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Abstract
For information and communication technology power consumption to be sustainable, the energy efficiency of computing

systems must grow at least as fast as the demand for computing services. It is therefore crucial to understand how energy

efficiency is evolving and how it will trend in the future, in order to take appropriate measures where possible. This article

analyses the evolution of this parameter by analysing high-performance computers from 2008 to 2023, contrasting the

results with those from Koomey’s Law. It is concluded, after comparing the two that in the studied period and in the near

future, energy efficiency continues to grow exponentially but at a slower rate than that established by Koomey’s Law

(maximum energy efficiency doubles every 2.29 years instead of every 1.57 years). Another interesting result is that

energy efficiency grows at a slower rate (doubling every 2.29 years) than performance (doubling every 1.85 years).
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1 Introduction

In the context of the environmental implications and rele-

vance of the increasing energy consumption of computer

systems, this paper presents a study on the evolution of the

energy efficiency in such systems. It has to be considered

that the overall energy consumption of ICTs depends not

only on the growing number of devices of different nature

(mobiles, PC, etc.) and the remarkable use made of them

due to the constant increase of new applications, but also

on the energy efficiency of these devices. Clearly, in order

to contribute to the sustainability of the planet, the interest

of manufacturers and engineers is not in reducing the use of

ICT, but in increasing the energy efficiency of devices at

least as fast as their demand. In addition to reducing

greenhouse gas emissions, increasing energy efficiency is

of interest to decrease power supply costs (from large data

centres to mobile devices) and to extend the life of bat-

teries. Therefore, it is of great interest to analyse the evo-

lution of the energy efficiency of computer systems and to

make estimates for the future, which is the objective of this

paper.

Koomey’s Law, created by analysing data from different

systems from 1946 to 2009, established that the energy

efficiency of computers doubled every 1.57 years [1, 2].

However, forecasts in the ICT field need to be updated

frequently as technological changes occur at a very fast

rate. The aim of this paper is to update the Koomey results,

using real, public and verified data such as those presented

in the TOP and Green500 lists [3, 4] for high-performance

computers (HPC). It should be noted that also systems with

much lower computing performances, such as personal

computers, have energy efficiencies of the same order of

magnitude [5], so the results obtained are easily general-

isable to this type of systems.

The paper focuses on Koomey’s Law, which is of great

relevance for engineers and manufacturers. As Erik Bryn-

jolfsson pointed out back in 2011 as a professor at MIT, in
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a certain sense this law may eclipse Moore’s Law due to

the importance that users increasingly place on power

consumption in many applications, as is the case, for

example, in mobile applications [6–8].

Table 1 summarises the terminology and symbols used

in this article to facilitate the readers’ understanding.

The rest of this paper is organised as follows. First, in

order to frame the context of the paper and to present some

basic concepts and terminology, a background section is

introduced (Sect. 2). The methodology and data used are

justified in Sect. 3. The numerical and graphical results are

provided in Sect. 4. The analysis of the above results is

presented in Sect. 5, and finally, a discussion and the main

conclusions are summarised in Sect. 6.

2 Background

Section 2.1 describes the implications and relevance of the

role of ICT in energy consumption. Section 2.2 justifies the

use of the data provided by the TOP500 lists, based on the

Linpack benchmark, for carrying out the present study.

Section 2.3 briefly outlines the contributions of various

works related to the topic presented, and finally, Sect. 2.4

defines a number of concepts necessary for a proper

understanding of the rest of this study.

2.1 ICT energy demand

One of the major challenges of today’s society is to reduce

energy demand, and ICT is a relevant field of electrical

energy consumption, having a major impact on greenhouse

gas emissions [9, 10]. Indeed, the US Semiconductor

Industry Association [11] states that while global energy

production grows linearly, electricity demand from com-

puters does so exponentially. Other studies indicate that, in

a worst-case scenario, ICTs could contribute up to 23% of

global greenhouse gas emissions by 2030 [12]. If the trend

continues, the electrical energy consumption of the vast

amount of technological equipment will exceed the world’s

electrical energy production by 2040, which means that

there would not be enough to power all the computers in

the world [13].

The environmental implications of ICTs are of a dif-

ferent nature, not always harmful, and can be grouped into

three types of effects [14–16]:

1. Direct effect. This is mainly due to the large prolifer-

ation and global increase in the number of electronic

devices, communications networks and data centres

connected to the Internet. This effect is also influenced

by the increase of applications that are constantly used

both in routine tasks (smartphones, e-mails, social

networks, etc.) and in traditional computing systems

(from PC to HPC applications). It is also necessary to

consider the emergence of new applications, which, as

in the case of the Internet of the Things (IoT), require

new devices that, although individually have a very

low consumption, given their enormous quantity, their

overall contribution to consumption is very significant.

2. Indirect effect. It is caused by ICT applications that

facilitate efficiency improvements and the reduction of

primary energy consumption in very diverse sectors

such as: construction, industry, transport and com-

merce, by providing intelligent solutions. It is good for

the environment as the increase in ICT consumption

comes largely from its reduction in other sectors,

moderating, on balance, overall consumption. Among

the main sectors benefiting are [17, 18]:

• E-Work

• E-Health

• Smart Grid

• Smart Agriculture

• E-Learning

Table 1 Notations and symbols used

Acronym Meaning

CE Computing efficiency

E Energy (Watts � hours or Joules)
EE Energy efficiency

GE Global energy

GPU Graphics processing unit

FLOP Floating-point operations

FLOPS Floating-point operations per second

HPC High-performance computing

HPL High-performance Linpack

ICT Information and communication technology

IT Information technology

NB Number of bits

NBI Number of bits per instruction

NC Number of computations

NPU Neural processing unit

NS Number of states

NI Number of instructions

P Power (Watts)

PC Personal computer

R Computing performance

Rmax Maximum performance

Rpeak Peak performance

r2 Determination coefficient

t Time

TPU Tensor processing unit
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• Connected private transport

• Traffic control and optimisation

• E-Commerce

• E-Banking

• Smart manufacturing

• Smart logistics

3. Rebound effect. This is a phenomenon that occurs as

ICT services become more useful, cheaper and more

energy efficient. This increases the digital lifestyle of

the society, leading to a rebound effect: ICT equipment

consumes less, but is used much more. Overall, this has

a negative consequence. Estimates show that possible

rebound effects due to digitisation range from 10 to

30% higher energy consumption, varying by sector,

technology and end-use [18].

The predominant factor in the increase of energy con-

sumption in computing is to a large extent determined by

the increasing amount of instruction processing that takes

place. The results of some studies’ forecasts of energy

consumption per instruction or bit processed are not valid.

This is because they erroneously consider without further

analysis that exponentially growing computing demand

translates into exponentially growing energy requirements.

The demand can be measured simply by the number of

computations performed (NC) but, for valid studies, it is

necessary to consider also the energy consumed by each of

them (EC). In short, the global energy consumption (GE) in

computation is a function of both the processing demand

(represented, for example, by the total number of compu-

tations executed) and the average energy consumed per

computation (EC), giving:

GE ¼ NC � EC ð1Þ

Computations (NC) can refer to the number of instruc-

tions (NI) or bits (NB) executed and energy can be

expressed in Joules or KWh.

The energy efficiency of computation, also called elec-

trical efficiency, EE, is a parameter representing the

number of executable computations (instructions or bits)

per unit of energy (Joule or KWh), such that:

EE ¼ Number of computations

Energy consumed by those computations
¼ NC

E
ð2Þ

where E represents the energy consumed in performing the

NC computations (number of instructions or bits) indicated

in the numerator. The energy consumed per computation

(EC) will be:

EC ¼ E

NC
¼ 1

EE
ð3Þ

Thus, substituting the value of EC in Eq. (1), the global

consumption (GE) can be expressed as a function of

efficiency:

GE ¼ NC

EE
ð4Þ

It is deduced from Eq. (4) that, in order to reduce overall

consumption (GE), either user demand for computing

(represented by NC) is reduced or energy efficiency (EE) is

improved. In other words, in order to prevent an overall

increase in computing energy consumption, the denomi-

nator of GE in Eq. (2) (efficiency) must grow at least as

fast as the numerator (demand). Many forecasts of energy

consumption are flawed by considering only estimates of

the increase in the numerator without considering the

denominator. According to the above reasoning, and as

stated in Sect. 1, computer architects and designers should

focus on improving (increasing) energy efficiency. The

present study addresses this by focussing on the analysis of

the evolution over time of this parameter by making as

rigorous estimates as possible for the future.

2.2 The TOP500 lists and the Linpack benchmark

The aim of this paper is to analyse the evolution of the

energy efficiency (EE) of computers over the last three

decades. To do so, it is necessary to start from the

knowledge of their computing performance (R), expressed

as the number of instructions executed per second, and the

electrical power (P) consumed when executing those

instructions. At present, it is practically impossible to have

access to computers from all the years included in this

study to be able to take appropriate measurements. How-

ever, such data are available in the TOP500 and Green500

lists [1], released twice a year. These data are widely rec-

ognized by the scientific community, since from 2020 to

May 2024 more than 5,000 papers that make use of them

appear in the literature. Indeed, the TOP500 computer

ranking follows a clear and transparent methodology, being

validated and presented for discussion in the open forums

of the International Supercomputer Conferences on High

Performance (ISC HPC), and the International Conference

for High Performance Computing, Networking, Storage,

and Analysis (SC) [2, 3].

