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Abstract: The multifunctionality feature of graphene field-effect transistors (GFETs) is exploited here
to design circuit building blocks of high-data-rate modulators by using a physics-based compact
model. Educated device performance projections are obtained with the experimentally calibrated
model and used to choose an appropriate improved feasible GFET for these applications. Phase-shift
and frequency-shift keying (PSK and FSK) modulation schemes are obtained with 0.6 GHz GFET-
based multifunctional circuits used alternatively in different operation modes: inverting and in-phase
amplification and frequency multiplication. An adequate baseband signal applied to the transistors’
input also serves to enhance the device and circuit performance reproducibility since the impact of
traps is diminished. Quadrature PSK is also achieved by combining two GFET-based multifunctional
circuits. This device circuit co-design proposal intends to boost the heterogeneous implementation
of graphene devices with incumbent technologies into a single chip: the baseband pulses can be
generated with CMOS technology as a front end of line and the multifunctional GFET-based circuits
as a back end of line.

Keywords: GFET; multifunction; high-frequency; modulation; PSK; FSK; QPSK

1. Introduction

In any wire-based and wireless communication system, the message sent by a transmit-
ter from one end and delivered to a receiver at the other end consists of controlled changes
in electrical signal characteristics such as amplitude, frequency and phase. This process is
known as modulation and requires a sinusoidal radiofrequency (RF) carrier signal and a
baseband signal. The former is the one to be modified and the latter the modifier, which can
be either analog (sinusoidal) or digital (pulse). The type of modulation process is defined
according to the modified signal characteristic. Each type of modulation has its proper
advantages and disadvantages over other ones; however, one of the most attractive features
of digital modulation is the fact that the digital symbols (bits) within the baseband signal
are not required to be reconstructed by the receiver, and hence, a message can be properly
transmitted with predefined symbol combinations and appropriate decision thresholds [1].

For the three basic digital modulation schemes, i.e., amplitude-shift keying (ASK),
frequency-shift keying (FSK) and phase-shift keying (PSK), the linear and nonlinear regions
of devices, e.g., diodes, varactors and transistors, are exploited depending on the desired
outcome [1,2]. However, it is difficult to find modulators using a single incumbent device
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switching between its linear and nonlinear bias regions for digital modulation purposes.
This is related to the high asymmetry between such regions (see, e.g., the transfer character-
istic of a unipolar silicon transistor), which limits the swing of the RF signal and/or the
amplifying capabilities. Such a constraint impacts the power consumption and chip area of
the circuits. Ambipolar transistors can alleviate the modulators’ design since their linear
regimes—in their transfer characteristic—are quasi-symmetrical with respect to a nonlinear
region defined by a charge neutrality point [3].

Emerging field-effect transistors (FETs) with low-dimensional channel materials, such
as carbon nanotubes (CNTs), nanowires (NWs), two-dimensional (2D) transition metal
dichalcogenides (TMDs) and graphene (G), are ambipolar devices either by their inherent
physical mechanisms or are enhanced by controlled electrical doping [4–7]. Fabrication
efforts have focused on exploiting either the linear or the nonlinear regions of CNTFETs sep-
arately for RF amplifiers or frequency conversion, respectively, [8]. Only modeling-based
device circuit co-design efforts have been proposed to improve the dynamic performance
of such circuits by exploiting both the device linear and nonlinear regimes and to use them
as building blocks for high-data-rate modulators [9]. On the other hand, TMD-based FET
digital modulators have been demonstrated recently for a frequency of operation within the
kHz range by using MoTe2 as the transistor channel [6]. In addition to the low-frequency
operation, the existence of a bandgap in MoTe2 induces a minimum static drain current of
a few nA and an extremely low output dynamic signal (tens of nA). The latter questions
the practical application of such modulators due to the signal being in a range similar
to the noise floor of instruments and amplifiers. Regarding radiofrequency modulators
based on GFETs, there have been some proof-of-concept demonstrations working within
the kHz range and using one single device but without any circuit design strategies for
improving matching and/or stability conditions [10,11]. The only GHz modulators based
on any emerging technology have been demonstrated with GFETs in [12] (on–off keying
at 96 GHz) and [13] (ASK and PSK at 90 GHz) obtained with zero-bias device conditions,
i.e., VDS = 0. Hence, these pure resistive GFET-based designs exploit the inherent high
mobility of the graphene channel but yield a poor performance in terms of output power
due to the lack of gain.

