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NON-UNIFORMLY CONTINUOUS NEAREST POINT MAPS

RUBÉN MEDINA AND ANDRÉS QUILIS

(Communicated by Stephen Dilworth)

Abstract. We construct a Banach space satisfying that the nearest point map
(also called proximity mapping or metric projection) onto any non-singleton
compact and convex subset is continuous but not uniformly continuous. The
space we construct is locally uniformly convex, which ensures the continu-
ity of all these nearest point maps. Moreover, we prove that every infinite-
dimensional separable Banach space is arbitrarily close (in the Banach-Mazur
distance) to one satisfying the above conditions.
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1. Introduction

1.1. Main result and background. This note concerns nearest point maps (also
called proximity mappings or metric projections) in Banach spaces onto compact
subsets. Given a metric space (M,dM ) and a subset C ⊂ M , a map R : (M,dM ) →
(C, dM ) is called a nearest point map if dM (x,R(x)) = dM (x,C) = inf{dM (x, c) : c ∈
C}. Note that compactness of the target is sufficient, but not always necessary, to
guarantee the existence of such retractions.

Given a map F : (M,dM ) → (N, dN ) between metric spaces, the modulus of
continuity of F is a non-decreasing function ωF : R+ → R

+ ∪ {+∞} given by
ωF (t) = sup{dN (F (x), F (y)) : x, y ∈ M, dM (x, y) � t}. The map F is uniformly
continuous if and only if limt→0 ωF (t) = 0.
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5138 R. MEDINA AND ANDRÉS QUILIS

Our main result is Theorem A:

Theorem A. There exists a locally uniformly convex separable Banach space X
such that the nearest point map in X onto any non-singleton compact and convex
subset is continuous but not uniformly continuous.

Moreover, every infinite-dimensional separable Banach space is (1+ε)-isomorphic
to a Banach space with this property, for every ε > 0.

Let us put this result into context: in strictly convex Banach spaces, given
a closed and convex subset C, if a nearest point map onto C exists, then it is
unique; if this is the case, we refer to it as the nearest point map. Stronger
forms of convexity of the Banach space imply additional properties of the near-
est point map onto closed convex subsets. Initially, Phelps showed in [Phe58] that
the nearest point map from a Hilbert space X onto any closed convex subset is
non-expansive (1-Lipschitz). In fact, this property characterizes Hilbert spaces X
whenever dim(X) � 3. Later, more generally, Björnestȧl showed in [Bjö79] that
in uniformly convex Banach spaces, the nearest point map onto convex and closed
subsets is uniformly continuous. It is well known that only superreflexive Banach
spaces admit an equivalent uniformly convex norm.

The situation is much less restrictive when the range is assumed to be compact
in addition to convex. For compact and convex subsets in strictly convex Banach
spaces, the nearest point map exists, and it is unique and continuous. Brown
[Bro74] and Veselý [Ves91] showed that compactness is necessary for continuity in
this setting, by constructing reflexive and strictly convex Banach spaces contain-
ing a closed (non-compact) convex subset with non-continuous nearest point map.
Moreover, in the compact framework, in order to obtain uniform continuity of the
nearest point map, we do not need the full strength of uniform convexity of the
Banach space. Indeed, Hájek and Medina showed in [HM23, Proposition 6.7] that
given a compact K in a Banach space X, if X is uniformly convex in the direction
of x for every x ∈ SX ∩ span(K), then the nearest point map onto K is uniformly
continuous. This means, in particular, that every separable Banach space is (1+ε)-
isomorphic to a Banach space in which the nearest point map onto any compact
convex set is uniformly continuous, for any ε > 0.

In turn, this implies that compact and convex subsets of Banach spaces are
absolute uniform retracts. Moreover, Medina showed in [Med23] that, for every
α < 1, a rich class of compact and convex subsets of Banach spaces are actually
absolute α-Hölder retracts. The term “rich” here refers to the fact that only certain
assumptions on the asymptotic shape of the compact and convex set are needed,
which are weak enough such that every separable Banach space contains a compact
and convex set with this property and whose closed linear span is the whole space.

A closely related problem by Godefroy and Ozawa (asked in [GO14]) is whether
in every separable Banach space there is a Lipschitz retraction onto a compact
and convex subset whose closed linear span is the whole space. Theorem A is
a strong counterexample to a version of Godefroy and Ozawa’s question, where
we only consider the retractions given by nearest point maps. Furthermore, our
example shows that the above-mentioned result [HM23, Proposition 6.7] cannot be
generalized to strictly convex Banach spaces, or even locally uniformly convex.

It is worth mentioning that compactness is crucial in our result. Indeed, in every
Banach space there is a 2-Lipschitz nearest point map onto a bounded convex
subset, namely the radial projection onto the unit ball.
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1.2. Outline. Let us intuitively explain how we arrive to our main result, while
describing the content of the two main Sections 2 and 3. The purpose of this
subsection is purely explanatory, so we will not be fully rigorous. This subsection
can be skipped, as the rest of the note is self-contained and still contains some brief
explanatory remarks.