Estimating the performance of a computer is a complex

task as it depends on many different interrelated factors.

These factors, among others, include the compiler’s ability

to optimise the high-level programs, the operating system,

the architecture and the hardware characteristics of the

computer. The desired objective of the Linpack and the

TOP500 is to know, with a single parameter, how fast a

computer will perform when solving real problems. Nev-

ertheless, the applications run on computers in general, and
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high-performance computers in particular, are very diverse.

Finding a single parameter that measures the overall per-

formance of the computer, is a complicated issue since no

single computational task can reflect the overall perfor-

mance of a computer system running a wide range of

programs. In order to measure the number of instructions

executed per second, the maximum performance (Rmax) is

used as a metric, but it must be considered that not all types

of instructions consume the same time, so it is necessary to

use benchmark programs to obtain measures to objectively

compare the performance of different computers. These

programs are established by the scientific or industrial

communities [4]. Some examples are Whetstone [5, 6],

Dhrystone [7], Linpack [3] or SPEC [8–10]. Numerous

benchmarks and standards exist to measure other charac-

teristics of computers in addition to computing perfor-

mance [11].

The tasks that more closely match a diverse and broad

set of important applications in the field of high-perfor-

mance computing (HPC) are based on primitives such as

vector, vector–matrix and matrix–matrix operations. These

operations are fundamental in scientific applications

(weather and climate prediction, for example), engineering,

biotechnology, cryptoanalysis, graphics applications and in

various fields of Artificial Intelligence (e.g. deep learning).

In the case of Linpack benchmark, it focuses on the above-

mentioned operations, as it consists in solving a random

dense system of n linear equations (A • x = b), in double

precision arithmetic (64 bits), and determines the amount

of time spent factoring and resolving the system, using that

time as a measure of computing performance [3].

Linpack is widely used and performance values are

available for almost all relevant systems; for example, the

TOP500 lists [12] have used it as a benchmark since its

beginnings, as it fits reasonably well in most HPC appli-

cation areas. The TOP500 lists attempt to select and rank

the 500 most powerful computers by estimating their pro-

cessing speed (Rmax). The Green500 ranking, associated

with the TOP500 since 2013, uses energy efficiency (EE)

as a ranking parameter, instead of maximum performance

as the TOP500 does. Both rankings include, for each

computer system, other parameters such as processor

model, total number of cores, accelerator/co-processor

(number of cores and model), architecture (cluster or

MPP), processor speed (MHz), interconnection family and

location site.

Over time, several versions of Linpack have been

developed with different problem sizes. Initially (1977),

the matrices associated with the system of linear equations

were of the order n = 100. Later (1986) it was extended to

n = 1000, with an additional version for parallel process-

ing. This version gives greater versatility for optimising

Linpack implementations as hardware architectures began

to include matrix–vector and matrix–matrix operations.

The fourth version (1991) was the Highly Parallel Com-

puting Benchmark, or HPLinpack, more appropriate for

testing parallel computers. In HPLinpack, the size n of the

problem can be as large as necessary to optimise the per-

formance results of the machine. This was the version

adopted as a benchmark in the TOP500 in 1993 [1] and

allows the user to scale the problem size and optimise the

software in order to achieve the best performance for a

given machine. A portable and freely available imple-

mentation of HPLinpack written in C, called High-Per-

formance Linpack (HPL) and oriented for distributed-

memory computers, was also developed and it is consid-

ered as a benchmark implementation [3]. The HPL package

provides a testing and timing program to quantify the

accuracy of the obtained solution as well as the time taken

to compute it. The algorithm, depending on the intercon-

nection network, can be scalable in the sense that its par-

allel efficiency remains constant with respect to the

memory usage per processor [13].

Improvements and add-ons have been and are constantly

being introduced in order to use computational and com-

munication data patterns that more closely match a dif-

ferent and broad set of applications. Among other projects

highlight the High-Performance Conjugate Gradients

(HPCG) Benchmark, which stresses the system’s main

memory bandwidth and its influence on the overall per-

formance of the system [14]. In addition, it includes a

larger set of tasks to be executed than the initial version of

the Linpack, including: sparse matrix–vector multiplica-

tion, vector updates, global dot products and local sym-

metric Gauss–Seidel smoother [15, 16].

One of the fundamental characteristics that distinguishes

HPL is that it offers full freedom to implement the test and

can be optimised for each type of computer or architecture.

Indeed, it allows hand optimisations of the program, so that

the problem size and its implementation can be adapted

and adjusted to use most of the available hardware

resources and achieve the best possible performance when

executing the benchmark. The methodology used to

improve the metric results for a particular platform can

subsequently be used to obtain better performance in real

applications [17, 18]. Also, the great efforts to obtain the

best possible result are made because the inclusion of a

computer in leading positions in the TOP500, means great

prestige for the institution that owns the computer. One of

the objectives of hand optimisations is to use additional

resources available in the execution of the benchmark such

as accelerators, coprocessors, and specialised hardware

[19–22]. It should be noted that, in general, these devices

are specialised in vector or matrix processing and can

therefore perform the basic operations on which the Lin-

pack focuses. Thus, the latest editions of the TOP500
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implicitly reflect the performance of systems with hetero-

geneous computing resources, such as those using multiple

GPUs (Graphics Processing Units), TPUs (Tensor Pro-

cessing Units) or other specialised accelerators. Table 2

includes a list of the different models of processors used by

the computers included in the TOP500 list for November

2023. In Table 3, the co-processors or accelerators (vector

processors, matrix processors, GPUs, TPUs, NPUs, etc.)

available in the systems of that same edition are referenced.

The top place in the TOP500 list is taken by the Frontier

exascale system, located at the Oak Ridge National Lab-

oratory in Tennessee, USA, which has a total of 8,699,904

combined CPU and GPU cores, achieving a performance of

Rmax = 1.194 EFLOPS, and an excellent power efficiency

of EE = 52.59 GFLOPS/Watt [23].

As an example, in [24] a novel device-centric High-

Performance Linpack (HPL) approach is proposed and

experimentally tested for current main-stream multi Gen-

eral-Purpose Graphics Processing Unit (GPGPU) plat-

forms, where each process can make full use of the

resources of a node, including accelerators, CPU sockets,

PCI-e buses and memory/network bandwidth, etc. In this

way, parallel processing can be achieved by combining the

Single Instruction, Multiple Data (SIMD) technique with

multithreading, thus obtaining SIMT (Single Instruction

Multiple Thread) processing. As a result, the workload on

the CPU-end and the inter-process communication are

greatly enhanced due to higher system utilisation, while the

computation on the device-end remains efficient. This

approach can serve as a competitive basis for optimisations

on future heterogeneous platforms.

As with other benchmarking programs, it should be

noted that the results obtained by Linpack have limitations

as it is not rigorous to measure the execution time of a

single program to determine the computational power of a

computer system. Despite its limitations, as it only mea-

sures how fast a computer will perform [6], today Linpack

is still considered the main reference tool used by scien-

tists, engineers, manufacturers and the Internet community

to compare between the performances of the different HPC

systems [3].

Linpack is clearly the standard for comparative studies

on the performance of parallel computing systems [3, 22].

The set of 62 TOP500 lists brings together valuable

Table 2 Families or models of processors of the TOP500 computers

(November 2023 edition)

Processor family or type # Of systems that contain it

Intel Xeon Gold 164

Xeon Gold 62xx (Cascade Lake) 90

Xeon Gold (Skylake) 71

Xeon Gold (Sapphire Rapids) 1

Xeon Gold 42xx (Cascade Lake) 1

Xeon Gold 63xx (Ice Lake) 1

AMD Zen 140

AMD Zen-2 (Rome) 69

AMD Zen-3 (Milan) 66

AMD Zen-4 (Genoa) 5

Intel Xeon Platinum 121

Xeon Platinum (Sapphire Rapids) 19

Xeon Platinum (Skylake) 21

Xeon Platinum 82xx (Cascade Lake) 40

Xeon Platinum 83xx (Ice Lake) 35

Xeon Platinum 92xx (Cascade Lake) 6

Intel Xeon E5 37

Intel Xeon E5 (Broadwell) 18

Intel Xeon E5 (Haswell) 11

Intel Xeon E5 (IvyBridge) 7

Intel Xeon E5 (SandyBridge) 1

Fujitsu A64FX 8

IBM Power9 7

Intel Xeon Phi 7

Intel Xeon Max 5

Vector Engine 5

Xeon Silver (Skylake) 3

Hygon Dhyana 1

Sunway 1

Xeon 5600-series (Westmere-EP) 1

Total 500

Table 3 Families and models of coprocessors or accelerators of the

TOP500 computers (November 2023 edition)

Coprocessor or accelerator # of systems that contain it

NVIDIA Tesla V100 60

NVIDIA Tesla A100 47

NVIDIA A100 SXM4 30

AMD Instinct MI 11

NVIDIA H100 10

NVIDIA Tesla K 6

NVIDIA Tesla P 6

NVIDIA Volta 5

Intel Data Center GPU Max 4

Intel Xeon Phi 2

Deep Computing Processor 1

Matrix-2000 1

NVIDIA 2050 1

NVIDIA HGX A100 80 GB 500W 1

Preferid Networks MN-Core 1
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information on the evolution of supercomputers over the

last 31 years (1993–2023). A systematic, controlled and

transparent methodology has been used to compile these

lists. Moreover, this information is unique, as there is no

other resource that provides such data and allows studies to

be carried out on such a large number of computer systems.

