
Citation: Balderas, L.; Lastra, M.;

Benítez, J.M. Optimizing

Convolutional Neural Network

Architectures. Mathematics 2024, 12,

3032. https://doi.org/10.3390/

math12193032

Academic Editor: Ioannis Tsoulos

Received: 29 August 2024

Revised: 23 September 2024

Accepted: 26 September 2024

Published: 28 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Optimizing Convolutional Neural Network Architectures
Luis Balderas 1,2,3,4* , Miguel Lastra 2,3,4,5 and José M. Benítez 1,2,3,4

1 Department of Computer Science and Artificial Intelligence, University of Granada, 18071 Granada, Spain;
j.m.benitez@decsai.ugr.es

2 Distributed Computational Intelligence and Time Series Lab, University of Granada, 18071 Granada, Spain;
mlastral@ugr.es

3 Sport and Health University Research Institute, University of Granada, 18071 Granada, Spain
4 Andalusian Research Institute in Data Science and Computational Intelligence, University of Granada,

18071 Granada, Spain
5 Department of Software Engineering, University of Granada, 18071 Granada, Spain
* Correspondence: luisbalru@ugr.es

Abstract: Convolutional neural networks (CNNs) are commonly employed for demanding appli-
cations, such as speech recognition, natural language processing, and computer vision. As CNN
architectures become more complex, their computational demands grow, leading to substantial
energy consumption and complicating their use on devices with limited resources (e.g., edge devices).
Furthermore, a new line of research seeking more sustainable approaches to Artificial Intelligence
development and research is increasingly drawing attention: Green AI. Motivated by an interest in
optimizing Machine Learning models, in this paper, we propose Optimizing Convolutional Neural
Network Architectures (OCNNA). It is a novel CNN optimization and construction method based
on pruning designed to establish the importance of convolutional layers. The proposal was evalu-
ated through a thorough empirical study including the best known datasets (CIFAR-10, CIFAR-100,
and Imagenet) and CNN architectures (VGG-16, ResNet-50, DenseNet-40, and MobileNet), setting
accuracy drop and the remaining parameters ratio as objective metrics to compare the performance
of OCNNA with the other state-of-the-art approaches. Our method was compared with more than
20 convolutional neural network simplification algorithms, obtaining outstanding results. As a result,
OCNNA is a competitive CNN construction method which could ease the deployment of neural
networks on the IoT or resource-limited devices.

Keywords: convolutional neural network simplification; neural network pruning; efficient machine
learning; Green AI

MSC: 68T07

1. Introduction

Over the last years, deep neural networks (DNNs) have become the state-of-the-art
technique in several challenging tasks, such as speech recognition [1], natural language
processing [2], and computer vision [3]. In particular, convolutional neural networks
(CNNs) have achieved remarkable success across a broad range of computer vision chal-
lenges, such as image classification [3], object detection in images [4], object detection in
video [5], semantic segmentation [6], video restoration [7], and medical diagnosis [8]. The
astonishing results of CNNs are associated with the huge number of annotated data and
important advances in hardware. Unfortunately, CNNs usually have an immense number
of parameters, incurring in high storage requirements, and significant computational and
energetic costs [9]. This imposes severe restrictions on the deployment of these models
on devices with limited resources, such as edge devices or mobile devices. Thus, some
methods to develop smaller-size models or simplify the complexity of the available models
are necessary [10].
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On the other hand, these large models requiring large amounts of memory and
computation time have an evident environmental impact. In 2019, researchers from the
University of Massachusetts discovered that training various deep learning models, such as
those involving neural architecture search, could release over 284,019 kg of carbon dioxide.
This amount is roughly equivalent to five times the total lifetime emissions of the typical
American vehicle, including the car’s production [11,12]. Concretely, to classify a single
image, the VGG-16 model [13] needs over 30 billion floating-point operations (FLOPs) and
has 138 million parameters, which demand more than 500 MB of storage space [14].

In consequence, reducing the model’s storage requirements and computational cost
becomes critical for resource-limited devices, specially in IoT applications, embedded
systems, autonomous agents, mobile devices, and edge devices [15]. Actually, the con-
cerns relative to such a high level of energy consumption—among other resources—have
lead to the surge and development of a new line of research seeking a more sustainable
future for Artificial Intelligence development and deployment, named Green Artificial
Intelligence [16].

Nonetheless, Ref. [17] remarks that a usual DNN property is their considerable re-
dundancy in parameterization, which leads to the idea of reducing this redundancy by
compressing the networks. However, a severe problem along with compressing the models
is the loss of accuracy. In order to avoid it, there are some ways of designing efficient
DNNs and generating effective solutions. For instance, one approach involves using
memetic algorithms to discover an effective architecture for a given task, while another
method entails employing alternative optimization algorithms to fine-tune the connection
weights of a pre-defined architecture. Kernel Quantization is also used for efficient network
compression [18]. Alternatively, pruning is a widely utilized technique for simplifying
neural networks. Since the introduction of Optimal Brain Damage (OBD) and Optimal
Brain Surgery (OBS) in 1990, pruning methods have been thoroughly researched for model
compression. Over the years, numerous other approaches have been developed to create
more efficient and effective neural networks of various types, including dense, convolu-
tional, and recurrent networks [12]. The primary objective of pruning algorithms is to
derive a subnetwork with significantly fewer parameters while maintaining the same level
of accuracy.

