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Abstract

Automated calibration methods are a common approach to agent-based model calibration as

they can estimate those parameters which cannot be set because of the lack of information. Nev-

ertheless, the modeler requires to validate the model by checking the parameter values before the

model can be used and this task is very challenging when the model considers two or more conflict-

ing outputs. We propose a multicriteria integral framework to assist the modeler in the calibration

and validation of agent-based models that combines evolutionary multiobjective optimization with

network-based visualization. On the one hand, evolutionary multiobjective optimization provides,

in a single run, different sets of calibration solutions (i.e., parameters’ values) with different trade-

offs for the considered objectives. On the other hand, network-based visualization is used to better

understand the decision space and the set of solutions from the obtained Pareto set approximation.

To illustrate our proposal, we present the calibration of two agent-based model examples for mar-

keting which consider two conflicting criteria: the awareness of the brand and its word-of-mouth

volume. The final analysis of the calibrated solutions shows how our proposed framework eases the

analysis of Pareto sets with high cardinality and helps with the identification of flexible solutions

(i.e., those having close values in the design space).
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1. Introduction

Model simulation is useful for representing and analyzing complex systems, but validating a

model is not straightforward, specially if the modeling technique involves the definition and setting

of many parameters. This is the case of agent-based modeling (ABM), a model simulation technique

that has become highly relevant in the recent years [13, 40]. The ABM methodology [5, 12, 21]

relies on a population of autonomous entities called agents which behave according to simple rules

and by social interactions with other agents. The aggregation of these simple rules and interactions

allow us to represent complex and emerging dynamics as well as to define what-if scenarios and

to forecast hypothetical scenarios [17]. However, creating and configuring a model for a specific

problem from scratch can be difficult for designers and decision makers. If some of the model

parameter values cannot be specified using the available information and knowledge, the modeler

needs to manually estimate them for properly simulating the desired dynamics. The process of

adjusting the values is known as the calibration of the model and it is a crucial step during the

model validation [7, 8, 28].

A common calibration approach is automated calibration, a data-rich and computationally

intensive process that compares real-world data to model outputs and tunes a set of model’s

parameters to match the data [28, 31]. Automated calibration requires a set of historical data,

an error measure, and an optimization method for modifying the parameters in a systematic way

and minimizing the error measure. However, after the application of the optimization method,

the resulting parameter values need to be carefully reviewed and validated, since a good fitting

of the historical data does not ensure the validity of the model. Additionally, typical parameters

of computational models exhibit non-linear interactions and usually the best approach is to use a

non-linear optimization algorithm such as metaheuristics [35] that can search across a large span

of the model parameter space [7, 23, 34]. Metaheuristics are a family of approximate non-linear

optimization techniques that provide high quality solutions in a reasonable time for solving complex

problems in science and engineering [35]. In addition, often modelers choose to build their models

considering two or more conflicting criteria or key performance indicators (KPI). Calibrating those

models involve a multicriteria decision making process, since there are multiple configurations that

are valid and satisfy at least one model’s output.

In this multicriteria scenario, the validation of the model becomes even more difficult as there
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are multiple sets of parameter values that could be considered valid. In this paper, we propose

to improve the validation of ABM systems when they have more than one KPI by introducing

a multicriteria integral framework. This framework combines two elements: evolutionary multi-

objective optimization (EMO) [9] algorithms for automatically calibrating the models’ parameters

from historical data, and an advanced visualization method that enhances the understanding of the

calibration process and results. We show with our integrated approach that visualization is a key

issue for automated calibration as it increases the understanding of the calibrated model, assisting

the designer on the model validation [28, 31]. This way the modeler can adapt the automatic

calibration process to consider the mentioned conflicting outputs replacing the underlying opti-

mization algorithm by a multiobjective metaheuristic. Although there are previous efforts using

EMO for calibrating ABMs [25, 29], none of them considered an integral framework incorporating

novel visualization methods for easing the validation of the calibrated models.

We propose the use of moGrams [37] for the visualization method that represents the set of

calibration results. It is a methodology that combines the visualization of non-dominated solutions

in both the design and the objective spaces. A moGram is a weighted network where the nodes

represent the solutions of a Pareto set approximation and each edge represents a similarity rela-

tionship between two solutions in the design space. By using moGrams, the modeler will improve

her/his understanding of the calibration problem by being able to identify clusters of solutions, to

detect the most flexible ones (i.e., those that can be exchanged with another solution with mini-

mum changes in their decision variables), and to conveniently validate their selection of parameter

values based on the relationships between solutions (i.e., model parameter configurations).

We show how our integral approach improves the validation process by presenting the cali-

bration of two instances of an ABM for marketing with different dimensionality (i.e., number of

decision variables). These two examples are a specific case of our general proposal, which deals

with the problem of calibration and validation of models regardless of its application domain. Since

our ABM for marketing scenarios considers two conflicting objectives, we have selected the most

extended EMO algorithm, the NSGA-II [11], to be used in our experimentation. Finally, the be-

havior of the resulting solutions is analyzed by visualizing their parameter settings using moGrams

to generate insights about the decision space of the problem and help with the validation process.

The structure of this paper is as follows. We introduce our approach for multiobjective model
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Figure 1: Diagram illustrating the components of our multicriteria integral framework for model calibration.

calibration in Section 2. Then, we present the used ABM for marketing in Section 3. We describe

our experimentation and its results in Section 4, including the analysis and validation of the

calibrated solutions. Finally, in Section 5 we discuss our conclusions and final remarks.

