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A B S T R A C T

Monitoring the distribution and size of long-living large shrubs, such as junipers, is crucial for assessing the
long-term impacts of global change on high-mountain ecosystems. While deep learning models have shown
remarkable success in object segmentation, adapting these models to detect shrub species with polymorphic
nature remains challenging. In this research, we release a large dataset of individual shrub delineations on
freely available satellite imagery and use an instance segmentation model to map all junipers over the treeline
for an entire biosphere reserve (Sierra Nevada, Spain). To optimize performance, we introduced a novel dual
data construction approach: using photo-interpreted (PI) data for model development and fieldwork (FW) data
for validation. To account for the polymorphic nature of junipers during model evaluation, we developed a
soft version of the Intersection over Union metric. Finally, we assessed the uncertainty of the resulting map in
terms of canopy cover and density of shrubs per size class. Our model achieved an F1-score in shrub delineation
of 87.87% on the PI data and 76.86% on the FW data. The R2 and RMSE of the observed versus predicted
relationship were 0.63 and 6.67% for canopy cover, and 0.90 and 20.62 for shrub density. The greater density
of larger shrubs in lower altitudes and smaller shrubs in higher altitudes observed in the model outputs was also
present in the PI and FW data, suggesting an altitudinal uplift in the optimal performance of the species. This
study demonstrates that deep learning applied on freely available high-resolution satellite imagery is useful
to detect medium to large shrubs of high ecological value at the regional scale, which could be expanded to
other high-mountains worldwide and to historical and fothcoming imagery.
1. Introduction

Climate change is forcing species to move latitudinally and altitu-
dinally to maintain their climatic optimum. Species are often moving
rapidly over large geographic areas, so methodological tools are needed
to track these massive movements and to identify the dynamics of
advancing and retreating fronts.

The study of the distribution and abundance of organisms has
always been a fundamental tenet in ecological science (Krebs, 2013).
Classical field surveys (e.g., transects, plots) to count individuals are
the most accurate, but it is impractical to use them when trying to
identify and count individuals over vast and frequently remote areas.
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New methodological tools need to be developed to enable ecologists to
identify, count and map individuals over large areas with precision.

High-mountain shrubs play a vital role in ecosystems, contributing
significantly to soil stabilization in the headwaters of watersheds, car-
bon sequestration, wildlife habitat provision, microclimate moderation,
and overall biodiversity support (Adhikari et al., 2017). Climate change
may intensify the vulnerability of these species, and reshape their
geographical ranges to more climatically suitable regions (El-Barougy
et al., 2023). In this context, the development of high-precision maps
at individual level is indispensable for an accurate, but efficient and
timely tracking of shrub distribution (Otto et al., 2012). This precise
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Table 1
Review of studies using remote sensing and machine/deep learning to identify shrub individuals.

Shrub species RS
technology

Spatial
resolution

Data
type

Data size Publicly
available

Mapping
approach

Model Study area Ecosystem
type

Reference

Hakea
suaveolens and
Hakea sericea

UAV 20 cm RGB 100 images
with shrubs

No Semantic
segmentation

U-Net South
Africa

Fynbos James and
Bradshaw (2020)

4 species UAV 1.5 cm RGB 2991
shrubs

No Semantic
segmentation

OBIA +
Random Forest

Northwest
China

Dryland Li et al. (2021)

Hakea sericea UAV – RGB 100 images
with shrubs

No Patch-based
classification and
Semantic
segmentation

Xception
Inception
MobileNet
U-Net

South
Africa

Fynbos James and
Bradshaw (2021)

Pearl bluebush
and Maireana
sedifolia

UAV (0.8, 2,
3) cm

RGB 4111
shrubs

No Object detection Faster-RCNN
YOLO-V3
SSD

South of
Australia

Dryland Retallack et al.
(2022)

Cytisus
scoparius

LiDAR 2 cm Structural
features

65 shrubs No 3D point
detection

Machine
learning
models

Denmark Grassland Madsen et al.
(2020)

Ziziphus lotus
(scattered
shrubs)

GE
satellite

12 cm RGB 82 shrubs No Patch-based
classification

GoogleNet and
ResNet

South of
Spain and
Cyprus

Dryland Guirado et al.
(2017)

Ziziphus lotus
(scattered
shrubs)

GE
satellite
and UAV

1 m RGB – Under
request

Instance
segmentation

Mask R-CNN +
OBIA

South of
Spain

Dryland Guirado et al.
(2021)

6 species UAV 1.5–2.6
cm

RGB – Yes Image
classification

ConvNeXt
Resnet
Swin
Vit

Northeast
of Japan

High-
mountain

Moritake et al.
(2024)

Juniperus GE
satellite

13 cm RGB 8580
shrubs

Yes Instance
segmentation

Mask R-CNN South of
Spain

High-
mountain

Ours
but quick mapping is essential for various purposes, including environ-
mental monitoring, biodiversity conservation, forestry, climate impact
assessment, invasive species monitoring, land management, and urban
planning (Ayhan et al., 2020).

