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Abstract

This study undertakes an analysis of neural signals related
to perception and imagination concepts, aiming to enhance
communication capabalities for individuals with speech im-
pairments. The investigation utilizes publicly available Elec-
troencephalography(EEG) data acquired through a 124-channel
ANT Neuro eego Mylab EEG system (ANT Neuro B.V., Hen-
gelo, Netherlands). The dataset includes 11,554 trials from
12 participants. The proposed convolutional neural network
(CNN) model outperformed others in classifying the EEG data
as being from the perception or the imagined speech task con-
ditions, achieving a test accuracy of 77.89%. Traditional ma-
chine learning models, including Random Forest(RF), Support
Vector Classifier (SVC), and XGBoost, showed tendencies to
overfit, resulting in low accuracies. as for the semantic decod-
ing, unfortunately, the different models performed at the chance
level.
Index Terms: Speech decoding, EEG, BCI, Semantic decoding

1. Introduction
Deciphering the neural mechanisms behind speech processes
and converting them into synthetic speech can greatly enhance
the quality of life for individuals with speech impairments. In
the US alone, it is estimated that 5% of children have speech
disorders and nearly 2 million people suffer from brain injuries
affecting language and comprehension [1, 2, 3]. Patients with
neurodegenerative disorders that affect the muscular activity in-
volved in articulation but do not affect cognitive functions, such
as for patients with amyotrophic lateral sclerosis (ALS), could
significantly benefit from speech neuroprosthetic technology.
This technology enables the decoding of speech from neural ac-
tivity [4]. Compared to other communication-enhancing tech-
nologies, neuroprostheses offer the potential for more natural
interactions, even for patients with severe motor-control limita-
tions [5, 6].

However, decoding speech from brain signals presents nu-
merous challenges. These include the complexity of neural sig-
nals, with subtle differences in brain activity corresponding to
various aspects of speech processing, and individual variabil-
ity in neural responses [7, 8]. High-resolution and high signal-
to-noise ratio data acquisition methods, such as ECoG (elec-
trocorticography), sEEG (stereoelectroencephalography), and
MEAs (microelectrode arrays), are invasive and primarily used
in clinical settings. This invasiveness limits their scalability and
universal applicability. Non-invasive EEG, on the other hand,
faces its own challenges, including low signal-to-noise ratio,
inter-trial variance, and model dependence on individual partic-
ipants [9]. Various methodologies have been developed to deter-
mine neural tracking of speech, including decoding speech di-

rectly from brain signals and aligning brain signals with speech
features in a common representation [10, 11, 12]. A signif-
icant challenge in neural signal decoding is the participant-
specificity of results [13].Researchers in [9] introduced an
Encoder-Decoder framework for speech synthesis from EEG
signals using generative residual units (GRU, HiFi-GAN, and
HuBERT) but, reported high character error rates (CER) of 83%
for imagined speech and 78.82% for spoken speech a vocabu-
lary pool of 12 words (22 characters). Similarly, the differential
analysis approach in [14] to decode Spanish words and vowels,
tested on 15 participants with a vocabulary pool of six words
(five vowels), achieved modest accuracies of 29.8% for words
and 33.6% for vowels, indicating participant specific outcomes.
Anumanchipalli et al. [15] developed a neural decoder that
translated ECoG recordings of 60 words from five participants
to audible speech using a bidirectional long short-term mem-
ory (LSTM) model, reporting word error rates (WER) of 53%.
Défossez et al. [16] combined a deep CNN with pre-trained
Wav2Vec2.0, demonstrating high performance on MEG data of
19 participants with an accuracy of 70.7%, though lower effec-
tiveness on EEG data with an accuracy of 25.7%, Furthermore,
Chen et al. [17] compared 3D ResNet, 3D Swim Transformer,
and LSTM frameworks for decoding spectrograms from brain
signals, with 3D ResNet achieving the highest Pearson corre-
lation coefficients (PCC) of 0.806 in a study involving 48 par-
ticipants.Direct comparisons across studies are challenging due
to variations in tasks, participant numbers, stimuli, and trial re-
quirements. High-gamma band activity (70–170 Hz) is effective
for decoding overt speech, while lower-frequency dynamics are
more important for imagined speech [18].

The primary objective of this research is to evaluate state-
of-the-art brain-computer interface (BCI) models for their ef-
ficacy in decoding neural activity related to perception versus
imagination tasks. In order to do so, we used an EEG dataset
[19] where participants were asked, in a first time, to perceive a
semantic item (presented as a written word, a picture or an audi-
tory word) and, in a second time, to imagine that same semantic
stimulation. This study also assesses the participant sensitivity
of these models, while also endeavoring to develop a subject-
invariant model capable of generalizing across all participants.
we aim to decode the semantic categories of the stimuli in both
tasks (perception and imagination), thereby striving to achieve
robust performance irrespective of individual variability.