RF circuit applications based on emerging FET technologies, such as the high-data-
rate modulators discussed above, have been demonstrated [14] in order to find suitable
niches for these novel devices. However, an issue that still needs to be tackled toward the
successful adoption of these technologies is their reproducibility at both device (the DC and
AC performance) and circuit levels [15–17]. One of the main sources of low device (and
hence circuit) reproducibility in these transistors is the high density of defects and traps
inherent to the high-κ gate dielectric [18] that all of them use. From the characterization
point of view, it is possible to reduce the impact of traps on the device performance, i.e., to
improve their reproducibility, by applying suitable bias schemes [16,17]. One of these
techniques involves alternating the DC gate biasing by pulses of different polarities [16].
This technique is proposed here and is suggested to be provided by a CMOS platform,
combining in a heterogeneous circuit a GFET in the back end of line (BEOL) and silicon
devices in the front end of line [19,20]. Furthermore, the opposing-pulse biasing scheme
can be exploited not only at a device level but also for circuit applications since such a
biasing sequence can be used as a baseband digital signal for modulators: overcoming
reproducibility issues at the same time as proposing new niches for emerging devices such
as GFETs.

In this work, discussions of active GFET-based modulators presented in [21,22] have
been extended to a different operation frequency, i.e., 0.6 GHz, and to the proposal of FSK
modulation achieved with one single graphene transistor. A general discussion on how the
inherent ambipolarity of GFETs enhances their multifunctionality is provided in Section 2.
The calibration and optimization of the physics-based compact GFET model are discussed
in Section 3. The designs of multifunctional circuits based on GFETs and the results of
the three operation modes are shown in Section 4. PSK, FSK and QPSK modulators based
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on multifunctional GFET circuits are discussed in Section 5. A conclusion is provided in
Section 6.

2. Exploiting Ambipolarity in GFETs

In contrast to traditional transistors, the charge is never depleted in GFETs as a
consequence of the gapless feature of this two-dimensional material, which enhances their
ambipolarity operation. The transfer characteristic of ambipolar transistors has two distinct
quasi-linear operation modes in which either holes or electrons dominate the transport,
hence resembling classical p-type (negative transconductance gm = ∂ID/∂VGS) and n-type
(positive gm) FETs [3], as shown in Figure 1 (the top-left panel). These operation regimes
are separated by a high nonlinear region where the minimum current level is obtained at
the charge neutrality point, identified as the Dirac voltage VDirac = VGS|min(ID)

. In well-
designed GFETs, VDirac is of a few VGS and provides ID of a few mA at low lateral electric
fields. Furthermore, the separation between p-type and n-type linear regions can also be
of a few VGS in these optimized transistors. Hence, the non-linear and linear response
described above can be exploited by combining GFET-based circuits with a single device
enabled by switching the bias conditions. This practical low-power multifunctional feature
is unique to GFETs with one gate only, in contrast to reconfigurable devices where similar
features are obtained at the cost of multiple gates [23].

vin

vout

in-phase 
amplification

ID 

VGS

vin = A sin (2wt)
Vout ≈ VDS - Rd (gmVin - E)

t

t

Vout≈F - G [1- cos (2wt)]

inverting 
amplification

frequency
doubling

Vout ≈ VDS + Rd (gmVin - B)
Vout = VDS - Id Rd

ID1≈-gmVGS+B

ID3≈gmVGS+E

ID2≈C+D(VGS-VDirac)2

Figure 1. Top left: ambipolar transfer characteristic of a GFET showing approximate definitions for
the drain current in the different operation regimes. Bottom left: input AC signals. Top right: output
AC signal. Bottom right: equations of the analog AC+DC signals for the general case (in black) and
specific cases. A, B, C, D and E are arbitrary constants and Γ = 0.5RdCA2, Φ = VDS − BRd and Rd is
the output resistance seen from the drain terminal. Id is obtained by replacing VGS with VGS + vin in
the corresponding ID.