Combining remote sensing (RS) and artificial intelligence (AI) tech-
nologies can provide a great opportunity to improve in-situ field survey-
ing by opening up opportunities for automation. RS technologies offer
highly detailed spatial resolution granting exceptional flexibility in data
acquisition. This data can be afterwards processed by deep learning
(DL) models for automatic identification of shrubs.

Many studies have used remote sensing data to generate land cover
maps including shrublands (Soubry et al., 2022). These studies capture
a broad distribution of shrubs without delineating them individually.
Only a few attempts have been made to identify a specific types
of shrubs (Table 1). These studies are constrained by the following
limitations. (1) Most of them were conducted across three distinct
ecosystems. Mountain areas have been tackled once. (2) Only one study
used satellite data (Guirado et al., 2021). (3) The studied shrubs have
a consistent morphology. (4) None of them deployed the model to
generate a large scale distribution of shrubs.

The delineation of plant species featuring morphological variations
from satellite and even from aerial imagery has been often addressed
in ecological and remote sensing applications, but it continues to be
challenging (Ramírez-Portilla et al., 2022). In general, shrub delin-
eation using Convolution Neural Networks (CNNs) can be effective
when these shrubs have consistent patterns. However, this process may
become more challenging in highly diverse ecosystems (Zhang et al.,
2020) and in scenarios with polymorphic shrubs, which are prone to
overlapping and splitting due to canopy thinning (Dong et al., 2019).
These scenarios make the data annotation process challenging and
uncertain.

The research reported in this paper aims to demonstrate that freely
available RGB high-resolution satellite imagery are useful to detect
medium to large shrubs of high ecological value on a regional scale

across large areas. Our main objectives can be summarized as follows:

2 
• We proposed the largest publicly available dataset of polymorphic
shrubs (8580 digitized individuals).

• We introduced a new data construction approach to overcome the
limitations of field surveying methods.

• We developed a soft version of the Intersection over Union (IoU)
metric for model evaluation.

• We deployed the model at the large scale and generated a map of
high-mountain shrubs, then analyzed their distribution.

The structure of this study is organized as follows: Section 2 de-
scribes the study area and materials. Section 3 outlines the method-
ology. Section 4 presents the obtained results. Section 5 presents the
discussion. Section 6 summarizes the key findings of the study and
sheds light onto future works.

2. Study area and materials

2.1. Study area

This research occurred in the Sierra Nevada National Park lo-
cated on the southern fringe of Iberia at 37◦06′N 3◦05′W, between
the provinces of Granada and Almería, Spain (Fig. 1-b). This park
contains the highest mountains in western Europe after the Alps, with
an elevation of 3479 m at the Mulhacén peak (Palacios et al., 2020).
This ecosystem includes an abundance of two long-living shrubs, named
Juniperus communis and Juniperus sabina, with priority conservation
interest at the European level.

2.2. Target species

Common juniper, Juniperus communis L. (Cupresaceae), is among the
most widely distributed gymnosperms in the Holarctic, ranging from
circum-Mediterranean mountains up to subarctic tundra (García et al.,
2000). Juniper (Fig. 1-a) is a typical dwarf evergreen needle-leaf long-
living shrub that occurs on poor soils and harsh environments. This
species shows a continuous distribution in northern and central Europe,



R. Khaldi et al. International Journal of Applied Earth Observation and Geoinformation 134 (2024) 104191 
Fig. 1. (a) juniper shrub captured in-situ(left) and from Google Earth satellites (right). (b) Location of the study area in the National Park of Sierra Nevada (Andalusia, Spain).
(c) Distribution of Photo Interpreted (PI) and Field Work (FW) datasets.
but populations become progressively more fragmented towards the
Mediterranean Basin, where the species is located exclusively in high-
mountain areas, dominating the strip between the tree-line and the
woody-line. These populations, such as those in the southern Iberian
Peninsula, are characterized by a very low regeneration ability under
natural conditions. There, populations are currently dominated by adult
and senescent individuals, with extremely low proportions of seedlings
and juveniles (García et al., 1999).

In the complex terrain of the Sierra Nevada high mountains, the
highly heterogeneous backgrounds present significant challenges. These
difficulties are further compounded by the polymorphic nature of
juniper shrubs, whose crowns can vary greatly between similar individ-
uals as follows (Fig. 2): (1) They can grow in different morphologies
(e.g., hemispherical, stripes, crescent shape, thinned lines, etc.) de-
pending on their age, slope, and altitude of their geographic location.
(2) They can grow in different individual densities: isolated or in
colonies that merge to form big shrubs. This latter pattern makes
their individual detection either by human experts or by the model
itself particularly challenging. This is even truly challenging during
the fieldwork surveys to collect ground truth validation samples. (3)
They can grow in different sizes, ranging from centimeters to hundreds
of meters which sometimes can cover the entire image tile fed to
the model. This makes the model unable to see the full object and
can confuse it with lakes and grasslands. (4) They can have different
colors. They are not always green but they can be brown, red, and with
different green shades depending on their health, season, and time of
the day. This makes the foreground/background problem even harder.
(5) They can have different foliage density (i.e., leaf area index) and
crown vertical patterns depending on the age and health of the shrub.
3 
2.3. Data acquisition

Training DL models requires large and high-quality datasets. How-
ever, collecting such data through fieldwork is expensive, labor-
intensive, time-consuming, unsustainable, and limited to a small spatial
scale. To address these challenges, we propose the combination of a
large amount of less accurate but easier to get photo-interpreted (PI)
data, with a smaller amount of high quality but costly to get field-work
(FW) data.

