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Abstract: In this paper, we present the concept of being monotonic in sequence according to a
specific direction for a collection of random variables. This concept broadens the existing notions
of multivariate dependence, such as sequential left-tail and right-tail dependence. Furthermore,
we explore connections with other multivariate dependence concepts, highlight key properties,
and analyze the new concept within the framework of copulas. Several examples are provided to
demonstrate our findings.
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1. Introduction

There are several approaches to describing dependence relationships among random
variables, and, as noted by Jogdeo [1], “this is one of the most widely studied objects in
probability and statistics”. For a multivariate model, it is essential to analyze the type
of dependence structure that it incorporates to determine its suitability for a specific
application or dataset. This study focuses on positive and negative dependence, with
positive dependence defined as any criterion that mathematically captures the tendency of
components within an n-variate random vector to display concordant values [2]. According
to Barlow and Proschan [3], concepts of (positive) dependence become notably more diverse
and intricate in the multivariate context compared to the bivariate one.

Several generalizations of bivariate dependence notions to the multivariate setting
have been explored in the literature (see, for example, [4,5]). In this paper, our objective
is to extend some established multivariate dependence concepts—both positive and neg-
ative—such as orthant dependence and tail monotonicity to examine relationships with
other dependence structures and to outline various properties.

Aggregation functions are crucial in numerous applications, including fuzzy set theory
and fuzzy logic [6], among other fields. Copulas, which are multivariate distribution
functions with uniform univariate margins on [0, 1], represent a specific kind of conjunctive
aggregation function. They are commonly applied in aggregation, as they ensure stability,
meaning that minor input errors lead to minor output errors [7]. This paper investigates
the new dependence concepts through the lens of copulas.

The paper is organized as follows. We begin with preliminaries on (multivariate)
dependence properties in Section 2. Section 3 introduces the concept of monotonic in se-
quence random variables in a given direction, alongside properties and examples. Section 4
explores the concept through copulas, focusing first on the bivariate and trivariate cases,
and then extending to the general case. Finally, conclusions are presented in Section 5.
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2. Preliminaries

In the following, we use the terms “increasing” (or “decreasing”) interchangeably with
“nondecreasing” (or “nonincreasing”), unless specified otherwise. Additionally, a subset
A ⊆ Rd, with d ≥ 1, is called an increasing set if its indicator function χA is increasing.

Let n ≥ 2 be a natural number. Consider a probability space (Ω,F ,P), where Ω
is a nonempty set, F is a σ-algebra of subsets of Ω, and P is a probability measure on
F . Let X = (X1, X2, . . . , Xn) be a random vector from Ω to Rn, composed of n random
variables Xi : Ω → R, i = 1, 2, . . . , n. In this context, we assume that the random vector X
is continuous.

We now summarize several established concepts of multivariate dependence.
Orthant dependence according to a direction is defined as follows [8]: Let α =

(α1, α2, . . . , αn) be a vector in Rn such that |αi| = 1 for all i = 1, 2, . . . , n. An n-variate
random vector X (or its joint distribution function F) is said to be orthant positive (respec-
tively, orthant negative) dependently according to the direction α, denoted PD(α) (respectively,
ND(α)), if

P
[

n⋂
i=1

(αiXi > xi)

]
≥

n

∏
i=1

P[αiXi > xi] for all xi ∈ R (1)

(or, respectively, with the inequality in (1) reversed).
For certain choices of the direction α, such as α = 1 = (1, 1, . . . , 1) or α = −1 =

(−1,−1, . . . ,−1), we retrieve well-known dependence concepts, including positive quad-
rant dependence and positive upper orthant dependence (for further details, see [2,5,9–11]).
Additional related concepts in multivariate total positivity by direction can be found in [12].

For a pair of random variables (X1, X2), two bivariate positive dependence notions
are introduced in [13]: left-tail decreasing (LTD) and right-tail increasing (RTI). Specifically,
X2 is said to be left-tail decreasing (or right-tail increasing) in X1 if P[X2 ≤ x2|X1 ≤ x1] (or
P[X2 > x2|X1 > x1]) is a nonincreasing (or nondecreasing) function of x1 for all x2—the
negative dependence counterparts are defined by reversing the inequalities. For instance,
in the LTD concept above, the probability of X2 being less than or equal to any x2 given that
X1 ≤ x1 increases as x1 decreases, indicating positive dependence. Multivariate extensions
of RTI and LTD are presented in [14,15]. A random vector X = (X1, X2, . . . , Xn) is said to
be left-tail decreasing in sequence (LTDS) if

P[Xi ≤ xi | X1 ≤ x1, . . . , Xi−1 ≤ xi−1]

is decreasing in x1, . . . , xi−1 for all xi, i ∈ {2, . . . , n}; X is right-tail increasing in sequence
(RTIS) if

P[Xi > xi | X1 > x1, . . . , Xi−1 > xi−1]

is increasing in x1, . . . , xi−1 for all xi, i ∈ {2, . . . , n}. For the properties of these notions and
their relationships to other multivariate dependence concepts, see [2,16].

