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Abstract
The increasing sophistication of multimodal interaction sys-
tems, which enable human-like communication, raises concerns
regarding the authenticity of exchanged speech data. Our re-
search addresses the challenges posed by the malicious misuse
of speech technologies, as for example voice conversion (VC)
and text-to-speech (TTS), which can be exploited to imperson-
ate speakers, manipulate public opinion, or compromise voice
biometric systems. Existing countermeasures, known as anti-
spoofing techniques, face significant limitations in effectively
combating these threats. To tackle this, our project proposes
three research directions: (1) improving deep neural network
(DNN)-based anti-spoofing techniques through robust feature
extractors, novel architectures, and enhanced training method-
ologies to bridge the gap between laboratory performance and
real-world application, (2) generating more realistic and diverse
training data to better reflect real-world conditions and attacks,
and (3) developing advanced, imperceptible watermarking tech-
niques for synthesized speech to prevent misuse, even in the
presence of deep learning-based removal attempts. This re-
search aims to significantly enhance the security and reliability
of computer-mediated speech interactions.
Index Terms: Speech-based interaction, Security, Voice bio-
metrics systems, Voice impersonation, Anti-spoofing, Deep-
fakes, Artificial intelligence

1. Introduction
The rapid advancement of digital technologies has ushered in a
new era of human-computer interaction, allowing us to engage
with information systems in a multimodal manner, where sys-
tems can communicate with us as if they were human. While
this enhances user experience and accessibility, it also intro-
duces significant challenges regarding the authenticity of the
exchanged data. Thus, crucial questions arise: Is the data re-
ceived authentic? Can we trust its origin? This issue becomes
particularly concerning when the primary medium of interac-
tion is speech, as advanced technologies now enable the cre-
ation of highly realistic and natural-sounding voices, which can
be manipulated for malicious purposes.

Voice-based interactions are now vulnerable to sophisti-
cated methods such as voice conversion (VC) and text-to-
speech (TTS) systems. These technologies, while groundbreak-
ing, can be misused to impersonate someone’s voice, leading to
security breaches and fraud. VC allows the transformation of a
speech recording from one individual to another, while TTS can

generate speech mimicking a person’s voice based on a small
reference sample —often requiring as little as three seconds of
audio [1]. Although these technologies have legitimate applica-
tions in assistive technologies, virtual assistants, and entertain-
ment industries [2, 3], they also pose a significant risk of being
misused. Misrepresentation, manipulation, and misinformation
through fake voice recordings have already been identified as
serious threats, along with more direct forms of fraud, such as
impersonating someone in a phone call to deceive others [4, 5].

One domain that is particularly susceptible to these attacks
is voice biometric systems, which are increasingly used for au-
thentication purposes. Voice authentication offers a natural and
convenient method of identity verification, but it can be easily
compromised. Despite the maturity of automatic speaker veri-
fication (ASV) technology [6], it remains vulnerable to a wide
range of spoofing attacks. Techniques such as mimicking, re-
playing speech recordings, or using advanced speech synthesis
and conversion can effectively bypass these systems.

Spoofing attacks are typically classified into physical ac-
cess (PA) and logical access (LA) categories [7]. PA attacks
involve replaying recorded speech using the system’s micro-
phone, while LA attacks involve synthetic or converted voices
directly injected into the system. Audio deepfake (DF) detec-
tion is inherently tied to LA attack detection, as both rely on
identifying high-quality forged speech from TTS or VC sys-
tems. The main difference lies in the target, either deceiving
a human listener or an ASV system. Since 2015, a number of
initiatives and challenges [8–10] have driven the development
of countermeasures, also known as anti-spoofing techniques, to
detect and mitigate these impersonation attacks [11]. However,
despite the considerable progress made, significant challenges
remain.

Deep neural network (DNN) based systems have become
essential in detecting spoofing attacks, surpassing traditional
signal processing methods [12–14]. These systems typically use
neural networks to extract deep features and generate an iden-
tity vector or embedding for the entire audio sequence. Then,
a binary classifier determines whether the input is genuine or
spoofed. In practice, these components are often integrated into
a single network (see Figure 1), making them more efficient but
still requiring improvements to detect increasingly sophisticated
attacks.

Despite DNNs have shown great potential in modeling
complex relationships within speech data, their real-world per-
formance often falls short. One key issue is that DNNs tend
to overfit to training data, especially when only limited or non-
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Figure 1: Diagram of a typical anti-spoofing system. The input speech undergoes pre-processing before being passed to a deep feature
extractor, which generates an embedding representing the entire utterance. A binary classifier then determines whether the speech is
genuine or spoofed. In many cases, these components are integrated into a single DNN architecture.

representative datasets are available. As spoofing attacks can
vary widely, making it nearly impossible to account for all pos-
sible attack vectors in training data, DNN-based anti-spoofing
methods often struggle to generalize to real-world scenarios.
This highlights the need for more robust or, even, alternative
solutions.