2.3 Related works

There are numerous studies on the evolution and prediction

models of energy consumption in the field of ICT, some

more pessimistic than others, and among them are those

referenced chronologically below.

In 2009, Feng and Scogland [25] analysed the first three

lists of the Green500 (November 2007 to November 2008),

comparing the evolution in the maximum and average

energy efficiency, the energy efficiency versus speed

(measured as the position within of the TOP500 rank), and

the relationship between total power and energy efficiency.

Among other conclusions, they indicate that the overall

energy efficiency (on average) has improved in a manner

that tracks with Moore’s Law, i.e., the average energy

efficiency of the Green500 doubles every 18 months.

In 2009 and 2011 Koomey et al. presented a study on the

evolution of the energy efficiency of 80 general-purpose

computers (like mainframes, minicomputers and PCs)

existing between the years 1946 to 2009. They concluded

that during that period of time, the computations per KWh

doubled every 1.57 years [26, 27]. This relationship is

known in the scientific and engineering communities as

‘‘Koomey’s Law’’. The details of this study, as well as

others derived from it, will be analysed throughout this

article.

Cameron, in his 2010 article [28], analyses the evolu-

tion, from November 2007 to May 2010, of the average

values of energy efficiency and electrical power of all

computers, the first 10 and the last 10 of each of the

Green500 lists. He concludes that the top 10 supercom-

puters are about three times more efficient than the average

system on each list and, despite this result in energy effi-

ciency, the overall energy required for most systems on

average is increasing, although the rate of this increase is

slowing.

The 2011 article by Hinton et al. [29] shows that the

importance of the Internet and ICT is continually increas-

ing both in terms of economic growth and as a source of

greenhouse gas production. In this context, the authors

propose a network-based model of energy consumption in

Internet infrastructure. This model aims to identify the

elements of the Internet that dominate its energy con-

sumption as access increases over time. This knowledge is

essential to define strategies to improve the energy effi-

ciency of the Internet. They believe that the energy

consumption of data centres and content delivery networks

is dominated by the energy consumption of data storage for

infrequently downloaded material and by data transport for

frequently downloaded material.

Deng et al. [30], using data from the TOP500 and

Green500, relate the energy efficiency to the Linpack

efficiency in the year 2012, and compare their evolution

from 2007 to 2012 of these parameters considering various

types of networks (Gigabit, Infiniband, proprietary, and

custom/others), architectures (MPP, cluster), leading ven-

dors, and processor families.

In 2013, the JASON group published a highly interest-

ing report on the technical challenges and technological

implications of supercomputing from 1 PFLOPS (1015

FLOPS) to 1 EFLOPS (1018 FLOPS) [31]. This study

analysed the evolution and extrapolation to future years of

various parameters of high-performance computers such as

peak performance (1993–2009), energy costs for compu-

tational operations (2012 and 2020), relationship between

memory bandwidth and energy, and energy consumed per

FLOP (1996–2024). They conclude that, while a six-fold

reduction in energy consumption for floating-point opera-

tions was achieved by 2020, the improvement is more

modest (half as much) for on-chip communication. Finally,

they show that there is a large disparity between the energy

cost of floating-point computing and access to off-chip

memory. In 2012, a DRAM access, with 64-bit words,

required 1.2 nJ, and in 2020 it is reduced by a factor of 4

(to 320 pJ).

Subramaniam et al. [32] analyse the 2008 DARPA

project to build an exascale supercomputer (1018 FLOPS)

by 2020 with a maximum power consumption of 20 MW to

make it economically feasible [33]. They conclude that,

given the parameters of the moment in which they wrote

their article (2013), a 56.8-fold improvement in computa-

tional performance would be required with only a 2.4-fold

increase in energy consumption, which would be

unachievable by 2020 if energy efficiency were to be

increased in line with Koomey’s Law. Using data from the

Green500 from 2007 to 2012, they project the trend in HPC

energy efficiency for 2020, concluding that unfortunately it

would be 7.2 times below the efficiency needed to meet

DARPA’s 20 MW EFLOPS target. Also, in their paper

they showed that heterogeneous computers (i.e., systems

using GPUs or other co-processors) and custom-built sys-

tems continue to have a better overall energy efficiency

than their conventional counterparts.

Van Heddeghem et al., in a 2014 article [34], evaluated

how the electricity consumption caused by the use of ICT

evolved from 2007 to 2012. They analysed three main

domains of ICT: communication networks, personal com-

puters and data centres. They provided a detailed descrip-

tion of how they obtained the results for the evolution of
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electricity consumption in each domain. Their estimates

show that the annual growth in each of the areas (10%, 5%

and 4%, respectively) was greater than the growth in global

electricity consumption in the same period (3%). The rel-

ative share of this subset of ICT products and services in

total global electricity consumption increased from around

3.9% in 2007 to 4.6% in 2012. The contribution to absolute

electricity consumption of each of the areas turned out to

be approximately the same. It follows that research should

be carried out on increasing energy efficiency in all these

areas, instead of focusing on just one of them.

Victor Zhirnov and collaborators published a very

interesting work in 2014 [35], in which they present vari-

ous models to estimate the minimum computing energy

consumption in computer systems. They obtain from their

models and using real data, the energy efficiency of dif-

ferent binary elements (logic devices and memory ele-

ments) considering the evolution of the consumption of

individual transistors and microprocessors over time and

the dynamics of the physical processes that take place in

the different components (capacitive and resistive effects,

etc.). They state that while world energy production has

grown linearly, the demand for electricity from computers

has grown exponentially. In typical situations, the mini-

mum amount of energy required per bit is considered to be

around 10–14 J, with this figure being used for laptops and

PCs as well as supercomputers. Furthermore, Victor Zhir-

nov in his article estimates that in practice improvements

are possible to reach a practical lower bound for system-

level power consumption, of approximately 10–17 J/bit,

which can be considered as a challenge to achieve. Another

of the conclusions of the report is that, if the trend con-

tinues upwards, the consumption of all this huge techno-

logical equipment could exceed the world’s electricity

production by year 2040. Therefore, a radical improvement

in the energy efficiency of the IT equipment is needed.

Zhirnov’s conclusions were collected a year later (2015) in

a report published by the U.S. Semiconductor Industry

Association in collaboration with the Semiconductor

Research Corporation (SRC) and the National Science

Foundation [36].

In 2015 and 2019, Andrae and Edler analysed and

modelled the electric power use for ICT, making forecasts

until 2030. The 2015 study [37] considers three different

scenarios for the use and production of consumer devices,

communication networks and data centres: the best, the

expected, and the worst. One of the conclusions of the

study is that, in the worst case, ICT could consume up to

51% of electricity in 2030, generating up to 23% of the

greenhouse gas emissions released worldwide that year. In

the 2019 work [38], they estimated that consumption from

2019 to 2030 has been lower than the data and expectations

they made in 2015. Although these studies project energy

consumption over 15 and 11 years and obtain very spec-

tacular figures, they do not sufficiently appreciate the

importance of improvements in the energy efficiency of the

devices. Furthermore, given the changing nature of com-

puter technology, making predictions over so many years is

not reasonable.

Pangrle in his 2015 work [39], with data obtained from

the November 2014 list of the Green500, relates energy

efficiency to computing performance, and makes estimates

of the total power consumed by supercomputers until 2022.

The conclusion is that it will reach approximately 20 MW.

Gao and Zhang in 2016 [40] present and analyse the

correlations of the Linpack and power efficiencies from

2011 to 2015 in the TOP500 and Green500 lists. They

group the supercomputers on the lists according to their

architecture: homogeneous or heterogeneous, depending on

whether they use a single or various type of processor or

core, and including as a subset within each class the type of

interconnection (InfiniBand, Gigabit Ethernet, and cus-

tom). Within each group they analyse the performance and

power behaviours. They conclude that heterogeneous sys-

tems improve performance or energy efficiency not by

adding the same type of processors, but by adding different

processors or coprocessors, which usually have specialised

capabilities to speed up massive parallel tasks.

Most works on the impact of ICT on the global pro-

duction of greenhouse gas emissions only refer to the

electricity produced by the use of the devices. However,

the work of Belkhir and Elmeligi [41] estimates the energy

necessary for the manufacture of ICT components, that is,

the energy of the production phase, which is a fixed value

per device produced, and does not overlook the energy

costs of the use phase which is a variable value. The

authors also analyse a third parameter consisting of esti-

mating the increase in energy consumption caused by the

shortening of the useful life (lifecycle) of the devices.

Reducing this leads to more frequent resales and, therefore,

more purchases of new products, thus increasing produc-

tion energy consumption occurs. These and other effects

are analysed in that work, where they also make a forecast

of ICT footprint as a percentage of global footprint pro-

jected to 2040 using both an exponential and linear fits.

Morley et al. [42] make a controversial approach by

proposing that the growing reduction in electrical con-

sumption caused by digital infrastructures, rather than the

improvement of technological efficiency (efficient servers

and cooling technologies), requires limiting the growth of

digital traffic. Their study focuses on determining the

maximum daily data demand and, therefore, the peak

electricity consumption of data centres. These peaks are

primarily due to the large volume of data transfer for the

transmission of streaming video and interactive video, that

is, IP traffic from users to data centres.
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Hintemann and Hinterholzer in 2019 [43] collect data

from various sources on energy consumption of servers and

data centres worldwide and show how the various studies

presented differ significantly. They briefly analyse possible

scenarios for consumption to 2030, which give various

results ranging from, in the best case, keeping energy

consumption constant, to, in the worst scenario, an increase

by a factor of 40 by 2030 (compared to 2015).