In this paper, we propose a novel CNN optimization and construction technique called
Optimizing Convolutional Neural Network Architectures (OCNNA) based on pruning
which requires minimal tuning. OCNNA has been designed to assess the importance of
convolutional layers. Since this measure is computed for every convolutional layer and
unit from the model input to the output, it essentially reflects the importance of every single
convolutional filter and its contribution to the information flow through the network [19].
Moreover, our method is able to sort convolutional filters within a layer by importance; as a
consequence, it can be seen as a feature importance computation tool which can generate
more explainable neural networks. OCNNA is easy to apply, having only one parameter (k),
called the percentile of significance, which represents the proportion of filters which will be
transferred to the new model based on their importance. Only the k-th percentile of filters
with higher values after applying the OCNNA process will remain. The proposed OCNNA
can directly be applied to trained CNNs, avoiding the training process from scratch.

We thoroughly evaluated the optimization efficacy of the OCNNA method compared with
the state-of-the-art pruning techniques. Our experiments on the CIFAR-10, CIFAR-100 [20],
and Imagenet [21] datasets and popular CNN architectures, such as ResNet-50, VGG-16,
DenseNet40, and MobileNet, show that our algorithm leads to better performance in terms
of the accuracy in prediction and the reduction in the number of parameters, following a
cornerstone metric for Green AI [22] and efficient Machine Learning.

Our main contributions can be summarized as follows:
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• A Green AI simplification method for CNNs called OCNNA is proposed. OCNNA
measures the importance of each convolutional layer and unit from a trained model by
combining well-known data science and statistical techniques, such as PCA, Frobenius
norm, and Coefficient of Variation. After that, it builds a simplified model which can
be even more precise than the original one and more efficient in terms of computational
costs and memory footprint.

• Experiments on three benchmark datasets (CIFAR-10, CIFAR-100, and Imagenet)
demonstrate that our simplification technique yields highly competitive results in
terms of efficiency metrics (reduction in the number of parameters) and prediction ac-
curacy when applied to the most widely used CNN models, such as VGG16, ResNet50,
DenseNet40, and MobileNetV1.

The paper is organized as follows: Section 2 presents an overview of the latest methods
for developing efficient deep neural networks. Our proposal is described in Section 3. In
Section 4, our methodology is experimentally analyzed, and the results are analyzed and
discussed in Section 5. Finally, Section 6 highlights the conclusions.

2. Previous work

The purpose of this section is to provide a brief overview of the main approaches in
model compression: neuroevolution, neural architecture search, quantization, and pruning.
Our research mainly focuses on convolutional neural network pruning.

2.1. Neuroevolution

Neuroevolution can be applied to several tasks related to efficient neural network
design, such as learning neural networks (NN) building blocks, hyperparameters, or
architectures. In 2002, NeuroEvolution of Augmenting Topologies (NEAT) was presented
in [23], showing the effectiveness of a Genetic Algorithm (GA) in evolving NN topologies
and strengthening the analogy with biological evolution. More recently, ref. [24] drew
inspiration from NEAT, evolving deep neural networks by beginning with a simple neural
network and gradually increasing its complexity through mutations. In [25], a more
accurate approach, which consists in stacking the same layer module to make a deep neural
network, like Inception, DenseNet, and ResNet, can be found [26].

2.2. Neural Architecture Search

Recently, neural architecture search (NAS), whose main goal is to automatically design
the best DNN architecture, has achieved great importance in model design. On the one
hand, NAS algorithms can be divided into two categories: (1) microstructure search focuses
on identifying the best operation for each layer; (2) macrostructure search aims to find
the optimal number of channels or filters for each layer, or the ideal model depth [27].
Additionally, NAS algorithms can be categorized into three groups based on the optimizer
used: reinforcement learning-based NAS algorithms, gradient-based NAS algorithms,
and evolutionary NAS (ENAS) algorithms. In this sense, NSGA-II has been recently used
for NAS creating NSGA-Net [28]. In [29], NATS-BEnch is proposed, consisting in a unified
benchmark for topology and size aggregating more than 10 state-of-the-art NAS algorithms.

2.3. Quantization

Quantization refers to the process of approximating a continuous signal by using a
set of discrete symbols or integer values [30]. In other words, it reduces computations
by reducing the precision of the data type. Advanced quantization techniques, such as
asymmetric quantization [31] or calibration-based quantization, have been presented to
improve accuracy. In [30], we find a complete quantization guide and recommendations.
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2.4. Knowledge Distillation

Knowledge distillation, which was first defined by [32] and generalized in [33], is the
process of transferring knowledge from one neural network to a different one. In [34], a
student–teacher framework is presented, introducing different scenarios, such as distillation
based on the number of teachers (one teacher vs. multiple teachers), distillation based
on data format (data-free, with a few samples, or cross-modal distillation), or online and
teacher-free distillation.