In the following section, we generalize these multivariate dependence concepts ac-
cording to a direction.

3. Monotonic in Sequence According to a Direction

In this section, we introduce the concepts of left-tail and right-tail dependence in
sequence according to a direction for a set of random variables, generalizing the LTDS and
RTIS concepts presented in Section 2. We also provide a characterization of these notions
and examine several of their key properties.

3.1. Definition and Characterization

Definition 1. Let X1, X2, . . . , Xn be n random variables, and let α = (α1, α2, . . . , αn) ∈ Rn such
that |αi| = 1 for all i = 1, 2, . . . , n. The random variables X1, X2, . . . , Xn are said to be increasing
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(or decreasing) in sequence according to the direction α—denoted by IS(α) (or DS(α))—if, for any
xi ∈ R,

P[αiXi > xi | α1X1 > x1, . . . , αi−1Xi−1 > xi−1]

is nondecreasing (or nonincreasing) in x1, x2, . . . , xi−1 ∈ R for all i = 2, 3, . . . , n.

From here, we focus primarily on the IS(α) concept. Parallel results apply to DS(α), so
we omit them for brevity. Additionally, we refer to a random vector X = (X1, X2, . . . , Xn)—
or its joint distribution function—as being IS(α).

The IS(α) concept allows for an analysis of how high or low values in one variable
can directionally influence other variables in the sequence. This concept extends bivariate
dependence to the multivariate case and provides a directional analysis that is not fully
covered by previous approaches. To be precise, it implies that large values of the variables
Xj, for indices j ∈ J, correspond to small values for variables Xj, where j ∈ I\J, with
I = {1, 2, . . . , n} and J = {i ∈ I : αi = 1}. Consequently, if X is IS(α), then, for all
i = 2, 3, . . . , n and any xi ∈ R, we have that

P
[

Xi > xi | ∩j∈J1

(
Xj > xj

)
,∩j∈I1\J1

(
Xj < xj

)]
is nondecreasing (or nonincreasing) in x1, x2, . . . , xi−1 if αi = 1 (or αi = −1), where I1 =
{1, 2, . . . , i − 1} and J1 = {i ∈ I1 : αi = 1} (or J1 = {i ∈ I1 : αi = −1}). Furthermore,
observe also that the IS(α) concept generalizes the LTDS and RTIS concepts introduced in
Section 2: IS(1) is RTIS and IS(−1) is LTDS.

Next, we provide a useful characterization of the IS(α) concept, though a preliminary
definition is needed.

Definition 2. Let X1, X2, . . . , Xn be n random variables, and let α = (α1, α2, . . . , αn) ∈ Rn

such that |αi| = 1 for all i = 1, 2, . . . , n. The random variables X1, X2, . . . , Xn are said to be
stochastically increasing (or decreasing) in sequence according to a direction α ∈ Rn—denoted by
SIS(α) (or SDS(α))—if

E
[

f (αiXi) | ∩i−1
j=1(αjXj > xj)

]
(2)

is nondecreasing (or nonincreasing) in x1, x2, . . . , xi−1 for any real-valued, non-decreasing function
f and for each i, with 2 ≤ i ≤ n. We will also say that the random vector X = (X1, X2, . . . , Xn)—or
its joint distribution function—is SIS(α) (or SDS(α)).

In the next result, we characterise the IS(α) concept in terms of SIS(α). Similar results
can be formulated for DS(α) and SDS(α).

Theorem 1. A random vector is IS(α) if, and only if, it is SIS(α).

Proof. Suppose the random vector X = (X1, X2, . . . , Xn) is SIS(α), and consider, for each i
and any xi, the function

f (αiXi) =

{
0, αiXi ≤ xi,

1, αiXi > xi.

Then, we have that

E
[

f (αiXi)| ∩i−1
j=1 (αjXj > xj)

]
= P

[
αiXi > xi| ∩i−1

j=1 (αjXj > xj)
]

is nondecreasing in x1, x2, . . . , xi−1 and, hence, X is IS(α).
Conversely, if X is IS(α), then we have that

P
[
αiXi > xi| ∩i−1

j=1 (αjXj > xj)
]
= E

[
χ{αiXi>xi}| ∩

i−1
j=1 (αjXj > xj)

]
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is nondecreasing in x1, x2, . . . , xi−1. Thus, for any simple function f that is non-negative and
nondecreasing, the expression in (2) remains nondecreasing in x1, x2, . . . , xi−1. Utilizing the
monotone convergence theorem confirms that this property holds for all nondecreasing (and
non-negative) functions. Consequently, we conclude that X is SIS(α), thereby completing
the proof.

3.2. Relationships with Other Multivariate Dependence Concepts

In this subsection, we explore the connections between the IS(α) concept and several
established multivariate dependence notions in relation to a specific direction. The initial
result demonstrates the link between the IS(α) and PD(α) concepts, as expressed in (1).

