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Abstract: This research studies the characteristics of snow-covered area (SCA) from two vastly
different sensors: optical (Moderate-Resolution Imaging Spectroradiometer, or MODIS, equipped on
board the Terra satellite) and radar (Synthetic Aperture Radar (SAR) on-board Sentinel-1 satellites).
The focus are the five mountain ranges of the Iberian Peninsula (Cantabrian System, Central System,
Iberian Range, Pyrenees, and Sierra Nevada). The MODIS product was selected to identify SCA
dynamics in these ranges using the Probability of Snow Cover Presence Index (PSCPI). In addition,
we evaluate the potential advantage of the use of SAR remote sensing to complete optical SCA
under cloudy conditions. For this purpose, we utilize the Copernicus High-Resolution Snow and Ice
SAR Wet Snow (HRS&I SWS) product. The Pyrenees and the Sierra Nevada showed longer-lasting
SCA duration and a higher PSCPI throughout the average year. Moreover, we demonstrate that
the latitude gradient has a significant influence on the snowline elevation in the Iberian mountains
(R2 ≥ 0.84). In the Iberian mountains, a general negative SCA trend is observed due to the recent
climate change impacts, with a particularly pronounced decline in the winter months (December
and January). Finally, in the Pyrenees, we found that wet snow detection has high potential for the
spatial gap-filling of MODIS SCA in spring, contributing above 27% to the total SCA. Notably, the
additional SCA provided in winter is also significant. Based on the results obtained in the Pyrenees,
we can conclude that implementing techniques that combine SAR and optical satellite sensors for
SCA detection may provide valuable additional SCA data for the other Iberian mountains, in which
the radar product is not available.

Keywords: snow-covered area; SAR; optical and radar; satellite; wet snow; snow; remote sensing;
Iberian Peninsula

1. Introduction

Snow cover is fundamental to the Earth’s energy balance and moisture fluxes between
the surface and the atmosphere, playing a crucial role in regulating the global climate [1].
Snow is also an essential component of both natural and human systems, exerting signifi-
cant influence on water resources [2], agriculture [3,4], ecology [5–7], socioeconomics [8–10],
tourism [11–13], and hydropower generation [14,15]. The critical importance of snow and
the snow-covered area (SCA) in numerous system processes on Earth has prioritized the
development of techniques for measuring SCA dynamics. These techniques include in situ
sensors, hydrological modeling, and, most prominently, remote sensing [16–18]. Ground-
based observations of SCA in alpine regions are relatively recent and sparsely distributed
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due to the adverse conditions that complicate data collection. Likewise, despite great
advances in SCA modeling in recent years [19–21], there remains a need for deeper physical
understanding and proper calibration [22,23].

Remote sensing programs have significantly increased the number of available data
sources for SCA monitoring, enhancing our ability to track and analyze SCA dynamics on
a broader scale [24,25]. In particular, optical satellite sensors have been extensively used
for snow observation worldwide [26,27]. Among these sensors, the Moderate-Resolution
Imaging Spectroradiometer (MODIS) holds a prominent position in hydrological studies
due to its sufficiently high spatial resolution for global scale SCA monitoring, high temporal
resolution, and relatively long data records [28–30]. SCA detection with MODIS achieves
good overall accuracy for SCA detection (around 93%) [31], although its effectiveness
can diminish in densely forested areas (around 71% in areas exceeding 50% of tree cover
density) where the canopy obscures the underlying snowpack [32]. However, cloud cover
conditions and dark night remain the main limitations of optical remote sensing, as they
prevent the capture of reflectivity of the Earth’s surface [33–35]. Consequently, prolonged
periods cannot be observed with optical sensors, particularly in frequently clouded areas
or regions with limited sunlight.

An alternative to optical sensors for SCA monitoring is microwave remote sensing [36–38],
which enables snow observation independently of weather and solar illumination con-
ditions. Active microwave sensors, specifically Synthetic Aperture Radar (SAR), are the
most commonly used for global-scale snow monitoring due to their high spatial resolution
compared to passive microwave sensors [39]. The most widely used method for snow
monitoring with SAR remote sensing is the backscattering-based method, commonly called
Nagler’s method [40,41]. However, unlike optical remote sensing, the backscattering-based
method is sensitive to snow state (dry or wet). Snow is a mixture of ice crystals, liquid water,
and air. Dry snow is below 0 ◦C and, thus, only composed of ice particles and air. On the
contrary, wet snow is at temperatures at or above 0 ◦C, so that its composition also includes
significant quantities of liquid water [42]. At C- and X-band low microwave frequencies (4
to 8 GHz and 8 to 12 GHz, respectively), SAR remote sensing has demonstrated high poten-
tial for wet snow mapping [43]. At these frequencies, an increase in the liquid water content
within the snowpack significantly reduces the radar backscattering signal in relation to
snow-free and dry snow surfaces [44,45]. In recent years, the European Space Agency’s
Copernicus program launched the Sentinel-1 mission, which is equipped with C-band
SAR for land monitoring [46]. To leverage the capabilities of the Sentinel-1 constellation
in cryosphere studies, the Copernicus Land Monitoring Service recently developed the
High-Resolution Snow and Ice (HRS&I) project for wet snow monitoring in mountainous
regions by means of the use of the backscattering-based method [40,41].