Signal processing, required for the ultimate modulator circuit, along with the ambipo-
lar transfer characteristics of GFETs at a specific VDS is explained as follows. For this discus-
sion, the device is considered in a common-source configuration. The total drain current
ID within each operation regime identified in Figure 1 (the top-left panel) can be approx-
imately described as a piecewise function such as ID1 = ID|VGS<VDirac , ID2 = ID|VGS≈VDirac

and ID3 = ID|VGS>VDirac . An input AC voltage defined as vin (cf. Figure 1 (the bottom-left
panel)) can be injected into the gate as the GFET is biased in any operation regime. Accord-
ing to the corresponding ID definition, an output AC signal is produced (cf. Figure 1 (the
top-right panel)): an in-phase (inverting) amplified signal if vin is injected and the GFET
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is biased at the p- (n-) type region and a vout with approximately the double frequency of
vin if the device is biased around VDirac. Expressions on the DC+AC output signal Vout are
provided in the bottom-right panel of Figure 1 where it can be noticed that the amplification
is controlled by gm in both linear regions as well as the explicit frequency doubling. Further
details on the obtention of such equations have been provided elsewhere [21].

High-frequency amplifiers and frequency doubler circuits, obtained by switching the
bias conditions as explained above using only one GFET with appropriate stability and
matching networks, are the basis for the modulator designs proposed in this work.

3. Device under Test: Modeling and Calibration

The foundation of the device circuit co-design proposal in this work is an experimentally
calibrated compact GFET model. Practical conditions have been considered such as parasitic
capacitances in order to provide meaningful results. In this work, the GFET performance is
described by a physics-based large-signal compact model described originally in [24] and
extended in [25] for its DC features. The model covers a reliable continuous description of
the device ambipolarity according to the sign of the chemical potential (see the appendix
in [25]).

The compact model is able to describe the experimental transfer characteristics of a
fabricated 300 nm long buried-gate graphene FET (fabrication process details available
in [26]) with trap-reduced conditions, as shown in Figure 2 (the left panel). The experimental
data were obtained with opposing VGS pulses (cf. inset of the Figure 2 left panel), as
explained in detail elsewhere [16]. Furthermore, a small-signal module of the compact
model is also able to describe the high-frequency performance of this technology at similar
bias regions shown in the transfer characteristics [21].
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Figure 2. Transfer characteristics of a 300 nm long GFET. Left: Trap-reduced data obtained with
opposing pulses. Markers are experimental data and lines are modeling results. Inset shows the
applied opposing VGS pulses and constant VDS. Right panel: optimized device modeling results. VDS

is 0.1 V, 0.2 V and 0.3 V for all cases.

From the circuit point of view, a quasi-symmetric transfer characteristic benefits the
design tasks of modulators: similar impedance values at the bias points in p- and n-type
regions enable one to work with a unique pair of matching networks with minimum
modifications induced by the impedance change at VDirac for the desired amplifiers and fre-
quency doubler. By considering this condition and, hence, by optimizing the device for an
improved circuit design, the experimentally calibrated compact GFET model is improved
toward higher ambipolar symmetry, i.e., a VDirac close to zero and a similar gm at both
unipolar regions. The latter change was not considered in [21], and hence, the circuit design
results presented here are different than the ones presented there. The optimization consid-
ered in this work implies changing model parameters associated with the residual charge,
mobility and contact resistances for both types of carriers, while all others remain the same.
Similar considerations have been followed elsewhere [27] for modeling quasi-symmetric
GFET transfer characteristics. This change can be justified by controlling the doping in the
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graphene channel by any means (chemical or electrostatic) and by an optimized technology
process for producing the metal–graphene contacts. From the fabrication point of view,
GFETs similar to the optimized case presented here were successfully achieved by careful
control of the unintentional doping [28,29]. The optimized transfer characteristics are
shown in the right panel of Figure 2, where VDirac = 0.2 V (@VDS = 0.3 V). Under the
optimized conditions, the model shows a cut-off frequency of ∼1.1 GHz and a maximum
oscillation frequency of ∼2.6 GHz around the unipolar bias regions.