2.5. Pruning

Network pruning is one of the most effective and prevalent approaches to model
compression. Pruning techniques can be classified by various aspects: structured and un-
structured pruning, depending on whether the pruned network is symmetric or not [30,35];
neuron, weight, or filter pruning, depending on the network’s element which is pruned; or
static and dynamic pruning [30]. While static pruning removes elements offline from the
network after training and before inference, dynamic pruning determines at runtime which
elements will not participate in further activity [30]. Most researchers focus on how to find
unimportant filters. Magnitude-based methods [36] use the magnitude of the weights in
feature maps from certain layers as a measure of importance, pruning those with lower
magnitudes. Others measure the importance of a filter through their reconstruction loss
(Thinet) [37] or Taylor expansion [38,39]. In [40], Average Percentage of Zeros (APoZ) is
used to assess the proportion of zero activations in a neuron following ReLU mapping, thus
allowing for the pruning of redundant neurons. HRank [41] understands filter pruning
as an optimization problem, using the feature maps as the function which measures the
importance of a filter part of the CNN. Inspired by HRank, FPWT [42] introduces a new
method which transforms the feature map in the spatial domain into the frequency domain
by using Wavelet Transform.

In [43], a new CNN compression technique is presented based on the filter-level
pruning of redundant weights according to entropy importance criteria (FPEI) with different
versions depending on the learning task and the NN. SFP [44] and FPGM, based on filter
pruning via geometric median [45], use soft filter pruning; PScratch [? ] proposes to prune
from scratch, before training the model. In [47], a criterion for CNN pruning inspired by NN
interpretability is proposed: the most relevant units are identified based on their relevance
scores, which are derived from explainable AI (XAI) concepts. Ref. [48] introduces a
data-driven CNN architecture determination algorithm called AutoCNN which consists of
three training stages (spatial filter, classification layers, and hyperparameters). AutoCNN
uses statistical parameters to decide whether to add new layers, prune redundant filters,
or add new fully connected layers pruning low-information units. An iterative pruning
method based on deep reinforcement learning (DRL) called Neon, formed by a DRL agent
which controls the trade-off between performance and the efficiency of the pruned network,
is introduced in [49]. For each hidden layer, Neon extracts the architecture-based and
the layer-based feature maps which represent an observation. Then, the aforementioned
hidden layer is compressed and fine-tuned. After that, a reward is calculated and used to
update the deep reinforcement learning agent’s weights. This process is repeated several
times for the whole neural network.

In [50], a multi-objective evolution strategy algorithm called DeepPruningES is pro-
posed. Its final output consists of three neural networks with different trade-offs called knee
(with the best trade-off between training error and the number of FLOPs), boundary-heavy
(with the smallest training error), and boundary-light solutions (with the smallest number
of FLOPs). In [27], a customized correlation-based filter-level pruning method for deep
CNN compression called COP, which removes redundant filters through their correlations,
is presented. In [51], SCWC is introduced, a shared channel weight convolution method to
decrease the number of multiplications in CNNs by leveraging the distributive property,
made possible through structured channel parameter sharing. In [52], a new method called
CHWP for identifying the most redundant filters is proposed, taking into account the size
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of filters, the difference between them, and the role of Batch Normalization layers. In [53],
a training method for CNN compression is proposed. It integrates matrix factorization
and regularization techniques, based on Singular Value Decomposition. Nonetheless,
the method has been evaluated only on ResNet-18, ResNet-20, and ResNet-32.

In [54], a CNN pruning method called MOP-FMS is introduced, in which the pruning
task is modeled as a bi-objective optimization problem based on feature map selection. The
two objectives of the method are accuracy and FLOPs, which are achieved by using an
ad hoc evolutionary optimization algorithm designed to perform the pruning. Ref. [55]
presents a CNN pruning method, which obtains a simplified network by clustering its
filters. After that, it searches the optimal compact network structure by applying a social
group optimization algorithm. In [56], an evolutionary method called Bi-CNN-Pruning is
proposed to prune filters and channels with the objective of preserving the performance
of the original model according to different pruning criteria, such as weight magnitude
or activation statistics, among others. Concretely, it maintains the important channels
in an ordered way, i.e., useful filters are selected first and then the channels. ResPrune
is proposed in [57]. It is a selection filter method which uses two criteria: l2-norm and
redundancy. Unlike other methods, ResPrune does not completely omit the filters identified
as irrelevant; instead, it restores them to their original values by using stochastic techniques.
In [58], a pruning framework called MGPF is introduced. MGPF generates sparse models of
different granularity without fine-tuning the remaining connections after pruning. CIE [59]
is a cross-layer importance evaluation technique used for neural network pruning, which
assesses the significance of convolutional layers based on the model’s prediction accuracy.
This evaluation is highly efficient in terms of time, as the process is performed only once
for a given model.

2.6. Summary

As demonstrated in this section, there are numerous approaches and techniques for
simplifying CNNs. Over the years, increasingly sophisticated solutions have been proposed;
whether through neuroevolution, neural architecture search, quantization, knowledge
distillation, or pruning, the goal remains the same: to achieve smaller models without
sacrificing prediction accuracy. However, designing an efficient, versatile, and effective
method is not easy. In the case of neuroevolution and neural architecture search, competitive
techniques can be achieved in terms of accuracy, but the computational cost of generating
them can be prohibitive. For quantization and knowledge distillation, conceptual challenges
may arise, while pruning algorithms are typically designed for specific models, unable to
tackle the simplification of networks of different natures or assess their performance on
various benchmarks. To address all these challenges, we developed OCNNA, an efficient
technique that will be evaluated on the de facto benchmarks for image classification and
will simplify the most paradigmatic and general convolutional networks. It can be applied
in virtually any industry or academic use case involving CNNs and image classification.

