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Abstract
This work explores the performance of large speech self-
supervised models as robust audio deepfake detectors. Despite
the current trend of fine-tuning the upstream network, in this
paper, we revisit the use of pre-trained models as feature ex-
tractors to adapt specialized downstream audio deepfake clas-
sifiers. The goal is to keep the general knowledge of the audio
foundation model to extract discriminative features to feed up a
simplified deepfake classifier. In addition, the generalization ca-
pabilities of the system are improved by augmenting the training
corpora using additional synthetic data from different vocoder
algorithms. This strategy is also complemented by various data
augmentations covering challenging acoustic conditions. Our
proposal is evaluated under different benchmark datasets for au-
dio deepfake and anti-spoofing tasks, showing state-of-the-art
performance. Furthermore, we analyze the relevant parts of the
downstream classifier to achieve a robust system.
Index Terms: audio deepfake detection, anti-spoofing, self-
supervised models, data augmentation, vocoders

1. Introduction
The research on audio deepfake detection algorithms has be-
come critical in recent years due to the astounding speech qual-
ity achieved by novel speech synthesis and voice conversion al-
gorithms [1]. These detection systems can help protect against
malicious use of deepfakes for misinformation and identity
theft, and even as countermeasures for automatic speaker ver-
ification systems [2, 3]. Thus, several initiatives such as the
ASVspoof series [4, 5] or the recent ADD challenges [6, 7] have
been promoted to develop more robust models able to cope with
different attacks and acoustic conditions, but obtaining a gener-
alizable model to unknown deepfakes is still a challenging task.

In recent years, the proliferation of large self-supervised
learning (SSL) speech foundation models [8] has impacted the
speech community, including the anti-spoofing and audio deep-
fake research areas. Preliminary works showed that SSL mod-
els such as wav2vec2 [9] were able to outperform supervised
deep learning classifiers when used as feature extractors [10]
or fine-tuned for the downstream task [11, 12]. As a result,
research interest moved towards the development of deepfake
detectors built upon these SSL architectures, focusing on the
following aspects: improving the downstream network [13, 14],
using different upstreams such as WavLM [15] or Whisper [16],
exploring multi-corpus with domain-invariant training [17], or
parameter-efficient fine-tuning of the SSL network [18]. In par-
allel, other works have focused on techniques to extend the
training data used for these models. For example, [19] pro-
posed an active learning approach to select representative audio
samples from a data pool. Wang et al. [20] explores spoof-

ing data augmentation by generating new deepfake samples di-
rectly using vocoder systems, while [21] analyzed the system
performance under known attack variations for synthetic data
training. Recently, [22] showed state-of-the-art (SOTA) perfor-
mance when using large-scale vocoded spoofed data for contin-
uous SSL training. Indeed, the combination of large SSL mod-
els and synthetic data augmentation techniques is a promising
research line for achieving robust audio deepfake detection.

In this work, we revisit the use of pre-trained SSL models
as deep embedding extractor networks, where only the down-
stream classifier is fine-tuned for the anti-spoofing task. Fol-
lowing the SUPERB setup [23], we consider the hidden embed-
dings from the SSL encoder layers to obtain a more discrim-
inative representation for the target task, as proposed on [10]
and other speech-related tasks [24, 25]. Thus, we propose a
simple yet effective downstream classifier with few processing
blocks, the impact of which in the final performance are also
investigated. The downstream is fine-tuned on the well-known
ASVspoof 2019 dataset [4] considering data augmentation tech-
niques to improve the performance on varying acoustic condi-
tions. Moreover, the training data is extended by using spoof-
ing attack augmentation with several vocoders applied over the
in-domain clean data [20], avoiding the need to create large-
scale spoofed data from additional corpora to fine-tune the SSL
upstream. We hypothesize that the general audio representa-
tions from the SSL model can be used as highly discriminative
features when applied along with a properly fine-tuned classi-
fier with heterogeneous and representative training data cover-
ing different acoustic conditions and deepfake generation algo-
rithms. Our straightforward approach is evaluated under dif-
ferent anti-spoofing and audio deepfake benchmarks, showing
SOTA results and outperforming previous methods regarding
generalization capabilities across diverse unseen test sets using
a single detection system.

