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ABSTRACT: The dynamics of phase transitions (PT) in quantum field theories at finite
temperature is most accurately described within the framework of dimensional reduction. In
this framework, thermodynamic quantities are computed within the 3-dimensional effective
field theory (EFT) that results from integrating out the high-temperature Matsubara modes.
However, strong-enough PTs, observable in gravitational wave (GW) detectors, occur often
nearby the limit of validity of the EFT, where effective operators can no longer be neglected.
Here, we perform a quantitative analysis of the impact of these interactions on the deter-
mination of PT parameters. We find that they allow for strong PTs in a wider region of
parameter space, and that both the peak frequency and the amplitude of the resulting GW
power spectrum can change by more than one order of magnitude when they are included.
As a byproduct of this work, we derive equations for computing the bounce solution in the
presence of higher-derivative terms, consistently with the EFT power counting.
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1 Introduction

A first-order phase transition (PT) entails the sudden change on the vacuum expectation value
(VEV) of a scalar field in which two non-degenerate minima coexist. Thermally-induced PTs
in quantum-field theory (QFT) are often described within the imaginary-time or Matsubara
formalism [1], in which bosonic (fermionic) fields are periodic (antiperiodic) functions of
the imaginary time compactified over a radius of size 1/T, where T is the temperature
of the thermal bath. They can thus be treated as a Fourier series of thermal modes in
Euclidean spacetime. In the high temperature limit, this allows for an equivalence between a
4-dimensional (4D) QFT at finite 7" and a regular 3-dimensional (3D) Euclidean QFT.

It was long ago realised that computations within this framework present a number of
difficulties, the main one being the Linde problem [2], namely the appearance of short-distance
non-perturbative effects from massless vector bosons in non-Abelian gauge theories, which can
be only captured with lattice simulations [3]. Even in the absence of these states, there are at
least two more challenges to tackle. First, loop calculations involve potentially large logarithms
log T? /m?, where m is a light mass, which can jeopardize the validity of perturbation theory.
Second, the computation of PT parameters requires the evaluation of the effective action on
the so-called bounce solution [4, 5], that is a non-homogeneous classical field configuration
that interpolates between the two VEVs. The usual construction of the effective action, built
as a derivative expansion around a constant-field configuration, is doomed to fail.

These two last difficulties find an elegant solution within the realm of effective field
theories (EFT) [6, 7]. Large logarithms can be broken into log (7%/u?) — which can be



minimised upon using a matching scale y ~ T —, and log (u2 /m?) — which can be summed
using the renormalisation group equations within the EFT [8]. A well-defined effective
action, in which only the modes responsible for the thermal transition are integrated out,
can be in turn constructed as an expansion in powers of m/T [9-11]. In this framework,
the contributions due to the non-homogeneity of field configurations such as the bounce
are systematically included through effective operators containing derivatives of the field.
Furthermore, the Linde problem can be also tackled this way, as the Euclidean EFT can
be directly simulated on the lattice [3, 12].

This is precisely the program of dimensional reduction, the foundations of which were
clarified in a seminal paper [13] about 30 years ago (see also ref. [14]). Since then, it has been
applied to a variety of cases [15-34], most importantly for establishing that the PT within
the Standard Model (SM) is a cross-over [35]. It has been also instrumental for reducing
uncertainties in the determination of the gravitational wave (GW) stochastic background
that ensues from strong PTs. With very few exceptions [11, 36, 37] (see also refs. [38, 39] for
calculations within thermal QCD), however, the influence of effective operators, involving
more than four scalar fields and/or more than two derivatives, on this phenomenon has
been neglected.

Based on a simple scalar model, in this paper we find that strong PTs occur often at
parameter space points where the EFT is close to the limit of validity. This can be intuitively
understood: strong PTs are characterised by v/T > 1, where v ~ m/v/X is the VEV after
the PT and A stands for the scalar quartic coupling. Hence, unless A < 1, m/T is relative
large. Within this regime, effective operators in the 3D EFT, formally suppressed by higher
powers of m /T, can in principle not be neglected. Hence, here we study the effects of these
interactions on the determination of PT parameters. On the process, we face the challenge of
computing the bounce in the presence of higher-order derivative terms, which we address
using perturbation theory.

The article is organised as follows. In section 2, we introduce the model and its cor-
responding dimensionally reduced EFT. We discuss the computation of the different PT
parameters in section 3, putting emphasis on the invariance of physical ones under (pertur-
bative) field redefinitions. We present our main results, comparing the predictions in the
presence and in the absence of effective operators, in section 4. We conclude in section 5.
Finally, we collect a number of technical details in appendices A and B.

2 Theoretical setup

We consider a model consisting of a real scalar ¢ and a massless fermion . The 4D
Lagrangian in Minkowski space reads:

L= L6 — Sm*¢ — k® — AG+ Tidht — goi (2.1)

At finite temperature in the imaginary-time formalism, each 4D field reduces to a tower of
3D Matsubara modes of thermal masses m,, = 2anT (m, = 2w (n+ 1/2)T) with n > 0 for
bosons (fermions). Therefore, in the high-7" limit, the 3D EFT contains only the zero-mode
of ¢, which we will refer to as .



For building the EFT, we match off-shell correlators with only the light, zeroth order
Matsubara mode of ¢ in external legs. Since our main goal is understanding the impact of
effective interactions, we for simplicity include only the effects of modes of ¥ in the loops,
which dominate the matching because the first non-zero mode of the fermion is lighter than
that of the scalar (see appendix A), and because the strong PTs that can be studied within
the regime of validity of the EFT necessarily have small A and «/7T. This implies that the
EFT presents a Zo symmetry ¢ — — only broken by the trilinear term.