2. Multicriteria integral framework for model calibration

In this section we describe our integral multicriteria framework for model calibration using

EMO algorithms and network-based visualization. A diagram illustrating the components of our

framework is shown in Figure 1. We start by presenting how we handle the problem objectives and

the parameters considered during calibration in Section 2.1. Then, Section 2.2 explains the role

of the EMO algorithm, which is a core component of the framework. Section 2.3 elaborates the

importance of visualization for model calibration and validation. Finally, Section 2.4 introduces

moGrams, the selected visualization methodology to analyze and better understand the calibrated

solutions, which is the other core component of the proposed framework.
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2.1. Calibration objectives and parameters

In an automated calibration process, the values of the model parameters are adjusted to match

the model outputs with the data reality of the modeled scenario. We define each parameter

configuration X = (x1, ..., xn) as a vector of n decision variables. The model parameters selected

to be estimated by automated calibration should be the most uncertain and the hardest to define

by the modeler, since the difficulty of validating the calibrated configurations increases with the

number of calibrated parameters. Our approach considers the calibration of parameters using

either integer or real values.

In our multiobjective approach, we assess the quality of a given model configuration regarding

two or more conflicting criteria which are considered as calibration objectives. We evaluate the

quality of the model regarding the fitting of its output to the provided real, historical data for

the multiple defined KPI. This fitting is computed using a deviation measure ε that guides the

optimization algorithm calculating the error between the provided ground-truth data and the

model output for a given objective. This distance can be computed using any of the standard

deviation measures (RMSE, MAPE, or MARE [16], for instance) for the defined objectives. This

way, the goal of the optimization algorithm is to minimize F (X) = (f1(X), ..., fM (X)), where M

represents the number of objectives. Each fitness function fj(X) computes the error associated

to objective j, and is defined by Equation 1, where õj represents the target ground-truth values

for the j-th output and oj(X) represents the simulated values of the model using the parameter

configuration X.

min F (X) = min (f1(X), ..., fj(X), ..., fM (X)), where fj(X) = εj(oj(X), õj). (1)

2.2. EMO algorithm

The EMO algorithm is a core component of the framework. EMO algorithms are population-

based metaheuristics that represent the solutions of the problem as individuals of a population.

They can provide different model configurations (i.e., sets of parameter values) in a single run. In

our design for the calibration problem, each individual of the population has n genes that corre-

sponds with the n-decision variables that represent each model configuration, with these genes being

either real-coded or integer-coded values. The model configurations obtained by EMO algorithms

have different values in the objective space and comprise a Pareto-optimal set approximation.
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Any EMO algorithm can be selected for performing this process and should be chosen depending

on the characteristics of the model being calibrated. For instance, if the calibration problem

considers less than four objectives, any well-known EMO such as NSGA-II [11], SPEA2 [50],

or MOEA/D [19] can be considered. Otherwise, the calibration problem should be treated as

a many-objective optimization problem and the selected EMO should perform properly in this

environment. Some examples of EMO algorithms for many-objective optimization would be NSGA-

III [10], HypE [2], GrEA [45], or KnEA [48].

2.3. Visualization for model calibration

The effective use of ABM simulation for representing a complex system heavily relies on the

transparency of the underlying model. ABM modelers and stakeholders require to understand

how the model recreates a given behavior, since the simulation of ABMs is frequently used for

defining what-if scenarios and forecast hypothetical scenarios [17, 39]. This can be achieved from

a white-box perspective [30], where both modelers and stakeholders are provided and make use of

visualization tools for increasing the explainability of the model.

Improving the understanding of artificial intelligence-based models is one of the goals of the

emerging area of explainable artificial intelligence [30]. It encourages modelers and researchers to

open black-box models so their behavior can be easily understood and their output can be better

explained. Explainable artificial intelligence also empowers the solutions delivered by white-box

models, since boosting the transparency of the delivered solutions should increase the trust in the

behavior and performance of these solutions.

This highlights the role of visualization methods for model calibration, since they are powerful

tools that increase the understanding of the modeler on the calibrated model and its parameter

settings [7]. The use of visualization during model calibration increases the transparency of the

quality indicators (mostly focused on the fitting of the model to real data) for the validation of the

calibrated model [4, 7, 18]. Thus, visually showing the underlying relationships between an input

configuration and its corresponding model’s output becomes a critical component of the validation

process.

However, if the model considers two or more conflicting outputs, multiobjective visualization

methods are specifically required for the validation of the model. Most of the available contributions

in the literature focus on the visualization of the non-dominated solutions in the objective space
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[38, 41]. In contrast, only a few contributions tackle the visualization of the solutions in the design

space, which is the most interesting for discovering knowledge about the parameter values, and

even less proposals derive joint visualizations for both the objective and design spaces [37]. One

of the few existing approaches is the moGrams methodology [37], which mutually analyzes and

visualizes the solutions delivered by EMO algorithms in the decision and objective spaces.

2.4. moGrams

moGrams [37] represents non-dominated solutions as nodes in a weighted network where each

edge stands for a relationship between the connected solutions in the design space. The weights

of the edges are computed using a similarity metric specifically defined for each problem by the

designer. In order to improve the readability of the network, moGrams employs the Pathfinder

network pruning algorithm [33] for reducing the edges of the network leaving only the most relevant

ones from a global viewpoint. In addition, each node is divided into sectors of the same size, each of

them associated to a different objective, which are colored differently with its opacity proportional

to the quality of the solution for the respective objective. For example, if a problem considers

four objectives, the node is divided into four sectors with different colors. This way, the modeler

has access to the whole information of both the objective and the design spaces at the same

time. For our problem (i.e., the validation of a model) it provides additional information regarding

the parameter settings of the different calibrated model configurations, highlighting similarities

between them.

