaffolding biomaterials, has been demonstrated to be the most suitable
strategy for cartilage regeneration. The selection of suitable biomaterials for bioprinting
a construct is essential, especially for the formulation of cell-laden bioinks. Bioinks are
mainly formulated from hydrogels, which not only must provide a good biomimetic en-
vironment for cells to grow and differentiate correctly but also must protect them from
damaging conditions generated during the 3D bioprinting process, such as heat and shear
stress [34,116,117], ensuring cell viability within the construct at the time of its implantation.
Supportive biomaterials must also have good biodegradability and appropriate porosity
to ensure cellular penetration and the adequate diffusion of nutrients to cells. In addition,
a construct should provide mechanical properties consistent with the damage tissue to
treat [118,119]. Tissue bioprinting presents several challenges for its translation into clinical
practice, primarily in sourcing patient-derived cells to minimize immune rejection. This
process involves complexities in cell collection and expansion and in ensuring adequate
cell counts for successful bioprinting and tissue maturation. Additionally, ensuring com-
patibility for long-term storage and addressing sourcing and batch variability of bioinks
are critical issues. Advancements in bioprinting techniques and the standardization of
processes are essential for scalable production. Ethical, legal, and social considerations
surrounding bioprinted tissues also need thorough deliberation [120,121].

In this study, a CBC was developed from hMSC-AL/HA-bioink. This bioink com-
bined HA with AL, which is considered one of the most appropriate biomaterials for
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bioprinting [31,122,123]. The formulation of the hMSC-AL/HA-bioink, composed of 1%
HA and 2% AL, was selected based on our previous study in which it was demonstrated to
better promote chondrogenic phenotype and hyaline-cartilage-specific matrix formation in
comparison to other combinations [70].

For that, we successfully developed a novel CBC by 3D bioprinting to facilitate and
promote cartilage regeneration. The CBCs were biofabricated by co-printing the hMSC-
AL/HA-bioink with a supporting thermoplastic biomaterial, such as PLA, to mimic both
the environment and mechanical properties of native AC. In our previous study, we
demonstrated that the mixture of HA with AL has excellent biological and rheological
properties to be used as cell-carrier biomaterial for CTE bioprinting, including a cartilage-
like environment, printability, and gelling abilities [70]. In term of cells, hMSCs from
adipose tissue represent an ideal cell source to treat cartilage defects, not only due to their
potential to differentiate into cartilage lineage but also due to their easy accessibility and
abundance in the body, overcoming the limitations associated with chondrocytes [124].

The ISCT proposed minimal criteria to define hMSCs. First, hMSCs must be plastic-
adherent when maintained in standard culture conditions. Second, hMSC must express
CD105, CD73, and CD90 and lack the expression of CD45, CD34, CD14, CD11b, CD79α, or
CD19 and HLA-DR surface molecules. Third, hMSCs must differentiate into osteoblasts,
adipocytes, and chondroblasts in vitro [125,126]. The fluorescence-activated cell sorting
analysis of hMSCs showed a positive expression of the surface markers CD90, CD73,
and CD105 and a negative expression of CD45, CD19, and HLA-DR. We also tested the
plasticity potential of the isolated cells by examining their ability to differentiate into
chondrocytes, adipocytes, and osteoblasts using Alizarin Red S, Oil Red O, and Toluidine
Blue staining. Cells isolated from the IFP of patients with osteoarthritis were able to
differentiate into adipocytes, chondrocytes, and osteoblasts. These results confirmed the
minimal phenotypic pattern for the identification of hMSC cells and the differentiation
potential of hMSCs. Representative images for the live/dead assay of CBCs based on
hMSC-AL/HA-bioink clearly indicated that cells were viable, emphasizing the potential
of hMSC-loaded bioink as a cell encapsulating hydrogel for the biofabrication of cartilage
constructs. In accordance with our previous work, this fact could be explained through the
shear thinning behavior described previously, which reduces shear stress causative of cell
disruption [70]. The results confirmed that hMSC-AL/HA-bioink offered a cell-friendly
environment, maintaining a high percentage of viability in CBC based on hMSC-AL/HA-
bioink over 21 days in culture, as has been well documented in many studies [127]. In
addition to rheological properties of hMSC-loaded AL/HA-bioink, this high cell viability
would be attributed in part to the microstructure of the bioprinted construct. By the
analysis of cell proliferation, a significant increase in cell growth over this period (21 days)
in CBC based on hMSC-AL/HA-bioink in comparison to control constructs based on
hMSC-loaded AL-bioink was also evidenced. These results are in accordance with other
studies that reported the beneficial effect of HA on cell proliferation [59,128,129]. In terms
of functionality, it was observed that the environment provided by hMSC-loaded AL/AH-
bioink in CBC is influenced by the commitment of hMSCs to undergo chondrogenesis.
Previous studies have demonstrated that AL can induce chondrogenic differentiation and
promote the retention of the spheroidal shape of cells, which is the differentiated phenotype
of chondrocytes [76,90,130]. Meanwhile, HA has been shown to independently induce
chondrogenesis on hMSCs [131] and to drive chondrocyte regeneration when it was used
as injected scaffold [14,132,133]. In this study, the addition of HA to AL has demonstrated
a positive effect, improving the ability of hMSCs to differentiate and produce the main
components of chondrogenic ECM (GAGs and collagen II). The analysis of gene expression
showed an increase in the expression of mature chondrocyte genes (COL2A1, ACAN, and
SOX9) in the presence of HA. In accordance with our results, a stimulatory effect on the
synthesis of collagen II and GAGs has been observed through various mechanisms. This
effect is expected to result from cell receptor binding with HA (i.e., CD44, hyaluronan-
mediated motility receptor). Chondrocytes and hMSCs have membrane receptors capable of
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binding to HA and, thus, being influenced by its presence [56]. Moreover, there was a trend
towards a reduction in hypertrophic marker (COL10A1) and osteogenic marker (RUNX2).
Type X collagen is located in hypertrophic cartilage and the calcified zone of articular
cartilage. Hypertrophic chondrocytes directly promote changes of their surrounding matrix,
which increases mineralization and reduces the elastic properties of the cartilage [134].
The low expression of COL10A1 observed suggests that the hMSCs are not differentiating
towards a hypertrophic chondrocyte lineage, thereby reducing the risk that the regenerated
cartilage will progress towards an undesirable phenotype that could compromise tissue
functionality. Additionally, RUNX2 is a transcription factor of osteoblast differentiation; it
plays a determinant role in the early osteogenic differentiation and has become a marker of
early osteogenic differentiation [135]. The low expression of RUNX2 suggests that the cells
are not progressing toward osteoblastic differentiation.