We start with an arbitrary infinite-dimensional separable Banach space (X, ‖ ·‖)
and a parameter 0 < ρ < 1/4, and we will construct a locally uniformly convex
equivalent norm |||·|||ρ in X which satisfies Theorem A, and which approximates ‖·‖
arbitrarily well as ρ goes to 0. This will clearly prove all statements of Theorem A.
Note that we may suppose that the starting norm ‖ · ‖ is locally uniformly convex,
since every separable Banach space is (1 + ε)-isomorphic to a locally uniformly
convex space for every ε > 0 (we briefly discuss this fact in Subsection 1.3).

First, we construct an equivalent norm in X with much weaker properties, and
which depends on some set of parameters α. This norm, denoted by ‖ · ‖α, is
not even strictly convex, but satisfies a very concrete version of Theorem A, and
acts as the blueprint for an infinite family of norms we construct in this note.
Namely, in (X, ‖ · ‖α), there exist two different points x+

α , x
−
α ∈ X which are closer

than some tα > 0 (i.e., ‖x+
α − x−

α ‖α < tα) and such that for any nearest point
map R onto certain compact and convex subsets (depending on α as well) it holds
that R(x+

α ) and R(x−
α ) are further than Cρ, where C is a universal constant (i.e.,

‖R(x+
α )−R(x−

α )‖α > Cρ). This gives a lower bound on the modulus of continuity
of nearest point maps at tα which only depends on ρ, but which only works for
certain compact convex subsets. The norm ‖ · ‖α is constructed based on three
vectors in X, and it can be faithfully represented in a picture (see Figure 1).

The idea is that, in order to deal with all compact and convex subsets in X, we
only need the norms associated to countably many sets of parameters α. Similarly,
the parameter tα > 0 can be made as small as we wish while obtaining the same
lower bound on the modulus of continuity; so, again, only countably many norms
of the form ‖ · ‖α are required to fully deny the uniform continuity of nearest point
maps. An important fact is that, even though ‖·‖α is not strictly convex, sufficiently
good locally uniformly convex approximations will clearly satisfy the same result
(with slightly different parameters). Again, only countably many approximations
of a given norm ‖ · ‖α will be enough to reproduce its properties.

The purpose of Section 2 is to construct the norm ‖ · ‖α for a suitable set of
parameters α, and to show that good enough approximations to ‖ · ‖α have the
desired concrete version of Theorem A above discussed.

In short, after Section 2 we are able to define a sequence of locally uniformly
convex norms (‖·‖n)n which yield the same lower bound on the modulus of continu-
ity of nearest point maps for some compact and convex subsets, when evaluated at
increasingly smaller tn > 0; and which all together deal with any compact convex
subset in X. We only need to combine all of them into a single locally uniformly
convex norm |||·|||ρ which does all of this simultaneously. We do this in Section 3,

where we finally prove that |||·|||ρ satisfies Theorem A. The combination of (‖ · ‖n)n
into a single norm |||·|||ρ is rather simple: the unit ball of |||·|||ρ is the intersection

of the original unit ball and all unit balls of the sequence of norms (‖ · ‖n)n. The
reason this intersection works for our purposes is mainly due to two factors:

In the first place, because of their construction, each locally uniformly convex
norm ‖ · ‖n in the sequence (‖ · ‖n)n coincides with the original norm except in
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5140 R. MEDINA AND ANDRÉS QUILIS

a particular slice Sn (i.e., an intersection of the unit ball with a half-space) and
its polar opposite −Sn, where the new unit ball is smaller than the original. This
means that intersecting the original ball with the unit ball of ‖ · ‖n only changes
these particular slices ±Sn. In the slice Sn, there is a critical region of the new
unit sphere where the precise geometry is present in order to have the properties
we need of ‖ · ‖α. The final norm |||·|||ρ must leave the critical region of each norm

in the sequence (‖ · ‖n)n intact for it to satisfy Theorem A. Therefore, we must
choose the sequence (‖ · ‖n)n in a way such that the slice Sn does not intersect the
critical region of any other norm ‖ · ‖m if m 	= n.

This leads to the second and final ingredient: for each n ∈ N, the slice Sn and the
critical region within this slice are determined by a pair (en, e

∗
n) ∈ S(X,‖·‖)×S(X∗,‖·‖)

with e∗n(en) = 1. More precisely, the slice Sn is of the form {x ∈ B(X,‖·‖) : e
∗
n(x) >

1 − ρ}, and the critical region in Sn contains the point (1 − ρ/2)en and has small
diameter (roughly of the order of ρ). Therefore, if we choose an almost biorthogonal
sequence (en, e

∗
n)n ⊂ S(X,‖·‖) × S(X∗,‖·‖), we will ensure that the critical regions of

each ‖ · ‖n are not in any other slice Sm for m 	= n. In order for |||·|||ρ to be
equivalent and locally uniformly convex, we will also require that any given point
in S(X,‖·‖) has a neighbourhood which only intersects finitely many slices. For
this reason, we further need the sequence (e∗n)n to be weak∗-null. The existence
of an almost biorthogonal sequence with these requirements in every separable
infinite-dimensional Banach space is a standard consequence of the existence of a
normalized weak∗-null sequence in the dual of every separable Banach space (this is
also true even in non-separable Banach spaces by means of Josefson−Nissenzweig’s
Theorem).