The rest of the paper is organized as follows. Section 2 de-
scribes the proposed architecture, including the upstream SSL
and downstream classifiers, as well as the acoustic and spoofing
data augmentation techniques used during training. The exper-
imental framework and results are presented and analyzed in
Section 3. Finally, the final conclusions and future work are
summarized in Section 4.

2. Audio deepfake detection models and
data augmentation

The architecture of our proposed audio deepfake detection net-
work is depicted in Figure 1. In the next subsections, we de-
scribe the different processing blocks involved in both the up-
stream and downstream models. In addition, the strategies for
synthetic data augmentation are also explained.
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Figure 1: Architecture of the proposed audio deepfake detection
system based on pre-trained Wav2Vec2.

2.1. Self-supervised speech embedding extractor

In this work, we considered the Wav2Vec2 XLS-R-128 model
proposed in [26] as the SSL embeddings extractor. This 315M
based SSL model consists of a feature encoder of 7 convolu-
tional layers and a Transformer encoder of L layers (L = 24). It
is trained in a cross-language setting covering 128 different lan-
guages. We chose this SSL as it has shown good performance in
previous related works, but other models like WavLM or Whis-
per could effortlessly be integrated into our approach. This up-
stream model extracts 1024-dimension embeddings each 20 ms.
However, we consider the representations from all the different
encoder layers, including the convolutional one, which gives a
representation per sequence of dimension (T , 1024, 25), where
T is the embedding sequence length. It is worth mentioning
that we use variable length sequences, using zero-padding dur-
ing training to fit batches. Thus, the sequence padding mask is
given as input to the upstream model to avoid convolutional and
attention computations on the padding parts, and the resulting
embedding padding mask is used in the following downstream
model.

2.2. Audio deepfake downstream classifier

The SSL sequence representation is processed by the down-
stream classifier, which is fine-tuned to discriminate between
genuine and fake audio. Our proposed classifier consists of sev-
eral blocks related to different processing tasks. In the follow-
ing, we describe each block, including the different neural net-
work architectures we considered for each of them:

• Adapter: This block combines the sequence representations
from the different SSL layers into a single embedding per
frame, giving a sequence of (T , 1024). First, a layer normal-
ization (LN) is applied to the embeddings (without element-
wise affine transformation). Then, the output representation
is computed as et =

∑L
l=0 γlh̃t,l, where h̃t,l are the normal-

ized hidden representations, and t and l are the time and layer
indexes, respectively. The weights γl are obtained through a
learnable vector αl fed into a softmax layer.

• Frame-wise processing: The next block performs dimension-
ality reduction on each time embedding. A straightforward
technique for achieving this is through an affine projection
(Proj), which, in our implementation, reduces the embedding
dimensionality to 256. Alternatively, a more sophisticated
approach that we have also explored involves incorporating

Table 1: Number of parameters for the different blocks and their
variants. For the scoring layer, it depends on the dimension of
the output vector from the time pooling.

Block Params.

Wav2Vec2 315M
Adapter 25
Frame-wise proc.
Proj 262K
NN 328K
Temp. pool.
SP 0
ASP/ACP 66.8K
Scoring layer
*SP/ASP 65.8K
*ACP 4.2M

a ReLU activation, followed by dropout, and a subsequent
affine transformation with the same dimensionality. We will
denote this variant as NN, which has the potential to facilitate
the learning of more complex representations.

• Time pooling: We need to summarize the time embeddings
into a single representation for each sequence. A common
practice is statistical pooling (SP), which computes the time
mean and standard deviation (factoring in the padding mask)
per feature dimension and concatenates them into a single
512-dimensional vector. However, as some time embeddings
could be more informative than others, a multi-head attention
mechanism is also considered. Following [25], the attention
weights for each head are computed by feeding the embed-
dings into two affine transformation layers with an interme-
diate ReLU activation. The output dimensions of these trans-
formations are 256 and H , respectively, with H denoting the
number of heads (we used H = 4 heads). The time out-
puts of each head are combined through logsumexp operation
(soft maximum) and normalized via a softmax layer to ob-
tain the final attention weights (considering also the padding
mask). Apart from this attentive SP version (ASP), we also
evaluated the attentive correlation pooling (ACP) proposed in
[25], which considers the normalized cross-correlation terms
(the upper-diagonal terms of the correlation matrix) vector-
ized into a single 32640-dimensional vector. In this case,
channel dropout is applied to the time embedding sequence
before the attention computation and pooling for regulariza-
tion purposes.