3. Proposal

In this paper, we address the challenge of finding an optimized topology for a convolu-
tional neural network. Thus, we introduce the Optimizing Convolutional Neural Network
Architectures (OCNNA) method, a new convolutional neural network construction method
based on pruning. In this section, we provide a detailed description of the method.

3.1. Notation

First of all, we introduce the notation used in our proposal. Let Ω be a neural network
with L convolutional layers. Let wl

m and ol
m be the convolutional filter and the output of

the l-th layer. The subscript m ∈ 1, . . . , Ml represents the filter index, where Ml indicates
the total number of output filters in the corresponding layer. In consequence, pruning the
l-th filter in layer m implies removing the corresponding wl

m.
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Principal Component Analysis (PCA) [60] is a data analysis tool applied to identify
the most meaningful basis to re-express, revealing a hidden structure, a given dataset. We
define Pl

m = PCA(ol
m) as the matrix result of computing PCA on the m-th filter’s output of

the l-th layer.
The Frobenius norm [61] is a norm of an m × n matrix A defined as

||A||F =

√√√√ m

∑
i=1

N

∑
j=1

|aij|2 (1)

It is also equal to the square root of the matrix trace of A, AH :

||A||F =
√

Tr(AAH) (2)

where AH is the conjugate transpose [62]. Let us define Fl
m = ||Pl

m||F as the Frobenius norm
of the above PCA calculation (on the m-th filter’s output of the l-th layer).

The Coefficient of Variation (CV) is the relationship between mean and standard
deviation [63]. If D is a data distribution, with σD its standard deviation and µD its mean,
CV is calculated as

CVD =
σD
µD

(3)

It is attractive as a statistical tool because it permits the comparison of variables free
from scale effects (dimensionless). We call C = CV(x) if x ∈ Rn, for a given n ∈ N.

Finally, we define the percentile of significance k. Only the k-th percentile of filters with
higher values in terms of importance will remain. All notations can be found in Table 1.

Table 1. Notations and definitions.

Notation Definition

L Number of convolutional layers
wl

m m-th filter from the l-th convolutional layer
ol

m Output of the m-th filter from the l-th layer
Ml Number of output filters in the l-th layer
Pl

m PCA applied to the m-th filter from the l-th layer
Fl

m Frobenius norm of Pl
m

C Coefficient of Variation of a vector
k-th percentile Percentile of significance

3.2. OCNNA: The Algorithm

Since the main components of a CNN are the convolutional filters, OCNNA is designed
to identify the most important ones, thus creating a new model in which the less significant
convolutional units are not included. This way, OCNNA generates a more efficient model
in terms of the number of parameters with minimum precision loss—as we will see in the
next section. Additionally, OCNNA allows for the ordering of the convolutional filters by
importance, providing a feature importance assessment method and, as a result, helping
to better understand these models. Our method employs three important techniques to
identify the significant filters: Principal Components Analysis (PCA), for selecting the most
important features based on their hidden structure; the Frobenius norm, to summarize the
PCA output information; and the Coefficient of Variation (CV), to measure the variability
of Frobenius norm outputs. Figure 1 shows, as an example, the simplification process of a
VGG-16 convolutional filter. As can be seen, the algorithm takes the filters from each layer
(Figure 1, 1); applies PCA, Frobenius norm, and Coefficient of Variation (Figure 1, 2);
and ranks the filters by importance, selecting only their top k-th percentile (Figure 1, 3).
More details can be found in Algorithm 1.
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Algorithm 1 OCNNA

1: function OCNNA(model, k, Dvar)
2: compressed_model = new Model()
3: for layer in model.Layers do
4: if layer is Convolutional then
5: variability = List()
6: for filter in layer do
7: o = model.predict(Dvar)
8: p = PCA(o, 95% var)
9: pn = FrobeniusNorm(p)

10: c = CV(pn)
11: Append c to variability
12: end for
13: new_layer_index = get k-th percentile in variability
14: Add new layer with new_layers_index filters from model
15: else
16: Add layer to compressed_model
17: end if
18: end for
19: return compressed_model
20: end function

 1                            2                              3 

Figure 1. OCNNA applied to VGG-16. Given the output from the i-th convolutional layer, PCA,
Frobenius norm, and Coefficient of Variation are applied to identify the most significant filters. The
k-th percentile of filters, in terms of importance, are selected, generating a new model whose i-th
convolutional layer is a optimized version of the original one. This approach is applied to every
convolutional filter.

Given convolutional layer wl , a Dvar dataset, used exclusively for measuring the
importance of filters, is evaluated by generating output ol . ol is formed by Ml filters.
In consequence, ol

m is the m-th filter’s output from the l-th layer. By using ol , OCNNA helps
us to measure the importance of the Ml filters in the m-th layer. Concretely, we adopt a three-
stage process. First, for each filter and image contained in Dvar, we apply PCA retaining the
95% of variance.

Pl
m = PCA(ol

m) (4)

with Pl
m a matrix which contains the most meaningful features generated by the m-th filter

of the l-th convolutional layer. Nonetheless, the information embedded in Pl
m is too large.

In consequence, we apply the Frobenius norm to summarize this information:

Fl
m = ||Pl

m||F (5)
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obtaining a vector Fl
m, in which each component is the result of the process described above

applied to each image from Dvar. Finally, we calculate the CV:

Cm = CV(Fl
m) (6)

Cm is a number which summarizes the m-th filter significance within the l-th convolu-
tional layer by measuring the variability of the process PCA and Frobenius norm for each
image in Dvar. In other words, OCNNA gives a low score of importance to a filter if for a
subset of images, it generates an output whose hidden structures (PCA, 95% variance),
after being summarized (Frobenius norm), have little variability (CV).