In this article, we aim to characterize the SCA dynamics in the main snow-dominated
mountain ranges of the Iberian Peninsula. Firstly, we contrast the differences in SCA
(Probability of Snow Cover Presence Index, hereinafter PSCPI, and snow season length)
across these montane regions based on specific elevation ranges and latitude. Secondly, we
appraise the correlation between geographical location (latitude) and spatial meteorological
variables (temperature and precipitation) with SCA characteristics. In this study, as a novel
aspect, we also aim to evaluate the potential contribution of radar remote sensing data
from SAR in characterizing the SCA dynamics of the main snow-dominated mountain
ranges in the Iberian Peninsula. The SAR product for spatial gap-filling optical remote
sensing for snow cover monitoring is currently available only for the Pyrenees in the
Iberian Peninsula. In this article, we aim to demonstrate the utility of this product for
the other snow-dominated mountain ranges in the Iberian Peninsula, including Europe’s
southernmost mountain. We considered MODIS as the base for the computation of the
PSCPI, which illustrates the differences in SCA dynamics among the mountain ranges.
Furthermore, we utilized the AEMET 5 km climate dataset to relate SCA dynamics with
precipitation and temperature patterns. Finally, we used the HRS&I SWS product to
evaluate the additional SCA that radar remote sensing can provide for filling spatial gaps
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in optical satellite sensors (MODIS) under cloud cover conditions. This analysis involved
comparing and combining both products (HRS&I SWS and MODIS) on the same dates in
the Pyrenees (the only Iberian montane region available in the HRS&I SWS product).

2. Study Sites

The Iberian Peninsula features highly irregular orography characterized by extensive
mountainous massifs spread across its main snow-dominated mountain ranges (Cantabrian
System, Central System, Iberian Range, Pyrenees, and Sierra Nevada) (Figure 1). Positioned
between the Atlantic Ocean and the Mediterranean Sea, together with its intricate topog-
raphy, the Iberian Peninsula experiences a diverse climatic regime. Precipitation exhibits
a notable negative gradient from the northwest to the southeast, with the northwestern
quadrant receiving an annual average precipitation exceeding 1000 mm [47], mainly in-
fluenced by the North Atlantic Oscillation and the Arctic Oscillation [48]. In contrast, the
southeastern quadrant is dominated by the Western Mediterranean Oscillation with annual
average precipitation records below 300 mm. On the other hand, temperature displays
a discernible positive gradient from north to south and from coastal areas towards inland
regions [49]. Winter temperatures are frequently colder than 0 ◦C in the main mountain
ranges, depending on elevation. The substantial climatic variations, along with differences
in latitude, elevation, and proximity to the coast among the main mountain ranges of the
Iberian Peninsula, significantly influence SCA distribution, snow season length, and the
dynamics of the melting–freezing processes during the snow season.
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3. Data and Methods
3.1. Methods

In this research, we propose a methodology for the analysis of SCA characteristics
in the main snow-dominated montane regions of the Iberian Peninsula. Furthermore, we
assess the potential advantage of the combination of SAR and optical remote sensing for
SCA monitoring in the Iberian mountains (Figure 2). The proposed methodology includes
the following steps: (1) SCA characterization in terms of PSCPI and snow season length, as
well as the determination of the degree of relationship between the latitude and snowline
elevation in the Iberian mountains; (2); the assessment of the recent climate change impacts
on snow cover (3); the analysis of the potential of SAR for spatial gap-filling optical remote
sensing SCA data; and (4) the evaluation of the potential limitations of optical and SAR
remote sensing for SCA monitoring.
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3.1.1. Snow Characteristics

The focus montane regions are distributed throughout the Spanish territory, necessi-
tating the merging of data from multiple MODIS granules (h17v04, h17v05, and h18v04)
using the HDF-EOS to GeoTIFF Conversion Tool. For the comparison among the different
mountain ranges, we used the Probability of Snow Cover Presence Index (PSCPI) [50],
which is computed pixel-by-pixel as follows:

PSCPI =
NS
NA

× 100 (1)

where NS is the number of days with snow cover presence (days where the NDSI equals or
exceeds the standard threshold of 0.4) and NA is the number of days with available NDSI
data, so that it refers to the average number of days covered by snow over the 23-year
period of records. In this study, snow cover on a pixel was defined when the NDSI is
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equal or exceeds the standard NDSI threshold of 0.4 [51]. This threshold has traditionally
been used and corresponds to a fractional snow cover equal to or exceeding 50% [52,53].
Recent research suggests that this threshold value may not be optimal for local-scale
studies [54]; however, it has been demonstrated to be suitable for products with moderate
spatial resolution (around 500 m or greater) for SCA classification [54,55]. Subsequently,
we determined the average PSCPI at 10 m elevation intervals and then defined the area of
interest of each mountain range as the regions where the average PSCPI exceeds 1.5%. To
establish the elevation interval, it was essential to ensure an adequate number of MODIS
cells for calculating the average PSCPI in the smallest mountain range within the Iberian
Peninsula. It is important to note that the Iberian mountains vary considerably in size, with
larger mountains providing a greater number of MODIS cells for calculating the average
PSCPI. These defined domains were utilized to analyze various snow-related questions
proposed in this study, providing insights into SCA dynamics across different elevations
within each mountain range.

Firstly, we realized an intercomparison of PSCPI variations with elevation among
the mountain ranges of the Iberian Peninsula. Secondly, we compared the duration of
the snow-covered season delineated across diverse elevation intervals defined at 500 m
increments with the aim of discerning potential differences among mountain ranges and
within specific elevation bands. Snow season duration is defined as the time interval with
consistency on snow cover, which is determined by onset and offset dates. In this research,
the onset of the snow season was identified as the first day when the PSCPI surpasses 10%
and remains at or above this value for at least two-thirds of the time over the following
four weeks. The offset of the snow season was qualitatively defined as the first day when
the PSPI reaches minimum values and remains at those levels for at least two consecutive
weeks. Furthermore, we examined the relationship between latitude and the elevation
of the snowline. This analysis involved determining snowline elevations under various
PSCPI thresholds. The strength of the relationship between the latitude and elevation of the
snowline was assessed using the coefficient of determination (R2) from a linear regression.

3.1.2. Analysis of the Recent Impacts of Climate Change on Snow Cover

To assess the temporal changes in SCA, we set the time span at a 5-year period
(lustrum) due to the relatively short time coverage of MODIS records. This allowed us
to determine the magnitude of the trend (slope), based on the average PSCPI, across the
entire domain of each mountain range for four lustra (2001–2005, 2006–2010, 2011–2015,
and 2016–2020) at a monthly scale. As suggested in previous studies, summer SCA time
series may not be suitable for trend analysis [56], so we restricted our analysis to the snow
season months (November to May).

In this study, both parametric and non-parametric methods were employed to de-
tect the magnitude of SCA trend. A linear regression analysis was used to estimate the
trend’s rate when the SCA time series were normally distributed; otherwise, we performed
a non-parametric Sen’s slope estimator [57]. Rates are shown as% per lustrum (%/lustrum).
To assess normality, we decided on the Anderson–Darling test [58,59] with a significance
level of 5%. When p < 0.05, the null hypothesis is rejected, indicating that the SCA time
series does not follow a normal distribution.

3.1.3. Assessment of the Synergistic Use of SAR and Optical Remote Sensing

The potential use of the HRS&I SWS product to complement the SCA provided
by MODIS in the Iberian mountains was evaluated, specifically focusing on assessing
the additional SCA data from HRS&I SWS compared to MODIS in the Pyrenees. It is
noteworthy that the HRS&I SWS product is available exclusively for this montane region
within the Iberian Peninsula. This evaluation was conducted monthly throughout the snow
season (November to May). Firstly, we aligned and rescaled the HRS&I SWS product to
match the MODIS granule alignment and pixel size, ensuring accurate comparison between
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the two datasets. Subsequently, we developed an index called Probability of Wet Snow
Additional Information (PWSAI), calculated as follows:

PWSAI =
NW
NT

× 100 (2)

where NW is the number of days with at least one additional pixel with wet snow (HRS&I
SWS) under cloudy conditions in the MODIS product, and NT is the number of days with
data available about snow cover in both products (HRS&I SWS and MODIS) on the same
date. Secondly, we analyzed the respective contributions of each product to the total SCA.
It is important to note that we only considered wet snow data under cloud cover conditions
and ensured a correct comparison between the two products exclusively contrasting data
from the same date (MODIS and HRS&I products have different temporal resolutions).
Moreover, we evaluated the range of variability of the wet snow contribution to the total
SCA for each month.

3.1.4. Potential Sources of Distortion of SAR and Optical Remote Sensing

Snow cover classification with optical and SAR remote sensing methods can be affected
by various factors such as cloud coverage (only relevant for optical sensors) and dense
forest canopy, among others (for more detailed information, see Appendix A). To address
these challenges, we assessed the probability of cloud cover presence (from here on: PCPI)
pixel-by-pixel on a monthly basis within each mountain range, applying a similar procedure
to the one used for the calculation of the PSCPI. The PCPI is defined as the ratio of days
with cloud cover to days with available data (non-filled data), representing the average
occurrence of cloudy conditions over the 23-year period of records. Additionally, we
evaluated the average probability of forest density at 10 m elevation intervals within each
mountain range.