Proposition 1. If the random vector X = (X1, X2, . . . , Xn) is IS(α), then it is PD(α).

Proof. Let x1, x2, . . . , xn ∈ R. Since X is IS(α) then, for every 2 ≤ i ≤ n, we have

P
[
αiXi > xi| ∩i−1

j=1
(
αjXj > xj

)]
≥ P

[
αiXi > xi| ∩i−1

j=1

(
αjXj > x′j

)]
whenever xj ≥ x′j for all j = 1, 2, . . . , i − 1. Therefore,

P
[
αiXi > xi| ∩i−1

j=1
(
αjXj > xj

)]
≥ P[αiXi > xi]

by letting x′j → −∞ for j = 1, 2, . . . , i − 1. Thus,

P[∩n
i=1(αiXi > xi)] = P[α1X1 > x1] ·

n

∏
i=2

P
[
αiXi > xi| ∩i−1

j=1 (αjXj > xj)
]

≥
n

∏
i=1

P[αiXi > xi],

i.e., X is PD(α).

For the forthcoming results, we review several multivariate dependence concepts
based on a specific direction. For any vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) in Rn, we
define x ∨ y = (max(x1, y1), . . . , max(xn, yn)) and x ∧ y = (min(x1, y1), . . . , min(xn, yn)).

Definition 3 ([12]). Let X be an n-dimensional random vector with joint density function f , and
α ∈ Rn such that |αi| = 1 for all i = 1, 2, . . . , n. The random vector X is referred to as being
multivariate totally positive of order two according to the direction α—denoted by MTP2(α)—if

f (α(x ∨ y)) f (α(x ∧ y)) ≥ f (αx) f (αy)

holds for all x = (x1, . . . , xn) and y = (y1, . . . , yn) in Rn.

It follows from Proposition 2 and Theorem 3 in [12] that an n-dimensional random
vector X is MTP2(α) if, and only if, αX is MTP2(1)—or simply MTP2.

Definition 4 ([17]). Let X be an n-dimensional random vector, and α ∈ Rn such that |αi| = 1 for
all i = 1, 2, . . . , n. The random vector X is said to be increasing (or decreasing) according to the
direction α—denoted by I(α) (or D(α))—if

P
[
α1X1 > x1, α2X2 > x2, . . . , αnXn > xn | α1X1 > x′1, α2X2 > x′2, . . . , αnXn > x′n

]
is non-decreasing (or non-increasing) in x′1, x′2, . . . , x′n for all x1, x2, . . . , xn.

It is important to note that the notion I(1) (or D(−1)) generalizes the established concept of
RCSI (or LCSD), as discussed in [18] for the bivariate case and [5] for the multivariate context.
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If a random vector X is MTP2(α), then it is known to be I(α) [17]. The next result
illustrates the relationship between the concepts I(α) and IS(α).

Proposition 2. If the random vector X is I(α), then it is IS(α).

Proof. Let x1, x2, . . . , xn, x′1, x′2, . . . , x′n ∈ R such that xi ≤ x′i for 1 ≤ i ≤ n. Since X is I(α),
for any i, 2 ≤ i ≤ n, we have

P
[
αiXi > xi | ∩i−1

j=1(αjXj > xj)
]

= P
[
∩n

j=1
(
αjXj > tj

)
| ∩n

j=1
(
αjXj > sj

)]
≤ P

[
∩n

j=1
(
αjXj > tj

)
| ∩n

j=1

(
αjXj > s′j

)]
= P

[
αiXi > xi | ∩i−1

j=1(αjXj > x′j)
]

where

tj =

{
xi, j = i,

−∞, j ̸= i,

sj =

{
xj, for j = 1, 2, . . . , i − 1,

−∞, for j = i, . . . , n,

and

s′j =

{
x′j, for j = 1, 2, . . . , i − 1,

−∞, for j = i, . . . , n.

Therefore, X is IS(α), which concludes the proof.

It should be noted that the converse of Proposition 2 does not hold, as illustrated in
Example 9 in Section 4.

From Proposition 2, and given that MTP2(α) implies I(α), we can derive the follow-
ing result.

Corollary 1. If the random vector X is MTP2(α), then it is IS(α).

3.3. Properties

The following results are properties of the IS(α) families, which include results for
independent random variables, subsets of the new concept IS(α), the concatenation of IS(α)
random vectors, weak convergence, etc.

Proposition 3. A set of independent random variables is IS(α) for any α ∈ Rn.

Proof. Let X1, X2, . . . , Xn be n independent random variables. For any α ∈ Rn, we have

P
[
αiXi > xi| ∩i−1

j=1 (αjXj > xj)
]
= P[αiXi > xi]

for all i = 2, . . . , n and any xi, whence it is immediate that the random variables are
IS(α).

Proposition 4. Any subset of random variables that are IS(α) are also IS(α∗), where α∗ is defined
as the vector formed by omitting the components of α that correspond to the random variables not
present in the subset.

