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Abstract 

In this study, invasive EEG recordings of four epilepsy patients 
were used to investigate the neural dynamics of speech 
production. Patients were asked to say aloud or imagining to 
say aloud Vowel-Consonant-Vowel (VCV) syllables or the 
name of different pictures. We analyzed the mean power across 
different frequency bands and across the different conditions. 
In order to facilitate the recognition of the different patterns, we 
also employed UMAP (Uniform Manifold Approximation and 
Projection) visualization. Our findings revealed distinct 
patterns of power distribution and modulation in each 
frequency band and for the different tasks, suggesting 
differential engagement of neural circuits.  
Keywords: Epilepsy, Intracranial electrocorticography, 
imagined speech, Invasive recordings, frequency bands, brain 
activity, mean power.       

1. Introduction 

Invasive EEG recordings in epilepsy patients undergoing pre-
surgical evaluation provide a unique opportunity to capture 
high-temporal and -spatial resolutions neural activity [1, 2]. In 
this study, we analyze stereoelectroencephalography (sEEG) 
data from four epilepsy patients carrying out different speech 
production tasks: saying aloud (overt speech) or imagining to 
say aloud, but without moving the articulators (covert speech), 
Vowel-Consonant-Vowel (VCV) syllables or the names of 
pictures from six semantic categories.  
The motivation for this study is to gain a deeper understanding 
of how overt and covert speech production differ in the epileptic 
brain. Identifying the neural correlates of covert speech holds 
potential for advancing BCIs that enable communication for 
individuals unable to speak. Previous research has largely 
focused on overt speech, leaving a critical gap in understanding 
covert speech, particularly in epilepsy patients where abnormal 
brain activity poses additional challenges. 
Decoding covert speech from neural activity could be the basis 
for future brain-computer interface (BCI) devices that help 
individuals with speech impairments, but with intact cognition, 
to recover speech. For example, intracortical microelectrode 
arrays were implanted to a patient suffering from amyotrophic 
lateral sclerosis, which allowed him to speak again via a 
synthesizer [3]. The implant that provided the richest 
information was located over the ventral premotor cortex (area 
6v), an area associated with the activation of the muscles 
involved in articulation.  

Unfortunately, one of the disadvantages to do research with 
epileptic patients is that, for obvious reasons, electrodes 
locations are chosen according to clinical reasons only [1]. In 
other words, researchers cannot ask to have the electrodes being 
located on a specific area of interest and the location of the 
electrodes differ from one participant to the other. The aim of 
this study was to assess how much speech-related information 
can be recovered from neural signals recorded from epileptic 
patients who have deep brain electrodes implanted for clinical 
purposes. 
In addition, we considered the variations in different EEG 
frequency bands because it has been demonstrated that 
variations in specific frequency bands (ranging from the delta 
to the gamma bands) can be related to particular cognitive and 
speech processes [4, 5, 6]. Of a particular interest for the 
purpose of this study, it has been observed that while overt 
speech is better decoded in the high gamma frequency band, 
decoding covert speech is better achieved with the activity in 
lower frequency bands, such as low-beta or theta bands [7]. 
What is more, the authors of this study also highlighted the 
potential role of the delta band (1-4 Hz) to design new BCIs. It 
is for these reasons that we decided to compare the mean power 
activity across various EEG frequency bands: delta (1-4 Hz); 
theta (4-8 Hz); alpha (8-12 Hz); beta (13-30 Hz); gamma (30-
70 Hz); and high gamma (70-120 Hz). 
We expected to uncover specific neural patterns, focusing on 
power spectral densities on different frequency bands, 
associated with each of the tasks. 

