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A B S T R A C T

Background: P2X3 and P2X2/3 receptors are promising therapeutic targets for pain treatment and selective in
hibitors are under evaluation in ongoing clinical trials. Here we aim to consolidate and quantitatively evaluate 
the preclinical evidence on P2X3 and P2X2/3 receptors inhibitors for pain treatment.
Methods: A literature search was conducted in PubMed, Scopus and Web-of-Science on August 5, 2023. Data was 
extracted and meta-analyzed using a random-effects model to estimate the analgesic efficacy of the intervention; 
then several subgroup analyses were performed.
Results: 67 articles were included. The intervention induced a consistent pain reduction (66.5 [CI95% = 58.5, 
74.5]; p < 0.0001), which was highest for visceral pain (114.3), followed by muscle (79.8) and neuropathic pain 
(71.1), but lower for cancer (64.1), joint (57.5) and inflammatory pain (49.0). Further analysis showed a greater 
effect for mechanical hypersensitivity (70.4) compared to heat hypersensitivity (64.5) and pain-related behavior 
(54.1). Sex (male or female) or interspecies (mice or rats) differences were not appreciated (p > 0.05). The most 
used molecule was A-317491, but other such as gefapixant or eliapixant were also effective (p < 0.0001 for all). 
The analgesic effect was higher for systemic or peripheral administration than for intrathecal administration. 
Conversely, intracerebroventricular administration was not analgesic, but potentiated pain.
Conclusion: P2X3 and P2X2/3 receptor inhibitors showed a good analgesic efficacy in preclinical studies, which 
was dependent on the pain etiology, pain outcome measured, the drug used and its route of administration. 
Further research is needed to assess the clinical utility of these preclinical findings.
Protocol registration: PROSPERO ID CRD42023450685.

1. Introduction

Pain management remains a significant challenge in modern medi
cine, with millions of people worldwide suffering from various forms of 
chronic pain (Dubois et al., 2009). Despite the availability of several 
pharmacological treatments—such as nonsteroidal anti-inflammatory 
drugs, amine reuptake inhibitors, antiepileptic drugs, and opioids—the 
efficacy of these analgesics is often limited, particularly for certain types 

of chronic pain (Finnerup et al., 2015). Moreover, these treatments are 
frequently associated with serious safety concerns, including tolerance, 
dependence, and toxicity. In Europe and USA, approximately 30–40% of 
the population experiences pain (Fayaz et al., 2016; Johannes et al., 
2010; Leadley et al., 2012), highlighting the substantial socioeconomic 
impact of this condition. Consequently, there is a pressing need for new 
medications that offer improved efficacy with fewer side effects 
(Yekkirala et al., 2017).
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In this context, several lines of evidence suggest that P2X3- 
containing receptors are a promising target for treating certain types 
of chronic pain (Krajewski, 2020). Since ATP was proposed as a 
neurotransmitter and a peripheral algogen in the early 1970s by 
(Burnstock, 1972), the modulation of purinergic receptors has been 
broadly explored in the context of pain signaling (Chizh and Illes, 2001; 
Donnelly-Roberts et al., 2008; Kennedy, 2005). The P2X-purinoceptors 
are ligand-gated cation channels that upon activation with ATP in sen
sory nerves evoke fast excitatory responses (Abbracchio and Burnstock, 
1994). In particular, homomeric P2X3 and heteromeric P2X2/3 re
ceptors (hereafter referred to as P2X3-P2X2/3R) expression is highly 
restricted to small-size neurons in the dorsal root ganglia that are also 
positive for IB4+ (non-peptidergic C-nociceptors) (Brederson and Jar
vis, 2008; Lewis et al., 1995; Mo et al., 2009), making them prime tar
gets for reducing nociceptor excitability. Other P2X-purinoceptors, such 
as P2X7 and P2X4 receptors, mainly expressed in microglia and mac
rophages (but also in other immune cell types), are also implicated in 
pain signaling (Hua et al., 2022; Trang and Salter, 2012). However, 
there is currently less preclinical evidence supporting their role in pain, 
and their clinical development as therapeutic targets for pain manage
ment remains less advanced (Bernier et al., 2018; Krajewski, 2020). ATP 
and its analogs can elicit a painful response through direct excitation of 
P2X3-P2X2/3R in nociceptive fibers (including humans) and can 
potentiate activity in these fibers under inflamed or sensitized condi
tions (Donnelly-Roberts et al., 2008; Shieh et al., 2006; Vulchanova 
et al., 1998). Concomitantly, pain-related behaviors are reduced by 
P2X3-P2X2/3R antagonists (Ford, 2012), P2X3-P2X2/3R antisense oli
godeoxynucleotides (Honore et al., 2002), and P2X3-P2X2/3R gene 
knockout (Cockayne et al., 2005).

Recently, several clinical trials have been initiated to evaluate spe
cific P2X3-P2X2/3R inhibitors for the treatment of pain associated with 
conditions such as endometriosis-related pain (NCT04614246; 
NCT03654326), osteoarthritis-related knee pain (NCT01554579), and 
diabetic neuropathic pain (NCT04641273). Moreover, gefapixant was 
recently approved in Japan for the treatment of refractory or unex
plained chronic cough (Markham, 2022), and other P2X3-P2X2/3R in
hibitors (such as eliapixant, filapixant, camlipixant, sivopixant, and 
others) are being tested in advanced clinical trials for treating cough 
(Sykes et al., 2022). The human safety of P2X3-P2X2/3R inhibition is 
well established, with only a few mild adverse events reported, such as 
hypogeusia, ageusia, and dysgeusia (Krajewski, 2020; Ramadan et al., 
2023).

The analgesic properties of P2X3-P2X2/3R inhibition may vary 
depending on the type of pain, as each pain condition involves distinct 
physiological pathways that may be modulated differently by P2X3- 
P2X2/3R inhibition (e.g., neuropathic (Arribas-Blázquez et al., 2019; 
Dong et al., 2022; Lu et al., 2021; Yu et al., 2013) or visceral pain 
(Burnstock, 2009)). Moreover, differences in efficacy may arise between 
species and sexes due to inherent variations in purinergic physiology 
(High et al., 2023; Serrano et al., 2012; Zhong et al., 2000). Additionally, 
variations in pain assessment methods, the specific P2X3-P2X2/3R in
hibitors used, and their routes of administration could also impact 
analgesic outcomes. Therefore, all these factors should be carefully 
considered as potential determinants of the effectiveness of 
P2X3-P2X2/3R inhibition.

Given this background, the aim of the present article is to perform a 
systematic review and meta-analysis to assess the efficacy of P2X3- 
P2X2/3R inhibitors in animal models of pain. Our study goes beyond 
a broad analysis of the overall analgesic effects of P2X3-P2X2/3R in
hibitors by conducting subgroup analyses that consider all the variables 
mentioned above, including the pain model used, the species and sexes 
involved, the pain outcomes measured, the specific drugs tested, and 
their administration routes. This comprehensive analysis aims to iden
tify the conditions under which P2X3-P2X2/3R inhibitors have the most 
significant effect, which may be crucial for the design of future clinical 
studies.

2. Methods

2.1. Protocol and registration

The methodology used in this review was specified in advance and 
documented in a protocol that was registered in the CRD (Centre for 
Reviews and Dissemination) York website PROSPERO (International 
Prospective Register of Systematic Reviews) under the registration ID 
CRD42023450685. The study was performed adhering to the last 
version (2020) of PRISMA (Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses) guidelines on systematic reviews and meta- 
analyses (Page et al., 2021).

2.2. Review question statement and PICOS elements

What impact does inhibit P2X3-P2X2/3R have on pain in animal 
models? 

(P) Population: animal models of pain (e.g., intraplantar injection of 
proinflammatory substances)
(I) Intervention: selective inhibitors of P2X3-P2X2/3R -e.g., A- 
317493, gefapixant and others (Müller and Namasivayam, 2021)-
(C) Control: vehicle-treated group
(O) Outcome: pain assessed by different standardized tests
(S) Studies: original research studies

2.3. Information sources and search strategy

A comprehensive systematic search was performed up to August 
2023 in three databases: PubMed, Web of Science, and Scopus, without 
restriction in year or language. Complete search strategy per database 
can be found in Supplementary Table 1.