The PI data was annotated by botanists who visually inspected a
representative range of sites in the satellite images to annotate all
juniper shrubs in each site, without conducting field visits. As a result,
this data may contain some uncertainty and errors in the annotations,
as identifying junipers can be challenging with the 13-cm resolution
of the satellite images. The PI data contains samples of 712 sites of
448 × 448 m with a total of 6809 juniper shrubs. The FW data was
obtained in the field by botanists and ecologists with a differential
centimetric GPS. A total of 124 sample sites of 420 × 336 m with a
total of 1771 juniper shrubs were visited. Every shrub present in each
site was georeferenced. The stored coordinates were then overlapped
onto the satellite image for adjustment, verification and clipping. The
sites for collecting the FW data were different from the sites where the
PI data was extracted. The average minimum distance between the FW
sites and the PI sites was 433 m (Tables 2 and A.6).

One of the main goals of our study is to create a model that can
produce a precise and accurate map of junipers useful for ecologists
and managers. This requires that the model generalizes well across
the different morphologies of junipers, which usually relate to the
different environmental conditions of the high-mountain ecosystems.
For these reasons, when constructing the PI and FW datasets, we
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Fig. 2. Variation in the growing pattern of juniper shrubs.
Table 2
Distribution of the number of images and instances in PI and FW datasets over different shrub sizes.

Data name Data partitions Size of images Number of images Number of shrubs

All XS S M L XL XXL

Photo Interpreted (PI)
Train (448 × 448) pixels

3582.33 m2

570 5459 559 837 1392 1331 805 535
validation 67 660 90 91 152 170 97 60
PI test 75 690 29 91 163 201 119 87

Field Work (FW) FW test (420 × 336) pixels
2550.68 m2

124 1771 310 329 439 351 194 148

Total 836 8580 988 1348 2146 2053 1215 830
considered the following constraints: (1) High variation in growing pat-
terns: junipers exhibit significant variation in morphology, density, size,
canopy/foliage, and color within and across different areas in the park.
This variation necessitates careful dataset construction to ensure that
the model can generalize well to all types of junipers. (2): High ecosys-
tem diversity of Sierra Nevada National park: Sierra Nevada embraces
one of the most diverse environments in Europe and in the Mediter-
ranean Basin (Cañadas et al., 2014). Such environmental heterogeneity
partially determines the differences in morphology of junipers across
the different environments and provides different backgrounds where
the species grows, from homogeneous barren lands and meadows, to
heterogeneous shrublands and abandoned croplands, where identifying
junipers presents a more challenging foreground/background problem.

Thus, to create PI and FW datasets, we employed a block splitting
approach (Roberts et al., 2017; Uieda, 2018). Using expert knowledge,
we identified various sites across the park where junipers are likely
to grow. These sites were divided into a grid of patches. The experts
involved in this work constructed PI dataset by visually filtering out
all patches that lacked junipers and those where visual inspection of
junipers was challenging. From the remaining patches, we randomly
sampled the PI subsets (80% of training to get the optimal parameters
of the model, 10% of validation to avoid overfitting and select the best
model configuration, and 10% of PI test to evaluate the generalization
of the model on the PI dataset) ensuring that their patches were
spatially distant from each other to prevent adjacent patches from being
used for both training and testing. Within each patch, all the existing
junipers were annotated (Fig. 1-c).

For the FW dataset, we utilized three different accessible sites. From
these sites, we manually selected patches that were spatially distant
from the PI patches and situated on reasonably accessible slopes,
allowing experts to easily conduct field visits. This dataset contains
only one subset that we call FW Test set used for two key purposes:
(1) evaluate the generalization performance of the model on juniper
samples from the FW data, and (2) provide an estimate of performance
for the wall-to-wall juniper map of Sierra Nevada.
4 
3. Methods

3.1. Study design

The design of this study is organized into four main steps (Fig. 3):
(1) the PI and the FW data were collected, annotated, and preprocessed,
(2) the shrub delineation model was developed using the PI data, then
(3) the developed model was validated using the FW data, finally (4)
the model was deployed to generate a wall-to-wall map of juniper.

Mask-RCNN model (He et al., 2017) has shown impressive re-
sults in a variety of vegetation detection applications (Zheng et al.,
2022; Kierdorf et al., 2023). In the context of our study, We fine-
tuned and optimized different architectures proposed by Detectron2
library (Wu et al., 2019). Fig. 4 presents the model design. An instance
segmentation-based approach was employed to individually delineate
junipers, enabling more effective monitoring of their changes over time.
During the training, the model was evaluated on the validation set after
each 10 epochs based on which the best model state was saved.