The knowledge of CBCs based on hMSC-AL/HA-bioink in comparison with the cell-
free CBCs based on AL/HA-bioink is essential to predict if the presence of living cells inside
the constructs can modify or alter their physicochemical characteristics [136]. The porosity,
pore size, and pore-to-pore interconnectivity can facilitate the cellular migration and infil-
tration as well as the right flow nutrients and oxygen within the construct and metabolic
waste disposal, creating a favorable environment for tissue regeneration [137–140]. In
fact, our results showed that the addition of hMSCs led to an increase in porosity value,
probably due to the spatial incorporation of the cells within the CBCs. These data were
verified in SEM images, which revealed that the CBC based on hMSC-AL/HA-bioink, as
well as the PLA framework that it contains, had enough large interconnected pores to
allow the diffusion of nutrients, oxygen, and metabolism products within the cartilage
matrix, which is essential for cell living and their growth. The porosity values of the PLA
framework are in the range of values reported in previous studies about 3D scaffolds for
CTE [107]. The SEM images showed the internal distribution of the main components
in the bioprinted constructs and revealed the presence of hMSCs in the CBCs based on
hMSC-AL/HA-bioink. After 21 days, CBCs based on hMSC-AL/HA-bioink improved cell
adhesion and cell growth.

The ability to absorb liquid, or swelling, is an important property of constructs, as it
is associated with the flow nutrients and oxygen through the material structure [141–143].
The low swelling data obtained may be due to a characteristic of PLA, which is a relatively
hydrophobic thermoplastic polyester [144]. Cheng et al. also reported a low swelling
ratio of the PLA scaffolds [145]. Despite this, the low swelling data did not compromise
the cellular viability and probably contributed to prolonging the degradation process.
Our results are similar to those obtained by Correira et al. They prepared freeze-dried
composite scaffolds of chitosan and HA and showed low swelling values throughout the
entire experiment. In addition, they demonstrated that the ratio between chitosan and
HA significantly affected the scaffolds’ swelling properties. Despite these results, they
suggested that the developed scaffolds could have potential use in the regeneration of
cartilaginous lesions [141].

The degradation rate of a construct is a critical element for the repair process. The ideal
construct should be biodegradable and allows for remodeling as the new cartilage forms,
substituting the damaged cartilage. The construct should exhibit progressive degradation
that coincides with ECM deposition and accumulation and align with the restoration of
new tissue or function [138,141]. In our study, the degradation showed low rates in the
developed CBCs. This slow degradation rate may be a consequence of the poor biodegrad-
ability of PLA, as demonstrated by Nazeer et al. and Cheng et al. in their research [145,146].
PLA degrades through the hydrolysis of backbone ester groups, which is enhanced by en-
zymes and depends on the ability of water to diffusion into the polymer [144,147]. During
hydrolysis, PLA is broken down into water-soluble monomers and oligomers, which are
eventually decomposed into water and carbon dioxide and removed. This process is mainly
influenced by the characteristics of PLA (such as crystallinity, molecular weight, monomer
concentration, conformation, and porosity [80,148], as well as the hydrolysis environment,
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including pH, temperature, and other factors. To accelerate the degradation of PLA, meth-
ods such as blending, compounding, copolymerization, and surface modification have been
studied [80]. Apart from that, the degradation rate of AL-based biomaterials is also affected
by the molecular weight of AL. Essentially, a higher molecular weight reduces the number
of reactive sites accessible for hydrolytic degradation, leading to a slower degradation
rate [149]. On the other hand, the presence of hMSCs rendered CBCs more susceptible to
degradation, likely due to increased hydrolysis induced by acidic conditions as a result
of the metabolic activity of cells, as well as to a higher porosity and better accessibility of
cleavage sites [141,150]. It can be observed that the degradation is affected by porosity,
showing a direct relation between the porosity of constructs and degradation percentage. It
is widely known that the porosity of scaffolds could influence the degradation rate [151,152].
Zhang et al. demonstrated that increasing the porosity of scaffolds leads to their higher and
faster development compared to less porous scaffolds [153]. The results obtained in our
work are in accordance with other studies related to cartilage regeneration that reported
a low percentage of degradation similar to our data (~between 1 and 7%). Correia et al.
reported a slow degradation rate and confirmed that the degradation increased with higher
HA concentration [141]. Thus, CBCs based on hMSC-AL/HA-bioink could be used for
CTE because in vivo tissue regeneration is a slow process [143].