2. Methods
2.1. Dataset Description

For this study, we employed a publicly available dataset [19]
containing EEG recordings of 12 participants engaged in lan-
guage perception and imagination tasks.The data were collected
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Figure 1: (a) Pictorial and (b) orthographic stimulus from [19].

Table 1: Number of trials by participant.

Participant ID Perception Imagination Total

sub-14 891 891 1782
sub-15 774 773 1547
sub-11 378 377 755
sub-03 450 450 900
sub-17 450 450 900
sub-08 450 450 900
sub-10 450 450 900
sub-16 450 450 900
sub-12 450 450 900
sub-19 315 315 630
sub-18 270 270 540

using a 124-channel ANT Neuro eego Mylab EEG system
(ANT Neuro B.V., Hengelo, Netherlands)As depicted in Fig-
ure 1, the stimuli comprised three different categories: flower,
penguin, and guitar. These categories were selected based on
their semantic distance, computed using Word2Vec [20], and
their syllable length to ensure consistency.

In the perception phase, participants were presented with a
stimulus belonging to one of three sensory modalities: visual
(picture or text) or auditory (audio). For the auditory task, par-
ticipants listened to recordings of the words spoken in different
voices. The trial starts with a masking image for 500 ms (or a
masking sound during 1000 ms in the auditory task). After that,
the perception task started with the presentation of the stimulus
for 3000 ms (2000 ms in the auditory task). Then, the mask was
presented again for the same duration. Next, the imagination
phase began, lasting 4000 ms. During this phase, participants
were asked to mentally recreate the stimulus they had encoun-
tered in the perception phase. Because there was an issue with
the data of participant sub-13, it was discarded from the analy-
ses. The number of trials for each participant are listed in Table
1. More details about the dataset can be found in [19].

2.2. Signal Processing

Raw EEG signals recorded during both perception and imagina-
tion tasks were subjected to rigorous pre-processing to improve
their quality and remove artifacts as shown in Figure 2. The pre-
processing pipeline involved bandpass filtering within the range
of 0.5 Hz to 150 Hz, referencing to a common average and
notch filtering to remove power line noise harmonics (50 and
100Hz). Subsequently, independent component analysis (ICA)
was employed, decomposing the signals into 20 components to
optimize the separation of underlying sources. Post-ICA, sig-
nal normalization was achieved via z-score standardization, en-
suring amplitude consistency across the dataset. Data for tri-
als were segmented into 1-second intervals from stimulus onset,
and models were trained on these segments. To capture essen-

Figure 2: Preprocessing and feature extraction.

Figure 3: CNN based model architecture.

tial information pertinent to model decoding, various feature ex-
traction techniques were utilized. Power spectral density (PSD)
analysis was conducted for each trial(1-second) to quantify the
distribution of signal power across frequency bands, including
delta (0.1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30
Hz), and gamma (30-150 Hz), as illustrated in Figure 2. Addi-
tionally, the Morlet wavelet transform was applied to extract 50
frequency-domain features for each trial(1-sec.), providing de-
tailed insights into the temporal and frequency characteristics
of the trial. Also for each trial complementary statistical mea-
sures (mean, std, skewness, kurtosis) were computed to provide
further descriptive information about the EEG data segments,
thereby facilitating a comprehensive analysis and interpretation
in subsequent modeling tasks. These features were used with
each segment and fed to the model for decoding.

2.3. Model Architecture

We introduce a convolutional neural network (CNN)-based
model Fig. 3 designed to process two distinct input streams:
EEG data segments and features derived from Morlet wavelet
transformations, along with statistical features extracted from
the same segments. The architecture consists of two blocks.
Block 1 processes the raw EEG data through a series of Conv2D
layers, followed by DepthwiseConv2D and SeparableConv2D
layers, all employing ReLU activation functions. Each layer is
accompanied by Batch Normalization and Average Pooling to
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enhance model regularization and reduce dimensionality. The
output of Block 1 is then flattened and passed to Block 2. In
Block 2, the processed EEG features from Block 1 and Morlet
and statistical features are passed to two distinict Dense layers.
The outputs from both streams are subsequently concatenated
and passed to the final output layer for classification. The model
is trained using Adam optimizeer with sparese categorical cross
entropy loss function for 100 epochs. Early stopping with a pa-
tience of 5 is used to avoid overfitting.