Proof. Let X = (X1, X2, . . . , Xn) be a vector of n random vector that is IS(α), and let
Xk = {Xi1 , Xi2 , . . . , Xik} represent a subset of X. If xj approaches −∞ for each j = 1, . . . , i− 1
such that j ∈ {1, 2, . . . , n}\{i1, i2, . . . , ik} in the expression
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P
[
αiXi > xi | ∩i−1

j=1(αjXj > xj)
]

for i ∈ {i1, i2, . . . , ik}, then we find that

P
[
αiXi > xi | ∩ij<i(αij Xij > xij)

]
is nondecreasing in all xij with ij < i, for any xi. Consequently, Xk is IS(αi1 , αi2 , . . . , αik ).

Proposition 5. If the random vector X = (X1, X2, . . . , Xn) is IS(α), and g1, g2, . . . , gn are n
strictly increasing real-valued functions, then the random vector (g1(X1), g2(X2), . . . , gn(Xn))
also satisfies the property of being IS(α).

Proof. Let y1, y2, . . . , yn, y′1, y′2, . . . , y′n ∈ R such that yi ≤ y′i for i = 1, 2, . . . , n. Since X is
IS(α) and αjg−1

j (αjyj) ≤ αjg−1
j (αjy′j) for every j = 1, 2, . . . , n, we have

P
[
αigi(Xi) > yi| ∩i−1

j=1 (αjgj(Xj) > yj)
]
=P

[
αiXi > αig−1

i (αiyi)| ∩i−1
j=1 (αjXj >αjg−1

j (αjyj))
]

≤P
[
αiXi > αig−1

i (αiyi)| ∩i−1
j=1 (αjXj >αjg−1

j (αjy′j))
]

=P
[
αigi(Xi) > yi)| ∩i−1

j=1 (αjgj(Xj)>y′j)
]
,

i.e., (g1(X1), g2(X2), . . . , gn(Xn)) is IS(α).

For the subsequent result, given α = (α1, α2, . . . , αn) ∈ Rn and β = (β1, β2, . . . , βm) ∈
Rm, we define (α, β) to represent the concatenation, which is expressed as

(α, β) = (α1, . . . , αn, β1, . . . , βm) ∈ Rn+m;

this definition similarly applies to random vectors.

Proposition 6. If X = (X1, X2, . . . , Xn) is IS(α) and Y = (Y1, Y2, . . . , Ym) is IS(β), with X and
Y being independent, then the combined random vector (X, Y) is IS(α, β).

Proof. Let Z = (X, Y) and γ = (α, β). Then, for any i, with 2 ≤ i ≤ n, and any zi ∈ R, we have

P
[
γiZi > zi| ∩i−1

j=1 (γjZj > zj)
]
= P

[
αiXi > zi| ∩i−1

j=1 (αjXj > zj)
]
,

and, thus, it is non-decreasing in z1, z2, . . . , zi−1.
Consider now any i, with n + 1 ≤ i ≤ n + m, and any zi ∈ R. Taking into account that

X and Y are independent, we have

P
[
γiZi > zi| ∩i−1

j=1 (γjZj > zj)
]
= P

[
βi−nYi−n > zi| ∩i−n−1

j=1 (β jYj > zn+j)
]
,

which is non-decreasing in z1, z2, . . . , zi−1. Therefore, (X, Y) is IS(α, β).

The following result pertains to a closure property of the IS(α) family of multivariate
distributions, as well as the DS(α) family.

Proposition 7. The collection of IS(α) distribution functions is closed with respect to weak convergence.

Proof. Let {Xm}m∈N be a sequence of IS(α) n-variate random vectors such that Hm is the
distribution function of Xm for each m, and let X be a vector of n random variables with
joint distribution function H such that Hm

w→ H as m tends to +∞, where w→ denotes weak
convergence. We prove that X is IS(α).
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Given m ≥ 1, consider the n-variate random vector Xm = (X1m, X2m, . . . , Xnm), which,
by hypothesis, is IS(α). From Theorem 1, Xm is SIS(α). Since Hm

w→ H as m tends to +∞, by
using the Helly–Bray theorem (see, e.g., [19]), we have

E
[

f (αiXim)| ∩i−1
j=1 (αjXjm > xj)

]
w→ E

[
f (αiXi)| ∩i−1

j=1 (αjXj > xj)
]

as m tends to +∞ for any real-valued and nondecreasing function f and every i, with
2 ≤ i ≤ n, whence X is SIS(α). By using Theorem 1 again, we conclude that X is IS(α).

3.4. Examples

We provide several examples that demonstrate the applicability of the dependence
concepts studied in this work.