Figure 2 shows an example of moGrams generated for a Pareto set of a problem with two

objectives. Additionally, we also show the original Pareto set for the generated moGrams network,

since the joint visualization of both elements is suggested for better understanding the relationships

in the design space. In this network example, we can identify two separate clusters connected by

the edge between Solution 4 and Solution 1, being the latter the most connected solution. From

the neighbors of Solution 1, we can observe that Solution 2 has the highest similarity relationship.

This means that the parameter configuration of Solution 2 is highly similar to the one of Solution

1.

However, the high similarity between Solutions 1 and 2 could lead us to think that both solutions

are close in the objective space. In this regard, moGrams provides the user with other relationships

that are not intuitive, such as the relationship between Solution 1 and Solution 6. This relationship
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reveals that the closer configuration to Solution 6 is the one defined by Solution 1, which is located

at the other end of the Pareto set. Thus, the decision maker can detect parameters that drastically

change the behavior of the solutions using this relationship. In addition, the topology of the

moGrams networks enables the modeler to identify Solution 1 as the most flexible solution, which

can be swapped with other solutions with minimum changes on its decision variables.

(a) Pareto set. (b) moGram representation.

Figure 2: Generated moGram network example for a given Pareto set corresponding to a problem with two objectives.

3. Description of the agent-based model for marketing

This section describes the main features of the ABM for marketing scenarios. First, the general

structure of the model and behavior of the agents are presented in Section 3.1. Then, Section 3.2

introduces the artificial social network and its features. Section 3.3 presents how we model the mass

media channels. Finally, in Section 3.4 we summarize the parameters of the model selected for cal-

ibration and we describe the conflict of adjusting both KPIs of the model with their corresponding

fitting functions in Section 3.5.

3.1. ABM general structure and agent’s state and update rule

Our proposed model simulates a given number of weeks (T ) of a market that comprises a set

of brands B. Using a time-step of a week, the model simulates the behavior of N agents and their

reaction to social influence through a social network in a word-of-mouth (WOM) process; and

external influences (advertisement) through a set of C mass media channels. The model has two

main outputs or key performance indicators (KPIs): brand awareness and WOM volume (i.e., the
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Figure 3: General scheme and structure of the ABM with an example of a brand advertised using mass media. The
agents exposed to advertising can gain awareness of the brand announced and talk about it to their neighbors.

number of WOM interactions among the consumers). We select these KPIs because they have an

important role in market expansion [20, 22]. A general scheme of our model is presented in Figure

3.

The awareness values of the agents are modeled using a state variable called abi ∈ {0, 1}. If

abi(t) = 1, then the agent i is aware of brand b at time step t. Otherwise, the agent does not

have awareness of brand b. This state variable is initialized using an initial awareness parameter

set for each brand (ab(0) ∈ [0, 1]) which is the global awareness of the population and fulfills

ab(0) = 1
N

∑N
i=1 a

b
i(0). Therefore, the initial awareness parameter for each brand specifies the

percentage of agents that have awareness of that brand at the beginning of the simulation.

The awareness values of the agents do not remain static and change during the simulation:

agents may loose or gain awareness of any brand at each step of the simulation. On the one hand,

agents may gain awareness of a brand due to advertising or due to interacting with other agents

through a WOM diffusion process. On the other hand, if the awareness of a brand is not reinforced,

it may be lost over time because of a decay process [43, 44].

We model these losing/gaining effects with additional parameters. The parameter regulating

the rate at which awareness is lost over time is called awareness decay (d ∈ [0, 1]). This parameter

is modeled as follows: at the start of each step t, the agent i checks each brand b it is aware of

(abi(t) = 1). Each of these awareness values will be deactivated with a probability d by setting

abi(t) = 0. The modeling processes of the awareness obtained by WOM diffusion and mass media

channels are explained in detail in Sections 3.2 and 3.3, respectively.
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In addition, each agent stores the number of conversations produced during its diffusion process

(depicted in Section 3.2) in order to compute the WOM volume for each brand (ωb
i (t)). This way,

every time an agent starts a diffusion process and talks with its neighborhood, the variable ωb
i (t)

will be updated by incrementing it with the number of agents’ neighbors (i.e., conversations).

Finally, it will update the global ωb(t) variable for the respective brand and time step.

3.2. Social network of agents and their word-of-mouth interactions

Our agents populate an artificial social network [3, 42]. We model this social network using an

artificial scale-free network [3] because many real networks match with this network model [3, 27].

In these kinds of networks, the degree distribution follows a power law [3]. It means that few nodes

have a significantly large number of connections (hubs of the social network) and most nodes have

a very low number of connections. We generate our scale-free network using the Barabasi-Albert

preferential attachment algorithm [3]. This algorithm has a main parameter m which regulates the

network’s growth rate and its final density. The generation process starts with a small clique (a

completely connected network) with m0 nodes. At each generation step, a new node is added and

connected to m different existing nodes. When a new node is included, the probability of choosing

an existing node is proportional to its degree (preferential attachment). After t iterations, the

Barabasi-Albert algorithm results in a social network with m · t edges. Finally, the average degree

of the social network is 〈k〉 = 2 ·m.

The agents of the model can spread their awareness values during the simulation through the

artificial social network. We model this social interaction as a contagion process which allows

information diffusion through the nodes of the social network depending on their connectivity [27,

32, 46, 47]. Every agent i has a talking probability (p(t)bi ∈ [0, 1]) to spread the brands it is aware

of at time step t (i.e., for every brand b where abi = 1). This probability pbi specifies when the agent

i talks with all of its neighbors in the artificial social network, having the chance of transferring

its awareness (i.e., a contagion process). We model this contagion effect using a parameter called

WOM awareness impact (αWOM ∈ [0, 1]), which represents the probability for an agent in the

neighborhood to be aware of a brand after having a conversation about it.