2. Project goals
This project focuses on enhancing the security of voice-based
interactions, particularly in the contexts of voice biometrics and
audio deepfakes. Building upon our previous research [15], this
project aims to address current anti-spoofing systems shortcom-
ings. To this end, we will first explore novel DNN architec-
tures, cost functions and training strategies. Explainability will
be also crucial for understanding how models detect genuine
or spoofed speech, providing insight into the decision-making
process. Additionally, the environmental impact of DNN mod-
els will be considered, as their computational requirements have
skyrocketed, leading to significant increases in energy con-
sumption and carbon emissions [16].

Another critical aspect of this project is the creation of im-
proved anti-spoofing databases. High-quality, diverse datasets
are essential for training models that can generalize to a wide
range of attack scenarios. The evolution of anti-spoofing chal-
lenges has shown that generating more realistic data that reflect
real-world conditions is crucial, as is employing data augmen-
tation techniques to enhance diversity within training sets.

Finally, as deep learning methods for generating synthetic
speech continue to evolve, there is a risk that detection sys-
tems will become less effective against increasingly realis-
tic deepfakes. In anticipation of this, we propose investigat-
ing robust and imperceptible watermarking techniques for syn-
thesized speech, ensuring that deepfake audio can be reliably
tagged and identified, even if attackers attempt to tamper with
the watermark. This will help create a more secure framework
for speech-based interactions in the digital age.

2.1. Feature extractors and detection models

Speech features play a critical role in detecting spoofing attacks
in voice biometrics systems. Traditional speech features such as
filter banks (FBANK) and Mel-frequency cepstral coefficients
(MFCC) have been replaced by more advanced extractors de-
signed specifically for spoof detection, such as constant-Q cep-
stral coefficients (CQCC) [17] and long-term spectral statistics
(LTSS) [18]. These features primarily focus on spectral magni-
tude, but recent approaches also explore working directly with
audio samples through task-oriented deep learning models, such
as convolutional neural networks (CNNs), SincNet [19], and
self-supervised models like wav2vec 2.0 [20].

Recurrent networks are frequently used for extracting iden-
tity vectors and making final decisions in spoofing detection.
For example, the Gated Recurrent Convolutional Neural Net-
work [12] and RawNet2 [21] have shown strong performance
against both PA and LA attacks. Emerging models now incor-
porate attention mechanisms and graph neural networks [22],
while our team is investigating novel architectures such as Con-
former [13].

Beyond architecture, the choice of a loss function is cru-
cial for optimizing detection models. While cross-entropy is
the standard, alternative approaches like triplet loss [23] and
kernel-based methods [24] are being explored to enhance fea-
ture discrimination and generalization.

Despite these advances, current state-of-the-art systems still
show significant limitations, with high equal error rates (EER)
in cross-database evaluations [25], making those unsuitable for
real-world applications. This project aims to address these gaps
by developing more robust feature extractors, novel DNN archi-
tectures, and better loss functions. Additionally, we will prior-
itize energy efficiency and carbon footprint considerations (by
means of tools as the proposed in [26]) and explore explainable
AI (xAI) frameworks [27] to enhance both model transparency
and performance.

2.2. Data generation and augmentation

One of the main challenges in developing anti-spoofing sys-
tems is the availability of suitable data, especially for PA at-
tacks. The ASVspoof challenge series [8] has played a signif-
icant role in providing standardized datasets for training and
evaluating spoof detection methods. However, earlier datasets,
such as ASVspoof 2017 [7], revealed that models often ex-
ploited defects in the data generation process, leading to over-
fitting rather than solving the actual problem. In response,
ASVspoof 2019 [28] used simulated PA data to control con-
ditions. As a result, models achieved strong performance in the
simulated environment. However, when tested on real-world
data, they performed poorly, showing an inability to generalize.
The ASVspoof 2021 [11] challenge continued this line, further
confirming the difficulty models face in adapting to real-world
spoofing scenarios, with EERs exceeding 24%. Logical access
attack detection faces similar challenges in terms of generaliza-
tion. While fusing complementary subsystems has shown some
success in combating diverse speech synthesis attacks [28], new
issues have arisen due to factors such as speech transmission ef-
fects and the inclusion of deepfake detection tasks in ASVspoof
2021.

This underscores the need for more suitable data to train ro-
bust anti-spoofing systems. However, collecting extensive real-
world data can be costly, prompting the exploration of data aug-
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mentation techniques. Methods such as speech companding,
encoding or RawBoost [29], as well as generative adversarial
networks (GANs) [30, 31] offer promising ways to extend and
diversify existing datasets.

Given these challenges, this project will focus on two key
areas: realistic PA data generation and LA data augmentation.
Our goal is to develop data that mirrors the variability of real-
world conditions while addressing the causes of overfitting and
poor generalization in deep learning models. By tackling these
issues in tandem, we aim to enhance the robustness and effec-
tiveness of anti-spoofing systems.