Example 1. Consider the random vector X = (X1, X2, . . . , Xn) which follows a multivariate
normal distribution represented as N(µ, Σ), where µ = (µ1, µ2, . . . , µn) is the mean vector and
Σ denotes the covariance matrix. Define

(
rij
)
= Σ−1 such that rij < 0 for all pairs (i, j), where

1 ≤ i < j ≤ n; a similar analysis can be conducted for rij > 0. The probability density function
(PDF) of X is given by

f (x1, x2, . . . , xn) = (2π)−n/2|Σ|−1/2exp

(
−1

2

n

∑
i=1

n

∑
j=1

rij(xi − µi)(xj − µj)

)
.

For each pair (i, j) with 1 ≤ i < j ≤ n, we can rewrite

f (x1, x2, . . . , xn) = f1

(
x(i)
)

f2

(
x(j)
)

exp(−rijxixj),

where x(k) = (x1, . . . , xk−1, xk+1, . . . , xn) for k = i, j, and f1, f2 are suitable functions.
Now, consider xi, xj, x′i , x′j such that xi ≤ x′i and xj ≤ x′j, along with (αi, αj), where |αk| = 1

for k = i, j. We can derive

f
(

x1, . . . , αixi, . . . , αjxj, . . . , xn
)

f
(

x1, . . . , αix′i , . . . , αjx′j, . . . , xn

)
− f
(

x1, . . . , αix′i , . . . , αjxj, . . . , xn
)

f
(

x1, . . . , αixi, . . . , αjx′j, . . . , xn

)
= f1

(
x(i)
)

f1

(
x(i

′)
)

f2

(
x(j)
)

f2

(
x(j′)

)
·
[
exp(−rijαiαj(xixj + x′i x

′
j))− exp(−rijαiαj(x′i xj + xix′j))

]
. (3)

Since
αiαj(xixj + x′i x

′
j − x′i xj − xix′j) = αiαj[(x′i − xi)(x′j − xj)] ≥ 0,

this holds true, provided that αiαj > 0. Thus, the expression in (3) is non-negative if and only
if αiαj > 0. Consequently, for any vector α = (α1, α2, . . . , αn) ∈ Rn with |αi| = 1 for each
i = 1, 2, . . . , n, the random vector X exhibits the property of MTP2(α) if, and only if, αiαj > 0 for
every selected pair (i, j)—refer to Theorem 3 in [12]. By Corollary 1, we conclude that X is IS(α) for
both α = 1 and α = −1.

Example 2. Consider the random vector X = (X1, X2, . . . , Xn) following a Dirichlet distribution
denoted as Dir(γ), where γ = (γ1, γ2, . . . , γn; γn+1) and γi > 0 for all i = 1, 2, . . . , n, with
γn+1 ≥ 1. The probability density function (PDF) for this distribution is expressed as

f (x1, x2, . . . , xn) =
Γ
(

∑n+1
i=1 γi

)
∏n+1

i=1 Γ(γi)

n

∏
i=1

xγi−1
i

(
1 −

n

∑
i=1

xi

)γn+1−1

,
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where xi ≥ 0 and ∑n
i=1 xi ≤ 1. For any chosen pair (i, j) with 1 ≤ i < j ≤ n and any real numbers

xi, xj, x′i , x′j such that xi ≤ x′i and xj ≤ x′j, we have the following relationship:

f
(

x1, . . . , xi, . . . , xj, . . . , xn
)

f
(

x1, . . . , x′i , . . . , x′j, . . . , xn

)
− f
(

x1, . . . , x′i , . . . , xj, . . . , xn
)

f
(

x1, . . . , xi, . . . , x′j, . . . , xn

)
=

[Γ
(

∑n+1
i=1 γi

)
∏n+1

i=1 Γ(γi)

]2 n

∏
k=1
k ̸=i,j

x2(γk−1)
k xγi−1

i (x′i)
γi−1x

γj−1
j (x′j)

γj−1

·
{
1 −

n

∑
k=1
k ̸=i,j

xk − xi − xj


1 −

n

∑
k=1
k ̸=i,j

xk − x′i − x′j




γn+1−1

−


1 −

n

∑
k=1
k ̸=i,j

xk − x′i − xj


1 −

n

∑
k=1
k ̸=i,j

xk − xi − x′j




γn+1−1}
. (4)

Since we have 1 −
n

∑
k=1
k ̸=i,j

xk − xi − xj


1 −

n

∑
k=1
k ̸=i,j

xk − x′i − x′j



−

1 −
n

∑
k=1
k ̸=i,j

xk − x′i − xj


1 −

n

∑
k=1
k ̸=i,j

xk − xi − x′j


= xix′j + x′i xj − x′i x

′
j − xixj = −(x′i − xi)(x′j − xj) ≤ 0,

and given that γn+1 ≥ 1, it follows that (4) is non-positive. Thus, we conclude that the random
vector X exhibits the MRR2(1) property, indicating that X is characterized by the multivariate
reverse rule of order two, which is the negative counterpart to the concept defined in Definition 3
by reversing the inequality sign, according to the direction 1. Consequently, by applying the
corresponding negative dependence framework, analogous to what is provided in Corollary 1 for the
positive dependence framework, we deduce that X is DS(1).