Koot and Wijnhoven [44] presented a forecasting model

of data centre electricity needs based on understanding

usage growth. To make their forecasts, they use data from,

among other sources, Cisco Systems from 2010 to 2021

[45], determining the energy needs until 2023 using their

model. The simulation shows exponential growths of data

centre usage. Their results are compared with the projec-

tions obtained in 2020, independently by Andrae [37] and

Masanet et al. [46] between 2016 and 2030. The conclusion

of this article is that future energy demands of global data

centres remain constant due to technological innovations,

even as both consumer and enterprise workloads appear to

grow exponentially over the next decade. However, the end

of Moore’s law is likely to cause exponential growth in

data centre electricity consumption, while uncertainty in

both technological and behavioural evolution explains the

discrepancies found in the current literature.

In 2022, Hadlar and Sethi [47] developed an ICT con-

sumption model for 16 countries in emerging economies

that uses, as basic data, Internet penetration and the number

of mobile subscriptions in relation to CO2 emissions per

person. They analysed the period from 2000 to 2018 and

conclude that both the number of mobile phones and the

use of the Internet increase constantly. Nevertheless, the

slope of growth of gas emissions is gentler. This indicates

that CO2, in these emerging countries, increased at a slower

rate than the use of ICT.

Katal et al. in 2023 [48] wrote a survey paper con-

cerning software-based technologies that can be used for

building green data centres and that include power man-

agement at the software level. They describe the existence

of new green cloud computing approaches at the virtuali-

sation level, operating system level and application level.

They also recommend the use of container technology to

reduce energy consumption and achieve the challenge of

obtaining more sustainable data centres.

In the article by Fatima et al. [49], the environmental

impact of data centres is evaluated and the factors that

cause CO2 emissions are identified. Common strategies

that can help make data centres more sustainable are dis-

cussed. They also analyse three data centres that have

claimed to be green, to identify how they achieve their

sustainability goals. For example, reduced carbon emis-

sions, types of energy resources used, and how they

restrained e-waste production. They conclude by

suggesting a consumption reduction framework based on

the concepts described.

In a recent article, Malmodin et al. [50] presented a

study in which they estimate, for the year 2020, that the

total electricity consumption and greenhouse gas emissions

produced by the use of the ICT sector divided into three

parts: user devices including the internet of things, net-

works and data centres. They conclude that globally the

ICT sector consumed around 4% of the world’s electricity

with the use of computing and digital communications

equipment, accounting for around 1.4% of global green-

house gas emissions in 2020. In absolute terms, total

greenhouse gas emissions were 5% higher than in 2015.

According to these results, emissions from the ICT sector

have evolved in line with the rest of the world. However,

despite the challenges of many companies, the ICT sector

did not reduce its emissions between 2015 and 2020 to

meet the decarbonisation targets set by organisations such

as the ITU, GSMA, GESI and SBTi, so efforts to reduce

ICT energy consumption need to be scaled up and

increased.

The above-mentioned works describe the evolution of

energy efficiency and electricity consumption in ICT, but

changes are constantly occurring in this field. They use

different data sources and cover very diverse objectives

and approaches such as consumption of data centres, ser-

vers, information traffic over the Internet or mobile phones.

They also focus on various aspects such as the consump-

tion of computer subsystems or how to limit e-waste pro-

duction. In any case, considering the continuous

technological advances in computer architecture, these

analyses and projections need to be reviewed frequently to

be valid, so the focus of this work is to achieve this. One of

the characteristics of the present work is to use as a base

data obtained from experimental measurements that are

public and validated by the scientific community. Specifi-

cally, those obtained from the Green500 and TOP500 lists.

The study carried out uses a large amount of data, unlike

the articles referenced above. These data cover from June

2008 to November 2023 and includes a total of 8364

computers, giving great validity to the results obtained.

Many of the computers appear repeated in the lists, edition

by edition, but, in general, their configurations and features

are updated year by year. On the other hand, the method-

ology used to measure the energy consumed by the systems

used is uniform and public [51] and considers the energy

consumption of all the elements that make up the computer

system and those of the installation where it is located (air

conditioning, energy transformation, lighting, etc.).

The energy consumption of ICT is determined by the

use of computing and telecommunications equipment

(through the execution of applications) and the energy

efficiency of said equipment. From a commercial and
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technological point of view, it does not make sense to limit

the use of resources demanded by users, so efforts should

focus on improving energy efficiency, this being the

parameter mainly analysed in this paper.

2.4 Efficiency and performance in computing

As indicated in Sect. 2.2, usually, and in particular with

Linpack, the Rmax value is considered as a measure of

performance (processing speed). This parameter indicates

the maximal double precision (64 bits) floating-point

instructions processed per second (MFLOP/s, or, in short,

MFLOPS).

The theoretical peak performance (Rpeak) is also used

to measure computing speed. The value of this parameter is

determined by the particular architecture of the computer

system as it depends on the total number of cores acting in

parallel, the processor speed (clock frequency), and the

number of additions and multiplications in floating-point

full precision that can be performed in one clock cycle. A

distributed system, in general, is structured in racks, each

of which is composed of nodes, where in each node there

are CPU sockets containing multiple cores (CPUs). In this

way, the theoretical peak performance can be expressed as

[52]:

Rpeak ¼ racks � nodes
rack

� sockets
node

� cores
socket

� cycles
second

� FLOP instructions

cycle
ð5Þ

where FLOP instructions/cycle represents the average

number of instructions executed per cycle in each of the

cores, considering the implicit instruction-level

parallelism.

Another parameter of interest is the computing effi-

ciency (CE), which is defined as the ratio between the

maximum measured performance and the peak

performance:

CE ¼ Rmax

Rpeak
ð6Þ

The computing efficiency measures the utilisation rate

of system’s computation resources during the execution of

a program. This parameter tries to assess how the inte-

gration and coordination between all the elements of a

computer (cores, memory storage subsystem, interconnect

subsystem, etc.) affect the overall utilisation of computa-

tion resources. To calculate the value of CE in the TOP500

lists, Rmax is measured by executing the Linpack tool, so

the parameter CE is often referred to as Linpack efficiency.

The energy efficiency (EE) value defined by Eq. (2),

that is, the number of executable computations per unit of

energy consumed, can also be obtained as the quotient

between the system performance (R) and the average

power (P) consumed by the system to deliver the measured

performance. Indeed, considering that the number of

computations performed in a time t is NC = R � t and the

energy consumed during its execution is E = P � t, EE can

be calculated as:

EE ¼ NC

E
¼ R � t

P � t ¼
R

P
¼ Performance

Power
! FLOPS

Watt
ð7Þ

In other words, energy efficiency also represents the

performances per watt. If each computation is considered

to consist of the execution of a floating-point instruction

(FLOP), the performance will be expressed in FLOPS and

the energy efficiency in FLOPS/W.

Knowing the energy efficiency in instructions/W, it is

possible to obtain it in bits/W by simply considering the

average number of bits per instruction. Indeed, the number

of bits (NB) can be expressed as the number of instructions

(NI) multiplied by the average number of data bits per

instruction (NBI):

NB ¼ NI � NBI ð8Þ

In HPCs, it is common to operate with double precision

data so, in these cases, NBI = 64 bits. In order to sum-

marise the evolution over time of some parameters, and to

be able to easily make comparisons, the time necessary to

achieve a certain objective, for example, doubling its value,

is used. If y represents the value of the parameter and t the

time, the slope of the curve y = f(t) at each point represents

the instantaneous growth rate (m). If the function y = f(t)

were exponential, its logarithmic representation, ln(y)

versus t, would correspond to a straight line, being the

slope:

m ¼ D ln yð Þ½ �
Dt

¼ lnðy2Þ � lnðy1Þ
t2 � t1

¼
ln y2

y1

� �

Dt
ð9Þ

To find the time interval (Dt) required for the value of

the parameter y to double, simply substitute y2 = 2 � y1 to
the above equation, so that:

m ¼ ln 2ð Þ
Dt

! Dt ¼ ln 2ð Þ
m

¼ 0:6931

m
ð10Þ

That is, the time required for a doubling of the value of y

can be obtained by dividing 0.6931 by the value of the

slope (m).

3 Methodology and data

The present study is based on the original data from

Koomey [26, 27] and the TOP500 and Green500 lists [1]

released twice a year.
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The Koomey’s law complements Moore’s law, accord-

ing to which the number of transistors in an Integrated

Circuit (IC) doubles about every two years [53–56]. The

great relevance of Moore’s Law should be noted due to the

fact that several measures of digital technology are

improving by exponential rates, in line with its prediction,

including density, size, memory capacity (RAM and flash),

component speed, cost and, in particular, the computing

performance (R).

On the other hand, regarding the present work, the

TOP500 regulations dictate that for a system to be included

in the list, performance (Rmax) and energy efficiency (EE)

measurements are carried out by executing the Linpack

program. The precision of the results is evaluated and

assessed using the partial pivoting method [57]. The

operations for solving the system of equations consist of

additions and multiplications with 64-bit floating-point

data.