2.3. Robust watermarking for legitimate applications

In scenarios where detection systems fail to identify voice im-
personation, legitimate voice generation systems must collab-
orate to prevent misuse [32]. Audio watermarking offers a
promising solution by imperceptibly embedding additional data
within synthetic audio, enabling the tracking and identification
of its origin. Even if attackers can bypass passive detection
methods, the watermark remains in the audio file.

Initially developed for the music industry, audio water-
marking has expanded to applications such as digital rights
management and forensics, with methods offering varying lev-
els of robustness, imperceptibility, and embedding capacity.
However, while deep learning is being applied to enhance wa-
termarking and steganography techniques [33,34], it also poses
a threat, as neural networks can remove watermarks with grow-
ing success [35]. This highlights the need for specifically de-
signed watermarking methods that can resist such attacks.

This project will focus on developing specialized speech
watermarking techniques for voice generation systems. These
methods will aim to resist deep learning-based removal at-
tempts, ensuring the synthetic nature of the speech can be ver-
ified. We will also explore how these techniques can be in-
tegrated into voice systems in a standardized way to improve
security and accountability.

3. Materials and methods
We will follow a traditional methodology based on the exper-
imental evaluation of our anti-spoofing proposals. Our hy-
potheses will be implemented and tested against state-of-the-art
methods through computer simulations. To ensure a fair com-
parison, we will adopt the experimental framework from the
ASVspoof challenges, which provide standardized databases
for training, validation, and testing, along with baseline sys-
tems and performance metrics. The following datasets will be
included in our framework:
• ASVspoof 2017 [7]: Based on the RedDots corpus, this

dataset includes only replay attacks and comprises train-
ing, validation, and test subsets with 1508, 950, and 12008
spoofed and 1508, 760, and 1298 genuine utterances across
different speakers and recording sessions.

• ASVspoof 2019 [28]: Features both LA and PA scenarios
with 107 speakers, consisting of conversion, synthesis, and
replay attacks. The evaluation includes unknown attacks for
LA and PA scenarios, with 12483 and 108978 spoofed, and
28890 and 163740 genuine utterances, respectively. A small
set of real replays is also included.

• ASVspoof 2021 [11]: Focuses on new evaluation data for
LA, PA, and Deepfake (DF) tasks, with no new training or
development data provided. It involves 48 speakers and con-
tains large datasets of genuine and spoofed utterances, simu-

lating real spoof conditions.
Additionally, we will include the databases from our trans-
ference agreements with Veridas [36], the 2022 ADD chal-
lenge [10], VoxCeleb2, VCTK, and ASVspoof V [8] (once
available).

Performance will be measured using EER [7] and the tan-
dem detection cost function (t-DCF) [28]. For watermark ro-
bustness, we will use bit error rate (BER) and generalized like-
lihood ratio tests [37], as well as PESQ [38], ESTOI, MOS, and
MUSHRA tests [39] for quality and intelligibility assessment.

Our methods will be developed in Python, preferred for its
open-source nature and support for machine learning libraries
like TensorFlow and PyTorch, ensuring optimized GPU com-
putation.

4. Expected impact
Voice biometrics adoption is growing rapidly, driven by the de-
mand for secure access methods and the proliferation of devices
that simplify authentication. Organizations in fraud-prone sec-
tors such as banking, insurance, and healthcare are particularly
drawn to these systems for their enhanced security. The global
voice biometrics market is projected to grow from $1.3 billion
in 2021 to $4.8 billion by 2028, reflecting a compound annual
growth rate of 20.6% [40]. Additionally, biometric technology
used in smartphone transactions is expected to rise significantly,
with contactless technologies outpacing traditional fingerprint-
based methods. In Spain, companies like BBVA, Telefónica,
and Banco Sabadell are already integrating voice biometrics
into their security systems, with some offering advanced fea-
tures such as voice signatures [41] and proof-of-life verification
through voice [36].

Despite their benefits, voice biometrics systems are vulner-
able to spoofing attacks. Indeed, according to Pindrop Secu-
rity, up to 1 in 40 calls could be high-risk [42]. As attackers
find ways to deceive voice-based authentication, reliable anti-
spoofing technologies become critical for ensuring the safety
of these systems. In addition to conventional spoofing, the rise
of audio deepfakes poses a significant social threat. While less
publicized than video deepfakes, audio deepfakes could be even
more damaging due to the prevalence of verbal communication
in daily life [43]. Attackers can exploit these fakes through
phone calls, radio broadcasts, and voice messages, emphasiz-
ing the need for advanced methods to verify the authenticity of
audio samples.

As this project aims to address these security gaps by devel-
oping robust techniques, it has significant potential for technol-
ogy transfer. Indeed, it is supported by national companies like
Biometric Vox and Veridas, which have expressed interest in
its outcomes while there is an ongoing work with Veridas [36],
underlining the project’s potential for real-world impact.

5. Funding
The ASASVI project (PID2022-138711OB-I00) is funded by
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