3.2. Model evaluation

To evaluate instance segmentation-based DL models, we usually use
the Intersection over Union (IoU) metric. The evaluation process in-
cludes two main steps: (1) predictions’ evaluation where the algorithm
iterates over the predicted instances to compute the number of TPs
(True Positives) and FPs (False Positives), and (2) labels’ evaluation
where the algorithm iterates over the ground truth instances to get the
number of FNs (False Negatives). This metric computes the area of the
intersection between the prediction 𝑝 and the label (i.e., ground truth)
𝑙 and divide the result by the area of their union (Eq. (1)). It always
selects the best matching label or prediction in the evaluation process.

IoU(𝑝, 𝑙) =
𝐴𝑟𝑒𝑎(𝑝 ∩ 𝑙)
𝐴𝑟𝑒𝑎(𝑝 ∪ 𝑙)

(1)

Due to the polymorphic nature of junipers, their identification and
annotation by experts becomes challenging. One expert may identify a
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Fig. 3. Workflow of the automatic delineation of juniper shrubs.
Fig. 4. Description of the model design used to delineate juniper shrubs.
Fig. 5. Two examples (a) and (b) showing a discrepancy between expert annotations
and model detections due to the polymorphic character of junipers.

shrub as one individual while others may see it as multiple individuals.
As a result, the model may exhibit similar behavior in its predictions
which can be strongly penalized by the IoU metric (Fig. 5). From the
ecological perspective, detecting one juniper as multiple instances and
vice versa are acceptable due to the complex nature of these species.

Thus, to evaluate the performance of DL models with respect to
polymorphic plant species subject to overlapping, splitting due to
5 
canopy thinning, and uncertain human experts annotations, we devel-
oped a soft version of IoU that we name S-IoU. The two metrics convey
different but complementary information: (1) The IoU evaluates how
precise the model is in detecting junipers while being aligned with
human experts annotations. (2) The S-IoU evaluates the proportion
of junipers’ areas being detected by the model since we divide the
intersection by the ground truth area and we use all matching ground
truth shrubs instead of the best matching shrub. Unlike the IoU that
evaluates the predictions and labels similarly, this metric evaluates
them differently: Eq. (2) was used to identify the number of TPs and
FPs, while Eq. (3) was used to identify the number of FNs (Fig. B.12).

S-IoU(𝑝, 𝑆𝑙𝑚𝑎𝑡𝑐ℎ ) =
𝐴𝑟𝑒𝑎(𝑝 ∩

⋃|𝑆𝑙𝑚𝑎𝑡𝑐ℎ |

𝑘=1 𝑙𝑘)

𝐴𝑟𝑒𝑎(
⋃|𝑆𝑙𝑚𝑎𝑡𝑐ℎ |

𝑘=1 𝑙𝑘)
(2)

S-IoU(𝑙, 𝑆𝑝𝑚𝑎𝑡𝑐ℎ ) =
𝐴𝑟𝑒𝑎(𝑙 ∩

⋃|𝑆𝑝𝑚𝑎𝑡𝑐ℎ |

𝑘=1 𝑝𝑘)
𝐴𝑟𝑒𝑎(𝑙)

(3)

where: 𝑆𝑝𝑚𝑎𝑡𝑐ℎ the set of all matching predictions. 𝑆𝑙𝑚𝑎𝑡𝑐ℎ is the set of
all matching labels. 𝑙𝑘 and 𝑝𝑘 are the label and prediction of id 𝑘,
respectively.

To evaluate the overall model performance, three metrics were
used: (1) the Precision (4) to assess how precise the model is in
delineating the shrubs, (2) the Recall (5) to evaluate how accurate the
model is in recalling the shrubs, and (3) the F1-score (6) to examine
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Fig. 6. Description of the deployment pipeline.

the ability of the model to maintain the trade-off precision–recall.

Precision = TP
TP+FP (4)

Recall = TP
TP+FN (5)

F1-score = 2 ∗ Precision ∗ Recall
Precision + Recall (6)

3.3. Model deployment

After developing the model using the PI data and validating it using
the FW data, it was deployed over all the park to generate a wall-to-
wall map of juniper. The deployment pipeline consists in seven main
steps (Fig. 6): (1) A set of RGB tiles covering the whole park were
downloaded at 13 cm resolution. (2) Each tile was cropped into images
of size (448 × 448). (3) A DEM (Digital Elevation Model) at 2 m/pixel
resolution was used to filter out images with altitude less than 1.9 km
because we assume that juniper is more likely to grow above this alti-
tude and the model is more prone to make false detections below this
altitude. To perform this filtering, each image was assigned an altitude
value corresponding to the maximum altitude covered by the image. (4)
The filtered images were fed to the model. (5) A refining process was
applied to the model detections that consists in dissolving the multiple
detections of the same shrub in one detection using the union over
their geometries and creating three kinds of scores (average, median,
and maximum scores). (6) A second area-based filtering was applied,
where the detections with area less than 1.04 m2 (i.e., corresponding to
the 10th percentile of the detected areas) were filtered out because we
are less confident in the model detections below this threshold. (7) All
the detections of the images were merged to generate a final map of
juniper at 13 cm resolution.