2.4. Inclusion and exclusion criteria

Inclusion Criteria: original research studies in which the effect on 
pain of pharmacological P2X3-P2X2/3R inhibition is evaluated in ani
mal models of pain.

Exclusion Criteria: review articles, systematic reviews, in vitro ex
periments, human studies, studies including no relevant information 
and violation of any of the above inclusion criteria.

2.5. Article selection

The selection of the studies retrieved by the search strategy was 
conducted using the software Rayyan (Rayyan Systems Inc., Cambridge, 
MA, USA) as previously described (M. Huerta et al., 2023). Two re
viewers (MAH and DMF) independently screened the titles and abstracts 
(in a blinded manner) to identify studies that could potentially met the 
inclusion criteria. Then, the eligibility of these studies was assessed by 
the same team members (MAH and DMF) by accessing the full texts of 
the articles. Disagreements were resolved through discussion with a 
third reviewer (MAT).

2.6. Data extraction

Extracted information included: study setting, study population 
(animal model of pain used including species, strains, age and sexes) and 
baseline characteristics, details of the P2X3-P2X2/3R inhibitor used and 
its administration route, the timing, the dose used and control condi
tions, study methodology, pain-related outcomes (pain assessment test 
used) and the times of measurement, main results of the intervention 
and information for risk of bias assessment. Numerical data necessary 
for the meta-analysis was extracted manually from the graphs using a 
digital ruler software (web plot digitizer) and included in a standard
ized, pre-piloted form. Two authors (MAH and DMF) extracted data 
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independently in a blind manner. Discrepancies were resolved through 
discussion with a third author where necessary (MAT).

2.7. Risk of bias assessment

We followed the SYRCLE’s Risk of Bias tool for animal studies 
(Hooijmans et al., 2014), which uses ten question domains based on the 
reporting of six methodological quality criteria: selection bias (with 
three question domains: sequence generation, baseline characteristics 
and allocation concealment), performance bias (with two question do
mains: random housing and blinding), detection bias (with two question 
domains: random outcome assessment and blinding), attrition bias, 
reporting bias and other biases (with one question domain each: 
incomplete outcome data, elective outcome reporting and other sources 
of bias, respectively). Two reviewers (D.M.F. and J.D.L.N.) indepen
dently stated whether each criterion was reported within the methods 
sections of the studies reviewed here. The final score for each article was 
obtained by adding all the domains classified as low risk and subtracting 
the number of domains classified as high risk. If the final value was 
higher than four the article was considered as low risk of bias, if the 
value was between two and four (both included) it was considered as 
unclear risk and if the value was two or less it was considered as high risk 
of bias. A summary chart was done using robvis, an R package for 
visualizing risk-of-bias assessments (McGuinness and Higgins, 2021).

2.8. Data synthesis and analysis

Meta-analyses were conducted using the metafor package in R, 
version 4.1.2 (Harrer et al., 2021; Viechtbauer, 2010) Since different 
pain outcomes were measured with different scales in the included 
studies, outcome data were normalized using the normalized mean 
difference (NMD), which is a useful approach in meta-analysis of pre
clinical data because it relates the magnitude of effect in the treatment 
group to a group of healthy animals (Vesterinen et al., 2014). Then, a 
95% confidence interval (CI95%) was computed. The inverse variance 
statistical analysis method was used to summarize the effect sizes of the 
treatment, and the combined results were analyzed using the random 
effect model, which accounted for the variance within and between 
studies (Cumpston et al., 2019). The results of the analysis were repre
sented in forest plots, which display the NMD for each evaluation, 
indicating the effect size of the intervention (P2X3-P2X2/3R inhibition). 
A larger positive NMD suggests a greater analgesic effect. Each study is 
represented by a square and line, with a diamond at the bottom sum
marizing the overall effect using a random effects model, which ac
counts for variability across studies. This visualization helps interpret 
how consistently the treatment outperforms the control across different 
studies. Effects were considered statistically significant when the p value 
was less than 0.05.

2.8.1. Assessment of heterogeneity
The Cochrane’s Q test (with P < 0.10 indicating asymmetry) and the 

Higgins-Thompson I2 values (null or low, 0–30%; medium, 30–50%; 
moderate, 50–75%; and high heterogeneity, >75%) were used to assess 
the heterogeneity within the pooled studies (Higgins et al., 2003).

2.8.2. Subgroup analysis
After the overall analysis, several subgroup analyses were performed 

to focus on the influence of specific variables on the efficacy of the 
intervention. At least four independent cohort-level effect sizes (k) were 
required for each meta-analysis. An analysis was performed to test the 
influence of the type of pain (inflammatory, neuropathic, joint, cancer, 
visceral and muscle pain). Also, the pain outcome assessed was 
considered: mechanical hypersensitivity, heat hypersensitivity, and 
pain-related behavior. Mechanical hypersensitivity included both me
chanical allodynia (punctate stimulus such as von Frey test) and me
chanical hyperalgesia (blunt stimulation such as Randall-Selitto test). 

Heat hypersensitivity included both radiant (Hargreaves test) or contact 
(hot plate) heat stimulus. The pain-related behavior group included 
diverse pain-related behaviors that were performed in the absence of 
further cutaneous stimulations (e.g., weight bearing differences, paw 
lifting or licking and others). A subgroup analysis was performed to test 
whether there were differences between sex (male or female) and rodent 
species (mouse or rat). Another analysis was performed to evaluate 
differences between the different P2X3-P2X2/3R inhibitors (A-317493, 
gefapixant and others). Finally, an analysis was conducted to evaluate 
the influence of the administration route (intraplantar, subcutaneous, 
intraperitoneal, intramuscular, intravenous, oral and intrathecal).

2.8.3. Sensitivity analyses
The leave-one-out method was used to identify studies with poten

tially disproportionate impact on the effect size of the overall meta- 
analysis. Studies were sorted based on effect size magnitude, and each 
study was sequentially removed to evaluate its influence on the overall 
effect estimate. Then, the effect size value obtained after each omission 
was compared with the overall effect size including all studies (Harrer 
et al., 2021).

2.8.4. Publication bias
Funnel plot was performed for the overall meta-analysis using the 

funnel function (metaphor package) of R (Harrer et al., 2021). Asym
metrical distribution of studies around the estimated effect size can be 
interpreted as an indicator of publication bias (Egger et al., 1997). 
Additionally, the funnel plot was complemented with the trim-and-fill 
method, which was used to estimate and quantify the number of 
missing studies and adjust for potential bias in sensitivity analyses, 
providing a theoretical pooled estimate (Peters et al., 2007).

3. Results

3.1. Study selection

The summary flowchart of studies identified in the search and the 
process of selection is given in Fig. 1. The search in PubMed, Scopus and 
Web of Science retrieved a total of 560 studies, of which 84 were 
removed because they were duplicated. Out of the remaining 476 
studies screened by title and abstract, 338 were excluded, primarily 
because they were not original research articles (e.g., review articles) or 
did not focus on pain (instead, they centered on cough or cough-related 
conditions). The full text of the remaining 138 articles was retrieved and 
carefully assessed for eligibility, resulting in the exclusion of 71 articles 
for various reasons: 29 articles did not use a selective P2X3-P2X2/3R 
inhibitor (mainly TNP-ATP or PPADS), 26 articles did not measure 
pain, 10 articles did not utilize an animal model of pain, 3 articles 
involved the administration of a P2X3-P2X2/3R inhibitor in combina
tion with another intervention, and the remaining 3 articles were re
views. Finally, a total of 67 articles were included in the analysis.