3.3. Modeling mass media channels

We model external influences like brand advertising as global mass media [15] using a similar

modeling approach to the one applied in the social network. The external influences are parame-
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terized to define the differences between the channels (i.e., press, radio, and television). The set of

C mass media channels can influence any number of agents at random depending on the channel

potential for reaching the population and the investment of each brand.

The maximum population percentage that can be reached by a mass media channel is bounded

by the nature of the channel itself. In this sense, some media are able to reach more people than

others. For example, the maximum population percentage that can be reached by a campaign

scheduled in the radio is bounded by the maximum population percentage that listens to the radio.

We model this behavior with a reach parameter (rc ∈ [0, 1], ∀c ∈ C), which defines the maximum

number of people a channel c is able to hit during a single step.

The advertising campaigns of the mass media channels are modeled using gross rating points

(GRPs). In advertising [14], a GRP is a measure of the magnitude of the impressions scheduled

for a mass media channel. Specifically, we use the convention that one GRP means reaching 1%

of the target population. The investment units in GRPs for channel c by brand b and time step t

is modeled by the variable χb
c(t). Each channel has different costs for GRP and the brands need

to carefully choose their investment since increasing the population awareness using mass media

channels implies a monetary cost. Using both the supplied GRPs for a given brand and the reach

values for a mass media channel, we are able to model brand advertising. Algorithm 1 shows the

scheduling algorithm for modeling impacts of the media channels over the population.

Algorithm 1: Pseudo-code of the advertising scheduling of the model for a given brand, time
step and channel.

1 begin
2 reach step = 0;

3 total hits = χb
c(t) · 0.01 ·N ;

4 reach increment = 1 / N ;
5 i = 0;
6 while i < total hits do
7 select agent randomly;
8 if selected agent was already hit then
9 impact agent;

10 i++;

11 else if reach step + reach increment ≤ rc then
12 impact agent;
13 i++;
14 reach step += reach increment;
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Each mass media channel has an awareness impact parameter (αc ∈ [0, 1], ∀c ∈ C) that defines

the probability of the agent becoming aware of the brand after one impact. If the agent is not

aware of the brand at a given time step t (abi(t) = 0), this probability αc will activate the awareness

of the agent for brand b.

Moreover, the advertising transmitted by mass media channels can produce a viral buzz effect

in the reached agent, as done in [24]. This buzz effect increases the number of conversations about

the announced brand, modifying the talking probability (pbi) of the reached agents. We model

this effect through a variable called buzz increment (τc) for each channel c ∈ C. This increment

of the agents’ talking probability is computed as a percentage increment over the initial talking

probability (pbi(0)) of the agent. However, if the generated buzz is not reinforced, its effect could

decay over time as previous interactions are forgotten. We model this effect with a variable called

buzz decay (dτc). The action of buzz decay reduces the previous increment of talking probability

(σc) applied to the agent through channel c. The update process for the talking probability value

of agent i for brand b due to both buzz increment and decay effects of channel c is shown in

Equation 2.

pbi(t+ 1) = pbi(t)− σbi c(t) · dτc + pbi(0) · τc, where σbi c(t) =

t∑
i=1

(pbi(t)− pbi(0) · τc). (2)

3.4. Parameters selected for calibration

A summary of the complete set of model parameters is listed in Table 1. From those, we select

the parameters that either modify the agent’s awareness values or their number of conversations for

the automated calibration process, since they are the most uncertain and the hardest to estimate.

These parameters regulate the awareness and talking probability gained by mass media and social

interactions with the addition of the awareness decay (d) and the social network generation param-

eter (m). The range of possible parameter values during the calibration process is limited to [0, 1]

for the real-coded parameters and to {2, ..., 8} for the social network generation parameter (m),

which is the only integer-coded parameter of the model. Notice that, the density of the agents’

social network is a parameter that is always difficult to identify. This way, each of the selected

model calibration parameters corresponds with one decision variable in the coding scheme of the

EMO algorithm. The final set of parameters to be calibrated for each model instance is determined

by the size of the modeled scenario: three parameters for each mass media channel plus four fixed
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Name Description

N Number of agents running in the model

|B| Number of brands contained in the model

|C| Number of mass media channels in the model

T Number of steps of the model

ab(0) Initial awareness for brand b

d Awareness decay probability in the model

m Parameter for social network generator

pbi(0) Initial talking probability, same value for each brand b

αWOM Awareness impact for social interactions

χb
c GRP units invested by brand b in channel c

rc Reach for mass media channel c

αc Awareness impact for mass media channel c

τc Buzz increment for mass media channel c

dτc Buzz decay for mass media channel c

Table 1: List of parameters of our proposed marketing model.
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Figure 4: Coding scheme for a model instance with three mass media channels. The first gene (m parameter) is an
integer value bounded to {2, ..., 8}. The rest of genes in the chromosome represent the real-coded parameters and
are defined in [0, 1].

social parameters. Briefly, those parameters are the following:

• Social network parameters. We calibrate the initial talking probability (pbi(0)), social aware-

ness impact (αWOM ), awareness decay (d), and social network generation parameter (m).

• Mass media parameters. For each defined mass media channel c ∈ C, we calibrate its aware-

ness impact (αc), buzz increment (τc), and buzz decay (dτc).