The electrical properties could help to understand the cellular processes that occur
on the surface of the constructs. It has been reported that the ζ can affect both static cell
behavior and dynamic cell behavior [151,154]. The negative ζ observed could be attributed
to the dominance of hydroxyl and carboxyl groups on the surface of HA and AL [155,156],
as well as the presence of terminal carboxylic groups on the surface of PLA [157]. The ζ

values obtained for the developed CBCs are in agreement with previous studies, where
values gradually decreased with increasing pH, ranging from −2 mV to −35 mV, and
recorded −18 mV at pH 7.4 [158]. AC has an intracellular pH of around 7.15 and a slightly
acidic extracellular medium, around 6.6 [159]. Under physiological conditions, a value of ζ
around 20 is observed. These ζ values mimic the negative charges of the GAG chains on the
ECM. Negative charges attract water molecules into the ECM. This fact leads to an increase
in the tension of the collagen network and contributes to the tension that the tissue can resist.
Further, it will be useful to interact with positively charged proteins [160,161]. Conductivity
can influence cell growth and differentiation; therefore, the use of biocompatible conductive
polymers could create a favorable culture environment to promote cellular activities [162].
The high values of conductivity obtained in the CBCs based on hMSC-AL/HA-bioink
may contribute to induce the specific differentiation of hMSCs, as well as to enhance the
cell-to-cell communication and cell adhesion [163].

The elastic modulus of a scaffold could be related to the optimization of the bioprinting
process and the homogeneity of the material, as mentioned earlier by Martínez-Moreno
et al. [164]. The result obtained from the mechanical test of CBCs shows a relevant Young’s
modulus value compared to other biomaterials used in CTE. For example, in the study
conducted by Petitjean et al. on healthy and unstressed AC, the elastic modulus of the
native tissue varied between 0.25 and 3 MPa [165]. Although CBCs have a slightly higher
Young’s modulus (4.069 ± 0.567 MPa), this value suggests that the constructs are suitable
for load-bearing in complex clinical applications, offering structural stiffness, functionality,
and scaffold integration comparable to that of native tissue.

In summary, results from biological analyses demonstrated the beneficial effect of
HA, as CBCs based on hMSC-AL/HA-bioink supported high viability, stimulated cell
proliferation, and facilitated the chondrogenesis of hMSCs better than the control construct
bioprinted from hMSC-AL-bioink, which is considered as the gold standard bioink for
CTE [166–168]. From a physicochemical point of view, our CBCs have microarchitecture
(morphology and porosity) with sufficient space for cell proliferation and surface character-
istics (ζ and conductivity) that are suitable for controlling cell-to-cell and cell-to-material
interactions. On the other hand, our results indicate that the developed CBCs exhibit slow
degradation, which can be attributed to PLA. This slow degradation is desirable in cartilage
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tissue regeneration applications. However, modeling the degradation processes in vivo
may be needed to understand how they affect tissue regeneration. Furthermore, the low
swelling observed in this material during our assay may affect the exchange of nutrients
and oxygen through the material structure. Although our results did not compromise
cellular viability, the degradation rate and swelling ratio could be improved by modifying
the structural conformation, molecular weight, orientation, and crystallinity of PLA [169].
The degradation rate could also be increased by decreasing the molecular weight of the AL.
Finally, in the future, we expect to investigate cartilage regeneration in vivo using these
hybrid constructs in animal models to evaluate their potential for clinical application.

5. Conclusions

In conclusion, our results demonstrated that the use of bioprinted CBCs based on
hMSC-AL/HA-bioink and thermoplastic PLA for AC repair could enhance the regeneration
and/or formation of hyaline cartilaginous tissue. This is because CBC based on hMSC-
AL/HA-bioink has been shown to provide a suitable environment for cell growth, despite
it exhibiting similar benefits in terms of functionality to the control construct based on
hMSC-AL-bioink, whose chondro-inductive properties, independently of other stimulating
factors, have been already evidenced. In addition, the physicochemical properties of the
CBCs based on hMSC-AL/HA-bioink have only been slightly altered compared to cell-free
CBCs based on AL/HA-bioink, confirming that the artificial cartilage developed in this
work could be suitable for use in CTE. To verify these assumptions, future long-term studies
in vitro and in vivo should be carried out.
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