We assume the usual power counting [13], P ~ m ~ ¢gT, and work to order €(g®). This
implies that, in the EFT, the only non-vanishing interactions are those of dimension d < 8
in 4D. The most general EFT Lagrangian with (broken) Zs symmetry, that we obtain with
the help of BasisGen [40], in Euclidean form, reads:

1 1
Ly = SKs(09)" + 5mie” + kap” + Mg

+ a619° + B610°00% ¢ + Beap® 00
+ ag1¢® + g2’ 0,0, 00" 0" + P19 + Bazp® 0o + Bz’ 070D ¢ + a0
4. (2.2)

The first, second and third lines of eq. (2.2) represent the zeroth, first and second order in
our perturbative expansion, respectively; the ellipses stand for higher-order terms that we
neglect in our analysis. Hence, for example, agp is of the same order as Bg1, despite the 3D
energy dimensions of the first being [ag1] = 0 while for the second [Gs1] = —2.

Including EFT operators of up to d < 8 does not only allow us to explore more accurately
the parameter space where very strong PT take place; most importantly, it gives us control
on the validity of the EFT expansion (effects triggered by the dimension-8 interactions being
significantly smaller than those of dimension-6 ones).

In the matching, we include only the dominant part of the one-loop contributions. The
detailed computations can be found in appendix A, where we also discuss the (small) effects
provided by neglected loops of scalars. Here we simply indicate the final result:

g° s o, g°T?
Ky=1+2 -, mi =m? 4+ =, ks =kVT, 3=} (2.3)
7¢(3)g° 7¢(3)g? 35¢(3)g*
a1 19274 Por = ~334pi72 Bz = e i (2:4)
31¢(5)g® 31¢(5)g" 31¢(5) g
=g = — 25\ 2.
8L = 5048767 @ 102407673 ° Bs1 = = 102407677 ° (2.5)
217¢(5)g* 279¢(5) g 217¢(5)g°
= =2059)F — 2099 — 269 2.6
B2 = 501807075 ° B3 = 504807073 Fea 51207672 (2:6)

The terms in the first line were first computed in ref. [31], with which we find full agreement.

Some of the operators above are physically equivalent, meaning that they can be related
to one another via field redefinitions [41]. In accordance with our power counting, these
redefinitions can be taken to be perturbative. In practice, operators of the form f(¢)0%¢p,
that we label with 3, can be removed from the Lagrangian through the transformation
© = ¢+ f(p), at the price of shifting the coefficients «.



Proceeding this way, with the help of Matchete [42], we find that the shifts in the

coefficients after all f(¢)0%¢ operators have been eliminated are:!

m3 — m3 + 2Be1m3 + (8651 + 2Bs1)m3 , (2.7)
K3 — K3 + K3 [6ﬁ61m§ + (4262, + 9681)m§} , (2.8)
Ns = As + 986143 + [ Bz + 30(56% + Bsr )3 + 8Pe1s| m3

+ [10/861562 + Bs2 + Bss + 4(1635; + 3581))\3} ms (2.9)
ag1 — ae1 + 48623 + 1686173 + ;Rg [78/361,862 + 9Bsa + 6853 + 8A3(6835; + 13ﬂ81)}

1
+ 57713 [60%1561 + 2232, + 5084 + 8A3(64861862 + 7Bs2 + 5Bs3)

+16X3(10883, + 198s1)] , (2.10)

4
agy — ag1 + 61 Be2 + 5/\3(600561/361 + 2783, + 5Bs4)

16 192
+ €A§(78561562 + 9852 + 50s3) + ?)\3(16531 + 30s1) , (2.11)
gy — gy . (2.12)

On top of these, the Zy-breaking terms asp° and ary” appear, with:
as = 3K3 {/362 +12(588; + Bs1)K3 + 8561)\3]

3
+ §f€3(46561562 + 50sa + 4883 + 30482 A3 + 56831 \3)m3 , (2.13)

3
a7 = 1—0/€3 [1200461561 + 49ﬁ§2 + 10834 + 4X3(286561 862 + 33Ps2 + 200s3)
+25673 (1663, + 38s1)] - (2.14)

(Further trivial-to-compute corrections arise first upon normalising canonically the kinetic
term, ¢ — /y/K3, perturbatively.) This basis is particularly useful because it minimises
the number of operators with derivatives, which entail most numerical complications when
computing the classical bounce solutions.

In figure 1, we plot the effective potential (that is, the derivative-independent part of
Z3) at T > T, (left), T = T, (middle) and 7" < T¢ (right). Here, T¢. stands for the critical
temperature, namely that at which the effective potential exhibits two degenerated minima,
pr and p, computed in the absence of effective interactions. We have chosen a model
with (m?, k,\) = (31643.5 GeVZ2, —71.1 GeV, 0.045), which is representative of the trend we
observe in a variety of scanned models nd that we discuss in section 4 (namely, that including
higher-order-operator corrections modifies significantly the range of values of ¢ allowing for a
PT, as well as the estimation of GW-related magnitudes in said range).

'We have cross-checked these results with on-shell amplitude techniques in which the Lagrangians before
and after field redefinitions are required to give exactly the same 4D S-matrix; see section 3.6 of ref. [43] as
well as ref. [44].
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Figure 1. Effective potential below (left), at (middle) and above (right) T, = 382.84 GeV, as obtained
for the potential without effective operators. The solid and dashed lines represent the situation with
and without effective operators (EO), respectively; see the text for details.