To sum up, OCNNA is able to extract insights and measure the importance of each filter
of a convolutional layer, starting from hundreds of arrays which constitute the output from a
dataset, called Dvar, and generating a holistic vision summarizing the filter significance into
a single number (Figure 2). As a result, OCNNA transforms the output of a convolutional
layer into an array in which the i-th component represents the i-th filter’s importance.
Finally, using parameter k, or percentile of significance, we extract the k-th percentile of
filters in terms of significance, completing the simplification process.

The larger k, the more strict the filter selection. In consequence, fewer filters will be
selected and the new model will be simpler (a smaller number of parameters compared
with the original one).

Figure 2. OCNNA provides a single number for this filter which reflects its importance. This process
is iterated over all filters from a layer and their k-th percentile in terms of significance will form part
of the new model.

3.3. Implementation

As mentioned above, OCNNA can measure the importance of a convolutional filter by
extracting hidden insights from a multidimensional array and express it through a number.

This process implies heavy computational costs. In this sense, OCNNA is designed
to maximize its performance in terms of the time required to complete the simplification
process by proposing a parallel computing paradigm. In other words, this entails counting
the number of CPUs available and distributing the tasks associated to each filter (prediction,
PCA, Frobenius norm, and CV) of the convolutional layer among them, carrying out the
calculations simultaneously and, as a result, speeding-up the results. This parallelism is
absolutely transparent to the user. Once all the operations are finished, a synchronization
process between the different subtasks is accomplished, mapping every result (the signifi-
cance of the filter) in the correct component of the vector, which represents the importance
of each filter in the convolutional layer. It was implemented in Python 3.9, and Tensorflow
2.9 was used as the machine learning framework.
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4. Empirical Evaluation

To assess the performance of OCNNA, we designed a thorough empirical procedure
that included different well-known datasets (CIFAR-10, CIFAR-100, and Imagenet) and
architectures (ResNet-50, VGG-16, DenseNet-40, and MobileNet) which represent core
benchmarks extensively referenced in the literature. Moreover, OCNNA was compared
with 20 state-of-the-art CNN simplification techniques, obtaining successful results. This
section is structured as follows: The architectures and datasets, metrics, compared state-
of-the-art approaches, and training process settings are explained in order to assure the
experiments’ reproducibility. Finally, the results and analysis for the CIFAR and Imagenet
datasets are presented, comparing them with the other state-of-the-art techniques.

4.1. Common Architectures and Datasets

We thoroughly evaluated our CNN building and optimizing scheme. To obtain
comparable results with other state-of-the-art approaches, we selected four popular CNN
architectures: VGG-16 [13], ResNet-50 [64], DenseNet-40 [65], and MobileNet [66]. VGG-16
is a convolutional neural network formed by 138.4 M parameters and 16 layers. The input
is an RGB image with a size of 224 × 224, which is passed through a stack of 3 × 3 receptive
field convolutional layers, with padding fixed to 1 pixel. Five max-pooling layers (pixel
window of size 2 × 2 and stride set to 2), which follow some of the convolutional layers,
are included as spatial pooling. The last stack of convolutional layers is followed by three
dense layers of 4096, 4096, and 1000 channels.

ResNet-50, drawing inspiration from the VGG networks, incorporates the idea of
residual learning to simplify training by reconfiguring the layers to learn residual functions
relative to their inputs, rather than learning functions without references. In practice,
ResNet includes shortcut connections and has lower complexity than VGG-16, given the
fact that it is formed by 25.6 M parameters. DenseNet (1 M parameters and 40 layers)
connects each convolutional unit as if it were a feed-forward neural network, reducing the
number of parameters and diminishing problems such as the vanishing gradient. Finally,
MobileNet is a light-weight neural network designed for mobile and embedded vision
apps. It has 4.3 M parameters and 55 layers.

To demonstrate the versatility of our approach, we evaluated it by using a core set of
widely used benchmark datasets for image classification: CIFAR-10 [20], CIFAR-100 [20],
and ImageNet [21]. The CIFAR-10 dataset is an image classification problem with 10 classes
formed by 60,000 images with size 32 × 32 (each class consists of 6000 images, with a total
of 50,000 images for training and 10,000 images for testing). CIFAR-100 contains the same
number of images as CIFAR-10 but 100 classes (600 images each). On the other hand,
Imagenet is a dataset formed by 1431,167 annotated images (224 × 224) and 1000 object
classes. As we have mentioned, OCNNA requires a Dvar dataset to measure convolutional
filter importance. In the case of CIFAR-10 and CIFAR-100, we selected 10% of the training
images, in other words, 5000 images identically distributed by class. After completing the
optimization process, we evaluated the new model’s performance by using the test images.
For the Imagenet dataset, we used as Dvar the “imagenet_v2/topimages” subset and as test
set “imagenet_v2/matched-frequency”. Both of them have 10,000 images sampled after a
decade of progress on the original ImageNet dataset, making the new test data independent
of existing models and guaranteeing that the accuracy scores are not affected by adaptive
overfitting [67]. These datasets can be found in [68].