2.4. Classification analysis

A diverse set of deep learning based models EEGNet[21],
DeepConvNet[22] and EEGNetSSVEPN[23] were selected
based on their reported efficacy in brain-computer interface
(BCI) decodings and were implemented to decode the neural
activity.

Traditional machine learning models, including RF [24] ,
SVC [25], and XGBoost [26], were also trained for neural activ-
ity decoding tasks. To optimize these models, a comprehensive
grid search was conducted to identify the most effective hyper-
parameters. For XGBoost, the hyperparameters max depth =
[10, 20, 30] and n estimators = [50, 100, 200] were explored. In
the case of SVC, the hyperparameter ranges included C = [0.1,
1, 10, 100], gamma = [0.01, 0.1, 1], and kernel = [linear, rbf,
poly, sigmoid].For the Random Forest model, the parameters
investigated encompassed n estimators = [20, 30, 50, 100, 500,
1000], max depth = [10, 20, 30], max features = [sqrt, log2],
and min samples split = [10, 15, 20, 25, 30].

Implementation details can be found at https://
github.com/owaismujtaba/SemanticDecoding.
git

2.5. Evaluation and metrics

The dataset for decoding neural activity into perceptual, imag-
inative states, and semantic categories was combined across all
participants. Each participant’s data was split 80-20 for training
and testing. Post-training, models were evaluated on unseen
data, both collectively and individually, to assess overall and
participant-specific accuracy. Performance was measured using
accuracy, precision, recall, F1-score, and confusion matrix.

3. Results
3.1. Perception and Imagination

The performance metrics of each model architecture, highlight-
ing their generalization efficacy for decoding neural activity re-
lated to perception and imagination tasks, are presented in Table
2. The CNN-based model demonstrated a superior test accu-
racy of 77.89% with a relatively low loss of 0.4817, indicat-
ing robust generalization capabilities. In contrast, traditional
machine learning models, including Random Forest, SVC, and
XGBoost, exhibited substantial overfitting, with test accuracies
of 68.85%, 51.21%, and 50.77%, respectively, and inapplica-
ble loss metrics. Among deep lraening based model architec-
tures, EEGNetSSEVPN achieved the highest training accuracy
at 80.14%, but its test accuracy of 76.08% and loss of 0.52 sug-
gest marginal overfitting. DeepConvNet and EEGNet demon-
strated commendable performance, with DeepConvNet achiev-
ing a test accuracy of 74.78% and a loss of 0.53, while EEG-
Net recorded a test accuracy of 75.56% with a loss of 0.49, in-
dicating consistent yet slightly inferior performance relative to
the CNN model. Table 3 delineates the participant-level per-

Table 2: Performance on aggregate test data

Model Train Test

Accuracy Loss Accuracy Loss

DeepConvNet [22] 76.22 0.46 74.78 0.53
EEGNet [21] 75.95 0.49 75.56 0.49
EEGNetSSVEPN [23] 80.14 0.42 76.08 0.52
CNN (proposed) 77.48 0.47 77.89 0.48
Random Forest 1.00 NA 68.85 NA
SVC 1.00 NA 51.21 NA
XGB 1.00 NA 50.77 NA

Table 3: Participant Level Performance Metrics

Model Name Mean Accuracy Standard deviation

DeepConvNet [22] 74.64 10.15
EEGNet [21] 75.26 8.15
EEGNetSSEVPN [23] 74.04 8.42
CNN(Proposed) 76.82 5.61

formance metrics of various neural decoding models, empha-
sizing their capacity for participant-independent accuracy. The
proposed CNN model emerges as the most effective, achiev-
ing a mean accuracy of 76.89% alongside a Standard Devia-
tion(SD) of 5.61 across all participants, which suggests both
high performance and substantial consistency across different
participants. DeepConvNet has a mean accuracy of 74.64%
with a standard deviation of 10.15, indicating considerable vari-
ability and reduced reliability in subject-independent applica-
tions. EEGNet, with a mean accuracy of 75.26% and SD 8.15,
demonstrates improved consistency relative to DeepConvNet,
though its accuracy remains marginally lower. Lastly, EEG-
NetSSEVPN records a mean accuracy of 74.04% and a SD of
8.42, reflecting moderate performance characterized by a mod-
erate level of consistency. Figure 4 show the confusion matrix
on the test data using the CNN model. The model was good at
classifying the EEG data corresponding to the imagination tasks
(precision: 75.4%) and perception tasks (recall: 76.2%). These
metrics indicate that the model is fairly balanced in terms of
identifying both perception and imagination classes correctly.