• Scoring layer: Finally, the last block of the downstream com-
putes a single score S for the audio sample, which is even-
tually used to classify the audio as genuine or fake. The di-
mension of the output vector for the time pooling block is
first reduced to 128 via an affine transformation. Then, the
score is computed as the cosine similarity between this vec-
tor and a learnable vector network parameter w as in [10],
where w represents the direction of genuine samples in the
corresponding vector space.

Table 1 shows the number of parameters for each process-
ing block, including the different variants evaluated. As it can
be observed, the fine-tuned parameters represent a small frac-
tion of the whole architecture, where the pre-trained SSL model,
frozen during training, contributes to nearly 99% of the total pa-
rameters of the audio deepfake detection system.

2086



2.3. Acoustic and spoofed data augmentation

The robustness and generalization capabilities of an audio deep-
fake detection system mainly depend on the variety of training
data used regarding speakers, acoustic conditions, spoofed at-
tacks, among others. Therefore, we explored the use of acous-
tic and synthetic data augmentation on the training database to
improve the performance of the resulting systems.

First, the acoustic data augmentation is achieved using the
RawBoost technique proposed in [27], which applies several
perturbations over the speech signals, including convolutive
(linear and non-linear), impulsive and stationary noises. This
technique has shown good performance in improving robust-
ness on different conditions, such as telephonic channels or
codified audio, but it also contributes to better generalization
capabilities with out-domain data. On the other hand, previous
works [28] have pointed out that the ASVspoof 2019 has arti-
facts related to the silence duration on genuine and fake samples
that can be exploited during training, preventing learning more
relevant features that could better generalize. Thus, we also
explored an additional pre-processing for the training samples,
which involves trimming the leading and trailing silences.

Furthermore, we considered [20] for spoofing data augmen-
tation. This approach creates new fake samples from the gen-
uine speech in the training data using only vocoder techniques,
disregarding the more complex acoustic models frequently used
in speech synthesis or voice conversion methods. This pa-
per considers the following vocoders: HiFiGAN, WaveGlow,
Harmonic-plus-noise neural source filter (Hn-NSF), and the fu-
sion of Hn-NSF and HiFiGAN. In contrast to [20], we extended
the original training data by including these new spoofed at-
tacks to increase variability. Moreover, we do not rely on ex-
ternal large-corpus to create spoofed data for continuous SSL
training of the upstream model as in [22], but the in-domain
extended training corpus is only used for fine-tuning the down-
stream classifier. The idea is to cover a broader range of condi-
tions so that the classifier learns better to detect deepfake sam-
ples while exploiting the general audio representations from the
pre-trained upstream. As the SSL model is frozen, we avoid
over-fitting or catastrophic forgetting issues during the continu-
ous SSL pre-training and fine-tuning.

3. Experimental results
3.1. Experimental framework

Datasets: As it was previously mentioned, in this work, we
used the ASVspoof 2019 LA train and development sets [4] for
the training and validation of the models. These sets contain
about 25K audio samples from 20 and 10 speakers, covering
clean English genuine audio data and 6 different spoofing at-
tacks. In addition, we extended this dataset using the spoofed
data of the Voc.v4 partition1 released in [20] including 4 differ-
ent vocoders fine-tuned in the ASVspoof 2019 real data. This
process incorporates an additional 10K spoof samples into both
the training and development sets.

For the evaluation, multiple test datasets are considered to
measure the performance in both in- and out-domain conditions.
The test set of ASVspoof 2019 LA [4] is included (similar con-
ditions but different spoofing attacks), as well as the evaluation
sets of ASVspoof 2021 LA (telephonic channels) and DF (au-
dio codecs and novel data from voice conversion challenges)
[5]. To evaluate the impact of silence duration artifacts, we also

1https://zenodo.org/records/7315515

considered a version of the 2019 LA test in which initial and end
silences were removed, as well as the hidden sets of 2021 LA
and DF. Finally, to further evaluate the performance with out-
domain datasets, we also included WaveFake [29] (two female
speakers, English and Japanese) and In-the-Wild [30] (over 50
English politicians and celebrities) datasets.