3.4. Statistical analysis

To assess the model’s generalization performance, we evaluate it
on both the PI and FW test sets. Additionally, we analyze the model’s
performance across six different shrub size ranges (Table 5). For de-
ployment validation, we use the FW data to examine the correlation
6 
Table 3
Description of the best Mask R-CNN configuration.

Hyperparameters Best values

Maximum number of iterations 4000
Optimization algorithms Momentum
Batch size 2
Initial learning rate 0.0025
Learning rate scheduler WarmupCosine (2000 iterations, factor of 10)
Data augmentation No augmentation
Maximum number of boxes 256
Feature extractor (backbone) ResNet101-C4

between the number of predicted and observed junipers in FW images,
as well as the correlation between the proportion of the FW image
occupied by predicted versus observed junipers. Furthermore, we in-
vestigate the distribution of junipers by size across different altitudes,
comparing results from the PI data, FW data, and the model output
trained on PI data.

4. Results

4.1. Analysis of model evaluation results

The optimal model configuration was achieved with the ResNet101-
C4 backbone, a batch size of two, and an initial learning rate of 0.0025.
Data augmentation was not utilized, as it did not yield a significant
improvement in model performance (Table 3).

Fig. 7 illustrates the model’s performance evaluated using IoU and
S-IoU metrics across various confidence score thresholds (𝜃𝑠𝑐𝑜𝑟𝑒). Both
metrics follow a similar pattern, though the F1-scores associated with
the S-IoU metric are consistently higher than those with IoU, owing to
the softer nature of S-IoU. This suggests that even when the model’s
predictions do not perfectly align with expert annotations, it can still
detect a substantial portion of the juniper area.

When comparing the model’s performance on the PI and FW test
sets, distinct patterns emerge between the two curves. The F1-score
curve for the PI test set shows a steady increase, reaching its peak at
a confidence score threshold of 𝜃𝑠𝑐𝑜𝑟𝑒 = 90%. In contrast, the F1-score
for the FW test set initially rises, then stabilizes between thresholds of
20% and 85%, with a peak at 𝜃𝑠𝑐𝑜𝑟𝑒 = 50%. This indicates that, unlike
the PI data, the model’s performance on the FW data remains relatively
consistent across a wide range of confidence score thresholds. Since the
FW data is a snapshot of real world data, a confidence score threshold
of 𝜃𝑠𝑐𝑜𝑟𝑒 = 50% is recommended for deployment.

Table 4 presents the model evaluation results for the PI and FW test
sets, using the IoU and S-IoU metrics at two overlapping thresholds,
50% and 75%. The table also includes the corresponding values for true
positives (TPs), false positives (FPs), false negatives (FNs), precision,
recall, and F1-score. The results indicate that the model performed best
at the 50% threshold. For the PI test set, the model achieved an F1-score
of 84.84% using the IoU metric and 87.87% using the S-IoU metric. For
the FW test set, the F1-scores were 72.39% and 76.86%, respectively.
When comparing the model’s performance on the PI and FW test sets,
we observe a decrease of approximately 12% in F1-score using IoU and
11% using S-IoU at the 50% threshold.

4.2. Assessment of shrub size on model performance

Table 5 shows the model evaluation results based on shrub size for
both the PI and FW test sets, using the IoU and S-IoU metrics.

For the PI test set, the model performs well on medium (M), large
(L), extra large (XL), and extra extra large (XXL) shrubs, achieving F1-
scores above 81% with IoU and above 83% with S-IoU. However, for
small (S) shrubs, the performance declines to 75% with IoU and 78.53%
with S-IoU. The detection accuracy drops significantly for extra small
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Fig. 7. Mask R-CNN performance evaluated on PI and FW test sets using IoU and S-IoU metrics across different confidence score thresholds 𝜃𝑠𝑐𝑜𝑟𝑒.
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Table 4
Mask R-CNN performance evaluated on PI test set (at 𝜃𝑠𝑐𝑜𝑟𝑒 = 90%) and FW test set (at
𝜃𝑠𝑐𝑜𝑟𝑒 = 50%) using IoU and S-IoU metrics at thresholds 50% and 75%.

Data
name

Metric
name

Metric
threshold

TP FP FN Precision Recall F1-score

PI test
IoU 50 568 78 125 87.93 81.96 84.84

75 494 152 196 76.47 71.59 73.95

S-IoU 50 572 74 84 88.55 87.20 87.87
75 551 95 103 85.29 84.25 84.77

FW test
IoU 50 1268 438 529 74.32 70.56 72.39

75 833 873 938 48.82 47.03 47.91

S-IoU 50 1307 399 388 76.61 77.11 76.86
75 1141 565 493 66.88 69.83 68.32

(XS) shrubs, with F1-scores of 48.15% and 53.06% for IoU and S-IoU,
respectively.

In the FW test set, the model achieves F1-scores greater than 82%
with IoU and 85% with S-IoU for L and XL shrubs. For M and S
shrubs, the F1-scores are above 70% with IoU and 73% with S-IoU. The
performance declines for XS shrubs, with F1-scores of 54.09% using IoU
and 61.45% using S-IoU. Interestingly, for XXL shrubs, the IoU-based
F1-score is 72.86%, while the S-IoU-based F1-score is 83.02%. This
indicates that while the model’s detections for large shrubs covering
a significant portion of the image may not align precisely with expert
annotations, they are still identified as a colony of individuals using
S-IoU.