3.2. Study characteristics

The most relevant information about the 67 studies that met the 
inclusion criteria is summarized in Table 1. Further information such as 
the animal strain, the timing of drug administration and pain evaluation, 
the dose of the drugs used and the number of animals per group can be 
found in Supplementary Table 2. All the studies were controlled, the 
majority used only male animals (n = 50), and a small proportion used 
female (n = 7) or both sexes (n = 8), in the remaining 2 studies the sex of 
the animals was not stated. Most of the experiments were performed in 
young/adult animals (3–15 weeks), with a weight range of 25–40 g for 
mice and 120–350 g for rats. Experimental models with similar etiology 
were classified under general well-established categories. For inflam
matory pain, 17 articles were included where soft tissue inflammation 
was induced through intraplantar injection of inflammatory substances 
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(CFA or carrageenan), or by incision. 19 articles focused on neuropathic 
pain, primarily employing models of traumatic nerve injury (e.g., spared 
nerve injury), as well as neuropathic pain caused by chemotherapy or 
diabetes. Additionally, 4 studies investigated joint pain, using osteoar
thritis models or intraarticular administration of inflammatory sub
stances, and 8 studies used a model of cancer pain (bone cancer in all 
cases). Visceral pain was explored in 8 studies, where the pain was 
induced by damage (mainly by irritants such as TNBS) to various 
visceral organs to generate models of endometriosis, colitis or pancre
atitis or by ovariectomy. Finally, 6 studies investigated muscle pain, 
caused by excessive muscle contraction or intramuscular administration 
of inflammatory substances (CFA, α,β-meATP and others).

3.3. Analgesic efficacy of a single dose of P2X3 and P2X2/3 receptors 
inhibitors in pathological pain models

The first meta-analysis evaluated the analgesic efficacy of P2X3- 
P2X2/3R inhibitors in animal models of pain in which the treatment 
was given as a single administration and at the dose that produced the 
greatest effect (Fig. 2). The overall result of the analysis suggested that 
P2X3-P2X2/3R inhibition produced a clear decrease in pain (ES = 66.52 
[CI95% = 58.54, 74.50]), which was statistically significant (p <
0.0001). The heterogeneity in this meta-analysis was high (I2 = 99.2%), 
indicating a high variability in the results when all types of pain were 
considered together. In this regard, it was convenient to perform a 

subgroup analysis based on the type of pain to evaluate whether the high 
heterogeneity can be explained by the differences between the types of 
pain. This subgroup analysis, concerning the different types of pain, 
suggested a different efficacy of the intervention (p < 0.0001), so the 
intervention worked better in some types of pain than in others, but 
heterogeneity remained high in all the subgroups (I2 ranged between 
93.7 and 99.3%). Also, for all the subgroups (types of pain), the anal
gesic effect of the intervention remained significant (p < 0.0001), 
despite differences between them were found in the effect size (analgesic 
efficacy).

Most studies used models of inflammatory pain (k = 28), where the 
intervention produced the lowest analgesic efficacy (ES = 49.0 [CI95%: 
38.0, 60.0]). In some cases, the treatment even worsened the pain 
instead of relieving it, contributing to the high heterogeneity in this 
subgroup (I2 = 99.1%). Neuropathic pain, the second more studied 
group (k = 22), showed a notably higher effect size (ES = 71.1 [CI95% 
= 54.1, 88.1]) compared to the overall effect size. Joint and cancer pain 
presented 6 determinations each (k = 6) and showed similar effect sizes 
(ES = 57.5 [CI95% = 46.5, 68.6]; ES = 64.1 [CI95% = 42.2, 86.0], 
respectively), slightly lower than the overall effect. Visceral pain had 7 
determinations (k = 7) and showed the highest effect among all pain 
types (ES = 114.3 [CI95% = 89.6, 139.1]). Finally, muscle pain had 10 
determinations (k = 10) and its effect size (ES = 114.3 [CI95% = 89.6, 
139.1]) was higher than the overall effect.

Fig. 1. Study selection flow diagram.
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Table 1 
Detailed information of the studies.

Pain type Ref aSpeciesSex ePain model Intervention TestOutcome

Drug Route & 
Schedulef

Inflammatory Deng et al. (2023) Rat CFA A-317491 i.t. vFreyMech, HargreavesHeat, Cold 
plateCold

Xiang et al. (2019) Rat CFA A-317491 i.pl. & i.t. vFreyMech

Viatchenko-Karpinski et al. 
(2016)

Rat CFA AppCH2ppA1 

AppNHppA2
i.pl. & i.t.1; i. 
pl.2

HargreavesHeat

Prado et al. (2013) Rat Carrag A-317491 s.c. Randall–SelittoMech

Cantin et al. (2012) Rat CFA 15h i.p.; i.t. & s.c. Randall–SelittoMech

Ballini et al. (2011) Rat CFA Compound B s.c. Weight bearingPRB

Wu et al. (2004) Rat CFA A-317491 s.c. e-vFreyMech

Yasuda et al. (2012) Mice CFAUpper lip A-317493 s.c. vFreyMech

Oliveira et al. (2009) Rat Carrag A-3174911 O. 
antisense2

s.c.1.; i.t.2 (S 
& R)

Randall–SelittoMech, grip forceMech

Davenport et al. (2021) Rat Miceb CFA Eliapixant 
(BAY817080)

p.o. (Rmice) vFreymice Mech, Randall-Shelitto1Mech

Grishin et al. (2010) Ratd CFA, Carrag PT-1 s.c. HargreavesHeat

McGaraughty et al. (2003) Rat CFA A-317491 i.t. & i.p. HargreavesHeat

McGaraughty et al. (2005) Rat CFA A-317491 s.c. HargreavesHeat

Barclay et al. (2002) Rat CFA O. antisense i.t. (S & R) e-vFreyMech, vFreyMech

Shcherbatko et al. (2016) Ratb CFA Monoclonal antibody 
12D4

s.c. Plantar testHeat

Richards et al. (2019) Rat CFA Gefapixant (MK- 
7264)

p.o. vFreyMech, Weight bearingPRB

Jarvis et al. (2002) Rat1 Mice2 CFA, Carrag, Incision A-317491 s.c. e-vFreyMech, vFreyMech Hargreaves1 

Heat, Hot plate2 Heat

Honore et al. (2002) Rat CFA, Carrag O. antisense i.t. (R) vFreyMech, HargreavesHeat

Neuropathic Bae et al. (2022) Rat SNL, CIPN 14h (3,4- 
difluorobenzoyl)

i.v. vFreyMech

Koizumi et al. (2021) Rat TNC A-317491 s.c.Cheek vFreyMech

Fei et al. (2020) Rat DNP A-317491 i.pl. e-vFreyMech, HargreavesHeat

Zhang et al. (2015) Ratb DNP A-317490 i.t. vFreyMech, HargreavesHeat

(Q.Wang et al., 2015) Rat Disc herniation A-317491 i.t. VFreyMech, Weight bearingPRB

Li et al. (2014) Rat CCI A-317491 PAG e-vFreyMech

Li et al. (2017) Rat CCI MRAK00973 siRNA i.t. e-vFreyMech, Hargreaves Heat

Jung et al. (2017) Rat SNL AF-353 i.t. vFreyMech

Wang et al. (2014) Rat CCI A-317491 i.t. e-vFreyMech, HargreavesHeat

Hsieh et al. (2012) Mice RTX A-317491 i.pl. vFreyMech

Hori et al. (2010) Rat CIPN A-317491 s.c. vFreyMech, Randall-SelittoMech, Grip 
ForceMech