3.2. Data
3.2.1. Climatological Data

The AEMET 5 km dataset [60,61], obtained from the Spanish Meteorological Agency,
was chosen for this study because it offers extensive temporal coverage with suitable tempo-
ral resolution (daily) and a spatial resolution of 5 km of the climatic variables (precipitation
and temperature). This long-term series can be useful to perform analyses of drought
propagation and their statistics [62–64].

Due to the coarse spatial resolution of this dataset, a distributed analysis of the cli-
matic variables was not feasible; therefore, we conducted a lumped one. Precipitation
analysis was performed for the entire domain of the mountain ranges, while temperature
analysis was conducted within the common elevation range for the Iberian mountains
(1600–2300 m.a.s.l.) to facilitate proper comparison, considering the strong elevation in-
fluence on temperature at both regional [65] and local scales [66,67]. Precipitation and
temperature series were aggregated using a weighted average, conducted by the Thiessen
polygon method [68]. In this method, each point within the considered elevation range was
assigned a weight based on its relative area in relation to the total area.

3.2.2. Snow Data

The optical snow cover satellite dataset selected for this study was the MODIS Terra
Snow Cover Collection 6 product [69]. This dataset offers long-term insights into the
Normalized Difference Snow Index (NDSI), represented as a percentage ranging from 0
to 100%, alongside binary delineations for various screened-out areas such as cloud cover.
It offers moderate spatial resolution (500 m) and a high temporal resolution (daily). The
NDSI is a dimensionless index that ranges from −1 to 1, but, in this dataset, negative NDSI
values have been set to 0 (for a more detailed description of this index, see Appendix A). In
this research, we used snow cover records spanning the period from 1 March 2000 until
31 May 2023.



Remote Sens. 2024, 16, 3705 7 of 23

The Copernicus HRS&I SWS product provides information about wet snow and
various features prone to interference with the radar backscattering signal, such as shadow,
layover or foreshortening, forest areas, urban infrastructures, and water bodies. This
dataset is available for specific mountainous regions of the European continent (the Alps,
Eastern Turkey, Iceland, the Pyrenees, and Scandinavia) with a high spatial resolution of
60 m every 6 days. In this research, we focused on the Pyrenees (the only mountain range
available in the Iberian Peninsula) and utilized the HRS&I SWS data from both ascending
and descending orbits for the period from 1 November 2016 to 31 May 2023.

3.2.3. Forest Density Data

The High-Resolution Layer Tree Cover Density dataset furnishes insights into tree
cover density (TCD, represented as a percentage ranging from 0% to 100%), which is
defined as the vertical projection of tree crowns to the horizontal surface of the Earth. This
product is provided for the reference year 2018 at a pan-European level (EEEA38 countries
and United Kingdom) with a high spatial resolution of 10 m.

4. Results

An analysis of temperature trends across the Iberian mountains revealed the Pyrenees
as the coldest range during winter (considered as the time span from December to February),
approximately 2 ◦C cooler than the Cantabrian and Iberian Ranges, and 3.5 ◦C cooler than
the Central System and the Sierra Nevada. In spring (considered as the time interval
from March to May), despite temperatures in the mid-spring period becoming similar
to the Cantabrian System, the Pyrenees initially showed a colder trend. Conversely, the
warmest temperatures were observed in the Sierra Nevada during winter and the Central
System during spring (Figure 3b). Additionally, precipitation patterns across different
mountain ranges were contrasted, highlighting the Cantabrian System and the Pyrenees as
receiving the highest average accumulated precipitation during winter (506 mm) and spring
(323 mm), respectively. In contrast, the Sierra Nevada exhibited the lowest precipitation
levels in both winter (332 mm) and spring (132 mm) (Figure 3a).
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4.1. Evaluation of Snow Characteristics

The major factors influencing the PSCPI in the main snow-dominated mountains of the
Iberian Peninsula are latitude and elevation. The influence of elevation becomes noticeable
when comparing ranges within the same elevation band. For instance, the Sierra Nevada
and the Pyrenees (the highest mountain ranges of the Iberian Peninsula), both reaching
elevations above 2500 m.a.s.l. (up to 3400 m.a.s.l.), exhibit maximum PSCPI values close to
80% (Figure 4a,b). In contrast, the Cantabrian System, Central System, and Iberian Range
show significantly lower values: 44%, 32%, and 27%, respectively. An intercomparison of
mountain ranges within particular elevation ranges evidences that latitude predominantly
influences the PSCPI across the Iberian mountains. Generally, higher average PSCPI values
are observed in mountain systems located at higher latitudes, except for the Central System
at elevations around 2500 m.a.s.l. where the average PSCPI is slightly lower than that of
the Sierra Nevada (23% vs. 27%) (Figure 4a,e). Moreover, despite the higher latitude of the
Iberian Range, it shows similar average PSCPI values above 2000 m.a.s.l. compared to the
Central System (around 20%) (Figure 4d).