The Green500 list, for its part, was associated as a

complement to the TOP500 supercomputing list since

November 2007 [58–60], allowing scientists, engineers and

manufacturers to consider the effects of both performance

and energy efficiency in evaluating HPC systems. The

methodology for establishing the list was precisely defined

by a working group made up of the Energy Efficient High-

Performance Computing Working Group (EEHPC WG),

the TOP500, the Green500, and the Green Grid [51]. The

measurement protocols involve measuring the power con-

sumption while Linpack is running using an external meter

or adding the measurements from a mix of multi-meter

probes. Green500 provides, among other results, a list of

the supercomputers in the world based on energy efficiency

(EE) obtained by dividing the performance (FLOPS) by the

electrical energy consumed according to Eq. (7).

In short, the sources used in this work on the charac-

teristics of different computers are the following:

• Years 1946–2009: original Koomey data corresponding

to a total of 80 computers ranging from PCs to

mainframes. It provides the energy efficiency measured

in computations per KWh and considers the peak

performance of the analysed systems.

• Years 2008–2012: Rmax (TFLOPS), Rpeak (TFLOPS)

and Power (KW) data from the TOP500 lists have been

considered.

• Years 2013–2023: Rmax (TFLOPS), Rpeak (TFLOPS),

Power (KW) and energy efficiency (GFlops/Watts) data

from the lists of the June and November editions of the

Green500 have been considered.

The total number of computer systems included in the

present study, excluding those considered by Koomey, is

9.682.

From the data obtained from the TOP500 and Green500

lists, and using the definitions described in Sect. 2.3, the

following results have been derived, which are described in

the next section:

• Energy efficiencies described by Koomey, in Gigacom-

putations/watt versus year (from 1946 to 2008).

• Power efficiencies (Rmax/P) of the average and the first

system of each of the TOP500 or Green500 lists

(2008–2023).

• Computing performances (Rmax) of the average values

of each TOP500 list (2008–2023).

• Relationship of energy efficiency with performance

observed with data from the years 2008–2023.

• Bar charts showing the position in the TOP500 of the

first systems in the Green500 lists, and vice versa, and

position in the Green500 of the first systems in the

TOP500 (2013–2023).

In all cases, a regression analysis has been carried out

for estimating the mathematical relationships between the

parameter considered and the corresponding year, as an

independent variable. With these analyses, the function that

relates the parameter to the year, the determination coef-

ficient (r2) and the number of months that must elapse to

double the value of the parameter are obtained.

4 Results

4.1 Energy efficiency obtained by Koomey
with data from 1946 to 2008

Koomey represents energy efficiency data (in computations

per KWh) over the time collected from N = 80 different

systems, including from PCs to mainframe computers. That

is, the energy efficiency value represented is:

EE ¼ computations

KWh
ð11Þ

From the regression analysis carried out, a coefficient of

determination r2 = 0.983 is obtained. The resulting func-

tion is:

EE ¼ e0:4401939�year�849:1617computations=KWh ð12Þ

which, on a logarithmic scale, turns out to be a straight line

defined by:

ln EEð Þ ¼ 0:4401939 � year � 849:1617 ð13Þ

Applying Eq. (10):

Dt ¼ 0:6931472

m
¼ 0:6931472

0:4401939
¼ 1:57 years ð14Þ
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Thus, from 1946 to 2009, the energy efficiency doubled

every 1.57 years.

Koomey also analysed the evolution of the energy effi-

ciency of personal computers, from which he concluded

that the energy efficiency of this type of systems increased

exponentially, doubling every 1.52 years from 1975 up to

2010. In this case, he considers N = 34 systems and in the

regression analysis he obtains a coefficient of determina-

tion of r2 = 0.970. The resulting equation is:

EE ¼ e0:4564139�year�881:61658 computations=KWh ð15Þ

which, on a logarithmic scale, turns out to be the straight

line:

ln EEð Þ ¼ 0:4564139 � year � 881:61658 ð16Þ

Applying Eq. (10) again:

Dt ¼ 0:6931472

m
¼ 0:6931472

0:4564139
¼ 1:52 years ð17Þ

It follows that, from 1975 to 2009, the energy efficiency

for PCs doubled every 1.52 years, growing, therefore, a

little faster than the global set of systems.

To better compare the results obtained with data from

the TOP500 and Green500, Fig. 1 shows the Koomey

regression lines using performance (R) per watt (W) as

dimensions of energy efficiency instead of computations/

KWh. That is, calling v the value of the energy efficiency

in computations/KWh, the following transformation is

carried out:

EE ¼ v
comp:

KWh
¼ v

3:600 � 103
comp:

W � s
¼ v

3:6 � 1015
Gigacomp:=s

W
ð18Þ

The objective of this work is to compare and extend

over time the results obtained by Koomey. These functions

have been carried out with data obtained from the TOP500

and Green500 lists, which, as mentioned in Sect. 3, cor-

respond to real data. The Appendix includes Tables 6, 7

and 8 that present data collected from both the TOP500

and Green500 lists and some calculations according to the

definitions given in Sect. 2.3.

4.2 Energy efficiency obtained with data
from 2008 to 2023

The evolution of energy efficiency, considering its maxi-

mum performance (Rmax) measured with the Linpack has

been obtained:

EE ¼ Performance

Electrical power
¼ Rmax

P
! GFLOPS

Watt
ð19Þ

The graphic results considering the average energy

efficiencies of each edition of the TOP500 or Green500, are

shown in Fig. 2a. The evolution of said parameter for the

computer systems that occupy the first place in the

Green500 is depicted in Fig. 2b.

The regression analysis carried out gives the following

results for the evolution of the average values of energy

efficiency (Fig. 2a):

EE ¼ 10�265e0:3026�year GFLOPS=W ð20Þ

with a coefficient of determination r2 = 0.9916, which, on

a logarithmic scale, gives rise to a straight line with the

slope m = 0.3026. Applying now Eq. (10):

Dt ¼ 0:6931472

m
¼ 0:6931472

0:3026
¼ 2:29 years ð21Þ

It follows that, from June 2008 to June 2023, the energy

efficiency doubled every 2.29 years.

Figure 3 compares the regression lines obtained by

Koomey and the one presented in this work. From the

results, it is concluded that in recent decades the growth of

energy efficiency occurs at a slower rate than predicted by

Koomey’s Law, doubling every 2.29 years, instead of

every 1.57 years. It is worth considering that the observed

differences may be partly due, in addition to the different

data sources used, to the fact that Koomey uses general-

(a) Including a range from PC to mainframe computers. 

(b) Including only PCs. 

Fig. 1 Representation of the regression lines for energy efficiency

obtained by Koomey in performance (Gigacomputations/s) per watt
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purpose computers and the present work uses supercom-

puters. The latter can be, to some extent, considered as

special-purpose computers because they are specifically

designed for high-performance computing with, in general,

few input/outputs operations.

The evolution of energy efficiency for the computer

systems that occupy the first place in the Green500

(Fig. 2b), can be represented by the following exponential

function, with a determination coefficient r2 = 0.9738,

EE ¼ 3 � 10�273e0:3122�year GFLOPS=W ð22Þ

It follows that, from June 2008 to June 2023, the energy

efficiency of the first place in the Green500 doubled every

2.22 years, as the following is verified:

Dt ¼ 0:6931472

m
¼ 0:6931472

0:3122
¼ 2:22 years: ð23Þ

4.3 Computing performance with data obtained
from 2008 to 2023.

Figure 4 represents the regression line obtained for the

evolution of the average value of the maximum computing

performance (Rmax) of the systems included in the

Green500 lists, measured, in TFLOPS. The results obtained

are the following:

Rmax ¼ 2:0724 � e0:3739� year�2000ð Þ FLOPS ð24Þ

with a coefficient of determination r2 = 0.9834, which, on

a logarithmic scale, gives rise to a straight line with the

slope m = 0.3739. Now applying Eq. (10):

Dt ¼ 0:6931472

m
¼ 0:6931472

0:3739
¼ 1:85 years ð25Þ

It can be concluded that, from June 2008 to June 2023,

the computing performance doubled every 1.85 years.

Another observation of interest that has been obtained

with the data from 2008 to 2023 is that, as Fig. 5 shows,

there is a linear relationship between energy efficiency and

performance, which can be defined by the following

equation:

EE ¼ 10�6 � Rmaxþ 0:181 GFLOPS=W ð26Þ

(a) Average values of each list.

(b) Most efficient computer in each of the lists.

Fig. 2 Maximum energy efficiencies (Rmax/P) of the supercomputers

of each of the editions of the TOP500 or Green500 between the years

2008 to 2023

Fig. 3 Comparison of the regression straight lines for the energy

efficiency obtained by Koomey (1946–2009) and in the present work

(2008–2023)

Fig. 4 Annual evolution of average computing performance
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with a coefficient of determination r2 = 0.9853.

Table 4 shows a summary of the results obtained. The

last column gives the number of years that must pass for

the value of each of the parameters to double.

4.4 Landauer’s principle

The Landaueŕs principle [61–65] derives from the second

law of thermodynamics and the concept of the entropy

change associated with information gain. It states that in

any logically irreversible manipulation of information,

such as in the erasure of a bit (making a bit, 0 or 1, become

a 0) or when, for example, as a consequence of a calcu-

lation, two bits are logically combined to produce only one

(the AND operation, for example), part of the information

is lost. The decrease in the amount of information is

accompanied by a corresponding increase in the entropy of

the processing system and its environment, which is con-

sidered as an isolated system.