 
2. Methods 

2.1.  Participants  
Participants were individuals with drug-resistant epilepsy who 
have undergone implantation of invasive intracranial electrodes 
to precisely localize seizure onset zones and to map functional 
areas of the brain for potential surgical intervention. These 
individuals experience recurrent epileptic seizures, 
significantly impacting their daily functioning. All participants 
were adults, had normal or corrected-to-normal vision and no 
prior experience with the task [8]. All participants were able to 
comprehend instructions, read, and communicate effectively, 
enabling their participation in our study. Participants received a 
monetary compensation of 100€ for their participation. Signed 
informed consent was collected prior to their inclusion in the 
study. Participants were informed about their right to withdraw 
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from the experiment at any time. Our Regional Biomedicine 
Ethic Research Committee approved the study. 
For this work, we selected a sample of four patients (S05, S06, 
S10, S11) to be included in the analyses (mean age 43.4 ± 9.5 
years; 3 females, 1 male). 
2.2. Tasks description  
Participants were first asked to read aloud or to imagine reading 
aloud the same list of 50 vowel-consonant-vowel (VCV) 
pseudowords in each task. The pseudowords were generated by 
combining the five Castillan Spanish vowels (/a, e, i, o, u/) with 
ten unvoiced consonants (/p, m, f, t, n, r, s, l, k, x/), especially 
chosen for their different places of articulation according to the 
International Phonetic Alphabet (IPA) [9]. 
Each trial started with the presentation of a fixation cross during 
1500 to 2000 ms (Fix), followed by the presentation of the 
pseudoword during 1500 ms (See) and an inter-stimulus-
interval during 1500 to 2000 ms (ISI) preceded the prompt that 
instructed the participant to read aloud or imagine speaking the 
pseudoword during 1500 ms (Speech).  
In the Picture Naming task, participants named or imagined 
naming 30 pictures from six semantic categories (Fruits, Body 
parts, Animals, Musical instruments, Clothes, and Inanimate 
objects). Each trial started with the presentation of a fixation 
cross during 1500 to 2000 ms (Fix), followed by the 
presentation of the picture during 700 ms (See) and ended with 
the prompt to instruct the participant to say aloud or imagine 
saying the name of the picture during 2000 ms (Speech).  
In the VCV and the Picture Naming tasks, speech production 
changed between covert and overt every 10 trials. Depending 
on the participant’s fatigue, each task could be repeated a 
varying number of times. Table 1 and Table 2 show the total 
number of trials in the VCV and Picture Naming tasks, 
respectively, per participant. 
 
Table 1: Number of trials in the VCV task 

 
Table 2:  Number of trials in the Picture Naming task 
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S05 6 5 12 360 360 
S06 6 5 6 180 180 
S10 6 5 4 120 120 
S11 6 5 6 180 180 

 
2.3. Recording setup and data processing  
Both audio and EEG were recorded while participants 
performed the experimental task above. Invasive EEG were 
recorded from the participants using a 256-channel Natus 

Quantum amplifier (Natus Neuro, Middleton WI) at a 1024Hz 
sampling rate. Simultaneously, a Blue Yeti microphone (Blue 
Microphones, California) sampled the voice data at 44.1 kHz. 
EEG and audio were synchronized using Lab Streaming Layer 
(LSL)[10]. 
2.4. Signal processing 
The neural activity in each of the following EEG frequency 
bands was extracted: delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 
Hz), beta (13-30 Hz), gamma (30-70 Hz), and high gamma (70-
120 Hz). Average power-spectral density (PSD) was computed 
for each band using Welch's method [11] for the whole duration 
of each segment of each trial under examination, that is: Fix, 
See, ISI (for the VCV task only), or Speech (see Section 2.2). 
The Welch method involves segmenting the EEG signal into 
overlapping windows, applying a window function to each 
segment, computing the periodogram for each segment, and 
then averaging these periodograms to produce a PSD estimate. 
This method provides a reliable and stable estimate of the 
power spectrum with reduced variance compared to a single 
segment fast Fourier transform (FFT) [12]. Thus, for each trial 
and channel, a single value representing the average power for 
that segment was obtained. After examination, no significant 
activity was found on the lower delta band, so it was discarded 
from the analyses. 