1.3. Notation and preliminaries. We finish the introduction by fixing the no-
tation and by presenting some more basic definitions and results that will be used
throughout the article.

We will consider real Banach spaces. The unit ball of a Banach space (X, ‖ · ‖)
is denoted by B(X,‖·‖), and the unit sphere by S(X,‖·‖). The dual space of X is
denoted by X∗, and the dual norm in X∗ associated to ‖ · ‖ is denoted again by
‖ · ‖.

In a Banach space X, two norms ‖ · ‖1 and ‖ · ‖2 are equivalent if (X, ‖ · ‖1)
and (X, ‖ · ‖2) are isomorphic. Given ε > 0, we say that two Banach spaces
(X, ‖ · ‖X) and (Y, ‖ · ‖Y ) are (1 + ε)-isomorphic if there exists an isomorphism
T : (X, ‖ · ‖X) → (Y, ‖ · ‖Y ) such that ‖T‖‖T−1‖ � (1 + ε). Clearly, if ‖ · ‖1 and
‖ · ‖2 are two norms in a Banach space X such that a‖ · ‖1 � ‖ · ‖2 � b‖ · ‖1, then
(X, ‖ · ‖1) and (X, ‖ · ‖2) are b/a-isomorphic.

We say that a Banach space (X, ‖·‖) is strictly convex if whenever x, y ∈ S(X,‖·‖)
satisfy x+y

2 ∈ S(X,‖·‖), then x = y. We say that (X, ‖ · ‖) is locally uniformly convex

if for every x ∈ S(X,‖·‖) and every sequence (yn)n ⊂ S(X,‖·‖) such that
∥∥x+yn

2

∥∥ → 1,
it holds that ‖x− yn‖ → 0. It is straightforward to see that every locally uniformly
convex Banach space is strictly convex. As mentioned in the first subsection, in a
strictly convex Banach space, the nearest point map onto any compact and convex
subset exists, and is unique and continuous.

In a Banach space (X, ‖·‖), the functionQ‖·‖ : X×X → R
+ given by Q‖·‖(x, y) =

2‖x‖2 + 2‖y‖2 − ‖x + y‖2 for all (x, y) ∈ X ×X encodes some information about
convexity properties of (X, ‖ · ‖). Indeed, (X, ‖ · ‖) is strictly convex if and only if
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Q‖·‖(x, y) = 0 implies that x = y, and (X, ‖ · ‖) is locally uniformly convex if and
only if for every x ∈ X and every sequence (yn)n ⊂ X, if Q‖·‖(x, yn) → 0 then
‖x − yn‖ → 0. Thanks to this function, it is straightforward to check that if both
(X, ‖ · ‖1) and (X, ‖ · ‖2) are locally uniformly convex, then (X,max{‖ · ‖1, ‖ · ‖2}) is
also locally uniformly convex. This result clearly extends to finitely many equivalent
norms in X.

We will use that every separable Banach space is (1 + ε)-isomorphic to a locally
uniformly convex Banach space. This follows from Kadets’ classical result, which
states that every separable Banach space (X, ‖ · ‖1) admits an equivalent norm
‖ · ‖2 such that (X, ‖ · ‖2) is locally uniformly convex. Then, the norm |||·||| =
(‖ · ‖1 + ε‖ · ‖2)1/2 approximates ‖ · ‖1, and (X, |||·|||) is locally uniformly convex as
well, as can be easily checked thanks to the function Q|||·|||. We refer the reader to
the monographs [DGZ93] and [GMZ22] for a more in depth study of these concepts.

2. Blueprint norm

Fix 0 < ρ < 1/4 for the rest of the article, and fix an infinite-dimensional, locally
uniformly convex separable Banach space (X, ‖ · ‖).

In this section we describe the construction of a single equivalent norm ‖ · ‖α in
X, depending on a tuple α = (v, v∗, e, e∗, h, h∗, t) with v, e, h ∈ S(X,‖·‖), v

∗, e∗, h∗ ∈
S(X∗,‖·‖) and t > 0. We require that t < ρ/16 and that

(2.1) v∗(v) = e∗(e) = h∗(h) = 1, and |e∗(h)| < ρ

800
.