An irreversible process, in the context of computing, is

one in which, when obtaining the output, the information of

the input is lost, that is cannot be recovered from the

output. For example, an addition operation is irreversible

since from the result alone, the values of the input addends

cannot be obtained. On the contrary, a NOT logic gate

(inverter) can be considered as a reversible operation

because the input can be determined from the output.

Landauer’s principle can be deduced from the Boltz-

mann entropy formula:

S ¼ kB � ln NSð Þ ð27Þ

where S is entropy, kB & 1.38 � 10-23 J/K the Boltzmann

constant, and NS is the number of states. Since the entropy,

assuming a constant temperature T, can be expressed as

Fig. 5 Relationship of energy

efficiency with performance

observed with data from the

years 2008 to 2023

Table 4 Summary of functions that determine the variation of the parameters with time (years) obtained through regression analyses

Years and parameter Values Function Coefficient of

determination (r2)

Years to double the value of

the parameter

1946 to 2009

Energy efficiency Obtained by Koomey Mainframes and PCs:

EE ¼ e0:440�year�849:16

computations/KWh

0.983 1.57

Only PCs:

EE ¼ e0:4564�year�881:62

computations/KWh

0.9700 1.52

2008 to 2023

Energy efficiency Average value of the #1

of each list

EE = 10–265�e 0.3026�year

EE = 3�10–273�e0.3122��year
0.9916

0.9738

2.29

2.22

Computing performance Average values of each

list
Rmax ¼ 2:0724 � e0:3739� year�2000ð Þ

FLOPS

0.9834 1.85

Energy efficiency versus

performance

Average value of each

list

EE = 10–6 � Rmax ? 0.181 0.9853
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S = E/T, where E is the energy (heat dissipated) and T is

the temperature of the heat sink in absolute degrees. The

previous expression turns out to be:

E ¼ kB � t � lnðNSÞ ð28Þ

The energy loss (consumption) per processed bit can be

obtained, considering that in this case there are NS = 2

possible states, so the energy associated with the process-

ing of 1 bit turns out to be:

E ¼ kB � t � ln 2ð Þ ð29Þ

Considering that ln(2) & 0.69315, and an ambient

temperature of 200 C = 293.10 K, it is obtained that the

Landauer limit represents an energy of approximately

0.0175 eV (2.805 � 10–21 J) per missing bit. That is,

approximately 3 � 10–21 J/bit.
From the results obtained, it is possible to calculate the

year in which the Landauer limit will be reached. It must be

considered that by knowing the variation of energy effi-

ciency over time (EE), the evolution of the energy con-

sumed per bit (J/bit) can be obtained. Indeed, from Eq. (2),

the energy consumed by computing (E/NC) can be

expressed as:

E

NC
¼ 1

EE
J=FLOP ð30Þ

As the floating-point instructions considered are double

precision, each of them contains NBI = 64 bits, so the

energy consumed per bit (EB) based on energy efficiency

will be:

EB ¼ 1

64 � EE J=bit ð31Þ

Substituting the formula obtained for energy efficiency

(Eq. (20)), into the previous equation, the average energy

consumed per bit turns out to be:

EB � 10254 � e�0:303�year J=bit ð32Þ

The corresponding function is represented in Fig. 6. The

year in which the forecasts will no longer be valid due to

the Landauer limit having been reached can be obtained

simply by replacing EB in the previous expression with the

value of the said limit& 3 � 10–21 J/bit, and isolate the year
variable. As shown in Fig. 6, according to the forecasts

made in this paper, the Landauer limit will be reached by

approximately 2090. It should be noted that this calculation

was made assuming a system temperature of T = 20 �C.
Obviously, if this calculation were made at temperatures

lower than the room temperature, more efficiency could be

achieved (see Eq. (29)). Of course, cooling has an energy

cost, so this will partly (or perhaps fully) offset the benefits

of lower temperatures.

In addition to the Landauer limit, there are other esti-

mates of the theoretical minimum energy possible to per-

form a binary operation (switching a bit). Among these

estimates, it is interesting to highlight the one presented by

Feynman in a talk in Tokyo in 1985 [66, 67], based on the

theoretical possibility of building transistors with only 3

atoms. With these hypothetical transistors, referred to by

Koomey in [68, 69], Feynman estimated that electronic

computers could be built that would improve energy con-

sumption by a factor of 1011 compared to the computer

technology of that time (1985). Performing the appropriate

calculations, we obtain that the energy consumed by a

switching would be 2.19�10–18 J/bit and, with current

trends (2024), this theoretical limit, without the use of

3-atom transistors, would be reached approximately 2070

(Fig. 6).

4.5 Relative positions between the Green500
and the TOP500 lists

The position of the #1 Green500 computers in the TOP500

can be obtained from the data in Table 6, and is repre-

sented in Fig. 7a. Analogously, Fig. 7b represents the

position occupied by the #1 TOP500 computers in the

Green500, obtained from the data in Table 8.

5 Analysis of results

One of the first results obtained is that the evolution of

energy efficiency is exponential and varies at a slower rate

compared to Koomey’s inference. Indeed, results show that

from 2008 to 2023 energy efficiency doubled every

2.29 years, while the trend obtained by Koomey from 1946

to 2009 showed that it should double every 1.57 years. In

the comparison presented herein, the measurement

methodology used should be analogous in order to be as

rigorous as possible. The initial data source and the concept

of ‘‘computations’’ used by Koomey were taken from the

work of Nordhaus [70]. However, the new results presented

here (2008–2023) follow the TOP500 protocol, which

correspond in all cases to double precision floating-point

operations. This lack of uniformity of methodologies

should be considered when analysing the results. We must

also not forget that, as indicated in Sect. 4, the differences

observed may be partly due to the fact that Koomey uses

general-purpose computers and the present work uses

supercomputers.

Considering the other results obtained, it is observed

that the evolution of all the parameters reliably follow

exponential functions (Table 4), having in all cases the

average values of each edition of the TOP500 or Green500

coefficient of determination greater than 0.97 (r2[ 0.97).
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That is to say, the functions obtained very adequately

reflect the behaviour over time of the data considered.

An important aspect to bear in mind about the compu-

tational performance measurements in the TOP500 and

Green500 is that they are carried out in floating-point

double precision (64-bits), FP64. However, in the execu-

tion of algorithms for certain workloads, such as those

related to machine learning, in contrast to other traditional

scientific applications (simulation for modelling phenom-

ena in physics, biology and chemistry, for example),

64-bits precision is not always required. In such cases,

mixed-precision arithmetic can be used, so that floating-

point operations can be performed, depending on the phase

of the algorithm being executed, with 32-bit (FP32), 16-bit

(FP16) or even 8-bit (FP8) data, without any deterioration

in the quality of the results [71, 72].

There are several accelerators [73, 74] that support the

ability to operate on floating-point data of different lengths.

The smaller the data size, the higher the performance, the

lower the memory usage, and data transfers take less time.

Thus, by properly choosing the smallest precision scale at

each execution step without sacrificing the precision of the

results, it is possible to obtain results of the same quality as

with FP64 but in a shorter time. The performance

improvement in different arithmetic precisions can be

measured with reference to double precision (FP64). For

example, in the NVIDIA H100 SMX4 Tensor Core GPU

[75], used by several supercomputers included in the 2023

November TOP500, FP64 achieves X = 67 TFLOPS, FP32

attains 15X, FP16 achieves 29X and FP8 reaches 59X.

A new benchmark, HPL-MxP Mixed-Precision [76, 77],

has been proposed that attempts to converge traditional

HPC workloads with new AI workloads, so that there is a

reasonable connection with the measurements made for

decades to evaluate the performance of supercomputers.

However, it is currently considered appropriate to continue

to measure performance in 64-bit FLOPS for the purpose

of comparison between different computers. By doing so, it

is possible to easily and efficiently compare the perfor-

mance evolution of HPCs from different eras regardless of

the types of accelerators available and the arithmetic pre-

cision used at the time.

The new results obtained refer only to HPC computers,

but it must be considered that other systems, such as per-

sonal computers, have energy efficiencies comparable to

those of supercomputers [78] after considering the energy

consumption of all elements of the computer, including

climate control and following in all cases the methodology

established by the TOP500 [51]. In fact, Koomey’s original

work established that the energy efficiency of PCs doubles

at almost the same speed as that of computing systems in

general (18 months versus 19, as shown in Table 4). Prieto

et al., show in [78] how five Personal Computers (PCs)

with Intel processors of different generations have energy

efficiencies that are comparable to those of supercomputers

within the first 174 positions of the Green500 (November

2021 list), despite the enormous difference in performance

(Rmax) between PCs and supercomputers.

Regarding the variation over time of the average com-

puting performance of the Green500 computers, it has been

found that this parameter doubled every 1.85 years, in line

with Moore’s Law, which doubles about every 2 years.

Another result of interest is that performance improves

more quickly (doubles every 1.83 years) than maximum

energy efficiency (doubles every 2.29 years). Also, from

the slope of the straight line in Fig. 5, it can be deduced

Fig. 6 Evolution over time of

the estimates made of energy

consumption per bit processed.

The point where the Feynman

and Landauer limits will be

reached are also shown
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that each increase in performance of 1 TFLOPS produces

only an improvement of 1 MFLOPS/W in energy

efficiency.