 
3. Analysis & Results 

3.1. Statistical Analysis of Mean Power Distribution 
To ensure accuracy, outliers in the High Gamma band were 
filtered out. This involved identifying and removing power 
values that deviated significantly from the mean, which could 
be due to artifacts or noise.  
Figure 1 shows that the Theta, Beta, and Gamma bands 
exhibited similar and compact distributions across conditions in 
the VCV task. In contrast, the Alpha and High Gamma bands 
showed the most significant differences across the four 
conditions, with wider and more prominent distributions in the 
'Speech' condition, indicating higher power and variability. The 
Alpha and High Gamma bands’ variability in the 'Speech' 
condition suggests differential neural engagement.  
 

 
Figure 1: Mean Power Distribution per frequency band in 

the four segments of the trials in the VCV task 
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Figure 2 illustrates the power distributions of EEG frequency 
bands for all the patients in the VCV task in the speech segment 
according to the type of speech: Overt or Covert. Significant 
differences between the Overt and Covert speech were most 
notable in the Gamma and High Gamma bands, where the Overt 
condition showed higher mean power and greater variability. 
The Alpha band also exhibited higher power and a distinct peak 
in the Overt speech condition, indicating less variability 
compared to Covert speech. The Theta and Beta bands showed 
slightly higher mean power in the Overt speech condition. 
Overall, the Overt speech condition generally showed higher 
mean power across all frequency bands, indicating increased 
changes in neural activity when speaking aloud. 

Table 3 shows the mean power distribution of EEG frequency 
bands for all the participants in the Picture Naming task. The 
most notable differences are in the Alpha and High Gamma 
bands in the 'Speech' condition, where power was more 
prominent and variable. The Theta and Beta bands also showed 
a great variability, especially in the 'Speech' and 'Fix' 
conditions. The Gamma band showed similar distributions 
across conditions with minimal variability. These findings 
suggest changes in neural activity during speech production. 
 

 
Figure 2: Mean power distribution per frequency band in 
the ‘Speech’ condition between Overt and Covert speech 

in the VCV task 
 
Table 3: Mean power distribution per frequency band in 
the three segments of the trials in the Picture naming task, 
where the units of W/Hz (watts per hertz), which indicates 
the amount of power within a specific frequency 
bandwidth. 

Frequency 
Band 

Fix  
(PSD 

(W/Hz)) 

Read 
(PSD 

(W/Hz)) 

Speech 
(PSD  

(W/Hz)) 

Theta 5.38e-13 to 
6.66e-11 

4.58e-13 to 
2.44e-11 

5.66e-13 to 
1.79e-11 

Alpha 3.19e-13 to 
0.67e-11 

3.27e-13 to 
0.67e-11 

4.1e-13 to 
0.46e-11 

Beta 2.17e-13 to 
6.38e-11 

2.25e-13 to 
4.89e-11 

2.34e-13 to 
2.13e-11 

Gamma 1.63e-13 to 
6.24e-11 

1.75e-13 to 
3.79e-11 

2.14e-13 to 
1.6e-11 

High-
Gamma 

1.38e-13 to 
2.56e-11 

1.68e-13 to 
2.93e-11 

2.02e-13 to 
5.36e-11 

 
Table 4 shows the EEG frequency bands power distributions in 
the Picture Naming task in both Covert and Overt speech 
conditions. The Overt condition generally showed higher mean 
power across all bands, reflecting greater variation in neural 
activity when speaking aloud. The greater differences were 
observed in the Gamma and High Gamma bands, where Overt 
speech exhibited higher peak and mean power, along with 
greater variability. The Alpha band also showed a distinct peak 
and higher power in the Overt speech condition, indicating 
more consistent neural activity when words are spoken aloud. 
Regarding the Theta and Beta bands, a slightly higher peak was 
observed in the Overt speech. These findings mirror the results 
of the VCV task, highlighting increased EEG power when 
speaking aloud compared to when imagining speech. 
 