Therefore, the number of calibration parameters is 3 · |C|+4. Figure 4 shows the coding scheme

for a model instance using three mass media channels.

3.5. KPI fitting functions

Equations 3 and 4 define the objective fitting functions for the two KPIs, f1 (awareness deviation

error) and f2 (WOM volume deviation error), respectively. These functions compute the deviation
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error between the provided series of target data and the model outputs for each objective using the

standard mean absolute percentage error (MAPE) function, where ã and ω̃ represent the ground-

truth target values of awareness and WOM volume of the whole population, respectively. The

simulated values are generated using Monte-Carlo simulations by computing the average of those

independent runs.

f1 =
100

T · |B|

|B|∑
b=1

T∑
t=1

∣∣∣∣ab(t)− ãb(t)ãb(t)

∣∣∣∣ , (3)

f2 =
100

T · |B|

|B|∑
b=1

T∑
t=1

∣∣∣∣ωb(t)− ω̃b(t)

ω̃b(t)

∣∣∣∣ . (4)

We can observe that both outputs of the model cannot be adjusted at the same time. On

the one hand, mass media channels activate brand awareness using advertisement, but this effect

also modifies the WOM volume generated via the buzz effect of the campaign, which can deviate

its value beyond the target data. Additionally, as WOM spreads brand awareness via the agent

interactions through the social network, adjusting the number of conversations will modify the

awareness of the population, deviating its value beyond the target data. Therefore, for most model

instances there will be no model configuration that jointly adjusts both KPIs to the given target

data.

Finally, a sampling of the decision space is shown in Figure 5. These values were obtained

generating 10,000 random calibration solutions for a given instance of the model and plotting their

fitting for both KPIs. We can observe how both objectives are in conflict since the individuals

that have the lower deviation for awareness (f1) also have a high deviation for WOM volume (f2).

Thus, both objectives are clearly not correlated and most sampled values are gathered at extreme

locations of the decision space.

4. Experimentation

This section presents the experimentation developed and the analysis of results. Sections 4.1 and

4.2 explain the experimental setup, describing the considered problem instances and the algorithmic

configuration. Then, Sections 4.3 and 4.4 show the application of the visualization method to the

calibration results and analyzes the composition of the non-dominated solutions from the decision

maker’s point of view.
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Figure 5: Sampling of the decision space for the two objectives. The values are shown as a scatter plot, where
locations gathering multiple individuals have more intense colors.

4.1. Experimental setup

Our experimentation considers two different instances of the ABM model. These instances

are generated starting form an initial baseline instance (called P-25 because of its 25 decision

variables), which is based on real data from a banking marketing scenario. Then, we synthetically

generate an additional instance that include variations of the initial instance. This model variation

includes ten additional mass media channels (which are generated perturbing the GRP investment

of the existing ones) and modifications of the target series of historical values for both objectives:

awareness and WOM volume. Thus, P-55 will increase the dimensionality of the previous one by

adding new decision variables to enable a more complete analysis of the algorithms’ performance.

On the one hand, the perturbations to build P-55 consist of multiplying the investment of

each brand at each time step by a given factor. We consider reductions in the original investment

by 15%, 30%, 45%, and 60%. In addition, we increase the original investment by 100%, 200%,

300%, and 400%. The decision of whenever increasing or decreasing a brand investment is made

at random and remains constant for each step. On the other hand, the modifications on the target
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Baseline instance P-25

Name Value Name Value Name Value Name Value

N 1000 |B| 8 |C| 7 T 52

ab1(0) 0.709 ab2(0) 0.757 ab3(0) 0.589 ab4(0) 0.2559

ab5(0) 0.081 ab6(0) 0.429 ab7(0) 0.395 ab8(0) 0.34

rc1 0.928 rc2 0.579 rc3 0.548 rc4 0.035

rc5 0.432 rc6 0.382 rc7 0.696 pbi(0) 0.1

Table 2: Summary of the configuration of the baseline model instance P-25 for parameters that are not modified
during calibration. The parameters are presented as name-value pairs.

historical values for both objectives involve directly adding or subtracting a different value for

each brand to each of its time steps. In order to avoid unrealistic values we truncate the resulting

historical values: the awareness values cannot exceed the [0, 1] interval and WOM volume values

have a minimum value of 0. Similarly to mass media investment, the decision of whether increasing

or decreasing the target values is made at random and remains constant for each step.

Table 2 shows a summary of the configuration for the baseline instance P-25 showing the

parameter values that are not modified during calibration. Notice that, there are T = 52 time

steps corresponding to the weeks of a year of simulation. The generated instance P-55 shares the

previous parameter configuration with the addition of the corresponding reach parameter rc for the

additional mass media channels. The reach parameter values of these new mass media channels

take the value of the original ones employed for its generation. For example, if the additional mass

media channel c9 was generated from the original channel c5, then rc9 = rc5 .

4.2. NSGA-II as the EMO algorithm

We select NSGA-II as our EMO algorithm during our experiments. NSGA-II [11] has become

one of the most well-known EMO algorithms and there are several applications in model calibration

[1, 29, 49]. It has been proven computationally fast while maintaining good levels of diversity by

using a search strategy based on non-dominated sorting in problems with 2 or 3 objectives. During

each generation, NSGA-II creates an offspring population Qt from the previous parents population

Pt. These two sets are joined into a temporary population Rt of size 2 · |P | ranking every solution

according to its non-dominance level, that is, how many solutions it is dominated by. The new

population Pt+1 is created including the solutions with the best rank, which belongs to the best

non-dominated front. Then, the solutions from the following ranks are included iteratively until

|P | individuals are selected. This way the algorithm is guided to non-dominated regions and
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the solutions from the best non-dominated front are always kept in the population. In order to

enhance diversity, the first non-dominated front that cannot be fully included in Pt+1 is filtered

using a crowding distance calculated for only including the most diverse individuals.