As shown in Fig. 6, according to the forecasts made in

this paper, the Landauer limit will be reached in approxi-

mately the year 2090. This means that, if the energy effi-

ciency of irreversible information processing follows the

trend of the last 16 years, the limit will be reached around

2090. This is because, as described in Sect. 4.5, according

to the second principle of thermodynamics, it is physically

impossible to irreversibly process information consuming

less than &3�10–21 J/bit of energy. The processing of a bit

is identified as a logical switching or elementary compu-

tation. There are other predictions, such as that of Feyn-

man, which assume a three-atom transistor to calculate this

limit, setting it at approximately 2.0�10–18 J/bit
[66, 68, 69]. It should be noted that, in the case of rever-

sible computations (as occurs in the field of quantum

computing), the value deduced by the Margolus-Levitin

Theorem should be used as the lower limit of energy

consumption, which is &3.0�10–34 J/bit [79].

For conventional (non-quantum) computing, if the

increase in performance follows the trend of the last

15 years (doubling every 1.85 years, in line with Moore’s

Law) when the Landauer limit is reached, the performance

would be of the order of Rmax & 1014 TFLOPS.

Concerning the position occupied by the #1 Green500

computers in the TOP500 tables of the same editions

(Fig. 7a), it is observed that 19% of Green500 winners

occupy the first quartile of the TOP500; 24% the second

quartile; 33% the third quartile and 24% the fourth quartile.

On the contrary, for the case of the position occupied by

the #1 TOP500 computers in the Green500 tables (Fig. 7b),

it was concluded that from 2013 to 2015 they occupied

positions ranging from 30 to 90, gradually decreasing

positions of the Green500, until reaching position 90.

However, from 2016 to 2023, the energy efficiency sub-

stantially improved since the first computer in the TOP500

of each list occupies positions ranging between 1 and 26 of

the Green500 (Fig. 7b).

6 Discussion and conclusions

Regarding the data source used in this work, it should be

noted that clear protocols on the methodology must be

followed to take measurements for computers to be inclu-

ded in the TOP500 and Green500 lists. However, the

results are provided by those responsible for the data

centres themselves, with little or no independent controls to

verify their authenticity. Indeed, those responsible for

preparing the lists, in addition to checking different sources

of information, limit themselves to randomly selecting a

statistical representative sample of the first 500 systems of

their database, performing an audit on them. For example,

the methodology to be followed in the Green500 mea-

surements [51] establishes that, for the calculation of

energy efficiency, the electrical consumption of all com-

putational nodes, any interconnect network the application

uses, any head or control nodes, any storage system the

application uses, all power conversion losses inside the

computer, and any internal cooling devices (self-contained

liquid cooling systems and fans), must be included. Nev-

ertheless, no procedures are defined to verify that this is

done correctly.

Another issue of interest is to highlight that Linpack is a

benchmark aimed at measuring computing power in

applications that require intensive calculation (a lot of data

including vector and matrix operations), but it may not

correlate well with some real workloads of current super-

computers or general-purpose computers (which follow

other objectives and trends). In these cases, Linpack would

not reflect the hardware improvements designed to obtain

greater efficiency in other particular types of workloads.

(a) Computing performance of the #1 Green500 
computers in the TOP500 list.

(b) Energy efficiency of the #1 TOP500 computers in 
the Green500 list.

Fig. 7 Position in the TOP500 and Green500 lists of the first

Green500 and TOP500 computer, respectively, within the same

edition
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Notwithstanding what has been said in the previous

paragraphs, the TOP500, together with the Green500,

constitutes an exceptional and open meeting point for sci-

entists and engineers. In fact, these two rankings are useful

to analyse the situation and trends in the evolution of the

characteristics of HPC systems, as well as comparing dif-

ferent equipment (always considering the indicated limi-

tations). Moreover, Linpack has been in use for decades

and allows consistent comparisons over time and remains a

very useful tool.

This work has been carried out based on Koomey data

covering the years 1946 to 2010 and the TOP and

Green500 lists from 2008 to June 2023. It has been proven

that the energy efficiency of HPCs between the last above-

mentioned years grew exponentially, doubling every

2.29 years. This conclusion has been obtained through a

regression analysis with coefficient of determination of

r2 = 0.9916, considering a total of 9,682 HPCs included in

the 30 lists used. It must be noted that in successive lists

many supercomputers are repeated, although their config-

urations and characteristics are generally updated list by

list.

The result obtained indicate that the growth of energy

efficiency is occurring at a slower rate than that obtained by

Koomey in 2011 with data between 1946 and 2009, which

was doubling every 1.57 years with a coefficient of deter-

mination of r2 = 0.983. However, the result has been

obtained using as ‘‘computations double precision floating

point instructions’’, and in the case of Koomey, as men-

tioned in Sect. 5, the concept of ‘‘computation’’ is based on

the work of Nordhaus [70].

This present work has focused on analysing the evolu-

tion of the energy efficiency of the most powerful

supercomputers in the world compiled in the TOP500 lists,

representing the entirety of each list by their average val-

ues. It is worth noting that many supercomputers are

repeated throughout editions, but generally their structures

are modified, either by simply adding more nodes and racks

or by changing some of them for more powerful or energy-

efficient computing units. These lists reflect the reality of

the computers that operate every year. Another approach of

great interest is the one followed by Koomey [80], which

tries to reflect the improvements over time of the current

technical ability to create new computing devices. To do

this, he considers supercomputers only in their year of first

operation, so he does not reflect machines beyond this date.

In the indicated work by Koomey, both computing power

and energy efficiency are analysed. The following con-

clusions are drawn with respect to energy efficiency in data

that is cleaned to include only equipment in its first year of

operation:

• The energy efficiency of the supercomputer suite from

2009 to 2019 doubled every 2.14 years with r2 = 0.6.

• The energy efficiency of the first supercomputer from

2009 to 2019 doubled every 2.12 years with r2 = 0.86.

• The energy efficiency of the top 10% of supercomputers

from 2009 to 2019 doubled every 2.11 years with

r2 = 0.7.

These results are summarised in Table 5.

It has also been shown that, with the trends obtained

here, the Landauer limit would be reached approximately

in the year 2090, and the energy/bit equivalent to that

estimated by Feynman with 3-atom transistors in 2070.

The evolution of other parameters has also been anal-

ysed, such as computing performance, which doubles every

Table 5 Comparison of results obtained with those of Koomey and Subramaniam

References Parameter Year Data

source

Computers Analysed

years

Doubling

years

r2

Koomey EE 2009 Diverse Mainframes, server, general purpose and PCs 1946–2009 1.57 0.983

Koomey EE 2009 Diverse PCs 1975–2010 1.52 0.970

Subramaniam EE 2017 Green500 Top 100 of each list 2007–2012 2,33 0.84

Koomey EE 2020 TOP500 TOP #1 (Lists of computers in their 1st year of

operation)

2009–2019 2.12 0.86

Koomey EE 2020 TOP500 TOP 10% Lists of computers in their 1st year of

operation

2009–2019 2,11 0,7

Koomey EE 2020 TOP500 Lists of all computers in their 1st year of operation 2009–2019 2.14 0.6

Koomey Rmax 2020 TOP500 Lists of computers in their 1st year of operation 2009–2019 1.66 0.73

Present work EE 2024 Green500 Average value of each list 2008–2023 2.29 0.99

Present work EE 2024 Green 500 TOP #1 2008–2023 2.22 0.97

Present work Rmax 2024 Green500 Average value of each list 2008–2023 1.85 0.98
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1.85 years (in line with Moore’s Law). It is assumed that

by increasing computing performance, the number of

applications and use of computers will increase, so the

number of computations (NC) would increase. Under this

hypothesis, it is worrying that energy efficiency is growing

at a slower rate than performance (doubling every

2.29 years compared to 1.85). Another unfavourable

implication is that there might be an eventual negative

trend, although rather slow, in energy efficiency, i.e., it is

possible that it will decrease further in the future. Although

the difference seems small, doubling energy efficiency

every 1.85 years means increasing it approximately 43

times in a decade, and doubling it every 2.29 years means

increasing it only about 21 times per decade. Therefore,

more needs to be done to ensure that energy efficiency

grows at least as fast as performance.

The results obtained are of interest to researchers,

engineers and manufacturers in order to make forecasts

about new products, trying to ensure that the efficiency

increase exceeds that of the demand for computing

services.

A common goal of institutions owning HPC systems is

to be included in the TOP500 list, and within it in leading

positions. To this end, Linpack implementations are opti-

mised to take full advantage of the heterogeneity in the

systems and the different accelerators, coprocessors, and

specialised hardware available. In this way, the measures

presented in the TOP500 are constantly adapted to reflect

the improvements introduced by new concepts and tech-

nologies in computer architecture. However, one must be

careful with forecasts, as new ideas and technologies are

being researched. This is the case, for example, in the area

of reducing consumption in servers, storage, networks,

interconnections, power conversion and cooling systems,

where the following concepts, among others, can be found

[81]:

• Changes in the devices and in the internal architecture

of the microchips [82–84].

• Management and planning of resource use, from low to

high system levels, such as using the Dynamic Voltage

and Frequency Scaling (DVFS) technique [85, 86],

Dynamic Power Management (DPM) [86, 87], or even

using power capping protocols, establishing a certain

power threshold for a device that it cannot exceed [88].