Table 4:Mean power distribution per frequency band in 
the ‘Speech’ condition between Overt and Covert speech 
in the Picture naming task  

Frequency 
Band 

Covert speech  
Range  

(PSD Mean 
Power (W/Hz)) 

Overt speech 
Range 

(PSD Mean 
Power (W/Hz)) 

Theta 6.25e−13 to 
2.35e−11 

6.70e−13 to 
3.40e−11 

Alpha 3.58e−13 to 
4.32e−12 

4.98e−13 to 
7.85e−12 

Beta 2.65e−13 to 
2.62e−11 

3.58e-13 to 
 2.91e-11     

Gamma 2.10e-13 to  
1.74e-11     

2.99e-13 to 
 2.22e-11     

High-
Gamma 

2.21e-13 to  
3.35e-11 

3.00e-13 to 
 2.30e-11 

 
3.2. UMAP (Uniform Manifold Approximation and 
Projection) 
Next, we used UMAP, a dimensionality reduction technique 
useful for visualizing high-dimensional data [13] by clustering 
EEG data corresponding to the same category of stimuli in a 
low-dimensional 2D space. Here, UMAP was applied to high 
gamma features from participant S11 in the VCV and the 
Picture Naming tasks. As a reference, we also performed 
UMAP on MFCC features obtained from the audio waveforms. 
Figure 3 shows vowels discrimination (/a, e, i, o, u/) in the VCV 
task using MFCC audio data (Figure 3a), EEG features 
corresponding to the Overt (Figure 3b) or Covert (Figure 3c) 
speech, or both types of speech together (Figure 3d). While 
formant frequencies corresponding to the MFCC audio data 
allowed a vowels clustering that was clearly delineated, EEG 
data for the Overt speech showed a less defined clustering. 
Worse yet, a completely diffused classification of the vowels 
was observed with the EEG data corresponding to the Covert or 
both types of speech together. These results demonstrate the 
challenge of classifying vowels using sEEG data recorded from 
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electrodes placed in regions not typically associated with 
language processing. It also highlights that vowels 
classification in Covert speech does not seem to benefit from 
the high-gamma band information.  
 

 
Figure 3: UMAP visualization of the EEG data of 

participant S11in the Vowels classification 
 
Figure 4 shows semantic categories discrimination in the 
Picture naming task using MFCC audio data (Figure 4a), and 
EEG features corresponding to the Overt (Figure 4b) or Covert 
(Figure 4c) speech. The clustering corresponding to the MFCC 
audio data was identifiable, but poorly delineated.  
Unfortunately, the classification of the different semantic 
categories was completely diffused with the Overt or Covert 
EEG data. Overall, the results suggest that sEEG data from this 
particular epilepsy patient on the high gamma band cannot be 
used to classify words into semantic categories. 
 

 
Figure 4: Visualization Data of S11 Picture Naming 

classification 

 

5. Conclusion 
EEG power analysis across different speech production tasks 
revealed consistent neural activity patterns. The theta band 
showed moderate variability but stable activity across the tasks. 
The alpha and beta bands exhibited a broader distribution 
during overt speech tasks compared to imagined speech, 
indicating distinct neural processes in speech production. The 
high gamma band showed heightened activity and greater 
variability during overt speech tasks, highlighting its potential 
as a cognitive biomarker in speech production. In addition, 
UMAP visualizations pointed to a possible classification of 
vowels with high-gamma band data when speaking aloud. 
Unfortunately, the same classification procedure when 
imagining speech seems to be impossible. It also seems 
impossible to classify the semantic categories of words with this 
type of data.  
In conclusion, our study analyzed EEG mean power distribution 
and utilized UMAP visualization to investigate the neural 
mechanisms involved in speech production and perception 
tasks. These findings underscore EEG's potential to 
differentiate speech conditions and modalities, contributing to 
our understanding of speech processing's neural correlates and 
informing advancements in neuroscience, cognitive science, 
and speech technology. In future work, we plan to deploy state- 
-of-the-art deep learning algorithms to decode speech from the 
sEEG recordings.  
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