4. Multifunctional Circuit Design and Results

A multifunctional circuit implies using a single device in different circuits with differ-
ent outcomes: in this case, inverting and in-phase amplification and frequency multiplica-
tion (×2). The first design discussed next is identified as a phase configurable amplifier
(PCA). High-frequency amplifiers were designed with the optimized compact model at
a frequency of 0.6 GHz to ensure both current gain (≳5 dB) and unilateral power gain
(≳10 dB) within the unipolar bias regions. For the in-phase amplifier, the GFET is biased at
VGS1 = −0.1 V (<VDirac), whereas for the inverting amplifier, VGS2 = 0.5 V (>VDirac); in both
cases, VDS = 0.3 V. The amplifiers present a low DC power consumption under both bias
conditions: ∼40 µW and ∼200 µW for the in-phase and inverting amplifiers, respectively.
Due to the highly symmetric device transfer characteristics (i.e., similar transconductance
and output device resistance at the selected bias points), matching and stability networks
for both types of amplifiers have the same topology and elements. The design is shown
in the top panel of Figure 3. The DC bias block for the VGS source is suggested to be
implemented in a CMOS platform on chip in order to provide the alternative pulses for
each circuit function in order to ease a heterogeneous integration of silicon and graphene
technologies. Notice that no feedback loop for stability but a padding resistor R1 was
employed toward reducing fabrication processes.
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Figure 3. Top: Schematic of the multifunctional GFET circuit used for data modulation at 0.6 GHz.
In-phase and inverting amplification obtained with VGS equal to −0.1 V and 0.5 V, respectively,
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whereas the circuit works as a frequency doubler at VGS = VDirac. Matching (stabil-
ity) networks are indicated by the dashed (dotted) boxes and are the same regardless of
the operation mode. DC and AC filtering between signal sources and circuit elements are
not shown. Input AC power is of −30 dBm at 0.6 GHz. Values of circuit elements are
L1 = 155 nH, C1 = 375 fF, L2 = 41 nH, C2 = 1.6 pF, R1 = 10.9 kΩ. VDD = 0.3 V. Bottom:
S-parameters of the amplifiers for the PCA design: continuous lines represent results of the in-phase
amplifier (@VGS1) and dashed–dotted lines show results of the inverting amplifier (@VGS2).

S-parameters for both amplifiers are shown in the bottom panel of Figure 3 considering
an input signal of 0.6 GHz and an input power of −30 dBm. Isolation from ports lower
than −10 dB and a power gain of ∼3 dB and ∼1 dB for the in-phase (@VGS1) and inverting
(@VGS2) amplifier designs, respectively, are obtained. The designs are unconditionally
stable at the operation frequency regardless of the bias. The input and output signals
of the PCA are shown in Figure 4, where the correct outcome of the circuit is observed
for both operation modes. The AC voltage gain is 1.3 V/V (1.75 V/V) for the in-phase
(inverting amplifier).
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v
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x
(m

V
)

10 15 20
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vin vout

@VGS1

-10

0

10

v
x

x
(m

V
)
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t (ns)

vin vout

@VGS2

Figure 4. vin and vout signals for the PCA design in both operation modes: In-phase amplifier (left) and
inverting amplifier (right). Only a 10 ns fram is shown for a better visualization of the signals.

The second proposed circuit is a frequency design amplifier (FCA) with the following
operation modes: inverting amplification (@VGS2) and frequency doubling (@VDirac), both
at VDS = 0.3 V and Pin = −30 dBm @0.6 GHz. GFET-based FCAs have not been shown
elsewhere before. The former operation mode is explained above. For the frequency
doubler, the same circuit shown in Figure 3 (the top panel) was used, where all parameter
values remain the same with the exception of C2, which in this case is 0. The output
voltage signal has twice the frequency of vin (cf. the left panel of Figure 5) regardless of
the asymmetry of consecutive cycles (associated with a slight asymmetry of the transport
due to electrons and holes). The output power Pout at 1.2 GHz of the frequency doubler
is −45 dBm (cf. Figure 5), yielding a circuit conversion frequency loss of 15 dBm. The
power of higher harmonics of the output is below −60 dBm, i.e., ensuring the unique
desired response.
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Figure 5. Frequency doubler results: vin and vout signals over a 10 ns frame (left) and output power
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5. Modulator Designs and Results: PSK, FSK and QPSK