3 Phase-transition parameters

PTs proceed through the nucleation of bubbles of vacuum energy [45, 46]. These grow
and eventually collide, producing a stochastic background of GWs [47]. The main physical
parameters describing this dynamics are the nucleation temperature (7%), the latent heat
(a), the inverse duration time of the PT (3/H,) and the terminal bubble wall velocity (vy).

Before entering into the definition of these quantities, let us mention that they are all
determined (at the classical level in the EFT) by the value of the 3D effective action at
classical solutions of the equations of motion (EOM), .. The latter can either be constant,
which describes the extrema of the effective potential, or a bounce; namely a non-homogeneous
but spherically-symmetric field configuration that interpolates between pp and @ [4, 5]. We
will study here the effects of higher-dimensional EFT operators on the bounce solution and
the corresponding action. This amounts to the inclusion of higher orders in the expansion
in powers of P/T ~ m/T ~ g. We will neglect additional corrections coming from loops
of the Matsubara zero modes.

At high temperature [48, 49], for an action of the form

Sole) = dm [ drr? |36 + Vale) - Valer)| (3.1

where the dot stands for derivative with respect to r, the bounce is a solution of the
corresponding Euler-Lagrange equation:

.2
P+ = Vi(e), (3.2)

with boundary conditions ¢(0) = 0 and lim,_, ¢(r) = pr. Without loss of generality, we
assume from now on that ¢p = 0.

The existence of bounce solutions in theories with an arbitrary potential with degenerate
minima was proven by Coleman in 1977 [4]. In the presence of other derivative interactions,
however, it has not been proven whether such a solution exists. As a matter of fact, to the
best of our knowledge, none of the dedicated tools for computing the bounce [50-54] accepts
derivative interactions other than the usual kinetic term.



Even if the bounce could be obtained directly by an extension of the conventional
methods, in doing so one would lose track of the EFT expansion. While this is not a problem
in principle, it would make it impossible to test for the breaking point of perturbativity by
comparing different orders, as we do below. Additionally, we would like to check that the
bounce actions before and after the redefinitions performed in section 2 are equal. If each order
in perturbation theory can be clearly identified, this is easy to do, as they should be exactly
equal. Otherwise, one can only access the full actions, which will be only approximately
equal (up to effects of dimension-10 operators that we have neglected). This resembles
very much the gauge dependence of the effective potential at its extrema if not computed
consistently in perturbation theory [55-57]

To compute the physical S3[¢.] in a way consistent with the perturbative expansion used
for the matching, we rely on expanding both the classical bounce and the action in powers
of €, a formal parameter that keeps track of the perturbative order:

v =00 + e+ 20@ 4o 55 =90 4 s 4 25 4. (3.3)

Here, € is defined such that the terms in the first row of eq. (2.2) are e-independent, while
those in the second and third rows come with € and €2, respectively. At the end of our
calculations, we take ¢ = 1.

Requiring the bounce to be an extremal of S3, namely %SSM = 0, we obtain:

(1)

& 0S
Salie] = S5 [0l0) + €55V [0 + €2 {Sé” O] + 27 /0 o

} + 0(%) (3.4)

o0

where <p£0) is the bounce of the zeroth-order action, and with <p((;1) satisfying the following

differential equation:

188y
4drr? S

. 2, "
B0+ 2l — v () )

= 3.5
o0 o

with boundary conditions
¢M(0) = lim oM (r) = 0. (3.6)

The mathematical details of this derivation, to arbitrary order in €, are discussed in appendix B.
Similar ideas have been used to compute gauge-invariant nucleation rates [58, 59] as well as
for obtaining the functional derivative of the effective action at zero temperature [60, 61].

In order to further emphasise that S3[p.] computed this way is invariant under field
redefinitions, in figure 2, we show explicitly the value of this quantity in a scenario with
only non-vanishing Wilson coefficient Bgo before and after the field redefinitions defined by
egs. (2.7)—(2.14). We also plot 4,0&0) and gpgl). While the redefinition changes go,(;l), physical
observables are invariant under it, since they depend on cpgl) through the action Ss[¢],
which does not change. We have chosen K3 = 1, m3 = 3.20 GeV?, k3 = —3.40 GeV3/2 and
A3 = 1.34 GeV. Notice that, since there is only one operator in this case, we have taken
€ = 662T2 as our perturbative parameter.
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Figure 2. Results before and after field redefinitions. Left: value of S3[p.] computed up to different
orders in the EFT power counting. Right: leading bounce and first correction; see the text for details.

With this information, assuming that the PT occurs in a radiation dominated epoch,
a precise definition of T, o and 3/H, follows:?

o T,: it is defined as the T at which the probability & ~ (Mp/T)*e=%3() for a single
bubble to nucleate within a Hubble horizon volume is ~ 1. Numerically, this occurs
when [62]

S3lpe] ~ 100 — 4log (3.7)

*

100 GeV
e «: it is defined as the ratio of the trace anomaly difference of the energy momentum
tensor between the phases to the energy density of the radiation bath. Taking the

effective number of degrees of freedom in the plasma as determined in the SM, we
have [63]:
A (Vale) - Tar1a(9)] . OO3A(V%,(<P) - T Va(p))
a= ~ —0.

o (L) 73

where p, = g(T)m2T*/30 is the radiation energy density of the plasma.

e [B/H,: it is defined as a characteristic timescale of the PT, assuming an exponentially
growing transition rate as the temperature decreases (or equivalently, after linearising
the bounce action with respect to the temperature) [47]:

B -7 dSS[SOC]

H. *dTr

(3.9)