For the remainder of the section, we define the following 4 vectors in X:

x±
α =

(
1− ρ

2

)
e± th,(2.2)

y+α = x+
α +

ρ

4
v, y−α = x−

α − ρ

4
v.(2.3)

Note that ‖y+α ‖, ‖y−α ‖ � 1− ρ
2 + ρ

16 + ρ
4 < 1− ρ

8 .
Let Sα be the slice of B(X,‖·‖) given by e∗ and ρ, that is,

Sα = {x ∈ B(X,‖·‖) : e
∗(x) > 1− ρ}.

Now, we define the closed, convex and symmetric set

Bα = co
(
(B(X,‖·‖) \ ±Sα) ∪ {y±α ,−y±α }

)
⊂ B(X,‖·‖).

Clearly, (1− ρ)B(X,‖·‖) is contained in Bα, so the Minkowski functional defined by
Bα defines an equivalent norm ‖ · ‖α such that

(2.4) ‖ · ‖ � ‖ · ‖α � (1− ρ)−1‖ · ‖.
The construction of ‖ · ‖α depends on three directions and a functional, given by
the vectors v, e and h and the functional e∗. Hence, we can realize it in a three-
dimensional space. In Figure 1 we have a representation of the top half of Bα if we
were to construct it in the three-dimensional euclidean space, using the standard
biorthogonal coordinate basis.

Remark 2.1. The functionals v∗ and h∗ do not play any role in the definition of
‖ · ‖α, and thus they do not need to be fixed from the beginning as the rest of the
elements in the tuple α. However, as it has no effect in the construction, we choose
to include them in the tuple α in an attempt to make the statements in this section
more concise.
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5142 R. MEDINA AND ANDRÉS QUILIS

Figure 1. Top half of the unit ball of ‖ · ‖α in the three-
dimensional euclidean space using the vectors from the canonical
biorthogonal basis

The key feature of the norm ‖ · ‖α is that vectors of the form x±
α + k have norm

strictly bigger than 1, provided that the vectors v and k ∈ X are sufficiently or-
thogonal to both e∗ and h∗. In order to prove this, we will separate the unit ball
B(X,‖·‖α) = Bα from such points using two particular hyperplanes ϕ± ∈ X∗. Intu-
itively, the hyperplanes ϕ± are defined by slightly tilting the hyperplane e∗ ≡ 1− ρ

2

with another hyperplane orthogonal to y+α − y−α . In the following technical lemma
we collect, for later reference, some estimates of the image of these hyperplanes on
the relevant set of vectors. Note that the estimates we obtain, while sufficient for
our purposes, are not optimal, since we opted to prioritize simplicity over sharpness.

Lemma 2.2. Let α = (v, v∗, e, e∗, h, h∗, t) as above. Let λ = 1− ρ
100 ∈

(
1
2 , 1

)
, and

consider:

ϕ+ = λe∗ + (1− λ)

(
h∗ − 4t

ρ
v∗

)
∈ X∗

ϕ− = λe∗ + (1− λ)

(
−h∗ +

4t

ρ
v∗

)
∈ X∗.

Let k ∈ B(X,‖·‖). Then, we have:

(1) ϕ+ (x+
α + k − y+α ) � tρ

25

(
1
16 − 1

ρv
∗(k)

)
−

∣∣e∗ (
k − ρ

4v
)∣∣ − ∣∣h∗ (

k − ρ
4v

)∣∣.
(2) ϕ+ (x+

α + k − y−α ) � tρ
25

(
1
16 − 1

ρv
∗(k)

)
−

∣∣e∗ (
k + ρ

4v
)∣∣ − ∣∣h∗ (

k + ρ
4v

)∣∣.
(3) ϕ+ (x+

α + k − z) � ρ
8 −|e∗(k)|, for all z ∈ B(X,‖·‖) such that e∗(z) � (1−ρ).

Similarly, we also obtain:

(1) ϕ− (x−
α + k − y−α ) � tρ

25

(
1
16 + 1

ρv
∗(k)

)
−

∣∣e∗ (
k + ρ

4v
)∣∣ − ∣∣h∗ (

k + ρ
4v

)∣∣.
(2) ϕ− (x−

α + k − y+α ) � tρ
25

(
1
16 + 1

ρv
∗(k)

)
−

∣∣e∗ (
k − ρ

4v
)∣∣ − ∣∣h∗ (

k − ρ
4v

)∣∣.
(3) ϕ− (x−

α + k − z) � ρ
8 −|e∗(k)|, for all z ∈ B(X,‖·‖) such that e∗(z) � (1−ρ).
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Proof. The proof consists of elementary computation. We will show the result for
ϕ+ and x+

α , since the second part is shown similarly.
Fix k ∈ B(X,‖·‖). For item (1), we have:

ϕ+(x+
α + k − y+α ) = ϕ+

(
k − ρ

4
v
)

= λe∗
(
k − ρ

4
v
)
+ (1−λ)h∗

(
k − ρ

4
v
)
− (1−λ)