4.3. Analysis of model deployment results

Fig. 8-a displays the distribution of the detected junipers at model
score threshold 𝜃𝑠𝑐𝑜𝑟𝑒 = 50%. We can observe that junipers are highly
concentrated in the North-West region and follow a stripe pattern in
the North-East region, while they are less concentrated in the Southern
region. The maximum number of junipers reach 152 individuals per
hectare. Fig. 8-b presents the distribution of juniper for each altitude
range from 1.9 km to 3.5 km with a step of 100 m at model score thresh-
old 𝜃𝑠𝑐𝑜𝑟𝑒 = 50%. Juniper individuals are highly concentrated within
a specific range of altitude, mainly between 2 km and 2.6 km. Fig. 9
presents some samples of the model detections and their corresponding
expert annotations at model confidence score threshold 𝜃 = 50%.
𝑠𝑐𝑜𝑟𝑒 i
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Table 5
Mask R-CNN performance evaluated on PI test set (at 𝜃𝑠𝑐𝑜𝑟𝑒 = 90%) and FW test set (at
𝜃𝑠𝑐𝑜𝑟𝑒 = 50%) over different sizes using IoU and S-IoU metrics at 50% threshold.

Data name Size IoU S-IoU

Precision Recall F1-score Precision Recall F1-score

PI test

XS 54.17 43.33 48.15 54.17 52.00 53.06
S 78.75 71.59 75.00 80.00 77.11 78.53
M 84.77 78.05 81.27 84.77 82.05 83.39
L 95.03 88.21 91.94 94.48 92.94 93.70
XL 94.96 88.98 91.87 94.12 94.92 94.52
XXL 86.81 88.76 87.78 92.31 93.33 92.82
All 87.93 81.96 84.84 88.55 87.20 87.87

FW test

XS 58.24 50.50 54.09 63.22 59.78 61.45
S 71.39 68.70 70.02 73.19 74.09 73.64
M 70.31 73.09 71.67 71.21 78.77 74.80
L 84.14 81.59 82.85 84.42 86.88 85.63
XL 88.02 82.44 85.14 89.58 87.76 88.66
XXL 83.05 64.90 72.86 93.22 74.83 83.02
All 74.33 70.56 72.40 76.61 77.11 76.86

.4. Validation of juniper map

Fig. 10 shows the distribution of juniper sizes across various al-
itudes under different conditions: (a) using PI data only, (b) the
odel’s deployment output trained and configured with PI data, (c)

W data only, and (d) the model’s deployment output trained on PI
ata but configured with FW data. The model configuration refers to
he selection of the confidence score threshold during deployment.
ccording to the model outputs, junipers are concentrated between 2
m and 2.6 km in altitude following an altitudinal order: smaller shrubs
XS, S, and M) are more likely to grow at higher altitudes, while larger
hrubs (XXL, XL, and L) tend to grow at lower altitudes. This pattern
n juniper distribution observed in the model outputs was also present
n the PI and FW data, suggesting an altitudinal uplift in the optimal
erformance of the species.

Fig. 11-a shows the scatter plot comparing the percentage of the
W image occupied by observed versus predicted junipers at a model
onfidence score threshold of 𝜃𝑠𝑐𝑜𝑟𝑒 = 50%. There is a strong correlation
etween the two variables when junipers occupy a small portion of the
mage, with a Pearson correlation coefficient of 𝑟 = 0.81. However,
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Fig. 8. Density map highlighting (a) the spatial and the (b) altitudinal distribution of junipers, in the National Park of Sierra Nevada of Spain, at model score threshold 𝜃𝑠𝑐𝑜𝑟𝑒 = 50%
using an altitude threshold of 1.9 km.
Fig. 9. Samples of model predictions (in yellow) and their corresponding experts annotations (in green). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
this correlation weakens as the percentage of the image occupied by
junipers increases. This suggests that the model segments junipers more
accurately when they occupy a smaller portion of the image, and less
accurately when they occupy a larger portion. Fig. 11-b presents the
scatter plot comparing the number of observed versus predicted ju-
nipers per hectare based on FW data at the same confidence threshold.
There is a high correlation (𝑟 = 0.95) when the image contains a
small number of shrubs, but this correlation decreases as the number of
shrubs in the image increases. This indicates that the model’s estimation
of juniper count is highly accurate when juniper density is low, but
this accuracy diminishes as density increases. Fig. 11 also assess the
uncertainty in the generated juniper map in terms of canopy cover and
shrub density: we found an error of 𝑅𝑀𝑆𝐸 = 20.62, 𝑀𝐴𝐸 = 13.12, and
𝑀𝐵𝐸 = 2.05 individuals per hectare, and an error of 𝑅𝑀𝑆𝐸 = 6.67%,
𝑀𝐴𝐸 = 2.69%, and 𝑀𝐵𝐸 = 1.54% for canopy cover.