Kiso et al. (2008) Mice SNL A-317491 i.t. vFreyMech

McGaraughty et al. (2003) Rat SNL A-317491 i.t. & i.p. vFreyMech

McGaraughty et al. (2005) Rat SNL A-317491 s.c. vFreyMech

Jarvis et al. (2002) Rat1 Mice2 CCI, SNL A-317491 s.c. e-vFreyMech, vFreyMech 

Hargreaves1Heat, Hot plate2Heat

Dorn et al. (2004) RatM SNL siRNA O. antisense i.t. (R) vFreyMech, e-vFreyMech

Richards et al. (2019) Rat SNI Gefapixant (MK- 
7264)

p.o. (R) vFreyMech, Weight bearingPRB

Barclay et al. (2002) Rat PSNL O. antisense i.t. (R) e-vFreyMech, vFreyMech

Yi et al. (2017) Rat HIV-NP A-317491 i.t. (R) vFreyMech, HargreavesHeat

Xiong et al. (2017) RatM CCI-ION A-317491 i.p. (R) e-vFreyMech

Joint Teixeira et al. (2020) Rat αβ-meATPi.a. A-317491 i.a. Gait disturbancePRB

Teixeira et al. (2017) Ratc Carragi.a. A-317488 i.a. Gait disturbancePRB

Qi et al. (2016) Rat OITM A-317488 i.m & i.a vFreyMech

Richards et al. (2019) Rat MIA Gefapixant (MK- 
7264)

p.o. (S & R) vFreyMech, Weight bearingPRB

Cancer He et al. (2020) Mice Bone cancer A-317491 i.t. vFreyMech, HargreavesHeat

González-Rodríguez et al. 
(2017)

Micec Bone cancer A-317491 Peritumor Hot plateHeat

Liu et al. (2013) Ratd Bone cancer A-317491 i.t. vFreyMech, HargreavesHeat

González-Rodríguez et al. 
(2009)

Rat Osteosarcoma A-317491 s.c. HargreavesHeat

Hansen et al. (2012) Mice Bone cancer A-317491 s.c. (S & R) Limb usePRB, vFrey Mech, weight 
bearingPRB, nº of flinchesPRB

Kaan et al. (2010) Ratc Bone cancer AF-353 p.o. (R) vFreyMech, Weight bearingPRB

Tian et al. (2023) Ratb Bone cancer A-317491 i.pl. (R) vFreyMech

Wu et al. (2012) Ratb Bone cancer A-317491 i.t. (R) e-vFreyMech, Spontaneous 
ambulationPRB

Visceral Yuan et al. (2017) Ratb Endometriosis A-317491 i.v. vFreyMech, HargreavesHeat

Deiteren et al. (2015) Rat TNBS-Colitis A-317491 i.p. Colon distensionMech

(S. Wang et al., 2015) Rat TNBS- Pancreatitis A-317491 i.t. vFreyMech

Ma et al. (2011) Ratb Ovariectomy A-317491 s.c.Hindpaw vFreyMech

Shcherbatko et al. (2016) Ratb TNBS-Colitis Monoclonal antibody 
12D4

s.c. Colon distensionMech

(continued on next page)
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3.3.1. The analgesic effects of P2X3 and P2X2/3 receptors inhibitors were 
independent on the sex and species

A subgroup analysis was performed to evaluate the influence of sex 
(Fig. S1). Most of the experiments were performed in male animals (k =
59), which effect size was 65.1 (CI95% = 56.5, 73.8). A smaller number 
involved female animals (k = 12), showing a slightly higher effect size of 
74.9 (CI95% = 48.9, 100.9). The remaining used both male and female 
animals (k = 7) showing a similar effect size of 76.73 (CI95% = 44.1, 
109.3). The subgroup analysis by sex suggested no significant differ
ences between studies evaluating male, female and both sexes animals 
(p > 0.05).

Another subgroup analysis evaluated the influence of species 
(Fig. S2). All studies employed rats or mice. Rats were used more 
frequently (k = 68), while fewer evaluations involved mice (k = 11). The 
effect sizes were similar between rats (ES = 65.7 [CI95% = 56.8, 74.7]) 
and mice (ES = 71.5 [CI95% = 56.4, 86.7), with no significant differ
ences found in the subgroup analysis (p > 0.05).

3.3.2. The analgesic effects of P2X3 and P2X2/3 receptors inhibitors were 
dependent on the pain outcome assessed

P2X3-P2X2/3R inhibitors significantly reduced pain regardless of 
the outcome assessed (p < 0.0001; see Fig. 3). However, effect sizes 
varied depending on the pain-related outcome (p < 0.0001 for subgroup 
analysis). Mechanical (k = 45; ES = 70.4 [CI95% = 59.6, 81.2]) and heat 
hypersensitivity (k = 24; ES = 64.5 [CI95% = 48.4, 80.6]) exhibited 
similar levels of pain relief and were more effective than pain-related 
behavior (k = 9; ES = 54.1 [CI95% = 42.3, 65.9]). Heterogeneity 
remained high across all subgroups (I2 = 96.0–99.5%).

3.3.3. The analgesic effects of P2X3 and P2X2/3 receptors inhibitors are 
dependent on the drug

All the P2X3-P2X2/3R inhibitors produced a significant analgesic 
effect (p < 0.0001; Fig. 4). However, the extent of the effect varied 
depending on the drug used (p < 0.0001 for subgroup analysis). A- 
317491, which was by far the most used drug (k = 58), showed the 
highest efficacy (ES = 71.95 [CI95% = 62.4, 81.5]). In contrast, gefa
pixant showed a lower effect size (k = 6; ES = 44.2 [CI95% = 32.9, 

Table 1 (continued )

Pain type Ref aSpeciesSex ePain model Intervention TestOutcome

Drug Route & 
Schedulef

Zhang et al. (2007) Ratc Myocardic ischemia A-317491 i.p. (R) Grooming, exploring and sleepingPRB

Muscle Schiavuzzo et al. (2015) Rat α,β-meATPi.m. A-317491 i.m. Randall-SelittoMech

Noma et al. (2013) Rat CMMC A-317491 i.m. vFreyMech, Randall–SelittoMech

Knežević et al. (2016) Rat CFAi.m. masseter A-317491 i.m. vFreyMech

Hanaka et al. (2018) Mice Immobilization A-317491 s.c. e-vFreyMech, HargreavesHeat Paw 
liftingPRB

Jorge et al. (2020) Mice Carragi.m. A-317491 i.m. & i.t. Randall-SelittoMech

de Melo Aquino et al. 
(2019)

Rat GSC A-317491 i.m. & i.t. (S 
& R)

Randall-SelittoMech

Nociceptive Ohyama et al. (2022) Rat Dentin Exposure A-317491 i.v. Cold WaterCold

Jin et al. (2021) Rat TNF-α A-317491 s.c.Hindpaw vFrey Mech

Jin et al. (2020) Rat ET-1 A-317491 s.c. vFreyMech

Ferrari et al. (2016) Ratc Intradermal GTN or 48/80 A-317490 s.c.Hindpaw Randall-SelittoMech

Wieskopf et al. (2015) Micec αβ-meATPi.t. A-317491 i.pl. e-vFreyMech

Krimon et al. (2013) Rat αβ-meATP Formalin A-3174911 O. 
antisense2

s.c1; i.t.2 nº of flinchesPRB

Kunori et al. (2009) Mice α,β-meATPi.t. A-317491 i.t. PaintbrushMech

Hansen et al. (2012) Mice Formalin A-317491 s.c. nº of flinchesPRB

McGaraughty et al. (2005) Rat Formalin A-317491 s.c. nº of flinchesPRB

McGaraughty et al. (2003) Rat Formalin αβ-meATPP A-317491 i.t. & i.p. nº of flinchesPRB

de Oliveira Fusaro et al. 
(2010)

Rat BK, TNF, IL-1β, IL-6, CINC-1, 
PGE2, dopamine

A-317491 i.pl. Randall–SelittoMech

Grishin et al. (2010) Ratd Capsaicin, Formalin PT-1 s.c. HargreavesHeat

Kakimoto et al. (2008) Mice α,β-meATP Formalin Minodronic acid s.c. Paw lifting, shaking or licking
Fukui et al. (2006) Rat α,β-meATP 1 i.c.v. Formalin 2 A-317492 i.c.v. Randall–Selitto 1 Mech, Paw lift/shake/ 

lick 2

Jarvis et al. (2002) Rat 1 Mice2 Formalin, Capsaicin A-317491 s.c. e-vFreyMech, vFreyMech HargreavesHeat, 
Hot plate2 Heat