4t

ρ
v∗(k) + (1−λ)t

� tρ

100

(
1− 4

ρ
v∗(k)

)
−

∣∣∣e∗ (
k − ρ

4
v
)∣∣∣ − ∣∣∣h∗

(
k − ρ

4
v
)∣∣∣

which in particular implies the estimate we need. We have a similar process for
item (2):

ϕ+(x+
α + k − y−α ) = ϕ+

(
k + 2th+

ρ

4
v
)

= λe∗
(
k +

ρ

4
v
)
+ 2tλe∗(h) + (1− λ)h∗

(
k +

ρ

4
v
)
+ (1− λ)2t

+ (1− λ)

(
−4t

ρ
v∗(k)− 8t2

ρ
v∗(h)− t

)

= t

(
(1− λ)

(
2− 4

ρ
v∗(k)− 8t

ρ
v∗(h)− 1

)
+ 2λe∗(h)

)

+ λe∗
(
k +

ρ

4
v
)
+ (1− λ)h∗

(
k +

ρ

4
v
)

� t

(
(1− λ)

(
1

2
− 4

ρ
v∗(k)

)
− 2|e∗(h)|

)

−
∣∣∣e∗ (

k +
ρ

4
v
)∣∣∣ − ∣∣∣h∗

(
k +

ρ

4
v
)∣∣∣

� tρ

25

(
1

16
− 1

ρ
v∗(k)

)
−

∣∣∣e∗ (
k +

ρ

4
v
)∣∣∣ − ∣∣∣h∗

(
k +

ρ

4
v
)∣∣∣ ,

where we have used that 8t
ρ < 1

2 and |e∗(h)| < ρ
800 = (1−λ)

8 .

For claim (3), observe that the choice of λ implies in particular that 5(1−λ) < ρ
16 .

With this, for any z ∈ X with ‖z‖ � 1 and e∗(z) < 1− ρ we obtain:

ϕ+(x+
α + k − z) = ϕ+

((
1− ρ

2

)
e+ th+ k − z

)

= λ
(
1− ρ

2
− e∗(z)

)
+ λ(te∗(h) + e∗(k))

+ (1− λ)
(
t+ h∗

((
1− ρ

2

)
e+ k − z

))

− (1− λ)
4t

ρ
v∗

((
1− ρ

2

)
e+ th+ k − z

)

� λ
ρ

2
− λt|e∗(h)| − λ|e∗(k)| − (1− λ)(3 + t)− (1− λ)

1

4
(3 + t)

� ρ

4
− ρ

16
− 5(1− λ)− |e∗(k)| � ρ

8
− |e∗(k)|.

In the second to last inequality, we used the (suboptimal) bound λt|e∗(h)| < ρ
16

given by the condition t < ρ
16 we imposed for α. �

We can now state and prove the main result of this section. Before doing this, let
us briefly discuss the core argument of its proof: In the space (X, ‖ · ‖α), whenever
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5144 R. MEDINA AND ANDRÉS QUILIS

we have a convex compact set K containing ±ρ
4v, any nearest point map R onto

K satisfies that ‖x±
α − R(x±

α )‖α � 1, since the points ∓ρ
4v ∈ K in place of R (x±

α )
satisfy this inequality. Therefore, if the vectors in K (which include ±ρ

4v) are
sufficiently orthogonal to e∗ and h∗, using the previous lemma we deduce that
−v∗ (R(x+

α )) and v∗ (R(x−
α )) must at least be strictly bigger than ρ

16 , since otherwise
the vectors x±

α −R(x±
α ) will be separated from the unit ball Bα by the hyperplanes

ϕ±. Therefore, v∗ separates the vectors R(x+
α ) and R(x−

α ) by ρ
8 , which yields a

lower bound on the modulus of continuity of R for the parameter (1 − ρ)−12t �
‖x+

α − x−
α ‖α. Importantly, this lower bound only depends on ρ.

The statement of the theorem, and consequently its proof, are slightly more
technical than the above paragraph. This is due to the fact that the final norm is
constructed by approximating infinitely many norms of the form ‖ · ‖α, and thus
we already include some approximating considerations in this section. As in the
previous lemma, for the sake of simplicity and readability, the conditions we assume
for the compact K and the estimates we obtain are not optimal.

Theorem 2.3. Let α = (v, v∗, e, e∗, h, h∗, t) as above. Let η > 0 such that η <
tρ

12800 . Suppose that (X, |||·|||) is strictly convex, and suppose that ‖ · ‖α � |||·||| �
(1− ρ)−2‖ · ‖ and |||y±α ||| � (1 + η).

Let K be a convex and compact set in B(X,|||·|||) such that there exists vK ∈ X with
ρ
4 |||v − vK ||| < η and

[
−ρ

4vK , ρ
4vK

]
⊂ K. If supk∈K |e∗(k)|, supk∈K |h∗(k)| < tρ

12800 ,
then the nearest point map R : (X, |||·|||) → (K, |||·|||) satisfies:

ωR

(
(1− ρ)−22t

)
� ρ

16
.