5. Discussion

5.1. Ecological considerations

Our methodology, which combines AI and RS technologies with the
new data construction design, was powerful in accurately delineating
medium to large junipers from RGB satellite images within a complex
mountain environment. Such a tool could be extended to systemat-
ically produce high-precision maps of juniper (or similar shrubs) in
high-mountains or high latitudes to track climate change effects on
8 
their distribution, abundance, size structure, and in the woody-line
throughout the Palearctic.

This new tool makes it possible to count all the individuals present
in a large geographic region (e.g. a mountain range), determining
their size with a precision of 13 × 13 cm2. It allowed us to quantify
the distribution, abundance, and size (i.e., demographic structure) of
individuals, which helped us to determine whether these population
parameters varied as a function of environmental variables, such as
altitude, in mountain environments. In short, it allowed us to do things
that are not possible with traditional field methodologies.

Our analysis showed that junipers are more abundant in the North-
West region within a specific range of altitude (mainly between 2 km
and 2.6 km). Our results also revealed a massive difference in shrub
size with altitude, i.e., the distribution of small shrubs is biased to-
wards the highest altitudes while the largest ones tend to occur at
the lowest altitudes. Such dominance of the smallest individuals in the
highest altitudes could be indicative of a process of altitudinal rise as
a consequence of global warming, which requires further investigation
using historical aerial photography and field monitoring. If this were
the case, during the last decades, juniper communis individuals would
have been establishing more successfully at higher altitudes, where they
found the preferred temperature range, and suitable habitats with less
competition for resources with other plant species. Furthermore, the
abandonment of traditional land uses (e.g. burning of juniper shrub-
lands to increase the area of pastures for livestock Lorite, 2001; Zamora
et al., 2022) has favored the recent recovery of the juniper cover.
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Fig. 10. The distribution of junipers by size across different altitudes, comparing results from: (a) PI data samples, (b) model’s deployment output trained and configured with PI
data, (c) FW data samples, and (d) model’s deployment output trained on PI data but configured with FW data. The model configuration refers to the selection of the confidence
score threshold during deployment. 𝑁 refers to the number of detected individuals and the dashed line to the median value.
Fig. 11. Scatter plot of: (a) the percentage of area occupied by observed versus predicted junipers in each FW image. (b) The number of observed versus predicted junipers per
hectare based on FW data.
The obtained results can be used to investigate the factors explaining
juniper distribution, and can further be employed by policymakers to
establish efficient management plans for conservation and restoration
in mountain areas.

5.2. Methodological considerations

We introduced a novel publicly available dataset of very-high res-
olution RGB satellite images. This is the first DL-ready dataset of
juniper species, and the largest of its kind in which 8580 shrubs were
digitized (James and Bradshaw, 2020; Retallack et al., 2022). This is
the first dataset for individual delineation of polymorphic shrubs since
all existing studies created datasets of plants with well defined and
stable patterns, and a straightforward spatial distribution where most
of them are private or have restricted access (Zheng et al., 2022; Gan
et al., 2023). Our primary objective is to present a valuable resource for
designing and developing DL models to individually delineate medium
to large shrubs in particular, and polymorphic plants in general from
freely available high-resolution satellite imagery.

DL models are known as data-hungry models (Adadi, 2021). How-
ever, collecting data through field surveying is costly, laborious, time-
consuming, unsustainable, and spatially restricted. To the best of our
9 
knowledge, a data design handling such issues is lacking in the litera-
ture, as existing studies developed and validated their models only on
FW data (Guirado et al., 2021; Retallack et al., 2022). Thus, we pro-
posed a new data construction approach (i.e., dual PI-FW data design)
that consist in developing the model with PI data, then validating it
using FW data. Our outcomes proved the efficiency and scalability of
this approach in developing a delineation model in a more optimized
way.

We developed a new evaluation metric called S-IoU to assess the
delineation performance of DL models, particularly for polymorphic
species affected by overlapping, splitting due to canopy thinning, and
uncertain human expert annotations. While all existing studies evalu-
ating plant delineation models have relied on the IoU metric (Zheng
et al., 2023; Gan et al., 2023), our results demonstrate that S-IoU
offers valuable insights into the proportion of a plant’s area detected
by the model and can be effectively used alongside IoU for a more
comprehensive evaluation of DL models.

To the best of our knowledge, this is the first study exploring the
potential of AI models to delineate individual plants with polymorphic
nature since all existing studies handle the delineation of plants with
well defined patterns (Zheng et al., 2023; Gan et al., 2023). It is
also the first attempt to deploy a DL model at the regional scale for
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individual delineation of high-mountain shrubs (Guirado et al., 2021;
Retallack et al., 2022), simultaneously offering valuable insights into
the distribution of these shrubs.

The proposed methodology offers valuable insights for the scientific
community interested in using RS and AI technologies to delineate
polymorphic plants individually, especially in situations where limited
FW data is available. The generated data can be used to pretrain models
for detecting similar types of shrubs in other high-mountain ecosystems
or for identifying different shrub species.