4.2. Metrics

We measured the prediction performance of the optimized models with accuracy
(ACC). In addition, we registered the number of parameters to assess complexity and
efficiency in terms of memory requirements and runtime as it is defined for the Green
AI paradigm (a lower number of parameters may lead to increased efficiency). We also
recorded the remaining parameters ratio (RPR) compared with the original model for
compression, as previously performed for other state-of-the-art approaches. A higher
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parameter reduction ration means a smaller model size and, as a result, a less complex
model. The definition of RPR is

RPR = 1 − NPO − NPS
NPO

(7)

where NPO and NPS represent the number of parameters of the original model and the
optimized one, respectively. In any case, we adjusted the metrics (and their presentation) to
match those used in the literature, ensuring a fair and precise comparison between OCNNA
and other approaches.

4.3. Training Process Settings

For the VGG-16, ResNet-50, MobileNet, and DenseNet models training on CIFAR-10
or CIFAR-100, we set the weight decay to 1 × 10−6, the momentum to 0.9, the learning
rate to 1 × 10−3, and the batch size to 64. All images were augmented by horizontal and
vertical flipping, zoom with range between 0.85 and 1.5, rotation range of 180, and fill
mode as reflect; in other words, pixels outside the boundaries of the input image were filled
according to the following mode [69]:

abcddcba|abcd|dcbaabcd

We did not train any model on Imagenet due to the existence of publicly available
pre-trained models.

4.4. Results and Analysis on CIFAR Datasets

The results on the CIFAR datasets for different architectures are shown in Tables 2–5.
The Dataset column shows the learning task; the Architecture column shows the neural
network used in the learning task; the Base (%) column refers to the accuracy originally
obtained with the aforementioned architecture for the dataset given; Acc (%) is the accuracy
obtained after applying the pruning algorithm; RPR means the remaining parameters ratio,
where the lower, the better; Acc. Drop is the accuracy loss after pruning, where the smaller,
the better. As we have said, we used three benchmark architectures, ResNet-50, VGG-16,
and DenseNet-40.

In the case of ResNet-50, OCNNA generates a compressed model where just over
45% of the parameters remain (57.12% for CIFAR-10 and 46.95% for CIFAR-100), while
the accuracy loss is very small. As a result, OCNNA is an effective method for com-
pressing CNNs; actually, it achieves the best values for both metrics among all the
considered methods.

Given the fact that VGG-16 is a very complex network, it might present greater
redundancy than the other architectures. In fact, we were able to reduce the model, pruning
86.68% of the parameters for CIFAR-10 and 74.03% for CIFAR-100 without any accuracy
loss for CIFAR-10 (actually, an improvement of 0.42%) and keeping it nearly unchanged for
CIFAR-100 (−0.44%). OCCNA achieved the best scores for both metrics in CIFAR-10 and
CIFAR-100, with the exception of RPR, where it ranked third.

For DenseNet-40, OCNNA again achieved the best results in both metrics and
both datasets. In addition, it improved test accuracy for CIFAR-10 (0.39%) and for
CIFAR-100 (0.23%).

Finally, we can observe the same behavior for MobileNet: OCNNA ranked first in
both RPR and ACC for both datasets but only in size reduction for CIFAR-10. While not
compressing the most for MobileNet built for CIFAR-10, its simplified model improves test
accuracy (0.65%).

Overall, OCNNA is the winner according to the results for the CIFAR-10 and CIFAR-
100 datasets.
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Table 2. Results of pruning ResNet-50 on CIFAR datasets. RPR means the remaining parameters
ratio, where the lower, the better. Acc. Drop is the accuracy loss after pruning, where the smaller, the
better. The best results are highlighted in bold.

Dataset Base (%) Algorithm Acc. (%) Acc. Drop (%) RPR (%)

CIFAR-10 93.55 FPEI [43] 91.85 1.70 45.69
LRP [70] 93.37 0.18 75.24

DeepPruningES [50] 91.89 1.66 78.69
OCNNA 93.42 0.13 42.88

CIFAR-100 73.24 FPEI 69.58 3.66 57.53
DeepPruningES 57.81 15.43 80.91

OCNNA 70.32 2.92 53.05

Table 3. Results of pruning VGG-16 on CIFAR datasets. RPR means the remaining parameters ratio,
where the lower, the better. Acc. Drop is the accuracy loss after pruning, where the smaller, the better.
The best results are highlighted in bold.

Dataset Base (%) Algorithm Acc. (%) Acc. Drop (%) RPR (%)

CIFAR-10 93.70 FPGM [40] 93.00 0.7 48.97
DeepPruningES 91.79 1.91 64.99

ThiNet [40] 92.99 0.71 26.92
PScratch [71] 93.02 0.68 26.96
HRank [41] 93.43 0.27 17.10

Slimming [36] 93.44 0.26 16.71
COP v1 [27] 93.37 0.18 15.15

COP v2 93.86 −0.17 13.56
SNACS [72] 91.06 −0.17 3.84

White-Box [73] 93.47 0.23 −
SOKS-80% [74] 94.01 −0.31 −

EACP(k = 80%) [55] 93.29 0.41 24.6
MOP-FMS (80%) [54] 91.51 2.19 19.50
Bi-CNN-Pruning [56] 93.88 −0.18 63.48

ResPrune [57] 93.76 −0.27 −
MGPF [58] 93.88 −0.18 9.14
FPWT [42] 93.94 −0.24 26.70
OCNNA 94.12 −0.42 13.32

CIFAR-100 73.51 SFP [75] 71.74 1.77 60.66
DeepPruningES 67.06 6.45 80.07

FPGM 72.76 1.25 48.99
HRank [41] 72.43 1.08 44.07

COP v1 72.63 0.88 34.81
Slimming 72.76 0.75 33.40
COP v2 72.99 0.52 26.16

Bi-CNN-Pruning 72.11 1.4 78.27
OCNNA 73.07 0.44 25.97
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Table 4. Results of pruning DenseNet-40 on CIFAR datasets. RPR means the remaining parameters
ratio, where the lower, the better. Acc. Drop is the accuracy loss after pruning, where the smaller, the
better. The best results are highlighted in bold.