Browe et al. (2020) Mice c

NMR
Formalin A-317491 i.pl. nº of flinchesPRB

Barclay et al. (2002) Rat αβ-meATP O. antisense i.t. (R) e-vFreyMech, vFreyMech

Dorn et al. (2004) Rat αβ-meATP siRNA O. antisense i.t (R) VFreyMech, e-vFreyMech

Abbreviations: α,β-meATP, α,β-methyleneATP; BK, bradikinin; Carrag, carrageenan; CCI, chronic constriction injury; CFA, Complete Freund’s Adjuvant; CINC-1, 
cytokine-induced neutrophil chemoattractant 1; CIPN, chemotherapy-induced pain; CMMC, chronic masseter muscle contraction; DNP, diabetic neuropathic pain; 
GSC, gastrocnemius static contraction; Heat, heat hypersensitivity; HIV-NP, human immunodeficiency virus associated neuropathic pain; i.a., intraarticular; IL-1β, 
interleukin 1β; IL-6, interleukin 6, i.m., intramuscular; ION, infraorbital nerve; i.p., intraperitoneal; i.pl., intraplantar; i.t., intrathecal; i.v., intravenous; Mech, me-
chanical hypersensitivity; MIA, mono-iodoacetate-induced arthritis; NMR, naked mole-rat; O. antisense, antisense oligonucleotides; OITM, occlusal interference 
temporomandibular joint; PAG, periaqueductal grey; PGE2, prostaglandin E2; p.o., oral; PRB, pain-related behavior; PSNL, partial sciatic nerve ligation; RTX, res-
iniferatoxin; s.c., subcutaneous; SNI, spared nerve injury; SNL, spinal nerve ligation; TNC, trigeminal nerve compression; TNBS, 2,4,6-Trinitrobenzenesulfonic acid; 
TNF, tumor necrosis factor.
Subheadings 1, 2 indicates variables within the same row.

a Sex is male unless otherwise indicated as.
b for female.
c when both sexes were used and.
d when not stated.
e In these studies, the administration route was intraplantar if other not specified.
f Schedule for drug administration is single unless indicated in the table as R (repetitive) or R & S (repetitive and single).
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Fig. 2. Subgroup analysis of the analgesic effect of the intervention stratified by the type of pain. Forest plot of the analgesic effect of P2X3-P2X2/3R in
hibition in inflammatory, neuropathic, joint, cancer, visceral and muscle. Abbreviations: α,β-meATP, α,β-methyleneATP; BCP, bone cancer pain; Carrag, carrageenan; 
CCI, chronic constriction injury; CFA, Complete Freund’s Adjuvant; CIPN, chemotherapy-induced pain; CMMC, chronic masseter muscle contraction; DH, disc 
herniation; DNP, diabetic neuropathic pain; endo, endometriosis; GSC, gastrocnemius static contraction; HH, heat hypersensitivity; i.a., intraarticular; i.m., intra
muscular; i.p., intraperitoneal; i.pl., intraplantar; i.t., intrathecal; i.v., intravenous; MH, mechanical hypersensitivity; MIA, mono-iodoacetate-induced arthritis; 
OITM, occlusal interference temporomandibular joint; OS, osteosarcoma; OVX, ovariectomy; PAG, periaqueductal grey; PGE2, prostaglandin E2; p.o., oral; PRB, pain- 
related behavior; p.t., peritumoral; RTX, resiniferatoxin; s.c., subcutaneous; SNI, spared nerve injury; SNL, spinal nerve ligation; TS, tail suspension.
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Fig. 3. Subgroup analysis of the effect of the intervention stratified by the pain outcome assessed. Forest plot of the effect of P2X3-P2X2/3R inhibition in 
mechanical hypersensitivity, heat hypersensitivity and pain related behavior. Abbreviations: α,β-meATP, α,β-methyleneATP; BCP, bone cancer pain; Carrag, 
carrageenan; CCI, chronic constriction injury; CFA, Complete Freund’s Adjuvant; CIPN, chemotherapy-induced pain; CMMC, chronic masseter muscle contraction; 
DH, disc herniation; DNP, diabetic neuropathic pain; endo, endometriosis; GSC, gastrocnemius static contraction; HH, heat hypersensitivity; i.a., intraarticular; i.m., 
intramuscular; i.p., intraperitoneal; i.pl., intraplantar; i.t., intrathecal; i.v., intravenous; MH, mechanical hypersensitivity; MIA, mono-iodoacetate-induced arthritis; 
OITM, occlusal interference temporomandibular joint; OS, osteosarcoma; OVX, ovariectomy; PAG, periaqueductal grey; PGE2, prostaglandin E2; p.o., oral; PRB, pain- 
related behavior; p.t., peritumoral; RTX, resiniferatoxin; s.c., subcutaneous; SNI, spared nerve injury; SNL, spinal nerve ligation; TS, tail suspension.
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Fig. 4. Subgroup analysis of the effect of the intervention stratified by the drug used. Forest plot of the effect of P2X3-P2X2/3R inhibition by A-317491, 
gefapixant and others (eliapixant, AF-353, including monoclonal antibodies (12D4), compound B, 14h, 15h, PT-1, AppCH2ppA and AppNHppA). Abbreviations: 
α,β-meATP, α,β-methyleneATP; BCP, bone cancer pain; Carrag, carrageenan; CCI, chronic constriction injury; CFA, Complete Freund’s Adjuvant; CIPN, 
chemotherapy-induced pain; CMMC, chronic masseter muscle contraction; DH, disc herniation; DNP, diabetic neuropathic pain; endo, endometriosis; GSC, 
gastrocnemius static contraction; HH, heat hypersensitivity; i.a., intraarticular; i.m., intramuscular; i.p., intraperitoneal; i.pl., intraplantar; i.t., intrathecal; i.v., 
intravenous; MH, mechanical hypersensitivity; MIA, mono-iodoacetate-induced arthritis; OITM, occlusal interference temporomandibular joint; OS, osteosarcoma; 
OVX, ovariectomy; PAG, periaqueductal grey; PGE2, prostaglandin E2; p.o., oral; PRB, pain-related behavior; p.t., peritumoral; RTX, resiniferatoxin; s.c., subcu
taneous; SNI, spared nerve injury; SNL, spinal nerve ligation; TS, tail suspension.
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55.6]), estimated from a single study. The “Others” category comprised 
a heterogeneous number of compounds (eliapixant, AF-353, monoclonal 
antibodies, compound B, 14h, 15h, PT-1, AppCH2ppA and AppNHppA) 
and showed a lower effect size (k = 15; ES = 54.4 [CI95% = 37.4, 71.4]) 
when compared to the standard drug (A-317491). High heterogeneity 
was observed across all subgroups (I2 = 91.2–99.3%).

3.3.4. The analgesic effects of P2X3 and P2X2/3 receptors inhibitors are 
dependent on the route of administration of the drug

The analgesic effect of P2X3-P2X2/3R inhibition was significant 
across all the routes of administration (p < 0.0001, for all of them; 
Fig. 5). However, according to the subgroup analysis, the effect was 
dependent on this variable (p < 0.0001). Intravenous injection showed 
the highest effect size (ES = 96.2 [CI95% = 50.7, 141.6]), but was based 
in only 4 evaluations (k = 4). Intramuscular injection had a slightly 
lower effect size (k = 6; ES = 89.6 [CI95% = 68.0, 111.1]). Subcu
taneous injection, the most common route (k = 23), had an effect size of 
69.1 (CI95% = 54.3, 84.0), similar to the one obtained with intraplantar 
administration (k = 9; ES = 73.9 [CI95% = 44.0, 103.8]), both similar to 
the overall effect (66.5 [CI95% = 58.5, 74.5]). On the contrary, intra
thecal and intraarticular administration showed a lower effect size (ES 
= 56.5 [CI95% = 42.7, 70.4] and ES = 56.01 [CI95% = 44.2, 67.8], 
respectively), while the lowest effect size was obtained with oral 
administration (ES = 40.3 [CI95% = 28.0, 52.6]). All the subgroups 
analyzed presented a high heterogeneity (I2 > 95%).