The daily distribution of the PSCPI varies across different mountain ranges and
within each mountain range according to elevation bands (Figure 5). A long-lasting snow-
pack exists in all Iberian mountains above 2000 m.a.s.l. A comparison at the common
2000–2500 m.a.s.l. elevation band underlines a longer snowpack duration in the mountain
ranges located at higher latitudes (237 days in the Pyrenees and 229 days in the Cantabrian
System), whereas snowpack durations are notably shorter in the other ranges (184 days
in the Iberian Range, 182 days in the Central System, and 175 days in the Sierra Nevada).
Nonetheless, at elevations above 2500 m.a.s.l. (only the Pyrenees and the Sierra Nevada),
differences on snowpack persistence related to latitude are markedly reduced since the
snow season length above this elevation is relatively similar (275 days vs. 244 days)
(Figure 5). In the summer months, we observe that a continuous and confined snowpack
persists above 2500 m.a.s.l. in the Pyrenees (PSCPI around 5%). In the Iberian mountains,
snowmelt begins primarily in late March; however, this timing is strongly dependent on
elevation. Snowmelt occurs progressively later as elevation increases within each moun-
tain range. Consequently, at higher elevation in the Sierra Nevada and the Pyrenees (the
highest mountain ranges), snowmelt not only starts later but also progresses at a faster rate
compared to the other ranges (Figure 5).
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Figure 4. Distribution of the Probability of Snow Cover Presence Index (PSCPI) per elevation over
the main mountain ranges of the Iberian Peninsula: (a) Sierra Nevada, (b) Pyrenees, (c) Cantabrian
System, (d) Iberian Range and (e) Central System. The red color scatterplots indicate the average
PSCPI per elevation. The shaded area represents PSCPI values within the confidence interval between
5% and 95%.

Furthermore, we analyzed the effect of latitude on snowpack assessing its correlation
with snowline elevation under various average PSCPI thresholds. Our study reveals a
consistent trend in lower snowline elevations as latitude increases (Figure 6). As expected,
the Sierra Nevada consistently shows the highest snowline among the Iberian mountains,
given its southernmost location within the Iberian Peninsula (latitude 37◦). In contrast,
the Pyrenees and the Cantabrian System exhibit the lowest snowline elevations, which is
attributed to the fact that both mountainous regions are located at the highest and nearly
identical latitudes (42.7◦ for the Cantabrian System and 42.6◦ for the Pyrenees). The Central
System and the Iberian Range, situated at intermediate latitudes between the Sierra Nevada
and the northern ranges (40.7◦ and 42◦, respectively), display intermediate snowline
elevations. Linear correlation analysis confirms a robust relationship between latitude
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and snowline elevation as reflected in the high values of the determination coefficient
(R2 ≥ 0.84) under the examined thresholds (Figure 6b). This underscores the significant
influence of latitude on snow distribution patterns across the diverse montane regions of
the Iberian Peninsula.
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4.2. Recent Impacts of Climate Change on Snow Cover

Figure 7 shows the temporal evolution of SCA for 5-year periods in terms of the
average PSCPI for the entire domain of Iberian mountains. There exists a significative
general trend in temporal inter-lustrum variability in the average PSCPI in winter months
(December, January, and February). In these months, the first two lustra presented the
greatest average PSCPI values, except in the case of February, where the third lustrum gen-
erally exhibited the highest average PSCPI of the time series. The last two lustra (2011–2015
and 2016–2020) over the 20-year period of study generally recorded the minimum average
PSCPI values in all months of the snow season. Here, we plot the summer months for
continuity on the graphs; however, they are not considered in the trend analysis.

Negative trends in SCA were observed over the 20-year period of study in the moun-
tain ranges of the Iberian Peninsula (Table 1). Excluding April (in the Central System,
Cantabrian System, and Iberian Range), February (in the Cantabrian System) and March
(in the Pyrenees) negative rates in SCA were found in the snow season months. The largest
decline in SCA rates occurred during December and January (Table 1). On the contrary, the
smallest decline in SCA took place during April. In general, greater negative rates in SCA
were observed in the Sierra Nevada over the snow season in relation to the other mountain
ranges, except in December and April where the Central System (−4.45%/lustrum) and
the Pyrenees (−0.99%/lustrum) revealed the greatest declines, respectively.
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Table 1. Magnitude of the trend (%/lustrum) of the temporal changes in the Probability of Snow
Cover Presence Index (PSCPI) of each month over the entire domain of the main-snow dominated
mountain ranges of the Iberian Peninsula.