Example 3. Let X = (X1, X2, . . . , Xn) be a random vector following a multinomial distribution
characterized by parameters N (the number of trials) and p = (p1, p2, . . . , pn) (the probabilities of
the events), with the constraints pi ≥ 0 for each i = 1, 2, . . . , n and 0 < ∑n

i=1 pi < 1. The joint
probability mass function (PMF) is given by

f (x1, x2, . . . , xn) =
N!

∏n
i=1 xi!(N − ∑n

i=1 xi)!

n

∏
i=1

pxi
i

(
1 −

n

∑
i=1

pi

)N−∑n
i=1 xi

,

where ∑n
i=1 xi ≤ N. It is notable that the multinomial distribution can be viewed as the conditional

distribution of independent Poisson random variables, conditioned on their total. As established in
Theorem 4.3 of [16] and Theorem 3 of [12], we find that the random vector X satisfies the MRR2(1)
property. Consequently, we can conclude that X is also DS(1).

Remark 1. It is worth noting that, by applying reasoning analogous to that outlined in Exam-
ple 3, any random vector that follows a multivariate Hypergeometric distribution—essentially the
conditional distribution of independent binomial random variables given their total—also qualifies
as DS(1).
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Next, we provide an illustrative example showing the application of Proposition 7
related to weak convergence.

Example 4. Let X = (X1, X2, . . . , Xn) represent a random vector with a joint distribution function
defined as

Hθ(x) = exp

−( n

∑
i=1

e−θxi

)1/θ


for all x ∈ Rn
and θ ≥ 1. This family of distribution functions serves as a multivariate general-

ization of Type B bivariate extreme-value distributions (see [20,21]). By invoking Theorem 2.11
in [22], which addresses log-convex functions [23], we can assert that the random vector X is
IS(−1). We consider the sequence of distribution functions {Hθ}θ∈N. As θ approaches infinity, we
derive H∞(x) = min(F1(x1), F2(x2), . . . , Fn(xn)), where Fi are the one-dimensional marginals
of Hθ for i = 1, 2, . . . , n. Hence, by virtue of Proposition 7, it follows that Hθ retains the IS(−1)
property too.

4. Monotonic in Sequence According to a Direction and Copulas

Copulas serve as an essential tool for analyzing the positive dependence character-
istics of continuous random vectors. They encapsulate the dependence structure of the
corresponding multivariate distribution function, are independent of the marginal distribu-
tions, and provide scale-invariant measures of dependence. Additionally, copulas act as a
foundational element for constructing families of distributions (see [24]). In this section,
our objective is to examine continuous n-copulas associated with random vectors that are
IS(α). For simplicity, we focus on the bivariate and trivariate cases.

Let us recall some key concepts related to copulas. For n ≥ 2, an n-dimensional copula
(shortened to n-copula) is defined as the restriction to [0, 1]n of a continuous n-dimensional
distribution function, where the univariate margins are uniformly distributed on [0, 1].
The significance of copulas in statistics is highlighted by the following theorem from Abe
Sklar [25]: Let X = (X1, X2, . . . , Xn) be a random vector with joint distribution function F
and one-dimensional marginal distributions F1, F2, . . . , Fn. There exists a unique n-copula
C (which is determined on ×n

i=1RangeFi) such that

F(x) = C(F1(x1), F2(x2), . . . , Fn(xn)) for all x ∈ [−∞,+∞]n.

Moreover, if F1, F2, . . . , Fn are continuous, then C is uniquely defined. A comprehensive
proof of this result can be found in [26]. Thus, copulas serve to connect joint distribution
functions with their respective one-dimensional margins. For an overview of copulas,
see [21,27], and references discussing positive dependence properties through copulas can
be found in [5,21,22,28,29].

Let Πn represent the n-copula for independent random variables (also known as the
product n-copula), defined as Πn(u) = ∏n

i=1 ui for all u = (u1, u2, . . . , un) ∈ [0, 1]n.
For any n-copula C, the following inequality holds:

Wn(u) = max

{
0,

n

∑
i=1

ui − n + 1

}
≤ C(u) ≤ min{u1, u2, . . . , un} = Mn(u)

for all u in [0, 1]n. While Mn is an n-copula for all n ≥ 2, Wn qualifies as an n-copula only
when n = 2.

Let X be a random vector with an associated n-copula C, and consider the random
pair (Xi, Xj) corresponding to the components i and j (where i < j) of X. Define Cij as the
(i, j)-margin of C:

Cij(ui, uj) = C(1, . . . , 1, ui, 1, . . . , 1, uj, 1, . . . , 1),
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for all 1 ≤ i < j ≤ n, which represents the 2-copula corresponding to the random pair
(Xi, Xj). Additionally, C1,...,i denotes the i-copula C(u1, . . . , ui, 1, . . . , 1).