T

One last parameter, the bubble wall velocity v,,, enters also into the determination of the
GWs produced during the PT. For its computation, we use the approximate formula [64]

. 1/0% for ‘/i}i <wvy(a) (3.10)
“ 1 for 1/§X2vj(a)7 '

2We remind the reader that these quantities are defined using the 3D Euclidean action, potential and field,

and thus have been adapted from the usual definitions in terms of their 4D counterparts so as to reproduce
the appropriate energy dimensions.



where AV = V3(¢r) is the difference in the potential between the phases, and v; is the
Jouguet velocity, defined as

1 14++3a2+2a
V3 1+« ’

We note in passing that, just like for S3[p.], Va(pr) must be computed perturbatively.
That is:

vy = (3.11)

OIRONY
1 (V57 (er”)
Valor) = Vi (o) + eV (7)) + € § 2 (o) () +0(). (3.12)

2 ( (0)>

3 \¥Pr
Since S3[g.| is computed perturbatively, the nucleation temperature T} as defined in eq. (3.7),
is also field-redefinition invariant. This, together with a correct perturbative estimation of
Va(pr), guarantees that the strength parameter « is also field-redefinition invariant, even
if this parameter is not precisely expanded perturbatively as a whole. In any case, errors
in the estimation of a are smaller than @(e?) in our formal power counting.

4 Results

In order to get a first indication of the impact of higher-dimensional operators on the
aforementioned parameters, we proceed as follows. We take the results of ref. [65], which
provides a thorough scan of a simplified 3D model without effective interactions, given by

2

1 1 T
L = 5(89@)2%—5 <m2+ g6 > ©? + kVTP® + ATt . (4.1)

This scan includes values of «, m%, k3 and A3 at T, Given ¢, then m?,

obtained straightforwardly. For each point with o > 0.1, m/(7nT\) < 1 and x/(7T) < 1,
namely a strong PT within the regime of validity of the EFT, we compute the minimum

k and A can be

value of g for which 5/H, > 0. Negative values of this magnitude point out to a breaking of
the assumption that the transition rate grows exponentially with 7. These scenarios and
their relation to supercooled PTs have recently been discussed in the literature [66]. In this
work, we shall only consider PTs where 3/H, > 0.

Next, we include an effective interaction term (% to the potential, with its Wilson
coefficient given by the matching eq. (2.4). For the minimum g, we compute the (minimum)
value of V3 ( ) /V- (0)( )) as well as the shift in p7 after including this effective operator.
These quantities (both related to the value of the strength parameter a) give an indication
of how large effective-operator corrections can be. They are shown in figure 3. It is evident
that large values of a correlate with large corrections in both cases.

Returning to the complete model in eq. (2.2), we use the same 4D Lagrangian parameters
extracted from the scan and we compute T, «, 5/H, and v, as functions of g taking
correctly into account the effective interactions. We show the first three magnitudes in
two representative cases in figure 4. We do not plot v, as its value is straightforwardly
determined by «, as shown in eq. (3.10). Unless stated otherwise, all results are computed at
the matching scale A = 7Te™"7, where v is the Euler-Mascheroni constant.



2.01 et 1.0
. T 0.81 ;
Ry _J- a, . g
= A S 06 e
~ D] ~ aa |
o 10 L ) ~ sl s
= =% S st
< AT 4 0.41 REovs o
o -~ ~ A N
0.5 e SUO
n.," 0.2 .‘*5?-}:““‘ L
s et
0.0 J 0.0 M
0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25
o (6]
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Figure 4. Several plots comparing PT parameters with and without effective operators (EO):
curves of T, (top left), « (top right) and B/H, (bottom left) as a function of g. We use two
different models, with parameters (m?, x,\)a = (20000 GeV2, —40GeV,0.01) and (m? x,\)p =
(31643.5GeV2, —71.1 GeV, 0.045). In the bottom right, we plot the curve of the perturbative bounce
action as a function of 7" with and without effective operators for model B and g = 1.0, where the PT
does not occur if these interactions are not considered. The vertical lines represent gmax, defined as
the value of g at which V. ( ( ) / ( 59 )) ~ 0.5, implying a (safe) limit on the validity of the EFT.
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Figure 5. Left: sound wave gravitational wave power spectra for model A (see caption in figure 4)
at g4, ~ 0.73, for which we obtained v,, ~ 0.74 and v,, = 1 including and not including effective
operators (EQ), respectively. Right: same, but for model B at g ~ 0.95, close to the maximum g such
that a PT occurs without effective operators. In this case v, ~ 0.74 and v,, = 1, with and without
EQ, respectively; see the text for details.

The plots represent a common trend we observe: in most cases, the PT takes place
for a wider range of values of g (generally allowing for larger values of «) when effective
operators are included. To inspect this finding in more detail, we also show the evolution
of S3[¢.| as a function of T" for a value of g in model B, where including effective operators
allows for PTs for a wider range of ¢.3

It should be now clear that the effective interactions tend to bend the curve of bounce
action versus 7', so that it now reaches the value of ~ 100 in a larger range of g. As we antici-
pated from the preliminary test in figure 3, it is also apparent that, when « is relatively large,
the predictions for the PT parameters with and without effective operators can be drastically
different. This, in turn, has an enormous impact on the GW power spectrum resulting from
these PTs. To show this, in figure 5 we provide plots with the predicted GWs in two different
parameter space points. To this aim, we use the equations for the dominant (sound wave)
contribution for a given frequency f, as taken from the technical note for PTP1lot [67].