• Scale changes, in order to plan and assign tasks to the

available hardware resources considering their energy

efficiency. Within this area, virtualisation technologies

[48] have acquired great relevance, which have been

enhanced by the increase in scale of data centres

through the merger or transformation of medium-sized

centres to hyperscale centres (Google Cloud, Amazon

Web Services, Microsoft Azure, OVHCloud or Rack-

space Open Cloud), where energy consumption is better

managed [89–92].

An interesting aspect is that the ultimate objective is to

reduce the energy consumed in the execution of our pro-

grams, a value that can be obtained by applying Eq. (3),

where in this case NC would be the number of instructions

executed by the program and EE the energy efficiency of

the hardware where these instructions are executed. Con-

sequently, to reduce the energy consumed by the program,

the energy efficiency of the hardware devices (EE) must be

increased and the number of instructions (NC) must be

reduced as much as possible, that is, maintaining the

response times and precision required for the results.

Therefore, from an energy point of view, it is extremely

important, not only to increase energy efficiency, as con-

sidered in this work, but also to use techniques for efficient

algorithm development: HW/SW codesign procedures,

compilers, and software, in general, both for general-pur-

pose computers and for specific applications. As Leiserson

[93] points out, as miniaturisation approaches its limits,

bringing an end to Moore’s law, performance improve-

ments will have to come from what might be called the

three ‘‘top end’’ technologies: software, algorithms and

hardware, to distinguish them from the traditional ‘‘bottom

end’’ technologies (semiconductor physics and silicon

fabrication technology). These three top technologies have

a key role to play in reducing the energy consumption of

ICT.

Koomey and Masanet indicate that ‘‘IT changes so

quickly that most data characterizing it are obsolete in

short order’’ [94], so that in this work we have tried to

update some of the forecasts made. However, due to the

great improvements that are constantly being introduced, it

is advisable that the projections presented should be only

considered for a few years.

Appendix

See Tables 6, 7, 8.
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Table 6 Data from the computers with the highest energy efficiency, extracted from TOP500 and GREEN500 lists

Source Green500

edition

TOP500

Rank

Name Rmax

(TFLOPS)

Rpeak

(TFLOPS

Rmax/

Rpeak

Power

(kW)

Maximum energy

efficiency (GFLOPS/

W)

Peak energy

efficiency

(GFLOPS/W)

TOP500 2008-06 324 BladeCenter

QS22 Cluster

11.11 18.28 0.61 22.76 0.49 0.80

TOP500 2008-11 220 BladeCenter

QS22 Cluster

18.57 30.46 0.61 34.63 0.54 0.88

TOP500 2009-06 422 BladeCenter

QS22 Cluster

18.57 30.46 0.61 34.63 0.54 0.88

TOP500 2009-11 445 GRAPE-DR

accelerator

Cluster

21.96 84.48 0.26 51.20 1.65 1.65

TOP500 2010-06 131 QPACE SFB

TR Cluster

44.50 55.71 0.80 57.54 0.77 0.97

TOP500 2010-11 115 NNSA/SC Blue

Gene/Q

65.35 104.86 0.62 38.80 1.68 2.70

TOP500 2011-06 109 NNSA/SC Blue

Gene/Q Prot. 2

85.88 104.86 0.82 40.95 2.10 2.56

TOP500 2011-11 64 BlueGene/Q 172.49 209.72 0.82 85.12 2.03 2.46

TOP500 2012-06 252 BlueGene/Q 86.35 104.86 0.82 41.09 2.10 2.55

TOP500 2012-11 253 Beacon 110.50 157.55 0.70 45.11 2.45 3.49

Green500 2013-06 467 Eurora 98.51 175.67 0.56 30.70 3.21 5.72

Green500 2013-11 311 TSUBAME-

KFC

125.10 217.66 0.57 27.78 4.50 7.84

Green500 2014-06 439 TSUBAME-

KFC

151.80 217.82 0.70 34.58 4.39 6.30

Green500 2014-11 168 L-CSC 301.30 593.60 0.51 57.15 5.27 10.39

Green500 2015-06 160 Shoubu 353.82 842.96 0.42 50.32 7.03 16.75

Green500 2015-11 133 Shoubu 353.82 1535.83 0.23 50.32 7.03 30.52

Green500 2016-06 94 Shoubu 1001.01 1533.46 0.65 149.99 6.67 10.22

Green500 2016-11 28 DGX SaturnV 3307.00 4896.51 0.68 349.50 9.46 14.01

Green500 2017-06 61 TSUBAME3.0 1998.00 3207.63 0.62 141.60 14.11 22.65

Green500 2017-11 259 Shoubu system

B

841.96 1127.68 0.75 49.50 17.01 22.78

Green500 2018-06 359 Shoubu system

B

857.63 1127.68 0.76 46.60 18.40 24.20

Green500 2018-11 374 Shoubu system

B

1063.31 1353.22 0.79 60.40 17.60 22.40

Green500 2019-06 469 DGX SaturnV

Volta

1070.00 1819.75 0.59 97.00 15.11 18.76

Green500 2019-11 159 A64FX

prototype

1999.50 2359.30 0.85 118.48 16.88 19.91

Green500 2020-06 393 MN-3 1621.10 3922.33 0.41 76.80 21.11 51.07

Green500 2020-11 170 NVIDIA DGX

SuperPOD

2356.00 2812.80 0.84 89.94 26.20 31.27

Green500 2021-06 336 MN-3 1822.40 3137.87 0.58 61.36 29.70 51.14

Green500 2021-11 301 MN-3 2181.20 3389.52 0.64 55.39 39.38 61.19

Green500 2022-06 29 Frontier TDS 19,200.00 23,105.54 0.83 308.68 62.68 74.85

Green500 2022-11 405 Henri 2038.00 5417.34 0.38 31.31 65.09 173.02

Green500 2023-06 255 Henri 2882.00 3579.13 0.81 44.07 65.40 81.21

Green500 2023-11 293 Henri 2882.00 3579,13 0.81 44.07 65.40 81.21
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Table 7 Average values calculated in each TOP500 and Green500 list

Source Green500

edition

Rmax

(TFLOPS)

Rpeak

(TFLOPS)

Computing

efficiency (Rmax/

Rpeak)

Power

(kW)

Number of

systems with

power data

Maximum energy

efficiency

(GFLOPS/W)

Peak energy

efficiency

(GFLOPS/W)

TOP500 2008-06 29.57 44.03 0.63 253.41 247.00 0.12 0.19

TOP500 2008-11 44.70 30.46 0.62 359.83 253.00 0.13 0.21

TOP500 2009-06 57.98 84.14 0.63 387.30 238.00 0.15 0.24

TOP500 2009-11 69.50 98.33 0.66 401.53 238.00 0.27 0.27

TOP500 2010-06 72.75 99.90 0.67 398.42 257.00 0.20 0.28

TOP500 2010-11 110.24 160.56 0.71 476.50 263.00 0.24 0.35

TOP500 2011-06 151.46 211.30 0.68 545.92 274.00 0.25 0.38

TOP500 2011-11 188.52 271.22 0.66 592.86 283.00 0.33 0.54

TOP500 2012-06 343.50 463.35 0.68 667.37 293.00 0.50 0.74

TOP500 2012-11 445.74 613.24 0.70 684.78 281.00 0.63 0.93

Green500 2013-06 489.53 701.51 0.68 988.17 500.00 0.49 0.71

Green500 2013-11 497.77 729.11 0.69 1100.05 500.00 0.58 0.81

Green500 2014-06 546.04 807.00 0.68 1124.37 500.00 0.64 0.91

Green500 2014-11 615.73 907.01 0.69 1184.62 500.00 0.75 1.10

Green500 2015-06 723.21 1026.25 0.72 1222.06 500.00 0.92 1.29

Green500 2015-11 834.18 1277.91 0.68 1321.90 500.00 1.01 1.56

Green500 2016-06 1139.83 1698.32 0.67 1271.98 500.00 1.13 1.68

Green500 2016-11 1350.86 2038.37 0.67 1335.91 500.00 1.29 1.91

Green500 2017-06 1496.74 2264.48 0.66 1305.55 500.00 1.58 2.41

Green500 2017-11 1690.24 2678.68 0.64 1502.84 305.00 2.25 3.35

Green500 2018-06 2421.83 3843.33 0.64 1602.57 263.00 2.64 3.98

Green500 2018-11 2809.84 4396.78 0.64 1755.46 234.00 2.97 4.60

Green500 2019-06 3119.52 4934.48 0.63 1756.60 209.00 3.17 5.12

Green500 2019-11 3294.41 5496.72 0.64 1555.19 214.00 3.77 6.43

Green500 2020-06 4412.27 6957.84 0.64 1673.28 206.00 4.21 7.20

Green500 2020-11 4857.52 7692.07 0.62 1727.63 189.00 4.88 8.24

Green500 2021-06 5593.44 8854.21 0.63 1899.95 182.00 6.24 10.16

Green500 2021-11 6073.72 9577.79 0.62 1753.91 179.00 7.27 12.11

Green500 2022-06 8806.17 13,696.88 0.61 1782.65 191.00 8.74 13.71

Green500 2022-11 9728.77 15,081.39 0.60 1780.59 195.00 10.40 16.32

Green500 2023-06 10,478.05 15,651.84 0.61 1813.99 188.00 11.80 18.08

Green500 2023-11 14,063.68 21,319.25 0,66 2068.71 190.00 12.66 18.92
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