For a random vector (X1, X2, . . . , Xn) with associated n-copula C, the survival n-copula
associated with C, denoted by Ĉ, is defined as

Ĉ(u) = P[X1 ≥ 1 − u1, X2 ≥ 1 − u2, . . . , Xn ≥ 1 − un]

for all u ∈ [0, 1]n.
We begin by characterizing the concept of IS(α) in terms of n-copulas, specifically

focusing on the bivariate and trivariate cases for clarity.

4.1. The General Case

To characterize the IS(α) concept in terms of n-copulas, we examine the flipping
transformations of copulas. Recall that, for an n-copula C, the flipping of C in the i-th
coordinate (referred to as the i-flip of C) is defined as the function Ci : [0, 1]n −→ [0, 1] given
by, for all u ∈ [0, 1]n,

Ci(u) = C(u1, . . . , ui−1, 1, ui+1, . . . , un)− C(u1, . . . , ui−1, 1 − ui, ui+1, . . . , un)

(see [30]).
Moreover, the j-flipping transformation of the i-flip of C is denoted by Cij, and is given,

for all u ∈ [0, 1]n, by

Cij(u) = C(u1, . . . , ui−1, 1, ui+1, . . . , uj−1, 1, uj+1, . . . , un)

−C(u1, . . . , ui−1, 1 − ui, ui+1, . . . , uj−1, 1, uj+1, . . . , un)

−C(u1, . . . , ui−1, 1, ui+1, . . . , uj−1, 1 − uj, uj+1, . . . , un)

+C(u1, . . . , ui−1, 1 − ui, ui+1, . . . , uj−1, 1 − uj, uj+1, . . . , un).

Similarly, we denote by Cijk the k-flipping transformation of the function Cij, and so on.
Now, the following characterization can be established.

Theorem 2. Let X1, X2, . . . , Xn be n random variables with associated n-copula C, and α ∈ Rn

such that |αi| = 1 for all i = 1, 2, . . . , n. Let J = {1, 2, . . . , n}, and Ji = {j ∈ J : j ≤ i, αj = −1},
for i = 1, 2, . . . , n. Then, C is IS(α) if, and only if, for every i = {2, . . . , n}, the function G
given by

G(u1, . . . , ui) =
Ĉ Ji

1,...,i(u1, . . . , ui)

Ĉ Ji−1
1,...,i−1(u1, . . . , ui−1)

is nonincreasing in all uj for j ∈ {1, 2, . . . , i − 1}\Ji−1, and nondecreasing in all uj for j ∈ Ji−1,
for all ui, where Ĉ Ji

1,...,i denotes the function obtained from the survival copula Ĉ1,...,i of (X1, . . . , Xi),
after flipping consecutively in all indices j in Ji.

In Theorem 3 of [8], it is shown that a 3-copula C is PD(α) for every direction α if, and
only if, C = Π3. This result can be generalised to any dimension n ≥ 2. Since every IS(α)
n-copula is PD(α) for every α—recall Proposition 1—as a consequence of Proposition 3, the
following result easily follows.

Corollary 2. An n-copula C is deemed IS(α) for every direction α if, and only if, C is equal to Πn.

Now, we provide two examples of applications of Theorem 2.

Example 5. For all n ≥ 2, the n-copula Mn is IS(α) only for α = 1 and α = −1.
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Example 6. Let {Cn,λ}λ∈[−1,1] be an n-dimensional generalization of the one-parameter Farlie–
Gumbel–Morgenstern (FGM, for short) family of 2-copulas, which is given by

Cn,λ(u) =
n

∏
i=1

ui

[
1 + λ

n

∏
i=1

(1 − ui)

]

for all u ∈ [0, 1]n (see [21,27]). For α = (α1, α2, . . . , αn), let J = {i ∈ {1, 2, . . . , n} : αi = 1}.
After some elementary operations, we have that Cn,λ is I(α) for λ ∈ [0, 1] if |J|—the cardinality of
J—is even, and Cn,λ is I(α) for λ ∈ [−1, 0] if |J| is odd.

4.2. The Bivariate Case

We study now the bivariate case, which is a consequence of Theorem 2.

Corollary 3. Let (X, Y) be a pair of random variables with associated 2-copula C. Then, C is:

i. IS(1, 1) if, and only if,
1 − u − v + C(u, v)

1 − u
is increasing in u for all v;

ii. IS(1,−1) if, and only if,
v − C(u, v)

1 − u
is increasing in u for all v;

iii. IS(−1, 1) if, and only if,
u − C(u, v)

u
is decreasing in u for all v;

iv. IS(−1,−1) if, and only if,
C(u, v)

u
is decreasing in u for all v.

We provide several examples for the bivariate case.

Example 7. The 2-copula W2 is IS(α) for α = (−1, 1) and α = (1,−1).

Example 8. Let {Cδ}δ∈[−1,1] be the Ali–Mikhail–Haq one-parameter family of 2-copulas [31] given by

Cδ(u, v) =
uv

1 + δ(1 − u)(1 − v)

for all (u, v) ∈ [0, 1]2. It is easy to prove that Cδ is IS(−1, 1) and IS(1,−1) for δ ∈ [0, 1], and
IS(1, 1) and IS(−1,−1) for δ ∈ [−1, 0].