In the plots we observe that the peak amplitude of the power spectrumcan ¢ hange by
more than one order of magnitude in both models, while the peak frequency is not significantly
modified for model A but can shift by a factor of 10 for model B. The large differences
we observe are due to the notable disagreement in the estimation of the four relevant PT
parameters when including effective operators: Ty, «, 8/H, and v,,. For model A we find
that |AT,/Ty| =~ 0.02, |Aa/a| ~ 0.56, |AS/B| = 0.01 and |Avy,/v,| = 0.26, while for model
B we get |AT,/T,| ~ 0.17, |Aa/a| =~ 0.15, |AS/B| = 0.75 and |Av,, /vy,| = 0.26.

The bands represent the uncertainty ensuing from running the matching scale p in the
range [0.5A,2A]. (We also vary the 3D scale, but the impact is negligible.) Note however
that, in model B, in the absence of higher-dimensional operators, there is no PT for values
of p 2 1.2A, so in this case we only allow for values below this point.

3This trend can be roughly understood on the basis of figure 1: the effective terms tend to lower the true
vacuum with respect to the false one, making the PT possible.

,10,



5 Conclusions

We have performed the dimensional reduction of a model with a real scalar and a massless
fermion, including matching corrections to effective operators in the EFT with more than
four scalars and/or more than two derivatives. The details of the matching computation can
be found in appendix A. Subsequently, we have discussed how to compute the different PT
parameters in the presence of the effective operators; see appendix B for in-depth information.

On the basis of these results, we have analysed how the dynamics of strong PTs, here
defined as having a 2 0.1, change if effective interactions are not neglected. We have found
that the dominant effect is that, in most such parameter space points, effective interactions
allow for PTs in a wider range of values of the Yukawa coupling. Equally interesting is
that, there where PTs happen both in the presence and in the absence of EFT terms, the
predictions for Ty, a, 3/ H,, v, and for the subsequent GWs can change very significantly.

Our work thus provides robust evidence of the importance of including EFT effects in the
study of strong PTs. Since we have tried to isolate as much as possible the effects of effective
interactions, we have not considered higher-loop corrections in the matching nor in the
effective potential. Incorporating these effects in a comprehensive analysis of the parameter
space of the model constitutes a possible future line of work. Other potentially interesting
avenues comprise including quantum corrections (due to light fields) in the calculation of the
effective action, in line with refs. [68-74]; or applying these methods to other well-motivated
models and EFTs [75-80] for physics beyond the SM.
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A Detailed computations of the matching

In this appendix we show the results for the matching conditions of the 1PI correlation
functions between the UV (4D) and IR (3D) theories.

A.1 Setup

We compute off-shell n-point functions, with 1 <n < 8, to one-loop order in the UV theory
and match them onto the tree-level in the 3D counterpart. All diagrams with one-loop of
fermions and an odd number of external legs vanish, as they involve taking the trace of
an odd number of gamma matrices.
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The Feynman rules for both theories are obtained in Minkowski space, with signature
N = diag (+ — ——) using FeynRules [81]. In order to change to Euclidean space, with
9w = Ouv, we proceed as follows:

1. Split off a factor of ¢ from every vertex.

[\

. Change the scalar product to Euclidean space: a*b, — —ag - bg.

1
— )
p? —m?2 P? +m2

w

. Change propagators from Minkowski to Euclidean space:

4. Change gamma matrices to Euclidean space: v — ivh.

From now on, it is implicit that we are working in Euclidean space, so we do not include
the E subscript hereafter.

In the matching, we use a hard-region expansion, defined by Q2, (7T)? > P? ~ m? with
Q@ (P) the loop (external) momentum, of loop integrals in the (Euclidean) 4D theory.

To achieve the desired order in external momenta P, we iterate the following algebraic
identity:

1 :1[ _P2+2Q-P] (A1)
@+P)? @ (Q+P)?

For example, we compute up to &(P%) for Bg; while &(P?) for K3. In all cases, we neglect
m?/T? and higher orders in our expansion, as these are naturally much smaller than the
leading contribution to every operator in the matching.

With the usual definition for the sum-integral, i.e.

i zTn:iOO/(;ﬁ,), (A.2)

where ¢ are the components of the 3D momenta and n are the Matsubara modes running in the
loop, we express all our results in terms of the following 1-loop bosonic master sum-integral
in dimensional regularization:

197(d) = gj’ (@) (@*)" _ <u> 2T (2Tt 2t 23+

(@)" Amr (dm)i2
T(d/2+)T(—=d/2+a —7)
T (d/2)T(a) ((—d+2a—-28-27). (A3)

The prime denotes that we are summing over all non-zero thermal modes, as the zero mode
contribution cancels with loop contributions to the same diagrams in the 3D EFT when

”

matching. Practically, however, ¥ ' “="¥ at one-loop, since the scalar zero mode contribution
to the loop integrals in the hard-region expansion will always be a scaleless integral, which
vanishes in dimensional regularization.