3.4. Risk of bias

The overall results of the SYRCLE’s Risk of Bias tool are summarized 
in Fig. 6. For most of the domains (excepting domains 1, 2, 7, 9 and 10), 
almost all the studies were classified as unclear risk. The allocation 
sequence adequately generated and applied in the half of the studies and 
in the rest was unclear (domain 1). The baseline between groups were 
similar in a big part of studies (≈80%) suggesting low risk of bias in the 
domain 2. In slightly more than half of the studies, the outcome assessor 
was blind (domain 7). Only a few articles suggested selective outcome 
reporting and other problems (domain 9 and 10, respectively), while the 
majority showed low risk of bias in these domains. In the overall results, 
near 27% of the included articles were classified as low risk of bias, 
around 48% were classified as unclear risk of bias and 25% were clas
sified as high risk of bias. The individual full analysis of the SYRCLE’s 
Risk of Bias tool can be found in Fig. S3.

3.5. Publication bias

A graphical representation of publication bias for the overall meta- 
analysis is shown in Fig. 7. Values on the right of the pyramid had a 
bigger effect size of the intervention while the ones on the left had a 
lower effect size. The trim and fill method performed in the funnel plot 
did not find any missing study (0 studies were filled). The absence of 
missing studies and the apparent symmetry of the funnel plot suggests 
that there is no publication bias.

3.6. Sensitivity analysis

The leave-one-out method was performed for sensitivity analysis in 
the overall meta-analysis. Pooled effect estimates ranged from 63.87 to 
65.99 when excluding one study at each analysis (Fig. S. 4), indicating 
that no single study had a substantial influence on the pooled overall 
effect-size estimate. Also, heterogeneity was always maintained as at 
99%, indicating that no particular studies exerted a substantial influence 
on the overall variability.

4. Discussion

The preclinical efficacy of P2X3-P2X2/3R inhibition on pain was 

evaluated considering the influence of different factors which might 
potentially impact the results obtained: the type of pain, the species and 
sexes, the pain outcome assessed, the drug used for the inhibition of 
P2X3-P2X2/3R and its administration route. The pooled effect resulted 
in a consistent analgesic efficacy of the intervention. In addition, sub
group analysis showed that the effect size was significantly different 
among the different pain types, but still significant for all of them.

The highest efficacy of the intervention was observed in experi
mental models of visceral pain, yet only a limited number (barely six) 
were included. These data confirmed the relevant role of purinergic 
signaling in visceral pain pathways, as previously suggested (Burnstock, 
2001; Cockayne et al., 2000; Luo et al., 2023). Specifically, peripheral 
terminals of visceral nociceptors express not only mechanically acti
vated channels, but also P2X3-P2X2/3R, which might be also mecha
nosensitive (Cockayne et al., 2005; Gonzalez-Cano et al., 2021). It is 
well-established that during mechanical deformation ATP is released 
from epithelial cells in the lumen of hollow internal organs like the 
ureter, bladder, or bowel (Burnstock, 1999, 2009). Visceral distension 
not only activates nociceptors, but it also promotes their sensitization 
through ATP (Li and Sinoway, 2002); also, P2X3 receptors can be 
directly activated by miR-1306-3p (Wu et al., 2023). P2X3-P2X2/3R 
inhibition produced a robust analgesic efficacy in experimental 
models of colitis (Deiteren et al., 2015; Shcherbatko et al., 2016) and 
endometriosis (Yuan et al., 2017), via ERK signaling pathway (Ding 
et al., 2017). It is known that during breakdown phase of the menstrual 
period, ATP is released from the endometrium but also from endo
metriotic foci (endometrial tissue growing outside the uterine wall) 
(Trapero and Martín-Satué, 2020). Additionally, in endometriosis, 
somewhat similar to cancer, both overexpression of P2X3 (Ding et al., 
2017) and excessive cell proliferation occur (associated with high needs 
of ATP and its liberation after cellular damage) (Kong et al., 2021). All 
the above would contribute to the generation of abdominal pain by 
activation of P2X3-P2X2/3R expressed in uterine nociceptors (Chaban 
et al., 2007). From a translational perspective, several P2X3-P2X2/3R 
antagonists are being evaluated in phase II clinical trials for different 
pathologies associated with visceral pain: gefapixant for 
endometriosis-related pain (NCT03654326) and cystitis 
(NCT01569438); eliapixant for endometriosis-related pain 
(NCT04614246) and overactive bladder (NCT04545580).

In models of pain induced by muscle trauma, the efficacy of the 
intervention was higher compared to the overall effect. This aligns with 
the well-stablished fact that ATP is a very effective activator of muscle 
nociceptors, as even its isolated intramuscular injection was sufficient to 
elicit pain responses (Mense, 2008; Mørk et al., 2003). Moreover, ATP is 
found in particularly high concentration in the muscle and increases 
significantly during contraction (Li and Sinoway, 2002; Mense, 2010; 
Stewart et al., 1994). It has been proposed that ATP leakage from muscle 
fibers precedes trauma or cell necrosis and may be responsible for 
muscle-induced pain during maintained contraction (Hoheisel et al., 
2004). Whilst most of the studies attributed the painful actions of ATP to 
peripheral purinergic innervation of the muscle (de Melo Aquino et al., 
2019), central P2X3 receptors at the dorsal horn of the spinal cord have 
also a relevant contribution during chronic muscle pain (de Melo Aquino 
et al., 2019; Jorge et al., 2020).

Cancer-related pain treatment is specially challenging (Glare et al., 
2022; Mercadante, 2022). In experimental models of pain induced by 
bone cancer, P2X3-P2X2/3R inhibitors had an effect size equivalent to 
the overall effect. Cell proliferation and bone destruction around the 
tumor area is accompanied by a massive release of signaling molecules 
to promote cell death (of miscellaneous types) (Kaan et al., 2010; Tian 
et al., 2023). This will lead to a large accumulation of ATP into the 
peritumoral environment that will, in turn, excite nociceptors through 
activation of purinergic receptors (Kaan et al., 2010). To note, in these 
models, the expression of P2X3 receptors is upregulated in DGR neurons 
(Liu et al., 2013).

Regarding neuropathic pain, a robust effect was observed, which is 
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Fig. 5. Subgroup analysis of the effect of the intervention stratified by the administration route of the drug used. Forest plot of the effect of P2X3-P2X2/3R 
inhibition by A-317491, gefapixant and others (eliapixant, AF-353, including monoclonal antibodies (12D4), compound B, 14h, 15h, PT-1, AppCH2ppA and 
AppNHppA). Abbreviations: α,β-meATP, α,β-methyleneATP; BCP, bone cancer pain; Carrag, carrageenan; CCI, chronic constriction injury; CFA, Complete Freund’s 
Adjuvant; CIPN, chemotherapy-induced pain; CMMC, chronic masseter muscle contraction; DH, disc herniation; DNP, diabetic neuropathic pain; endo, endome
triosis; GSC, gastrocnemius static contraction; HH, heat hypersensitivity; i.a., intraarticular; i.m., intramuscular; i.p., intraperitoneal; i.pl., intraplantar; i.t., intra
thecal; i.v., intravenous; MH, mechanical hypersensitivity; MIA, mono-iodoacetate-induced arthritis; OITM, occlusal interference temporomandibular joint; OS, 
osteosarcoma; OVX, ovariectomy; PGE2, prostaglandin E2; p.o., oral; PRB, pain-related behavior; p.t., peritumoral; RTX, resiniferatoxin; s.c., subcutaneous; SNI, 
spared nerve injury; SNL, spinal nerve ligation; TS, tail suspension.

M.Á. Huerta et al.                                                                                                                                                                                                                              European Journal of Pharmacology 984 (2024) 177052 

11 



particularly promising, since neuropathic pain is usually refractory to 
pharmacological treatment (Finnerup et al., 2015; M. Á. Huerta et al., 
2023). Eliapixant is being tested for the treatment of diabetic neuro
pathic pain (NCT04641273). Damaged neurons and surrounding tissue 
are important sources of ATP during neuropathic pain (Hilliges et al., 
2002; North, 2004). This massive ATP liberation could have a greater 
effect due to up-regulation of P2X3 receptors in the DRG (Xiang et al., 
2008), spinal cord (Yu et al., 2013) and adrenomedullary chromaffin 
cells (Arribas-Blázquez et al., 2019).