By using a pulsed DC bias for VGS with the levels varying between −0.1 V and 0.5 V,
the operation modes of the PCA circuit can be exploited sequentially in order to modify
an input AC carrier signal in order to obtain PSK modulation, as shown in the left panel
of Figure 6. In addition to the alternating polarity of the DC pulses ensuring similar trap
states at each bias point, their 10 ns duration is shorter than the fastest traps reported in the
literature for GFET technologies (around hundreds of ns) [30,31]. The entire PSK circuit can
be integrated into a single heterogeneous chip by combining a silicon platform at the FEOL,
providing the baseband signal (i.e., VGS pulses) with on-chip pulse generators [32,33],
with the GFET-based multifunctional circuit (cf. the top panel of Figure 3) at the BEOL.
Furthermore, the circuit architecture of the GFET-based PSK alleviates the use of more than
one active device generally found in PSK designs using incumbent technologies [34,35].
The latter implies less production costs and a smaller chip area (if the stability network
is properly designed). In contrast to the passive GFET-based modulators found in the
literature [10–12], this PSK circuit presents an AC gain of ∼1.5 V/V and ∼1.3 V/V at the
ON and OFF state of the baseband pulses, respectively. As a further verification figure of
merit, the VGS dependence of the phase of vout is also shown in Figure 6.
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Figure 6. Baseband, carrier and modulated signals achieved with the GFET-based multifunctional
circuits. Left: PSK signals. Phase of output signal is included in the bottom plot. Right: FSK signals.

In a similar fashion, by combining the operation modes of the FCA, i.e., the inverting
amplifier and the frequency doubler, FSK modulation is achieved with one single GFET in
the circuit (cf. Figure 3), as shown in the right panel of Figure 7. The frequency of vout at
the time frame where the baseband pulse has a value of VGS = VDirac = 0.2 V is twice the
value of the signal corresponding to the inverting amplifier operation mode (VGS = 0.5 V).
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The combination of two identical PSK circuits enables one to obtain a quadrature
PSK-modulated signal by applying 90◦ shifted inputs with identical amplitudes. Hence,
a GFET-based QPSK modulator is proposed here by using a pair of the above-discussed
PSK circuits, as shown in Figure 7. The input and output signals involved in the QSPK
modulation are shown in Figure 8.
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Figure 7. Schematic representation of 0.6 MHz-QPSK modulator obtained with two GFET-based PSK
circuits. Each PSK block corresponds to the circuit shown in Figure 3. VGS1 and VGS2 correspond to
the baseband signal of the PCA design (with values of −0.1 V and 0.5 V).
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The baseband pulsed signals represent different bit streams with a bit duration of 10 ns
(a data rate of 0.1 Gbps): VGS1 represents “10110” whereas VGS2 corresponds to “11010”.
Signals voutI and voutQ are PSK-modulated signals whose change in-phase depends on their
corresponding baseband (VGS1 and VGS2, respectively), as explained above. The combina-
tion of the PSK signals yields a phase change of ∼45◦ in voutIQ at consecutive bit pairs, as
observed in the two bottom panels of Figure 8.

6. Conclusions

Device circuit co-design proposals as the one presented in this work are one of the
most efficient approaches to evaluate the impact of emerging transistor technologies in
high-performance applications. In this work, a 300 nm long graphene transistor was used
as a reference for the calibration of a physics-based compact model and its subsequent
optimization toward obtaining a more efficient circuit design. The optimized compact
GFET model was used to propose a multifunctional circuit in which one single ambipolar
transistor enables bias-dependent outcomes: in-phase amplification if holes dominate
the device transport, inverting amplification for the electron-dominated performance and
frequency doubling if the device is biased at its charge neutrality point. Hence, a phase
configurable amplifier (PCA) is obtained if the GFET is biased alternatively at the p- and
n-type regions, whereas by varying VGS between the Dirac voltage and higher values (for
an n-type region), a frequency configurable amplifier (FCA) is achieved. By applying
a baseband pulsed DC signal along with an AC carrier signal (0.6 GHz) at the gate of
the device, phase-shift keying (PSK) and frequency-shift keying (FSK) modulated output
signals can be observed for the PCA and FCA operation modes of the circuit, respectively.
GFET-based FSK modulation is proposed for the first time in this work. The combination of
two GFET-based PSK modulators yields a quadrature PSK modulation with a data rate of
0.1 Gbps. Regarding the baseband signal, it covers two important aspects of this proposal:
(i) it is intended to improve the device reproducibility conditions by diminishing the impact
of traps and (ii) it can be implemented with incumbent technologies along with GFETs in a
single chip, i.e., enhancing the heterogeneous integration of silicon graphene technologies.
From the circuit architecture point of view, this proposal eases the fabrication and chip area
of high-data-rate modulators since only one single GFET is used for both PSK and FSK
and two GFETs for QPSK, in contrast to the multi-transistor circuits used in incumbent
technologies for achieving similar operations.
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