The master 1-loop fermionic sum-integral is related to the previous one through
I7(d) = (22727270 — 1) 17(d). (A.4)

As we will regularize the sum-integrals using dimensional regularization, we shall set d = 3 —2¢
in all sum-integrals and skip the d argument.
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Let us compute, as an example, the hard-region contribution of the cubic scalar term
in eq. (2.1) to the 2-point function up to & (P%):

{0 (=3k)? I’ ! ! 1842 I/ L
.. e = ~ K
v 2 Q*+m? (Q+ P)? +m? Q*(Q+ P)?

ettt g T @

24P*(P-Q)* 16(P-Q)* 80P2(P-Q)* 64(P-Q)°
+ Q8 + Q8 - Q10 + Q2

where we have removed all integrals odd in (). Now, we apply the following tensor reduction

/ 2 2
ZWICH P2 P 4(P-QP P° 12P*(P-Q)

] (A5)

formulae to the product of momenta:

Q=g (A.6)
I @+ 2d
6
QinQleQan — gijkzlmn Q (AS)

d3 +6d? +8d’

where g‘1%2-+n is the totally symmetric combination of (3-dimensional Euclidean) metric
tensors. Finally, we rewrite the sum integral in terms of the master sum-integrals in eq. (A.3),
obtaining

1 1
U =18k [130 +5P (10— 41}) + P! (19"~ 1203 + 1613°)

1
=P (10 - 2413° + 8012 — 64130)] . (A.9)

The corresponding amplitude in the 3D EFT reads:
. e 2 2 4 6
\ ! = —m3 — K3P* + 2061 P* 4+ 2P° (31, (A.10)

from where it is straightforward to derive the corresponding matching corrections for K,
m3, Be1 and fg:
18 - - -
Ky = k" (150 - a1}") | m2 = —18x21%° (A.11)

9 /- _ . 9 /- _ . .
Be1 = 5;8 (IEBO — 121} + 16150) . Bei= ?/3 (1500 — 2413° + 8072° — 64]50) . (A12)

The I 57 denote the non-divergent part of the sum-integral I, 5”’ in the MS subtraction scheme.
Note how, since I3° is purely divergent, the cubic term contribution to m3 does not appear
in the complete matching in eq. (A.14).
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A.2 Matching

A more general 3D EFT Lagrangian for the scalar zero mode ¢ than the one presented in
eq. (2.2) also includes the following Zs-breaking effective operators:

g;d:‘r’) = a51<p5 + 551@28290’
LI = 0107 + B 0% + Brap(8%0) + Br3(09) 0% .

We now present the matching conditions obtained by equating the non-divergent part
of the 1PI diagrams in the UV theory up to one-loop and the tree-level in the complete
3D theory. We choose an appropriate matching scale p = #Te™ "2, where g is the Euler-
Mascheroni constant, so that all logarithms vanish. Furthermore, since [¢] = [V/T¢] = 1, we
include the appropriate factors of 1" to match the energy dimensions between the amplitudes
in the matching.

In figures 6-13, we show the representative topologies of the 1PI diagrams in the UV
theory. The dotted line represents the zero mode of the scalar, the dashed line represents all
scalar modes and the solid line, all fermion modes. We compute the corresponding n-point
functions off-shell, 1“8?, (1-loop) and F%g) (tree-level), using FeynArts [82] and FeynCalc [83].
We assume the following power counting [31]: P2?/T? ~ m?/T? ~ k/T ~ X\ ~ g2, and
calculate the aforementioned diagrams to €'(g®).

We match n-point functions in powers of external momenta and obtain the matching
relations below, which reproduce eqs. (2.3)—(2.6) in the limit of vanishing x and A:

1
o3 = Z/{T?’/Q; (A.13)
2 2 272
g 3¢(3)k 2 2 9T 2 )
K3:1+127r2+647r4T2’ msz =m +T+/\T’ kg = kVT, A3 =T (A.14)

_8LESA((5) | 27TKA*C(3)
64776T5/2 871'4\/T )
27k3¢(5) 36X((3)

51 = {00an6T7/2 ~ 3a0iT52 (A.15)

ap] =

795¢(3)  1215K*NC(T)  243k2M2C(5)  9A3¢(3)

6L = T g9t 10247574~ 647672 At
By = — 79%¢(3) _ 9x2¢(5)
61 ™ 7384742 102407674
35g%C(3)  135K*C(T)  45k2X((5)  A%(3)
_ _ _ - Al
B2 = S AT ~ 10067575 T 2567075 ST (A.16)
81kA3¢(5)
A7l = — a0 0
167673/2
5 _1215R30((T) | 27kA*((5)
T 400678972 T 64n6T5/2
Bry = 9kA((5) 27K3¢(7)
2 T 1280m6T7/2 T 819278 T11/2
9kA((5) 93¢ (7)
P13 =~ 1080m0772 40067571172 (A.17)
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~ 31¢%¢(5)
817 9048767

31g%¢(5) 189x%¢(9) 92A(T)  9N((5)

827 102407673 13107271077 | 10247575 6407073
~ 31g%¢(5) 9x%((7)
81 = ~ 102407577 ~ 229376570
217¢*¢(5) 315K%¢(9) 9x2NC(T) . 3X%¢(5)
P2 = + +

T 204807673 26214471077 ' 20487875 ' 12807673
279¢%¢(5) 945k4C(9)  45K2AC(T)  9A2((5)
B3 = 301807073 ~ 26214471077 T 40067575 12807073

_217¢%¢(5)  1053k2NZ((T) . 27A3((5)
B8 = = 5150m0T2 ~ 1024757 807672

(A.18)

We do not present here the amplitudes in each theory for the sake of readability, as the
UV contain tens of terms when expanding to higher orders in external momenta.

We would now like to have a measure of how relevant scalar loops are compared to
fermion loops in the matching. Since loops in the EFT Lagrangian with (.,2”3457’0) and without
(.,2”??) ) scalar contributions generate different EFT operators off-shell, we make the comparison
in the physical basis in which redundancies are eliminated.

For this purpose, we first remove the tadpole from .wa through a constant shift of the
field ¢ — ¢ + a, where a is perturbatively calculated so the tadpole term vanishes. Next,
we canonically normalize the Lagrangian by taking ¢ — ¢/+/K3. Finally, we perform the
appropriate field redefinitions to remove the redundant operators as described in section 2.
An analogous procedure with ,,iﬂw, in which case the tadpole term is absent, leads to
egs. (2.7)-(2.14).