The following example shows that the converse of Proposition 2 does not hold in general.

Example 9. Consider the 2-copula

C(u, v) = uv
[
1 + (1 − u)(1 − v)2

]
for all (u, v) ∈ [0, 1]2. C belongs to the family of 2-copulas studied in [32]. Then, we have that C is
IS(1, 1). Moreover, we have that C is not I(1, 1).
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4.3. The Trivariate Case

In the next result, we study the IS(α) concept in terms of 3-copulas.

Theorem 3. Let (X, Y, Z) be a random triple with associated 3-copula C. Then, C is:

i. IS(1, 1, 1) if, and only if,
1 − u − v + C12(u, v)

1 − u
is increasing in u for all v and

1 − u − v − w + C12(u, v) + C13(u, w) + C23(v, w)− C(u, v, w)

1 − u − v + C12(u, v)

is increasing in (u, v) for all w;
ii. IS(1, 1,−1) if, and only if,

1 − u − v + C12(u, v)
1 − u

is increasing in u for all v and

w − C13(u, w)− C23(v, w) + C(u, v, w)

1 − u − v + C12(u, v)

is increasing in (u, v) for all w;
iii. IS(1,−1, 1) if, and only if,

v − C12(u, v)
1 − u

is increasing in u for all v and

v − C12(u, v)− C23(v, w) + C(u, v, w)

v − C12(u, v)

is increasing in u and decreasing in v for all w;
iv. IS(−1, 1, 1) if, and only if,

u − C12(u, v)
u

is decreasing in u for all v and

u − C12(u, v)− C13(u, w) + C(u, v, w)

u − C12(u, v)

is decreasing in u and increasing in v for all w;
v. IS(1,−1,−1) if, and only if,

v − C12(u, v)
1 − u

is increasing in u for all v and

C23(v, w)− C(u, v, w)

v − C12(u, v)

is increasing in u and decreasing in v for all w;
vi. IS(−1,−1, 1) if, and only if,

C12(u, v)
u
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is decreasing in u for all v and

C12(u, v)− C(u, v, w)

C12(u, v)

is decreasing in (u, v) for all w;
vii. IS(−1, 1,−1) if, and only if,

u − C12(u, v)
u

is decreasing in u for all v and

C13(u, w)− C(u, v, w)

u − C12(u, v)

is decreasing in u and increasing in v for all w;
viii. IS(−1,−1,−1) if, and only if,

C12(u, v)
u

is decreasing in u for all v and
C(u, v, w)

C12(u, v)

is decreasing in (u, v) for all w.

We provide an example for the trivariate case.

Example 10. Let C2,λ be the one-parameter FGM family of 2-copulas—recall Example 6. Consider
the 3-copula Cλ given by Cλ(u, v, w) = wC2,λ(u, v) for all (u, v, w) ∈ [0, 1]3. Then, we have
that Cλ is IS(1, 1, 1), IS(1, 1,−1), IS(−1,−1, 1), and IS(−1,−1,−1) for λ ∈ [0, 1] and Cλ is
IS(1,−1, 1), IS(−1, 1, 1), IS(1,−1,−1), and IS(−1, 1,−1) for λ ∈ [−1, 0].

5. Conclusions

The monotonic in sequence according to a direction concept, denoted by IS(α), con-
stitutes a significant advancement in multivariate dependence analysis because it allows
the modeling of dependencies that are not easily captured by previous concepts, such as
simple positive or negative dependence, extending several known multivariate dependence
concepts. There is clear potential for applications in fields such as financial risk analysis,
where directional dependence relationships could help model the correlation of extreme
events between financial assets. Another relevant area could be biostatistics, where the
progression of certain conditions or responses may be influenced by a sequence of biological
or environmental variables with marked directional dependence. Sequence dependencies
may also have implications in network analysis, such as neural or data networks, where the
direction in which nodes are affected significantly impacts information or state propagation.
This new concept seems to address the limitations of traditional dependence measures,
especially in configurations where dependencies are asymmetric or directional.

We have established certain relationships with other multivariate dependence con-
cepts, for instance, the implication from I(α) to IS(α) and, subsequently, from IS(α) to
PD(α). Additionally, we have highlighted key properties and conducted an examination
of this novel concept in terms of n-copulas—specifically for the bivariate and trivariate
scenarios for a better understanding. Copulas play a fundamental role in this paper. Sec-
tion 4 examines how copulas capture the multivariate dependence structure independently
of the marginal distributions, making it easier to analyze the IS(α) concept in terms of
directional properties.

Further exploration involving analogous extensions of well-known dependence con-
cepts discussed in this paper, the investigation of associated orders—akin to the approach
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taken in [33]—and defining new measures of association based on the concepts of depen-
dence studied here are the subject of ongoing investigation.
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