Dataset Base (%) Algorithm Acc. (%) Acc. Drop (%) RPR (%)

CIFAR-10 76.52 HRank 75.94 0.58 58.68
Slimming 75.90 0.62 54.28
COP v1 75.53 0.99 56.10
COP v2 76.03 0.49 54.08

OCNNA 76.91 −0.39 52.96

CIFAR-100 94.84 HRank 93.68 0.60 39.00
Slimming 94.35 0.49 34.80
COP v1 94.19 0.65 37.66
COP v2 94.54 0.30 34.80

OCNNA 95.07 −0.23 34.12

Table 5. Results of pruning MobileNet on CIFAR datasets. RPR means the remaining parameters
ratio, where the lower, the better. Acc. Drop is the accuracy loss after pruning, where the smaller, the
better. MobileNet-0.75 means that every layer is 75% of the original one. COP-0.50 implies that 50%
of filters are maintained. The best results are highlighted in bold.

Dataset Base (%) Algorithm Acc. (%) Acc. Drop (%) RPR (%)

CIFAR-10 94.07 MobileNet-0.75 93.36 0.71 53.96
MobileNet-0.50 92.84 1.23 25.28

COP v1-0.50 93.59 0.48 34.06
COP v1-0.30 92.97 1.1 25.94
COP v2-0.50 93.89 0.18 32.72
COP v2-0.30 93.47 0.6 25.38
Adapt-DCP 94.57 −0.6 21.74

MGPF 92.5 1.5 9.14
OCNNA 94.72 −0.65 24.60

CIFAR-100 74.94 MobileNet-0.75 73.99 0.95 53.96
MobileNet-0.50 73.20 1.74 25.28

COP v1-0.50 73.95 0.99 42.50
COP v1-0.30 73.45 1.49 25.35
COP v2-0.50 74.66 0.28 40.85
COP v2-0.30 74.01 0.93 25.42

CIE [59] 57.53 17.41 −
OCNNA 74.72 0.22 23.87

4.5. Results and Analysis on Imagenet Dataset

The performance of OCNNA and state-of-the-art methods for VGG-16, ResNet-50,
and MobileNet on the Imagenet dataset are presented in Tables 6–8. We begin by describing
the results obtained for the VGG-16 architecture (Table 6). In this case, the best performing
algorithm for compression was MGPF, at the cost of a suboptimal accuracy. OCNNA
ranked second in RPR.

For ResNet-50 (Table 7), more extensive experimental results can be found in the
literature. To the best of our knowledge, ResPrune and SCWC (s = 0.5, s = 0.4, and s = 0.3)
are the only methods which improve the accuracy (negative accuracy drop) but with an
RPR above 65% for SCWC (no data available for ResPrune).

FPEI-R7 with DR obtains a notable RPR (37.88%), still smaller than OCNNA’s (37.44%),
but the accuracy drop is quite higher (1.68% vs. 0.57% for OCNNA). In [42] (FPWT), we
found the best approach to compressing ResNet-50 (31.8%). OCNNA was not as effective
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as FPWT in terms of RPR, but the accuracy drop for OCNNA was more than four times
smaller compared with FPWT (0.57% for OCNNA vs. 2.48% for FPWT).

In real-world applications, it is essential to balance performance and compression
rates based on varying computational demands, energy consumption constraints [39], and
accuracy requisites.

For MobileNet (Table 8), OCNNA outperformed the different approaches of the COP
method and the direct simplification of the original model.

As a final, overall conclusion, we can assert that OCNNA can obtain simplified CNNs
with remarkable complexity reduction while retaining the accuracy or even improving it in
some cases.

Table 6. Comparison of OCNNA and other methods on Imagenet (VGG-16). RPR means the
remaining parameters ratio, where the lower, the better. Acc. is the test accuracy after pruning.
Acc. Drop is the test accuracy loss after pruning, where the smaller, the better. The best results are
highlighted in bold.

Base (%) Method Acc (%) Acc. Drop (%) RPR (%)

74.4% [13] SCWC(s=0.6) [51] 73.80 0.6 60.5
SCWC(s=0.5) 73.20 1.2 50.3
SCWC(s=0.4) 73.17 1.23 40.8
SCWC(s=0.3) 72.16 1.64 30.6
SCWC(s=0.2) 71.42 2.98 19.7

APoZ [40] 73.09 1.31 49.0
CP [75] 70.7 3.7 −

ThiNet-GAP [40] 72.64 1.76 −
SSR [71] 72.75 1.65 −
MGPF 70.96 3.44 6.0

OCNNA 71.54 2.86 18.9

Table 7. Comparison of OCNNA and other methods on Imagenet (ResNet-50). RPR means the
remaining parameters ratio, where the lower, the better. Acc. Drop is the accuracy loss after pruning,
where the smaller, the better. The best results are highlighted in bold.