For every physical Wilson coefficient we compute the relative difference A; of fermion loop

contributions c;p as compared to the joint contribution of fermions and scalars wa’ that is:

&bt

A= (A.19)

for sizable values of the Yukawa coupling, g. Since this coefficient controls the relevance
of the fermion loops in the matching, we expect that for g ~ 1, where strong PTs occur,
including scalars will not change the physical coefficients significantly. Indeed, for example,
for model B (see figure 4) with ¢ = 1 and for a reference temperature of 7' = 100 GeV, we
find that As; = 0.07, Ag1 =~ 0.09, A7; = 0.05, Ag; ~ 0.001 and Ago ~ 0.01.

Figure 6. One-point 1PI diagrams up to one-loop order in the UV theory (2.1).
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Figure 13. Eight-point 1PI diagrams up to one-loop order in the UV theory (2.1).
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B Perturbative bounce

We provide here a derivation of the equations defining the perturbative bounce solution
and the corresponding bounce action.

B.1 Equations of motion and bounce action

Let us now consider the perturbative expansion of a generic functional of the fields ¢:
F(¢] = FOlg| + eZWV[g] + EFP[g] + O(e%). (B.1)

We will apply the arguments here to two concrete functionals .#: the action S, and its
functional derivative

0S
9= 5ol (B.2)
Both of them admit a functional Taylor series expansion of S around any function ¢, as
6F 1 §>2F
Flo+n)=F +/dm7x+f/dxd7x +0(n), B.3
[0+ n] = F[4] 5<z>(x)"( )+ 5 y5¢(x)5¢(y)n( n(y) + O(n°) (B.3)

for small enough 7, and where all variational derivatives are evaluated at ¢. If we choose

o = gogo) and n = ego((;l) + 62g0£2) + O(€%), the expansion becomes

0F 0F 1 627
Flpel = Z[p0] + € W4 | = QN W) +6()
(B.4)
where we have used the shorthand notation % fz = [dx 52@ 3 f(x). For the sake of brevity,

we have also omitted the subindex ¢ in wgi), and all variational derivatives are understood to
be evaluated at goéo). We use these conventions for the rest of this appendix. Now, using the

expansion of .% itself in €, the final perturbative expansion of .# evaluated at ¢, reads:

0
Flod = FOL0) + <3¢*“>[¢<°>1 + ‘Sf”s@;lﬁ
Px

0 1 2 0
070 o 3FD 0y [ 1EFO ) )
dpr ' ° 0pr ' ° 200500, " 7Y

+é (%2) (O] + ) +0(%). (B.5)

Since ¢, is an extremal of S, we have that &;[p.] = 0 for all . Thus, setting .# = &, in
eq. (B.5), one obtains that the coefficient of each power of € must vanish. This leads to a set
of functional equations that fix, at each order €, the function (V. From the zeroth-order
coefficient, we read that ¢(© is actually an extremal of S(©:

=0. (B.6)
©(0)

Likewise, from the first order term, we obtain:

5250
£V 4 + [y s
- o Sew)ael)

eWy)=0. (B.7)

©©

5&0) 55
z_oW=0—=
Spy Y 5 (x)
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These functional equations can be transformed into ordinary differential equations if the
action is local, i.e.

S(l) [90] = /dm f(z)(gp’ 8;19@ 8;1&/@7 e ) . (B.8)

In this case, both eq. (B.6) and the first term of eq. (B.7), corresponding to the first functional
derivative of S© and S| can be handled just applying the generalized Euler-Lagrange

5§50 5 5. REAY
S, Y (e [P NP5 WY (e RIS B.9
o T o O (a@so)) z (a@uauso)) (B9)

equations:

Notice that eq. (B.9), when evaluated at ¢ is in general non-vanishing because p(© is a
solution of the EOM for S, and not for S with i # 0.

The second functional derivative (which appears in the second term of eq. (B.7)), can
be computed as the coefficient of n(x)n(y)/2 in the expansion of a local S[p(z) + en(x)]
in powers of e, with n(z) being a generic function. By doing so, and taking into account
that the second functional derivative appears under a double integral (e.g., in x and y), it
is possible to find the following formal expression:

6250 2.0 52 (0
Se(@)op(y) | 99> "\ 0pd(0up) )|
92.(0) o 52.(0) 92
9\ B(0,00(0,0) ) oy 0 B.1
8“ <a(au )8(8,,g0)> ayy (5zy) (8(% )8(@@ (‘)xuayv (6439)’ ( 0)

where d, = 6(x — y) is the Dirac delta and we have supposed that £ only depends on
the field and its first derivative. When multiplied by another function f(y) and integrated
over y, we can make use of integration by parts to leave no derivatives acting on d,,, thus
obtaining first and second derivatives of f(y). Finally, the ¢, cancels out the integral over
y; hence all functions are evaluated on a single variable x. This way, eq. (B.7) becomes a
second order differential equation for o) (z).