Training setup: The different models were trained using
the one-class softmax loss function [31], dropout rates of 0.2
when applicable, and the ADAM optimizer [32] with a learning
rate of 3 · 10−4. Only the downstream parameters are trained,
while the upstream is frozen. During training, a batch size of
8 audio samples was used with gradient accumulation across 8
consecutive batches (i.e., a total effective batch of 64 samples).
The audio duration was set to a maximum of 8 seconds, remov-
ing the remaining samples if longer. We validated the models
at each epoch on the development set and stopped the training
after 10 epochs without improvements. Moreover, we trained
3 model instances with different seeds in order to provide av-
eraged performance metrics. The experiments were done using
the Pytorch-lightning library [33], and the wav2vec2 model was
obtained from its HuggingFace repository2. Finally, the train-
ings were done in a Nvidia A40 48 GB GPU3.

Evaluation metrics: We compared the different ap-
proaches in terms of the equal error rate (EER) on both indi-
vidual and pooled test sets. To this end, we considered the
averaged EER resulting from the 3 different model instances
previously trained. To ensure the results are statistically sig-
nificant, we followed the same methodology as in [34] for the
pair-wise comparison of the models at a 95% significance level
with Holm-Bonferroni correction.

3.2. Results and analysis

Table 2 shows the test results for the different configurations
of our proposed approach in terms of downstream classifier ar-
chitecture, data augmentations, and a comparison with SOTA
models. In the following, we analyze these results.

Data augmentations: We first considered NN-ASP/ACP
downstreams and evaluated using trimming and training with
extended vocoded data. Trimming the silences impacts on
ASVspoof 2019 and 2021 LA, where trained models can exploit
these undesired artifacts. Nevertheless, it improves results both
for in-domain corpus with trimmed silences and out-domain
sets in the NN-ASP classifier, while the impact is less signifi-
cant or even harmful when using ACP. On the other hand, train-
ing with additional vocoded data has potential benefits for the
model performance, improving the results in ASVspoof 2021
DF and out-domain datasets, and yielding astounding pooled
test results. Adding new types of fake data allows to encompass
a wide specturm of deepfake attacks, particularly in out-domain
datasets where this vocoded data align with similar attacks in-
cluded in those sets. Simultaneously, this preserves high per-
formance levels in the attacks featured in ASVspoof 2019, with
potential improvements observed even in its trimmed version.
These improvements are not evident in ASVspoof 2021 LA,
likely due to the main degradation influenced by the effect of
telephonic channels, which are not directly impacted by the in-
troduction of new vocoders. Nevertheless, with the exception
of LA eval 2019/2021, using both data augmentation yields the
most optimal performance across individual and pooled sets.

2https://huggingface.co/facebook/wav2vec2-xls-r-300m
3We would also like to point out that the training models fit in a

Nvidia TITAN X 12 GB, but this yields higher training times.
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Table 2: Average EERs (%) results on the evaluated audio deepfake detection test set. We indicate if trimming (Trim.) or additional
vocoding data (Voc.) are used in our models. Results in bold are not statistically significant compared to the best model (underlined).

Classifier Trim. Voc. asv19LA asv21LA asv21DF IntheWild WaveFake PooledEval Trim Eval Hidden Eval Hidden

NN-ASP

× × 0.22 6.71 1.90 44.03 7.90 36.95 11.10 9.33 9.90
✓ × 5.04 5.56 8.15 12.50 3.31 11.45 9.49 8.36 8.53
× ✓ 0.14 2.81 8.26 14.39 1.46 5.64 3.76 2.82 5.31
✓ ✓ 2.42 2.52 9.32 10.10 1.28 5.76 3.55 2.24 5.13

NN-ACP

× × 0.19 5.63 1.83 13.87 4.34 11.84 11.09 5.79 8.51
✓ × 7.47 8.09 9.58 13.77 4.26 13.08 10.27 8.44 9.06
× ✓ 0.22 3.27 11.08 13.19 1.59 6.51 3.59 4.04 5.79
✓ ✓ 2.30 2.54 9.78 9.91 1.36 6.06 3.10 1.90 5.35

Proj-SP

✓ ✓

2.44 2.36 10.04 9.84 1.30 5.64 3.39 2.27 5.71
NN-SP 2.42 2.69 9.96 10.56 1.36 5.55 3.96 1.83 5.65

Proj-ASP 3.18 3.14 8.66 10.43 1.16 5.99 3.27 2.12 5.23
Proj-ACP 2.46 2.70 7.79 9.47 1.55 6.69 3.55 2.23 5.25