Month/Range Sierra Nevada Central
System Iberian Range Cantabrian

System Pyrenees

November −1.6 −1.17 −1.17 −1.12 1 −1.13
December −2.71 −4.45 −2.98 −4.39 −2.65

January −3.41 −2.54 −3.15 −6.26 −1.08
February −1.9 −1.42 −0.51 +0.17 −0.99

March −2.82 −2.06 −2.45 −1.76 +0.88
April −0.6 +0.32 +0.04 +0.2 −0.99
May −1.08 −0.18 −0.1 −0.33 −0.75

1 Magnitude of the trend estimates with Sen’s slope estimator (non-parametric method).

4.3. Potential of the Combined Use of SAR and MODIS for Snow Monitoring

An analysis of the contribution of SAR and MODIS to the total SCA and the PWSAI
(defined as the probability of having a day with additional wet snow under cloud cover)
was carried out in the Pyrenees (the only mountainous system of the Iberian Peninsula
represented in the HRS&I SWS product) to evaluate the potential of SAR for the completion
of optical SCA. The PWSAI consistently remains close to 100% throughout each month
of the snow season (Figure 8a), indicating that nearly every day, the HRS&I product (wet
snow) provides additional SCA information as regards MODIS. Only in November and
December does the PWSAI slightly drop below 100%, highlighting SAR’s potential to
fill spatial gaps in SCA derived from optical sensors, specifically MODIS. Examining the
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contribution of SCA relative to the total SCA, MODIS predominates during late autumn
and winter (approximately 85% to 90%); however, the contribution from wet snow (HRS&I
SWS) is notably significant (ranging from 10% to 15%) (Figure 8a). As the snowmelt
season progresses, MODIS’s contribution to the total SCA decreases considerably, while the
contribution from HRS&I SWS (wet snow) begins to gain relevance, increasing significantly
the supplied additional SCA information (27–40%). It is important to note that the HRS&I
SWS contribution suddenly decreases in May (Figure 8a). This is due to the fact that, in
the Pyrenees, the snowmelt phase mainly occurs during April, so that, in May, snow is
predominantly restricted to higher elevations (above 2500 m.a.s.l.). At these elevations,
temperatures frequently remain below 0 ◦C, which leads to a reduced contribution of wet
snow relative to the total SCA. Figure 9 illustrates examples of SAR and MODIS data
integration for SCA monitoring in the Pyrenees. The top panel shows an image from
mid-winter, whereas the bottom panel shows an image from early spring.
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Figure 8. (a) Monthly PWSAI distribution and contribution of MODIS and HRS&I SWS (wet snow)
products in relation to the total SCA over an average year in the Pyrenees. (b) Monthly variation of
the contribution of HRS&I SWS product to the total SCA over an average year in the Pyrenees. The
red line indicates the median, and the edges of the box (blue color) represent the first quartile (bottom
edge) and third quartile (top edge). The upper adjacent is the furthest observation within one and
a half times the interquartile range of the lower end of the box, and the upper adjacent is the furthest
observation within one and a half times the interquartile range of the upper end of the box. Outliers
are considered as the values greater than the upper adjacent.
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Figure 9. Examples of the combination of SAR (HRS&I SWS) and optical (MODIS) remote sensing
products for the following dates: 04-February-2017 (winter) and 18-April-2018 (spring).

The evaluation of the additional SCA contribution provided by the HRS&I SWS
product in the Pyrenees reveals relatively low variability during snow accumulation and
stabilization phases but exhibits significant variations during snowmelt (Figure 8b). From
late autumn through winter, the additional SCA contribution generally remains below 21%.
Among these months, November exhibited the least variability (0.1–7.1%), while December
showed the highest variation (0.5–17%). However, occasional outliers reaching peaks close
to 100% were observed, indicating significant cloud cover on certain days. As mentioned
earlier, the variability range widens notably during the snowmelt months (ranging from
3.4% to 74.2%) (Figure 8b).

5. Discussion
5.1. Potential Uncertainties of SAR and Optical Sensors for Snow Monitoring

Remote sensing data possess some uncertainties that should be considered for a proper
interpretation of the presented results. MODIS products have limitations in snow and ice
cloud classification [70]. Additionally, the presence of forest canopy in montane regions is
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another source of uncertainty for SCA detection with optical and SAR remote sensing [71].
Furthermore, the PSCPI used in this research presents some limitations for a proper com-
parison among the Iberian mountains and the analysis of the temporal changes on SCA
due to the differences in cloudiness distribution [72].

SCA monitoring through optical satellite sensors is primarily constrained by adverse
weather conditions. Therefore, we conducted an assessment of the monthly cloud cover
throughout an average year (see Figure A1). In this study, we found that the mountain
ranges located at the north-central and northwestern quadrant of the Iberian Peninsula
(Cantabrian System and Iberian Range) experienced the highest cloud cover during much of
the snow season (PCPI ranging from 53% to 60%), surpassing the PCPI values of the Central
System and the Pyrenees by around 4–5% and 10%, respectively. However, cloudiness
was markedly reduced during the snowmelt phase, so that even in some months of the
snowmelt season (May in the Cantabrian System and May and June in the case of the
Central System), the cloud coverage in the Pyrenees was slightly higher. As expected, the
Sierra Nevada consistently exhibited the lowest cloud cover during snow season (PCPI
around 35% in winter and between 38% and 44% in spring). These findings are consistent
with other studies that have identified maximum cloudiness in the Iberian Peninsula as
being concentrated along the Atlantic-Cantabrian coastal area and the Pyrenees, mainly
associated with large-scale northwesterly winds and the influence of cold fronts [73,74].