We include polynomial mutation [9] as our mutation strategy. It modifies the values of an

individual’s genes using a polynomial distribution. It is applied with probability pm = 1/n, where

n is the number of decision variables (i.e., parameters of the model to be calibrated). Regarding

the crossover strategy, we choose simulated binary crossover (SBX) [9] with a crossover probability

pc = 1.0. SBX performs the crossover operation on real-coded decision variables emulating the

behavior of a single-point crossover from binary-encoding. This operator works as follows: given

two parents P1 = (p11, ..., p1n) and P2 = (p21, ..., p2n), SBX generates two springs C1 = (c11, ..., c1n)

and C2 = (c21, ..., c2n) as c1i = X̄−1
2 ·β̄·(p2i−p1i) and c2i = X̄+1

2 ·β̄·(p2i−p1i), where X̄ = 1
2(p1i+p2i)

and β̄ is the spread factor, a random number fetched from a probability distribution generated using

a given distribution index.

We run NSGA-II 20 times using different seeds for each run. The NSGA-II has a population of

100 individuals (|P | = 100) and evolves during 100 generations using 10,000 evaluations as stopping

criteria. During each evaluation of an individual, the model is evaluated by 15 Monte-Carlo runs.

The mutation operator uses a distribution index value of 10 and a different mutation probability

value depending on the number of parameters of each model instance. We implemented NSGA-II

using the jMetal framework [26].

4.3. Analysis of the multicriteria calibration results

We begin the analysis and validation of the calibrated model instances by visualizing the solu-

tions of the Pareto front approximations with respect to the two conflicting objectives (see Figure 6

with the two Pareto front approximations). We have selected three of the most representative solu-

tions of the Pareto sets for the two instances: a) the solution with lowest awareness, b) the solution

with lowest WOM volume error, and c) the solution with the best trade-off for both objectives. In

order to select the best trade-off solution we use the procedure followed in [6]. Briefly, we generate

1,000 random weights w ∈ [0, 1] and compute the average value of the aggregation function of both

objectives f1 and f2. Since the values of f1 are much bigger than the values of f2, we apply a nor-

malization factor δ in order to scale them δ = 1
|s|
∑|s|

i=1
f2(si)
f1(si)

, where s is the set of solutions in the

Pareto front. We formulate this process as F (si) = 1
1000

∑1000
j=1 δ ·wj · f1(si) + (1−wj) · f2(si). The
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Figure 6: Selected solutions for the two model instances (P-25 and P-55): lowest awareness error, lowest WOM
volume error, and best trade-off. Solutions from P-25 are represented using squares and solutions from P-55 are
displayed using triangles.

selected solutions using this strategy are shown with their respective Pareto front approximations

in Figure 6.

We visualize the outputs of the calibrated configurations setting the focus on some specific

brands in order to carry out an understandable analysis of the behavior of the selected solutions.

We show the behavior of the selected solutions for brands 3 and 6 in Figures 7 and 8 respectively.

These brands were chosen because their behavior is a good resemblance of the rest of the brands

for both objectives. These charts display the model output for the two instances regarding the

two objectives. Both figures show that adjusting the behavior the dynamics of the awareness

evolution over time are harder to mimic than the WOM volume dynamics. In contrast, WOM

volume dynamics are more sensible to Monte-Carlo variability for both model instances (as seen

in the blurred areas in Figures 7b, 7d, 8b, and 8d).

This is specially relevant for the P-25 instance, as shown in Figures 7a and 8a, since the best

calibrated solutions only capture the trend of the target values. In the case of the P-55 instance,

the awareness output of the solutions is wavier but the resulting values are far from the target data

and the final awareness error for this model instance ends up being greater (as it can be observed in

Figure 6). However, this could be a consequence of the synthetically generated target values, that
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could be too difficult to match. We extract similar conclusions for the WOM volume objective.

Although trade-off and best awareness solutions achieve decent WOM volume outputs for the P-25

instance (Figures 7b and 8b), final WOM volume errors are higher for the P-55 instance even when

considering the fittest solutions (as shown in Figures 7d and 8d).

(a) P-25 : awareness error (b) P-25 : WOM volume error

(c) P-55 : awareness error (d) P-55 : WOM volume error

Figure 7: Awareness output and WOM volume over time for P-25 and P-55 regarding brand 3. In these charts,
blurred areas represent the Monte-Carlo variability and the dashed lines represent target values. Best WOM and
best awareness (lowest error) solutions are represented with pointed lines containing squares and crosses respectively.
Trade-off solutions are represented using lines with circles.

Finally, Table 3 shows a sample of the parameter values of the selected solutions for P-25 and

P-55 instances. This sample includes the values of the social network parameters and the different

mass media channels. In these solutions we can observe how higher awareness parameters benefit

the fitting of WOM dynamics, since more awareness involves more conversations in the social

network. However, these values also reduce awareness fitting. We can see that these values are

consistent with the behavior shown in Figures 7 and 8. For example, the solution with best trade-

off and the solution with lowest WOM volume error (Best WOM in Table 3) for the P-25 instance
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(a) P-25 : awareness error (b) P-25 : WOM volume error

(c) P-55 : awareness error (d) P-55 : WOM volume error

Figure 8: Awareness output and WOM volume over time for P-25 and P-55 regarding brand 6. In these charts,
blurred areas represent the Monte-Carlo variability and the dashed lines represent target values. Best WOM and best
awareness (lowest errors) solutions are represented with pointed lines containing squares and crosses respectively.
Trade-off solutions are represented using lines with circles.

have higher buzz increment values (τc1 and τc4) and higher social awareness impact (αWOM ). In

contrast, the behavior of the selected solutions for the P-55 instance show high awareness impact

parameter values for the solution with best trade-off (αc4 , αc12 , and αWOM ). We can also identify

that the Best WOM solution has a really low value for the awareness decay parameter (d). This

also shows how configurations with high awareness values reduces WOM error (improves WOM

adjustment) but reduces awareness fitting.