The intervention showed the lowest efficacy for inflammatory pain, 
despite this group was relatively homogeneous, with only two experi
mental models (intraplantar administration of CFA or carrageenan). 
Even if during inflammation immune cells can cause the release of ATP, 
which directly activates P2X3-P2X2/3R in nociceptive terminals causing 
pain (Kato et al., 2017), several reasons might account for this apparent 
discrepancy. First, it has been reported that peripheral purinergic 
blockade completely reversed carrageenan induced pain when admin
istered prophylactically (before inflammation), but not when given 
therapeutically, that is, once the inflammation is stablished (Oliveira 
et al., 2009). Furthermore, the activation of P2X3-P2X2/3R by ATP was 
found to specifically mediate mechanical hyperalgesia caused by bra
dykinin, but not by other proinflammatory mediators such as TNF, 
IL-1B, IL-6, CINC-1, PGE2 or dopamine (de Oliveira Fusaro et al., 2010). 
In addition, other purinergic receptors such as P2X7 have been shown to 
participate in inflammatory pain, which may explain the reduced effi
cacy of inhibiting only P2X3-P2X2/3R (Lopes et al., 2020).

In the case of joint pain, we found a clearly lower efficacy in com
parison to the overall. This appears to contradict the promising effects of 
gefapixant for osteoarthritis pain in a phase II clinical trial (which 
showed numerically positive but non-significant; NCT01554579). 
However, only four studies were included, with only two specifically 
modeling osteoarthritis (using mono-iodoacetate). In one of these 

studies, the efficacy of gefapixant was moderate and equivalent to 
naproxen (Richards et al., 2019). To note, the largest analgesic efficacy 
was achieved with local drug administration (directly intra-articular), 
which aligns with the significant expression of P2X3-P2X2/3R in 
afferent fibers innervating joints (Teixeira et al., 2017, 2020).

To interpret the results of preclinical pain studies, it is crucial to 
consider the specific pain outcomes evaluated, as the intervention may 
impact the different pain parameters in distinct ways. Noxious stimuli of 
different nature activate distinct nociceptors (Cobos et al., 2018; Rose
nbaum et al., 2022; Tavares-Ferreira et al., 2022). The expression of 
P2X3-P2X2/3R seems to be restricted to non-peptidergic (IB4+) noci
ceptors (Gonzalez-Cano et al., 2021; Vulchanova et al., 1998), which are 
involved in mechanical hypersensitivity but not heat sensitivity 
(Cavanaugh et al., 2009; Ruiz-Cantero et al., 2023) and minimally 
co-expressed in TRPV1+ nociceptors (Gonzalez-Cano et al., 2021), 
responsible for heat pain (Basbaum et al., 2009). Consistently, we found 
that the highest analgesic efficacy was achieved for mechanically 
induced pain, while efficacy was lower for heat-induced pain. Unfor
tunately, only one study evaluated responses to cold stimulus, hindering 
meta-analysis. The lowest efficacy of the intervention was noted when 
evaluating pain-related behavior (mainly non-evoked pain), which is 
especially relevant since it reflects more accurately the human pain 
experience and is therefore more translational (Cobos and 
Portillo-Salido, 2013; Deuis et al., 2017; González-Cano et al., 2020; 
Huerta et al., 2024; Mogil, 2009). The non-evoked tests used were highly 
heterogeneous and model-dependent, making it difficult to speculate 
about underlying mechanisms. Still, the significant analgesic efficacy 
observed is promising, especially considering that spontaneous pain is 
often refractory to pharmacologic treatment (Ma et al., 2022).

The analgesic efficacy was dependent on the drug employed for 
inhibiting P2X3-P2X2/3R, which may be explained by pharmacody
namic or pharmacokinetic variations (Müller and Namasivayam, 2021). 
The highest efficacy was obtained with A-317491 (previously ABT-202), 
a selective antagonist developed by Abbott and reported in 2002 (Jarvis 
et al., 2002). Despite the drug development was discontinued in Phase I 
(Xu et al., 2004), It has become the standard drug for experimentation. 
Although A-317491 exhibited competitive and reversible 
P2X3-P2X2/3R inhibition with good systemic bioavailability, its limited 
oral bioavailability and poor water solubility posed challenges. AF-353 
emerged offering enhanced physicochemical properties compared to 
A-317491 (Gever et al., 2010), but it was only tested in two preclinical 
studies (Jung et al., 2017; Kaan et al., 2010). Gefapixant (AF-219 or 
MK-7264), the lead antagonist developed thereafter, proved to be a 
potent, reversible, and peripherally restricted noncompetitive antago
nist of P2X3-P2X2/3R with clear clinical interest. In fact, preclinical 
studies demonstrated analgesic efficacy (Richards et al., 2019) and has 
been evaluated in several clinical trials (some of them for pain treat
ment); it is even approved for chronic cough treatment (Markham, 
2022). An unfortunate common side effect associated with gefapixant is 
dysgeusia (Ramadan et al., 2023), likely resulting from P2X2/3 receptor 
blockade on taste buds (Finger et al., 2005). Another analog, eliapixant, 
with more selectivity for P2X3 homotrimeric receptor and consequently 

Fig. 6. Overall results of the SYRCLE’s Risk of Bias tool. Green color: low risk of bias; yellow color: unclear risk of bias/not applicable to the study design; red 
color: high risk of bias.

Fig. 7. Funnel plot of the overall meta-analysis including the trim and fill 
method. The closed dots indicate the included data (n = 79), and the open dots 
indicate the missing studies imputed by the trim-and-fill method (n = 0). The 
dashed lines that create a triangular area indicate the 90%, 95% and 99% 
confidence limits respectively, and the vertical dashed line represents the 
overall effect size.
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minimal impact on taste perception, showed efficacy in the CFA model 
(Davenport et al., 2021); in clinical trials for cough (NCT04562155), and 
in pain related with several conditions (NCT04641273; NCT04614246; 
Fletcher, 2022). Unfortunately, the clinical development of eliapixant 
was discontinued (Bayer, 2022). Currently, other derivatives are in 
advanced clinical development (primarily for chronic cough) and may 
soon be evaluated in clinical trials for pain treatment (e.g., sivopixant 
(NCT04110054; McGarvey et al., 2023; Niimi et al., 2022), camlipixant 
(NCT05600777 (Garceau and Chauret, 2019; GSK, 2023); or filapixant 
(Friedrich et al., 2023)). Furthermore, other inhibitors were tested in 
animal models of pain, including monoclonal antibodies (12D4), com
pound B, 14h, 15h, and further derivatives of A-317491 (see Table 1), 
each with barely one study per compound and no further clinical 
development.

The route of administration of the P2X3-P2X2/3R inhibitor signifi
cantly impacted its efficacy. Although this may be influenced by drug- 
specific differences, this is unlikely, as the majority of experiments 
used the compound A-317493 (57 out of 78, >70%), and subgroups 
were homogeneously distributed. Systemic and local administration 
routes demonstrated greater analgesic efficacy compared to intrathecal 
(still significant). This highlights the relevance of peripheral P2X3- 
P2X2/3R at the injury site (previously demonstrated (McGaraughty 
et al., 2003)). As a general rule, P2X3-P2X2/3R inhibition demonstrated 
evident analgesic effects, with the exception of intracerebroventricular 
(i.c.v.) administration that showed consistently pro-algesic effects 
(Fukui et al., 2006; Li et al., 2014; Liu et al., 2017). This apparent 
contradiction might be explained by the presence of P2X3-P2X2/3R in 
endogenous descending inhibitory pathways situated specifically in the 
ventrolateral midbrain periaqueductal grey, to produce endogenous 
analgesia (Fukui et al., 2006; Li et al., 2014; Liu et al., 2017). Because of 
that, when administering a P2X3-P2X2/3R inhibitor directly in the 
brain, an increase in pain was observed associated with the inhibition of 
the endogenous analgesic system (effect not observed with systemic 
administration).