Both SAR and optical satellite sensors encounter limitations due to dense forest cover
as it reduces the radar backscattering signal and obscures the underlying snowpack [75,76].
Dense forest areas are predominantly concentrated at lower elevations in the Iberian
mountains and decrease progressively with elevation. In general, dense forest is sparse
or non-existent at elevations where a seasonal snowpack exists, except in the case of the
Pyrenees and the Iberian Range (Figure A2). These montane regions exhibited the greatest
average TCD values (exceeding 50% at elevations below 1500 m.a.s.l. and 1730 m.a.s.l.,
respectively), whereas the Central System consistently displayed the least forest density
(average TCD under 27%). The Sierra Nevada and the Cantabrian System also featured
limited forest cover (average TCD around 30% below 2000 m.a.s.l. in the Sierra Nevada
and about 35% below 1400 m.a.s.l. in the Cantabrian System).

5.2. Snow Characterization and Analysis of the Recent Climate Change Impacts on Snow Cover

Based on the analysis conducted in this study concerning the presence of snow in
the Iberian mountains, our findings are congruent with other investigations [18,50]. The
results presented here suggest a higher probability of snow presence in higher mountains,
along with an extended snow season at higher elevations. In these regions, at higher
and colder areas, snow melts later in the spring, and the depletion curve is rather steep
due to increased shortwave radiation [77]. Our study found that snowmelt is mainly
concentrated in spring in the Iberian mountains, although melting can occur in winter,
with the snowpack often experiencing cycles of melting and accumulation. This finding
aligns with previous research describing increased winter snowmelt associated with the
recent climate change [78,79]. Moreover, Yang et al. [80] indicated that at mid-latitudes
of Eurasia, snowmelt and snow accumulation occur simultaneously due to temperatures
above 0 ◦C and high rainfall ratios. In the Iberian mountains, as in other temperate regions,
snowpacks are consistently close to the zero-degree isotherm, thus, more sensitive to
climate change impacts [81,82]. This research shows a general negative trend in snow cover
throughout the snow season in the Iberian mountains, with the winter months (December
and January) exhibiting the most pronounced decrease. Future climate projections forecast
a warmer climate worldwide, with particularly significant warming trends in temperate
mountains during the snow season [83]. This warming is expected to decrease melt rates in
these regions [77], leading to an earlier-onset and slower snowmelt [79,84], and decreasing
significatively the amount of accumulated snow and snow cover [85,86].
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5.3. Potential of the Combined Use of SAR and Optical Remote Sensing for Snow Cover Mapping

The potential of active SAR as a complement to optical sensors for SCA mapping lies
in its capability for wet snow dynamics monitoring [87]. Radar backscatter decreases and
the one-way penetration depth of the radar signal drops drastically as liquid water content
increases due to the high dielectric losses of water [88,89]. Radar signals at C- and X-band
frequencies are reflected and scattered at the surface and within the uppermost centimeters
of the snowpack due to liquid water content increase, whereas in the case of dry snow, the
backscatter is strongly dominated by the contribution of the snow/ground interface [90].
Thus, it can be inferred that the use of active SAR for SCA mapping is primarily effective
in snowmelt areas. Several studies have indicated the potential of combining SAR with
optical sensors for SCA monitoring [91,92]. For instance, the Copernicus Land Cover
Monitoring Service developed a gap-filled fractional SCA product by combining SAR
(Sentinel-1) and optical (Sentinel-2) satellite constellations through spatial and temporal
gap-filling over major European high mountain areas. An overall quality assessment of
this product revealed a relatively consistent and good performance of HRS&I SWS for the
spatial gap-filling of optical SCA throughout the snow season. This contrasts with our
study’s findings, which show a significant increase in the spatial gap-filling of MODIS
SCA in spring compared to winter. These discrepancies can be attributed to the focus
of our study on mid-latitude mountains, whereas the Copernicus assessment included
both mid-latitude and high-latitude mountainous systems. Additionally, differences in
the revisit times of the MODIS and Sentinel-2 sensors could explain the variations in the
percentage of gap-filled optical SCA. Nonetheless, both studies suggest a high potential for
the combined use of SAR and optical sensors.