Proof. We will show that |||R(x+
α )−R(x−

α )||| � ρ
16 , which implies the desired con-

clusion. We will do it by proving that v∗ (R(x+
α )) � − ρ

32 and v∗ (R(x−
α )) � ρ

32 .
Since ‖v∗‖ = 1 and |||·||| is a bigger norm, the result follows.

Notice that, since

∣∣∣e∗ (
±ρ

4
vK

)∣∣∣ ,
∣∣∣h∗

(
±ρ

4
vK

)∣∣∣ < tρ

12800
,

it follows that
∣∣∣e∗ (

±ρ

4
v
)∣∣∣ , ∣∣∣h∗

(
±ρ

4
v
)∣∣∣ < tρ

6400
.

We prove the claim for R(x+
α ); the proof for R(x−

α ) is analogous. Suppose by
contradiction that v∗ (R(x+

α )) > − ρ
32 . Observe first that

∣∣∣∣∣∣∣∣∣x+
α −

(
−ρ

4
vK

)∣∣∣∣∣∣∣∣∣ �
∣∣∣∣∣∣y+α ∣∣∣∣∣∣ + ρ

4
|||v − vK ||| � 1 + 2η.

Since −ρ
4vK belongs to K, this implies that |||x+

α −R(x+
α )||| is at most 1 + 2η.

Consider the functional ϕ+ = λe∗ + (1 − λ)
(
h∗ − 4t

ρ v
∗
)
∈ X∗ with λ = ρ

100 . To

arrive at a contradiction, it suffices to show that, for any point u in (1+2η)B(X,|||·|||)
we have ϕ+ (x+

α −R(x+
α )− u) > 0.
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Using Lemma 2.2 with k = −R(x+
α ), we have that

ϕ+
(
x+
α−R(x+

α )− y+α
)
>

tρ

800
−2

tρ

6400
−2

tρ

12800
>

tρ

1600
,

ϕ+
(
x+
α−R(x+

α )− y−α
)
>

tρ

800
−2

tρ

6400
−2

tρ

12800
>

tρ

1600
,

ϕ+
(
x+
α−R(x+

α )− z
)
>

ρ

8
− tρ

12800
>

tρ

1600
, for all z∈B(X,‖·‖) with e∗(z)<1−ρ.

A simple computation shows that ‖ϕ+‖ � 1 + t
25 . Therefore, we have that

ϕ+
(
x+
α −R(x+

α )− (1 + 2η)y+α
)
>

tρ

1600
−

(
1 +

t

25

)
tρ

6400
> 0,

ϕ+
(
x+
α −R(x+

α )− (1 + 2η)y−α
)
>

tρ

1600
−

(
1 +

t

25

)
tρ

6400
> 0,

ϕ+
(
x+
α −R(x+

α )− (1 + 2η)z
)
>

tρ

1600
−

(
1 +

t

25

)
tρ

6400
> 0,

for all z ∈ B(X,‖·‖) with e∗(z) < 1 − ρ. Since B(X,|||·|||) is contained in Bα, every
point in (1 + 2η)B(X,|||·|||) can be written as a convex combination of (1 + 2η)y+α ,

(1 + 2η)y−α and (1 + 2η)z with z ∈ B(X,‖·‖) and e∗(z) < 1 − ρ. This leads to the
contradiction we sought. �

3. Proof of main theorem

Once we have constructed the blueprint for the norms we will be considering,
we proceed to obtain locally uniformly convex approximations of norms of the form
‖ · ‖α, and to combine these approximations into one final equivalent norm which
satisfies that the nearest point map onto any non-singleton convex compact set is
continuous but fails to be uniformly continuous.

First, we define a suitable countable set of tuples

(αn)n = (vn, v
∗
n, en, e

∗
n, hn, h

∗
n, tn)n

that will yield the norms to approximate and combine. Let (Ai)i be an infinite
partition of N formed by infinite sets. Define, for every n ∈ N, the positive number
tn = 2−i ρ

16 , where i is the unique natural number such that n ∈ Ai. As seen in
Theorem 2.3, the number tn determines for which parameter of the modulus of
continuity we obtain the lower bound, and so we need the sequence (tn)n to be
arbitrarily close to 0.

Since the final construction works for every non-singleton convex compact set,
we fix a sequence of vectors (vn)n ⊂ S(X,‖·‖) such that, for every i ∈ N, the set
{vn : n ∈ Ai} is dense in S(X,‖·‖) (we may do this by simply repeating the same
dense sequence in each Ai). Define for each n ∈ N a functional v∗n ∈ S(X∗,‖·‖) such
that v∗n(vn) = 1.