4.4. Visual and qualitative multicriteria analysis using moGrams

We continue the analysis of the calibrated model instances using moGrams. As said, moGrams

is a visualization methodology that combines the visualization of both the design and the objective

spaces that aids the decision maker enhancing her understanding of the problem [37]. Our approach

is similar to the one followed during the behavior analysis: we apply moGrams to the two Pareto

20



P-25 τc1 αc3 τc4 dτc4 αc5 dτc7 pbi(0) αWOM

Best Aw. 0.241 0.798 0.012 0.154 0.674 0.801 0.329 0.288

Trade-Off 0.584 0.795 0.015 0.399 0.049 0.423 0.338 0.268

Best WOM 0.246 0.537 0.676 0.059 0.577 0.800 0.222 0.955

P-55 τc1 dτc2 αc4 dτc4 αc12 τc16 αWOM d

Best Aw. 0.392 0.170 0.278 0.196 0.182 0.859 0.150 0.192

Trade-Off 0.866 0.583 0.618 0.775 0.457 0.593 0.280 0.171

Best WOM 0.488 0.104 0.222 0.262 0.323 0.610 0.159 0.085

Table 3: Sample of the parameter values for the selected solutions for P-25 and P-55 instances. This sample includes
a selection of parameters for the social network and different mass media channels.

fronts obtained by NSGA-II for both P-25 and P-55 model instances. In order to perform moGrams

generation, we need to define a similarity metric for our calibration problem. Our similarity metric

Sim(Xi, Xj) ∈ [0, 1] compares two solutions (i.e., set of calibrated parameters) Xi and Xj using the

normalized Euclidean distance, since our calibration problem considers many independent decision

variables. The similarity metric is defined in Equation 5.

Sim(Xi, Xj) = 1−
√

(xi1 − xj1)2 + ...+ (xin − xjn)2

n
. (5)

The generated moGram for the P-25 model instance is shown in Figure 9 and its associated

Pareto front approximation is displayed in Figure 10. We can see that, given the relatively high

cardinality of the Pareto front approximation (29 solutions), the decision making process for this

model instance seems too complex to deal without a visualization method. Following the moGrams

methodology, each node in the generated network is associated to an individual solution (i.e.,

parameter setting) from the Pareto set approximation. We draw each node as a pie where the

upper pie segment represents the awareness error objective using degradation between orange and

white and the lower pie segment represents the WOM volume error objective using degradation

between blue and white. For both objectives, a more intense color means a better value with a

white color being the worst possible value. In addition, we have included indexes for the solutions

in both the network and the Pareto front for making their relation clearer (see Figures 9 and 10).

We provide several observations from the moGrams visualization:

• Regarding the structure of the network, we can identify four clusters of solutions (i.e., groups

of solutions) in the design space. Two of these subsets of solutions, located in the left side
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Figure 9: moGrams network representing the non-dominated calibration solutions for P-25 model instance.

Figure 10: Pareto front approximation for P-25 model instance associated to the moGram of Figure 9.
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of the network, are connected to the central cluster by Solution 22. In addition, Solution 4

is connected to another subset of solutions, located in the right side of the network.

• From those clusters we can identify Solution 12 as the most connected one since it is the only

solution with degree 6. Due to its connectivity and the additional information provided by

moGrams, Solution 12 could be an interesting configuration for the modeler. In this regard,

many of the connections of Solution 12 have similarity values beyond 0.86, which suggests

that this solution has good flexibility and can be swap by other solutions with minimum

parameter changes. In addition, the flexibility of Solution 12 is specially interesting since its

connections belong to different regions of the Pareto front approximation.

• The moGrams visualization methodology assists us in validating the best trade-off solution

(Solution 6, located in the center of the map), which could be a suitable model configuration

due to its good balance for both objectives. This solution is connected with Solutions 5 and

10 with elevated similarity values (beyond 0.93). However, these solutions are located in the

same region of the Pareto front approximation, reducing the interest of swapping Solution 6

with any of its neighbors.

• With respect to the best solutions for each objective (Solutions 0 and 28), both of them

are located in the same cluster of solutions, which suggests that there could be some highly

sensible parameters that can drastically change the behavior of the model. In this regard, we

can observe that all the solutions of this cluster come from extreme regions of the Pareto front

approximation. Additionally, both of these solutions (0 and 28) are connected to Solution

25, which is the hub of its cluster, but their similarities are not specially high (∼ 0.79).

Figure 11 shows the generated moGram for the P-55 model instance while its associated Pareto

front approximation is displayed in Figure 12. Similarly to the previous moGram, its associated

Pareto front approximation has a relatively high cardinality (also 29 solutions). Again, we can

provide the following observations and interesting insights for the modeler from a validation point

of view:

• Due to the topology of the network (mixed between star and tree), we can identify three

subsets of solutions in the design space. Those would be the three-shaped subnetwork growing
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Figure 11: moGrams network representing the non-dominated calibration solutions for P-55 model instance.
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Figure 12: Pareto front approximation for P-55 model instance associated to the moGram of Figure 11.

from Solution 16, another three-shaped subnetwork growing from Solution 19, and a small

subnetwork following a mesh topology that connects with the rest of the network through

Solution 15.