We now switch to the case .# = S. Altogether, using eqgs. (B.6) and (B.7), with the
appropriate transformations just described, into the perturbative expansion for S in eq. (B.5),
we find a simplified expression for S[e.|:

165W

Slpe] = S [80(0)] te S(l)[‘{’(o)] + ¢ <S(2) [‘P(O)] + ET‘PS) + ﬁ(eg) . (B.11)
Pz

In order to clarify the use of these equations, we show explicitly how to get from eq. (B.7)

to eq. (3.5). First, since ¢ has radial symmetry, the action can be written as S = 4 [ drr?.Z.
Thus, the second term in eq. (B.7) can be written as follows:

2 ¢(0) 2 ¢o(0) 2 ¢o(0) 2 ¢o(0)
dp(r)dep(r’) Oy 0pdp 1 Opdp

Pz 29720 0?7z
- z W) — (L2 5
(& 052 Tr o )Pl azz )P |

0

(B.12)
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where we have used integration-by-parts to remove derivatives of d,,.. Also, we use ¢ to
represent the derivative of ¢ with respect to r. If & ©) has only a kinetic term and a potential,
ie, 20 = 5(0,0)% + VO (p), we finally get:

6250

, 2
| oo

eV (") = 4mr? (VO (o) oW (1) = ZeW () — WD ()|, (B.13)

r

©©

from which we immediately obtain eq. (3.5) upon inserting this into eq. (B.7).

B.2 Boundary conditions

In order to fully characterise the perturbative bounce, we need to discuss the (perturbative)
boundary conditions. Generally, we have that ¢.(0) = 0 and lim,_,o p.(r) = ¢r with
©e(0) # @p. From the first condition, we obtain:

0 = ¢.(0) = $(0) + €M (0) 4+ 2P (0) + ... | (B.14)

Given that e is arbitrary, it must be the case that gb(”) (0) = 0 for every n € N. The second
condition is the statement that, as r — oo, the value of ¢, approaches the false minimum
of the potential V. Essentially, the only thing we need to do is to minimise the potential
in a consistent perturbative way. The process is very similar to the one described earlier,
but applied to a plain function V instead of a functional S. Indeed, let

V=vOiev®Wp2y® le (1) = oo = 0 + el + 202 + ... | (B.15)
T (o9}
be the potential and the asymptotic value of the solution as r — oo, both expanded in
the perturbative parameter e. Then, Taylor expanding in V'(¢) for € < 1 and collecting
€ terms, we arrive at:

V' (po) = VO (60 + € (V' () + VO (02) 1)
/ " " 1 " 2
2y (@ (,0) 07,0y ,2) D" (0 L) L 230" (,0) (1)
+@ VO () + VO (09) 2+ V" (2) o + VO () ()]

+0() . (B.16)

Since oo minimises V', then V'(¢ps) = 0 holds, and, being € an arbitrary parameter, it has
to do it order by order in e. For instance,

VW (o)

0) (,(0)y — 1 —
VP () =0, and Do V(O)”(@g?).

[e.9]

(B.17)

Hence, each term in the perturbative bounce solution is uniquely characterized by the
differential equations coming from eq. (B.5) upon replacing S with §5/d¢p, together with
the boundary conditions ¢ (0) = 0, lim, . ¢ (r) = 90(()2 , where <p§f<2 satisfy the algebraic

identities that eq. (B.16) entails. Notice that ¢ is actually the bounce solution of S(®.
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B.3 Results to arbitrary order

In this final section, we deduce a general formula for the coefficient of any given order in

the expansion in power of ¢ of a generic functional around an extremal. This generalizes
both eq. (B.11) and eq. (B.15). Let

el = d9Vg],  o=D ¥, (B.18)
i=0 i=0
and consider the Taylor expansion
=109 n
Gl =)+ 3 — (o =), (B.19)
= nlop
where
oY oY
— 00 AV
(o= e = [y dne e o) = O )] [pen) — 9]

(B.20)
This series expansion is also valid for plain functions instead of functionals, just replacing

§ for 0 in eq. (B.19). Writing 4 = %[¢")], we have:

Zelg—kzze 9, (ZEJ (J) . (B.21)

!
o S j=1

Now, the expansion of the n-th power in the last part of the expression reads:

(Zl“’(j)) =Y ST ] (B.22)
iz

k=n ri4-+rn=k
1<ry,...,rn <k
where {ry,...,r,} is a sequence of n non-negative integers.

Notice that a permutation of the same sequence does not alter the result inside the sum.
So, we can sort the sequence in a canonical way and simply add a factor accounting for the
number of possible permutations. This way, the counting of the possibilities for the different
r1,...,Ty is drastically reduced. If we define {t1,...,t,} to be the sequence r after removing
duplicate elements and s; the number of times that ¢; appears in r, then the number of
possible permutations is given by the multinomial coefficient

n n!
= —, B.2
(81,...,8m> s1l.. . sy (B.23)

Putting all together, the expression in eq. (B.21) reads:

S () ()™

ri+-+rn==k Tom

1<rm < <rn<k
oo 00 z+k+n 5ng

SIS 3oL > ) )

n=114,k=0 nl opn it t+rn=k+n m:
1<r1 < <rp<k+n

% 0 % itk gng
(A

Z&“ZZZ

n=11=0 k=n

n! don

(B.24)
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Finally, we can do a renaming of the indices, such that o = ¢ + k + n, obtaining:

< SN ! s o
Yol = QZ::O Z:: :Oi 507 m+---§;m ﬁ((p(tl)) 1...(@“”‘)) o

1<rm <-<rp<a—i

(B.25)
All perturbative bounce computations can be easily derived from here. Thus, the differential
equation for p(™ results from replacing ¢4 by g—i and equating the n-th order of € to zero.
Likewise, the boundary condition as 7 — oo for (™ comes from replacing ¢ by V.
For practical purposes, though, in this work we have implemented a Mathematica
code which automatically computes variational derivatives to any order and gives the right
coefficient in € in the perturbative expansion.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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