3.2. Semantic Decoding

All the models in section 3.1 were trained for decoding the se-
mantic categories from the neural activity. Table 4 shows the
comparison of various models. Even if the Random Forest (RF)
model standed out as the most balanced model, it exhibited pre-
cision and recall scores that indicated a performance at a chance
level, leading to an overall accuracy of 32.44% for the classi-
fication into the three semantic categories. While DeepConv
and EEGNet demonstrated higher recall for specific classes,
their precision suffered, indicating potential challenges in ac-
curately identifying all instances. Conversely, models like SVC
and XGB displayed lower overall performance, particularly in
balancing both metrics. EEGNet model showed high recall for
one class but struggled with precision and recall for other cat-
egories, underscoring the need for a model that can effectively
generalize across all classes. Overall, the Random Forest was
the most balanced model, but failed to classify the semantic cat-
egories. Nevertheless, it seems that alternative models could be
used in the selection of specific items, which could lead to the
selection of a certain model based on its particular strengths.
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Model Accuracy Precision Recall
Flower Guitar Penguin Flower Guitar Penguin

DeepConvNet [22] 35.42% 33.03% 36.01% 30.0% 18.23% 80.87% 0.43%
EEGNet [21] 34.08% 34.1% 35.29% 0.0% 98.99% 0.72% 0.0%

CNN 36.03% 60.0% 35.98% 0.0% 0.38% 99.88% 0.0%
EEGNetSSVEPN [23] 35.94% 100.0% 36.0% 30.56% 0.13% 98.56% 1.59%

RF 35.42% 33.03% 36.01% 30.0% 18.23% 80.87% 0.43%
SVC 33.78% 33.92% 32.74% 32.64% 88.23% 4.45% 6.8%

XGBoost 32.14% 34.2% 33.47% 29.14% 31.77% 29.96% 35.17%
Table 4: Comparison of model performance on semantic decoding

Figure 4: Confusion matrix of CNN Model on test data

The low accuracy in the models is primarily due to high seman-
tic similarity among the dataset’s categories. The authors used
Word2Vec latent space to assess semantic distance, represent-
ing words as vectors. Distances between vector pairs, all less
than 0.2, indicate the categories are very closely related. This
closeness makes it challenging for the models to differentiate
between classes, leading to confusion during classification. The
models may struggle to learn meaningful distinctions, result-
ing in overall low performance.Another reason why the models
failed in the classification of the semantic categories might also
be linked to the characteristics of the task used by [19]. Instead
of asking the participants to focus on the meaning of the stim-
uli, participants were asked to recall the perceptual characteris-
tics of previous stimulus (e.g., imagining the auditory stimulus
with the same voice as in the presentation phase). This strategy
might have fostered the participants to orient their attention on
the perceptual characteristics of the stimuli and to not pay much
attention to their meaning. Figure 5 illustrates the performance
metrics of the Random Forest (RF) model across individual par-
ticipants. The analysis reveals that the model achieves the low-
est accuracy on participant 8, with a value of 25.4%, whereas
the highest accuracy was observed for participant 15 at 39.6%.
Taking into account the SD, it becomes clear that the model did
not perform above the chance level.

4. Conclusion
This study undertook a comprehensive exploration of the com-
plex decoding of neural signals associated with both percep-
tual, imaginative and semantic decoding tasks. A wide range
of methodologies and computational models were meticulously

Figure 5: Subject level accuracy.

assessed, with a particular focus on developing a participant-
invariant model. An extensive protocol for signal processing
and feature extraction was employed to enhance the quality of
the EEG data. Subsequently, multiple machine learning and
deep learning models were trained and evaluated for their ef-
fectiveness in decoding these neural signals. The proposed
CNN-based model demonstrated superior accuracy and is par-
ticipant invariant in tasks involving perception and imagination,
achieving a test accuracy of 77.89%, thereby indicating robust
generalization capabilities across all participants. In contrast,
traditional machine learning models, including Random For-
est, SVC, and XGBoost, exhibited significant overfitting, as
reflected in their comparatively lower test accuracies. In the
domain of semantic decoding, the Random Forest model dis-
played a balanced performance across various semantic cate-
gories, but none of the models achieved a classification that
was above the chance level. We hypothesize that this failure
might be linked to the design of the experiment, which included
semantic items that are closely related and a task that empha-
sized an orientational focus on the perceptual characteristics of
the items instead of their semantic content. More research will
help determine if these models improve when these variables
are controlled.
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