From a translational perspective, P2X3-P2X2/3R inhibition showed 
to reduce nociceptor excitability (preventing sensitization) and inflam
mation (immune cells recruitment) after pain model induction (de Melo 
Aquino et al., 2019; Dong et al., 2022). The modulation of these phys
iological mechanisms by systemic administration of P2X3-P2X2/3R in
hibitors to alleviate pain may be associated with adverse effects. In this 
regard, several studies suggest that blocking acute inflammation due to 
injury could promote the chronification of pain (Parisien et al., 2022). 
However, this adverse effect is less likely with these drugs compared to 
other more potent anti-inflammatory agents such as NSAIDs. Moreover, 
the neuronal mechanisms of P2X3-P2X2/3R inhibitors appear to be 
more relevant for the efficacy, being associated with several adverse 
effects that have been observed in clinical trials (hypogeusia, ageusia, 
and dysgeusia) (Krajewski, 2020). However, P2X3-P2X2/3R inhibitors 
showed a favorable safety profile in clinical trials (low incidence of mild 
adverse events) (Krajewski, 2020; McGarvey et al., 2022), which is one 
of the key advantages of these drugs. This stands in sharp contrast to 
many existing analgesic drugs, which are often associated with frequent 
and significant side effects (e.g., opioid tolerance and dependence, or 
sedation and dizziness caused by gabapentinoids) (Di Stefano et al., 
2021). In contrast, a potential drawback of P2X3-P2X2/3R inhibitors is 
that their analgesic efficacy may not be as strong as that of opioids, 
which requires further investigation through larger clinical trials. 
Another potential concern of these drugs is that purinergic receptors 
share significant structural similarities, leading many of their ligands to 
act across multiple receptor types (Burnstock, 2018). In our analysis, 
these off-target effects are minimized as selective compounds (such as 
A-317491, gefapixant and eliapixant) were used (Müller and Namasi
vayam, 2021).

5. Conclusions

Pharmacologic inhibition of P2X3-P2X2/3R showed a robust overall 
analgesic effect in animal models of pain. The effect size was dependent 
on the type of pain: higher for visceral, muscle and neuropathic pain, but 
lower for inflammatory pain. The efficacy was also dependent on the 
pain outcome evaluated, the drug used and its administration route. This 
study predicts which are the more favorable situations for the highest 
analgesic effect of P2X3-P2X2/3R inhibition, which should be 
confirmed with the pertinent clinical trials.
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(MINECO). M.Á. Tejada was supported by Juan de la Cierva-Incorpo
ración research grant (IJC2020-046118-I) financed by MCIU/AEI/ 
10.13039/501100011033 and European Union Next Generation EU/ 
PRTR funds.

CRediT authorship contribution statement
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González-Rodríguez, S., Poras, H., Menéndez, L., Lastra, A., Ouimet, T., Fournié- 
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Huerta, M.Á., de la Nava, J., Artacho-Cordón, A., Nieto, F.R., 2023. Efficacy and security 
of tetrodotoxin in the treatment of cancer-related pain: systematic review and meta- 
analysis. Mar. Drugs 21, 316. https://doi.org/10.3390/MD21050316/S1.

Jarvis, M.F., Burgard, E.C., McGaraughty, S., Honore, P., Lynch, K., Brennan, T.J., 
Subieta, A., Van Biesen, T., Cartmell, J., Bianchi, B., Niforatos, W., Kage, K., Yu, H., 
Mikusa, J., Wismer, C.T., Zhu, C.Z., Chu, K., Lee, C.H., Stewart, A.O., Polakowski, J., 
Cox, B.F., Kowaluk, E., Williams, M., Sullivan, J., Faltynek, C., 2002. A-317491, a 
novel potent and selective non-nucleotide antagonist of P2X3 and P2X2/3 receptors, 
reduces chronic inflammatory and neuropathic pain in the rat. Proc. Natl. Acad. Sci. 
U.S.A. 99, 17179–17184. https://doi.org/10.1073/PNAS.252537299.

Jin, Y., Qiu, C.Y., Wei, S., Han, L., Liu, T.T., Hu, W.P., 2020. Potentiation of P2X3 
receptor mediated currents by endothelin-1 in rat dorsal root ganglion neurons. 
Neuropharmacology 181. https://doi.org/10.1016/J.NEUROPHARM.2020.108356.

Jin, Y., Wei, S., Liu, T.T., Qiu, C.Y., Hu, W.P., 2021. Acute P38-mediated enhancement of 
P2X3 receptor currents by TNF-α in rat dorsal root ganglion neurons. J. Inflamm. 
Res. 14, 2841–2850. https://doi.org/10.2147/JIR.S315774.

Johannes, C.B., Le, T.K., Zhou, X., Johnston, J.A., Dworkin, R.H., 2010. The prevalence 
of chronic pain in United States adults: results of an Internet-based survey. J. Pain 
11, 1230–1239. https://doi.org/10.1016/J.JPAIN.2010.07.002.

Jorge, C.O., de Azambuja, G., Gomes, B.B., Rodrigues, H.L., Luchessi, A.D., de Oliveira- 
Fusaro, M.C.G., 2020. P2X3 receptors contribute to transition from acute to chronic 
muscle pain. Purinergic Signal. 16, 403–414. https://doi.org/10.1007/S11302-020- 
09718-X.

Jung, Y.H., Kim, Y.O., Han, J.H., Kim, Y.C., Yoon, M.H., 2017. Isobolographic analysis of 
drug combinations with intrathecal BRL52537 (κ-opioid agonist), pregabalin 
(calcium channel modulator), AF 353 (P2X3 receptor antagonist), and A804598 
(P2X7 receptor antagonist) in neuropathic rats. Anesth. Analg. 125, 670–677. 
https://doi.org/10.1213/ANE.0000000000001883.

Kaan, T.K.Y., Yip, P.K., Patel, S., Davies, M., Marchand, F., Cockayne, D.A., Nunn, P.A., 
Dickenson, A.H., Ford, A.P.D.W., Zhong, Y., Malcangio, M., McMahon, S.B., 2010. 
Systemic blockade of P2X3 and P2X2/3 receptors attenuates bone cancer pain 
behaviour in rats. Brain 133, 2549–2564. https://doi.org/10.1093/BRAIN/ 
AWQ194.

Kakimoto, S., Nagakura, Y., Tamura, S., Watabiki, T., Shibasaki, K., Tanaka, S., Mori, M., 
Sasamata, M., Okada, M., 2008. Minodronic acid, a third-generation 
bisphosphonate, antagonizes purinergic P2X(2/3) receptor function and exerts an 
analgesic effect in pain models. Eur. J. Pharmacol. 589, 98–101. https://doi.org/ 
10.1016/J.EJPHAR.2008.05.011.

Kato, Y., Hiasa, M., Ichikawa, R., Hasuzawa, N., Kadowaki, A., Iwatsuki, K., Shima, K., 
Endo, Y., Kitahara, Y., Inoue, T., Nomura, M., Omote, H., Moriyama, Y., Miyaji, T., 
2017. Identification of a vesicular ATP release inhibitor for the treatment of 
neuropathic and inflammatory pain. Proc. Natl. Acad. Sci. U.S.A. 114, E6297–E6305. 
https://doi.org/10.1073/PNAS.1704847114.

Kennedy, C., 2005. P2X receptors: targets for novel analgesics? Neuroscientist 11, 
345–356. https://doi.org/10.1177/1073858404274063.

Kiso, T., Watabiki, T., Tsukamoto, M., Okabe, M., Kagami, M., Nishimura, K., Aoki, T., 
Matsuoka, N., 2008. Pharmacological characterization and gene expression profiling 
of an L5/L6 spinal nerve ligation model for neuropathic pain in mice. Neuroscience 
153, 492–500. https://doi.org/10.1016/J.NEUROSCIENCE.2008.02.031.
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