NII-B1 [22] 3.45 2.69 17.59 13.93 6.53 8.89 6.78 7.33 11.13
NII-B1-b [22] 0.22 7.37 2.69 15.56 4.27 9.16 13.52 23.75 12.76
NII-P1 [22] 2.09 3.33 16.88 16.02 4.34 7.71 5.84 1.94 10.54
NII-P3 [22] 1.91 3.28 15.92 14.97 5.67 8.84 6.10 1.30 9.98

Downstream architecture: We also evaluated the different
combinations for the downstream classifiers in terms of frame-
wise processing and time pooling. Regarding the former, us-
ing Proj or NN variants does not yield significant differences
in performance, indicating that SSL embeddings are a discrim-
inant feature requiring few transformations to be exploited by
the classifier. On the other hand, when comparing time pool-
ings, the attentive mechanism does not particularly affect indi-
vidual datasets. Still, the effect is significant when evaluating
the pooled test, suggesting that the operating point for the EER
is more similar when using these models. Therefore, we con-
clude that attention mechanisms contribute to the development
of more generalizable models across different sets. There are no
significant performance differences between ASP and ACP, but
the former requires less trainable parameters. Thus, Proj-ASP is
a preferred solution for downstream implementation, with NN-
ASP as alternative candidate in some particular conditions.

Comparison with SOTA models: Finally, we compare our
approach with several systems presented by NII labs in [22],
including SOTA performance methods when evaluating in this
multi-dataset setup. Both B1 and B1-b systems are based on the
Wav2Vec2 XLS-R-53 model, and the complete system is fine-
tuned either using the vocoded Voc.v4 data (and corresponding
genuine data) or the ASVspoof 2019 train set. The P1 system
is like B1 but also considers vocoded data from a large external
corpus, VoxCeleb2, to first perform continuous SSL training on
the upstream model. Their proposed P3 system uses the embed-
ding differences between the original and SSL-trained model on
spoofed data, distilling the information to a different upstream
through a teacher-student framework. This avoids using two
different upstream networks. Our proposed approach outper-
forms the continuous SSL training strategy proposed in [22] by
extending the original training set with the vocoded data with-
out requiring an additional large corpus for pre-training the up-
stream. The P3 system still yields the best results on Wave-
Fake, but our models achieve better results on the remaining
test sets and the best overall performance (5.13% vs 9.98%
EER). Moreover, our approach directly exploits the hidden em-

beddings from a pre-trained SSL model while fine-tuning the
downstream classifier with the task domain datasets. Moreover,
even when only the original training data for ASVspoof 2019
is used (i.e., without additional vocoded data), our correspond-
ing best system still achieves a competitive overall performance
(NN-ACP with 8.51% EER) compared with the systems pro-
posed in [22]. These results show that the hidden layers of the
original SSL model contain enough discriminative information
to be exploited for the classification task. Furthermore, a sim-
ple classifier with adequate processing blocks can efficiently
make use of the information contained in the embeddings for
deepfake detection. Finally, we can boost the system detection
capabilities by creating new fake data using vocoder systems
adapted to the in-domain real training data. This can allow us
to quickly adapt our detection systems to new generative algo-
rithms without re-training the upstream model.

4. Conclusions

This work evaluates the combination of pre-trained SSL em-
beddings and a fine-tuned downstream classifier using spoofing
data augmentation for audio deepfake detection. By means of
the latter, we extended the original training dataset with addi-
tional fake samples generated with different vocoder systems to
adapt the final classifier while the upstream is frozen. Moreover,
we analyzed the performance of small-sized downstream mod-
els to exploit the information provided by these SSL embed-
dings. Our proposed approach exhibits overall SOTA perfor-
mance across a different range of in- and out-of-domain bench-
marks. This demonstrates that the original SSL embeddings
serve as a sufficiently discriminative source for the classification
task, particularly when considering various deepfake attacks for
data augmentation. As a result, this strategy requires only the
adaptation of a simple yet efficient downstream model with ap-
propriate processing blocks. In future work, we will evaluate
the performance of ensembled downstream networks adapted to
different domain conditions and use active learning techniques
to select the most relevant data for fine-tuning these classifiers.
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