• Solutions 15, 16, and 19 are the solutions with more connections, with either four or five

neighbors. Any of these solutions could be an interesting configuration for the modeler

since they have good flexibility. However, there is not enough diversity in the neighbors of

Solutions 15 and 16, since most of their neighboring solutions are located in the same region

of the Pareto front approximation. In contrast, Solution 19 exhibits more diversity and its

neighborhood considers solutions such as 7 or 24, which belong to different regions. With

respect to the similarity values of the most connected solutions, due to its higher variety of

neighbors, Solution 19 has lower similarity values than Solutions 15 and 16.

• The trade-off solution (Solution 4) provides more interesting neighboring relations to the

modeler. It is connected to Solution 2 and it is contained in the neighborhood of the hub

defined by Solution 16. Although both of its similarity values are not specially high (0.81
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αc7 dτc3 τc8 dτc8 dτc12 τc14 τc15 d

Solution 0 0.894 0.488 0.454 0.586 0.918 0.066 0.411 0.192
Solution 4 0.890 0.192 0.216 0.482 0.223 0.511 0.867 0.171
Solution 27 0.564 0.145 0.077 0.181 0.187 0.447 0.754 0.080
Solution 28 0.496 0.907 0.460 0.907 0.299 0.447 0.869 0.085

Table 4: Sample of the parameter values for the identified solutions for P-55 using its moGram at Figure 11.

and 0.83), these solutions are located in different and clearly separated regions of the Pareto

front approximation, making these relationships relevant to the modeler.

• Finally, the best solutions for each objective are located in two separated branches of the

subset defined by Solution 16. Both of these solutions have a single connection with similar

similarity values ∼ 0.83. On the one hand, Solution 28 is connected to Solution 25, which

belongs to the same region of the Pareto front approximation. On the other hand, Solution

0 is linked to Solution 27, which is located in the other extreme of the Pareto front. This

connection is interesting for the modeler since it suggests that modifying the value of some

sensible parameters can drastically change the behavior of the model.

The previous statement can be confirmed by sampling the parameters of Solutions 0 and 27,

shown in Table 4. Additionally, we also included the parameters of the solutions with best trade-off

and the solution with lowest WOM error. These parameters were selected because those are the

ones with bigger differences between the configurations of Solution 0 and Solution 27. It can be

observed that most of these parameters are related with buzz increment and buzz decay. Solution 0

has lower increment values and higher decay values of individual mass media channels, suggesting

that these parameters are really important to control the behavior of the model. In addition, we

can identify that the decay (d) value for both Solution 0 and Solution 4 is higher than the values

of Solutions 27 and 28, which are located in the opposite region of the Pareto front approximation.

5. Final remarks

In this paper we have introduced a multicriteria integral framework for the calibration and

validation of ABMs considering multiple objectives. The framework comprises an EMO method to

search for the best set of configuration parameters and a visualization method to help the modeler.

We have applied the novel multicriteria framework to an ABM for marketing scenarios, driven by

awareness and WOM volume as KPIs.
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We have designed and implemented our calibration approach using NSGA-II and we have

applied it to two different model instances, based on historical real data from a banking model in

Spain. We have analyzed the resulting Pareto front approximations of the calibrated instances by

selecting three solutions: the solution with best awareness error (f1), the solution with best WOM

volume error (f2), and the solution with best trade-off for both objectives. Our analysis suggested

that awareness dynamics were more difficult to adjust than the WOM volume for the calibrated

instances, specially for P-55, the instance with highest dimensionality. Due to the acceptable fitting

behavior for the baseline model, we can conclude that the increasing dimensionality of the problem

influences the fitting of the resulting models.

Finally, we have analyzed the design space for our calibration problem using moGrams on

individual Pareto front approximations from P-25 and P-55 instances. This analysis has shown

the usefulness of our framework when validating relevant solutions and assessing their flexibility

(i.e., the solution with best trade-off for both objectives) from the Pareto front approximation.

Our analysis concluded that the solutions with the best trade-off had good flexibility but they

did not have interesting neighboring solutions in the decision space. In contrast, other solutions

with higher degree had the potential of being more relevant for the modeler. We could also

notice that analyzing a Pareto set with this high cardinality (29 solutions) without a visualization

methodology such as moGrams can be difficult for modelers and stakeholders. For example, it

would have been tricky to identify and validate alternative solutions (Solution 19 from Figure 11

would be an example). Thus, we have shown moGrams is a powerful resource for aiding modelers

when dealing with multiobjective model calibration problems.

As future works, we consider extending our designed consumer model for including brand sales

as an additional KPI. In addition, including new objectives could involve replacing NSGA-II with

another EMO algorithm that could be able to successfully deal with many-objective optimization.

Due to the high cardinality of the Pareto set approximations delivered during our experiments, we

also consider interesting to extend our calibration approach to evaluate the impact of including the

modeler’s preferences during the calibration process [36].
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[6] Campomanes-Álvarez, B.R., Cordón, O., Damas, S., 2013. Evolutionary multi-objective optimization for mesh
simplification of 3D open models. Integrated Computer-Aided Engineering 20, 375–390.

[7] Chica, M., Barranquero, J., Kajdanowicz, T., Cordón, O., Damas, S., 2017. Multimodal optimization: an
effective framework for model calibration. Information Sciences 375, 79–97.
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