To finish defining αn for every n ∈ N, it only remains to define the sequences
(en)n, (hn)n in S(X,‖·‖) and the corresponding norming functionals (e∗n)n, (h

∗
n)n in

S(X∗,‖·‖). We will in fact consider just two suitable sequences (en)n and (e∗n)n,
and put hn = en+1 and h∗

n = e∗n+1. Note that, in this way, the system (en, e
∗
n)n

not only determines the slice we modify to construct ‖ · ‖αn
, but also where the

critical points x±
αn

and y±αn
lie within this slice. Therefore, if we hope to preserve

the precise geometry of the norms ‖ · ‖αn
, we must choose the system (en, e

∗
n)n in

a way that the slices modified in each ‖ · ‖αn
do not intersect the critical region of
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every other one. This will be done by considering an almost biorthogonal system:
we choose two sequences (en)n ⊂ S(X,‖·‖) and (e∗n)n ⊂ S(X∗,‖·‖) such that (e∗n)n
converges weak∗ to 0, and such that e∗n(en) = 1 for all n ∈ N and |e∗n(em)| < ρ

800
for all n 	= m ∈ N. The existence of such an almost biorthogonal system in every
infinite-dimensional Banach space is a standard fact that can be deduced from
Josefson−Nissenzweig’s theorem (see e.g., Claim 1 in [Qui23] for a proof). Note
that the almost biorthogonality also guarantees that |e∗n(en+1)| < ρ

800 , as required
in equation (2.1) to define ‖ · ‖αn

. The fact that (e∗n)n is weak∗ null is also crucial,
since it is necessary to show that the final space is locally uniformly convex, and
that every compact is eventually almost orthogonal to the sequence (e∗n)n.

Finally, for each n ∈ N, we define αn = (vn, v
∗
n, en, e

∗
n, en+1, e

∗
n+1, tn). It is

straightforward to check that αn satisfies the needed conditions in order to define
the norm ‖ · ‖αn

(i.e., tn < ρ
16 and equation (2.1)).

We now choose a suitable sequence (ηn)n to produce the approximations. Fix a

sequence (εi)i of positive numbers such that εi < 2−i ρ2

12800 for all i ∈ N. We may

choose εi with 1 + εi <
(
1− ρ

8

)−1
for all i ∈ N. Finally, define for each n ∈ N the

positive number ηn = εi, where i is the unique natural number such that n ∈ Ai.
In summary, we have chosen, for every n ∈ N, a tuple

αn = (vn, v
∗
n, en, e

∗
n, en+1, e

∗
n+1, tn)

and a positive number ηn such that:

(1) (tn)n is a sequence of positive numbers satisfying 0 < tn < ρ
16 for all n ∈ N.

Moreover, for every t > 0 there exists i ∈ N such that tn < t for all n ∈ Ai.
(2) (vn)n is a dense sequence in S(X,‖·‖), with v∗n ∈ S(X,‖·‖) and v∗n(vn) = 1 for

all n ∈ N. Moreover, the subsequence {vn : n ∈ Ai} is dense in S(X,‖·‖) for
all i ∈ N.

(3) (en)n ⊂ S(X,‖·‖) and (e∗n)n ⊂ S(X∗,‖·‖) form an “almost biorthogonal” sys-
tem, i.e., e∗n(en) = 1 for every n ∈ N, and e∗m(en) <

ρ
800 for all n 	= m ∈ N.

(4) The sequence (e∗n)n converges to 0 in the weak∗ topology in X∗.
(5) (ηn)n is a sequence of positive numbers that satisfies

0 < ηn < min

{
tnρ

12800
,
(
1− ρ

8

)−1

− 1

}

for all n ∈ N. Moreover, if n ∈ Ai for n, i ∈ N, then ηn = εi.

Now, let ‖ · ‖n be a locally uniformly convex norm in X such that

(3.1) ‖ · ‖αn
� ‖ · ‖n � (1 + ηn)‖ · ‖αn

.

The final norm we consider on X is defined as:

(3.2) |||x|||ρ = sup
n∈N

{
‖x‖n,

(
1− ρ

8

)−1

‖x‖
}
, for all x ∈ X.

We are now ready to prove the main result of the section:

Theorem 3.1. The space (X, |||·|||ρ) is a locally uniformly convex space, (1− ρ)−1-

isomorphic to (X, ‖·‖), and such that the nearest point map onto any non-singleton
convex compact subset is continuous but not uniformly continuous.

Proof. We first verify that (X, |||·|||ρ) is (1−ρ)−1-isomorphic to (X, ‖·‖). For a point

x ∈ S(X,‖·‖), it holds that |||x|||ρ �
(
1− ρ

8

)−1
. On the other hand, by equations
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(2.4) and (3.1), we have ‖x‖n � (1+ηn)(1−ρ)−1‖x‖ for every n ∈ N. We conclude
that

(3.3)
(
1− ρ

8

)−1

‖x‖ � |||x|||ρ �
(
1− ρ

8

)−1

(1− ρ)−1‖x‖, for all x ∈ X.