5.3. Limitations

Our model provides useful insights about shrubs distribution in high
mountains, however, it still makes some FPs and FNs. FPs can be man-
ifested in the detection of other kinds of shrubs, isolated trees, small
dark rocks with shades, edges of lagoons, and parts of ‘‘borreguiles’’
(i.e., humid pastures/grasslands). FNs can be noticed when shrubs grow
in colonies, when their size is very large and covers a great proportion
of the image tile, when they have low foliage densities, when the image
background is very dark, and when the land cover is very patchy.

The reasons of these FPs and FNs can be summarized as follows:

1. The temporal distribution of satellite images: this is related
to the season in which the image was captured. Winter-based
images are more likely to contain snow, and the soils are darker
due to humidity, less sun light, and the existence of clouds and
cloud shadows.

2. The spatial distribution of satellite images: images are captured
from different angles that can introduce shadows from trees,
hills, etc. Sometimes, they can have different resolutions where
some areas are captured with very high resolution while others
with less resolution.

3. The spectral resolution of satellite images: in the case of this
study, only three visual bands (RGB) are used. Adding more
spectral information may provide enough information to help
the model avoid confusing rocks, lagoons, and humid grasslads
with shrubs.

4. The local heterogeneity and patchiness of the area: areas with
homogeneous land covers, such as barren lands, are easier for
the model to detect shrubs than areas with high heterogeneity
such as urban areas or cropland mosaics.

5. The complex patterns of juniper: although we tried to make our
data representative of the different shapes and backgrounds, it
is difficult to collect all aspect in nature of this multiple faces
shrub.

6. The distribution of the PI dataset: given that the PI data relies on
expert visual inspection of images, we excluded images featuring
complex behavior due to low expert confidence.

To solve some of the aforementioned issues and further improve
he model performance, ancillary information can be included such as
rientation, altitude, and slope. For instance, stripe sized shrubs can
nly grow in areas with high slopes. Multispectral data can also be a
ood alternative to prevent the model from making false detections. In
ddition, other DL models architectures are encouraged for evaluation.

. Conclusion

In this study, we digitized 8580 shrubs and demonstrated the po-
ential of combining remotely sensed RGB imagery with Mask R-CNN
odel using a new data construction design to individually segment
edium to large juniper shrubs in high-mountain ecosystems from

reely available high-resolution satellite imagery.
Our deployment results revealed that these shrubs exhibit a pro-

ounced concentration in the North-West region, within a specific
ange of altitude where smaller shrubs tend to occur at higher alti-

udes, while larger shrubs are more prevalent at lower altitudes. Such

10 
potential shift in the altitudinal range will be investigated in further
research. Our work and cartography will assist to the management and
conservation of the Sierra Nevada National Park, a global hotspot for
biodiversity, in the face of global warming.

Our experimental results highlight the effectiveness of the proposed
dual data construction approach in addressing the limitations of tradi-
tional field surveying methods. They also demonstrate the robustness of
the developed S-IoU metric, making it a valuable complement to IoU for
evaluating DL models on polymorphic plants. Additionally, the results
showcase the potential of Mask R-CNN in segmenting polymorphic
plants, achieving F1-scores of 87.87% and 76.86% in the PI and FW
test sets, respectively

While this study marks a significant advancement in the application
of RS and DL for individual shrub delineation, it is important to
acknowledge its limitations. The delineation accuracy is influenced by
several factors, including the spatial–temporal distribution of satellite
images, the spectral resolution of satellite images, the heterogeneity of
the background, the polymorphic nature of junipers, and the distribu-
tion of the PI data. Future studies should focus on refining these aspects
to achieve even greater accuracy by using ancillary information (to-
pographic, atmospheric, etc.), multispectral data, and new delineation
models.
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Table A.6
Statistical description of juniper per square meters.

Data name Statistics per size (m2)

Mean Std Min 25% 75% Max Count

Photo interpreted 19.97 42.39 0.13 3.62 20.82 761.42 6809
Field work 15.99 38.75 0.16 2.36 16.42 970.60 1771
Table A.7
Description of shrub size classification schema.

Shrub size categories

XS S M L XL XXL

Range (m2) [0.13, 1.72[ [1.72, 3.62[ [3.62, 9.08[ [9.08, 20.82[ [20.82, 41.06[ [41.06,∞[
Quantiles (%) 0−10 10−25 25−50 50−75 75−90 90−100
Fig. B.12. Description of the difference between IoU and MIoGTA metrics for predictions and labels evaluation. 𝑝 denotes the model predictions (light green) and 𝑙 the expert
annotations (dark green). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Appendix A. Shrub size categorization

Notably, juniper exhibits a significant variation in its size (Ta-
ble A.6). As a result, we categorized the shrubs into six distinct groups
based on their size (Table A.7): extra small (XS), small (S), medium
(M), large (L), extra large (XL), and extra extra large (XXL). This was
done using the PI data quantiles, since it is well distributed than the
FW data.
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Appendix B. Soft version of IoU metric

We develop a soft version of IoU that we name S-IoU. The main
concept behind this metric is to count all matching shrubs in the
evaluation of labels and predictions (Fig. B.12(b),(d)), rather than
focusing solely on the best-matching shrub as performed by IoU metric
(Fig. B.12(a),(c)).
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