In this research, we found that the Copernicus HRS&I SWS product provides a substan-
tial amount of additional SCA data in Pyrenees in the spring season. Taking into account
the sparse distribution of forest density in the main snow-dominated Iberian mountains,
together with the different patterns observed in cloud coverage and the duration of the
melting period, we can infer that wet snow (HRS&I SWS product) could contribute even
more significantly to additional SCA information in the Sierra Nevada. In contrast, the
contribution is expected to be less in the Cantabrian system, Central System, and Iberian
Range. However, a more comprehensive analysis is needed to evaluate the contribution of
wet snow to the SCA dynamics in the rest of the mountain ranges of the Iberian Peninsula.
This analysis should consider other snow variables such as snow depth or snow water
equivalent to provide more detailed understanding.

6. Conclusions

We evaluated the spatiotemporal distribution of SCA in relation to elevation and
location over the main snow-dominated montane regions of the Iberian Peninsula. The
Pyrenees and the Sierra Nevada display long-lasting snowpack behaviors (275 days and
244 days, respectively) related to the higher elevations existing in these mountains com-
pared to the Cantabrian, Central, and Iberian Ranges. In the Iberian mountains, snow
melting primarily occurs in the spring season. Elevation plays a crucial role in the onset
of the snowmelt, with higher elevations undergoing later snow melting due to colder
temperatures, which explains the long-lasting snowpack observed in the Pyrenees and
the Sierra Nevada. Furthermore, we found that the snowline elevation, which determines
the presence of a regular snowpack along the snow season, is strongly influenced by the
latitudinal gradient (R2 ≥ 0.84). However, it is worth noting that other geographical factors
such as the distance from the Atlantic Ocean and continentality also play important roles.
Additionally, we assessed the recent impacts of climate change on SCA and found a gen-
eral negative trend across all snow season months. The decline in SCA was particularly
significant during the winter months (December and January). We also evaluated the
potential use of SAR as a complement for the SCA spatial gap-filling of optical sensors
(MODIS). Our analysis in the Pyrenees demonstrates the high potential of the combined
use of SAR and MODIS, especially in spring, with proportions of wet snow contributing to
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the total SCA ranging from 27.2% to 39.4% between March and May. Based on these results,
we can conclude that in the rest of the Iberian mountains, where the Copernicus HRS&I
SWS product is not currently available, wet snow can provide valuable additional SCA
information when used in conjunction with optical sensors. Therefore, the development of
the HRS&I SWS product for the Cantabrian System, Central System, Iberian Range, and
Sierra Nevada represents a dynamic and engaging future line of research.
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Appendix A. Generalized Methods and Limitations of Optical and Radar Sensors for
Snow Cover Mapping

The effectiveness of optical spaceborne sensors in detecting snow cover is largely
due to the high reflectivity (albedo) of snow compared to other Earth’s surface materi-
als [93]. These sensors typically operate using multispectral bands, including visible light,
infrared, and thermal. The most common method for snow cover identification employs
the NDSI, which leverages spectral information from the visible (green) and near-infrared
bands [94,95]:

NDSI =
σgreen − σin f rared

σgreen + σin f rared
(A1)

where σ denotes the reflectance in a specific wavelength band of the electromagnetic
spectrum. Cloud cover and dense forests present significant obstacles to operational snow
cover monitoring [96]. A notable limitation is that the snow surface is often completely
obscured from the satellite sensor’s view by clouds. Another common problem in optical
multispectral imagery is the confusion between snow and ice-clouds [97]. Additionally, in
densely forested areas, particularly coniferous forests, the reflectance in the green band is
highly sensitive to increases in canopy cover (high canopy cover values can cause negative
NDSI values in snow-covered areas), making accurate snow cover classification in such
regions challenging [98].

Wet snow monitoring with SAR remote sensing is based on the ratio of backscattering
coefficient between one wet snow image and a reference image that represents the typical
backscattering conditions of snow-free and dry snow surfaces. Nagler et al. [40] determined
that a threshold of −3 dB provides a good accuracy for wet snow classification. Recently,
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a more efficient method for wet snow mapping was developed by means of the fusion of
backscattering coefficients ratios from co-polarization and cross-polarization signals [30],
so that in this instance established as optimal a −2 dB threshold for the combined backscat-
tering ratio. However, it has been shown that these fixed thresholds (−2 dB and −3 dB)
may not be suitable under certain land cover uses (agricultural, forested, urban areas, etc.),
incidence angles and snow wetness conditions [99,100].

In active-microwave remote sensing with L-, C-, or X-band forest canopy above wet
snow typically increases the backscattering coefficient due to volume scattering within the
canopy. This effect reduces the ratio of the backscattering coefficient between wet snow and
snow-free or dry snow surfaces [99]. Conversely, in passive-microwave remote sensing,
forest canopy attenuates backscattering signal from snow and ground, while adding its own
contribution [101]. Additionally, Baghdadi et al. [102] demonstrated that the backscattering
coefficient of wet snow is strongly dependent on the snow-surface roughness and the
incidence angle. It was also found that very high liquid-water content within the snowpack
could reduce the differences between the backscattering coefficients of wet and dry snow
or snow-free conditions.
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