Next we show that (X, |||·|||ρ) is locally uniformly convex. Fix x ∈ S(X,‖·‖).

Given n ∈ N such that |e∗n(x)| < 1 − ρ, we have ‖x‖αn
= 1, which means that

‖x‖n � (1+ ηn) <
(
1− ρ

8

)−1
, and thus ‖x‖n does not participate in the supremum

which defines |||x|||ρ. Since the sequence (e∗n)n converges to 0 in the weak∗ topology
of X∗, we deduce that there exists an open neighbourhood U of x and a natural

number nx ∈ N such that |||z|||ρ = maxn�nx

{
‖x‖n,

(
1− ρ

8

)−1 ‖x‖
}

for all z ∈ U .

This shows that the norm |||·|||ρ is locally defined by finite intersection of locally
uniformly convex norms, and is therefore locally uniformly convex itself.

To show the final part of the theorem, we will apply Theorem 2.3 for any non-
singleton normalized convex compact set and for arbitrarily small t > 0. Consider
a convex compact set K in X with at least two points. By translating and dilating
K if necessary, we may assume without loss of generality that K ⊂ B(X,|||·|||ρ), and

that there exists vK ∈ S(X,‖·‖) such that
[
−ρ

4vK , ρ
4vK

]
is contained in K.

Consider an arbitrary t > 0, and fix i0 ∈ N such that tn < t for all n ∈ Ai0 .
Using that any cofinite subset of the sequence {vn : n ∈ Ai0} is dense in S(X,‖·‖),
and that the sequence (e∗n)n is weak∗ null, we obtain that there exists n0 ∈ Ai0

such that ρ
4‖vn0

− vK‖ < ηn0
= εi0 and supk∈K |e∗n0

(k)|, supk∈K |e∗n0+1(k)| <
tn0

ρ

12800 .

Note as well that ηn0
<

tn0
ρ

12800 by choice of εi0 . Moreover, equation (3.3) shows in

particular that ‖ · ‖αn0
� |||·|||ρ � (1− ρ)−2‖ · ‖.

To apply Theorem 2.3, it only remains to show that
∣∣∣
∣∣∣
∣∣∣y±αn0

∣∣∣
∣∣∣
∣∣∣
ρ
< 1+ηn0

. First, as

computed in the previous section, ‖y±αn0
‖ � 1− ρ

8 , while ‖y±αn0
‖αn0

= 1. Moreover,

for any m ∈ N different from n0, it holds that

e∗m(y±αn0
) �

(
1− ρ

2

)
|e∗m(en0

)|+ tn0
|e∗m(en0+1)|+

ρ

4
|e∗m(vn0

)|

�
(
1− ρ

2

) ρ

800
+

ρ

16
+

ρ

4
< 1− ρ,

since ρ < 1
4 . This implies that ‖y±αn0

‖αm
= ‖y±αn0

‖ � 1− ρ
8 . With these estimates,

equation (3.1) and the definition of |||·|||ρ (equation (3.2)) we deduce that
∣∣∣∣∣∣∣∣∣y±αn0

∣∣∣∣∣∣∣∣∣
ρ

�
1 + ηn0

.
We can apply now Theorem 2.3, and we obtain that the nearest point map

R : (X, |||·|||ρ) → (K, |||·|||ρ) onto K satisfies ωR((1 − ρ)−22tn0
) > ρ

16 . In particular,

ωR((1− ρ)−22t) > ρ
16 . Since this was done for arbitrary t > 0, we conclude that R

is not uniformly continuous. Since (X, |||·|||ρ) is strictly convex, R is continuous. �
Remark 3.2. In Theorem 3.1 the uniform continuity is spoiled by means of a pair of
bounded sequences in X. Hence, we deduce the seemingly stronger result that the
nearest point maps considered in Theorem 3.1 are not uniformly continuous even
when restricted to the unit ball.

We can now restate and prove the main result of the article as a direct corollary:

Corollary 3.3 (Theorem A). Every infinite-dimensional separable Banach space is
(1+ ε)-isomorphic to a locally uniformly convex Banach space in which the nearest
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5148 R. MEDINA AND ANDRÉS QUILIS

point map onto every non-singleton convex and compact set is continuous but not
uniformly continuous, for any ε > 0.

Proof. Note that every separable Banach space is (1 + ε)-isomorphic to a locally
uniformly convex Banach space, for any ε > 0. Therefore, using Theorem 3.1 and
equation (3.3), it suffices to apply the construction of the norm |||·|||ρ described
above in any infinite-dimensional separable locally uniformly convex Banach space
for small enough 0 < ρ < 1/4. �
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[HM23] Petr Hájek and Rubén Medina, Compact retractions and Schauder decompositions
in Banach spaces, Trans. Amer. Math. Soc. 376 (2023), no. 2, 1343–1372, DOI
10.1090/tran/8807. MR4531677
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