Base (%) Method Acc. (%) Acc. Drop (%) RPR (%)

75.3% [64] HRank-C1 [41] 74.13 1.17 62.99
FPEI-R5 [43] 74.36 0.94 61.79

FPEI-R4 with DR 74.72 0.58 44.31
HRank-C2 71.13 4.17 53.71

FPEI-R6 72.23 3.07 51.53
FPEI-R7 with DR 73.62 1.68 37.88

SFP [75] 74.18 1.12 61.74
FPGM [40] 73.54 1.76 61.79

PScratch [71] 74.75 0.55 49.95
COP v2 [27] 74.97 0.33 44.79

SCWC(s=0.5) [51] 75.52 -0.22 77.20
RED++ [76] 75.2 0.1 55.00
SCWC(s=0.4) 75.45 −0.15 72.60
SCWC(s=0.3) 75.35 −0.05 67.90
SCWC(s=0.2) 75.23 0.07 63.30
SCWC(s=0.1) 75.17 0.13 58.60

Thinet-70 [37,71] 74.03 1.27 67.10
SSR [71] 72.47 2.83 47.80

APoZ [40] 71.83 3.47 47.80
LSTM-SEP [77] 74.4 0.9 57.00
AOFP-C2 [77] 75.07 0.23 −
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Table 7. Cont.

Base (%) Method Acc. (%) Acc. Drop (%) RPR (%)

Adapt-DCP [78] 74.44 0.86 45.10
ResNet-50-pruned-70 [14] 75.06 0.24 70.00
ResNet-50-pruned-50 [14] 73.99 1.31 50.00

IoT-Qi [39] 72.92 2.38 33.70
SNACS [72] 74.65 0.65 44.90

White-Box [73] 74.21 1.09 −
CHWP [52] 74.95 0.35 −

EACP (k = 70%) [55] 73.95 1.35 45.30
ResPrune [57] 76.15 −0.85 −

FPWT [42] 72.82 2.48 31.80
CIE [59] 74.06 1.24 −
OCNNA 74.73 0.57 37.44

Table 8. Results of pruning MobileNet on the Imagenet dataset. RPR means the remaining parameters
ratio, where the lower, the better. Acc. Drop is the accuracy loss after pruning, where the smaller, the
better. MobileNet-0.75 means that every layer is 75% of the original one. COP-0.50 implies that 50%
of filters are maintained. The best results are highlighted in bold.

Dataset Base (%) Algorithm Acc. (%) Acc. Drop (%) RPR (%)

Imagenet 69.96 MobileNet-0.75 68.01 1.95 60.94
MobileNet-0.50 63.29 6.67 36.29

COP v1-0.70 68.52 1.44 59.31
COP v1-0.40 64.38 5.58 28.99
COP v2-0.70 69.02 0.94 57.09
COP v2-0.40 65.33 4.63 29.81
Adapt-DCP 69.58 0.38 66.73

OCNNA 69.75 0.21 27.22

5. Sensibility Study

As we have seen, OCNNA is a parametric algorithm designed to simplify CNN models.
It can be applied to any convolutional model (e.g., ResNet or VGG networks) without any
adjustment, in contrast with other state-of-the-art approaches, such as FPEI [43], which
presents different versions (FPEI, FPEI-R4 with DDR, FPEI-R5, FPEI-R6, and FPEI-R7 with
DR) in order to ensure quality in prediction in different situations. OCNNA counts only
with one parameter, k, which represents the k-th percentile of filters with higher importance,
after applying transformations such as PCA, Frobenius norm, and CV. What effect does
changing the value of k have in terms of accuracy and network simplification? It is
illustrated through the experiment depicted in Figure 3. In this experiment, different values
of k, ranging between 10 and 75, were used, and the resulting accuracy and final number of
parameters were evaluated. As the k value increases, OCNNA boosts the reduction in the
number of filters which will form part of the new model. In consequence, the number of
parameters substantially drops. Nonetheless, accuracy also suffers a dramatically drop as
k increases. Notice the remarkable drop between k = 40 (74.43% in accuracy) and k = 50
(46.31%). In fact, 40-th percentile is the best value of k, obtaining the highest possible
accuracy bearing in mind the significant reduction in parameters.
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Figure 3. Sensitivity study of k percentile of significance for ResNet-50 and Imagenet dataset. The
left Y-axis shows test accuracy, and the right Y-axis shows the remaining parameters ratio. The base
accuracy is 75.4%. As we can see, when k = 40 (40-th percentile), we obtain a significant reduction in
parameters (remaining 37.44%) with an accuracy drop of 0.57%.

6. Conclusions

Deep neural networks have emerged as the leading technique for tackling various
challenging tasks in AI. In particular, CNNs have achieved an extraordinary success in a
wide range of computer vision problems. However, these models come with high energy
demands and are challenging to design efficiently.

In this paper, we introduce OCNNA, a novel CNN optimization and construction
method based on pruning designed to assess the importance of convolutional layers,
ordering the filters (features) by importance. Our approach enables the efficient end-to-end
training and compression of CNNs. It is easy to apply and depends on a single parameter
k, called percentile of significance, which represents the proportion of filters which will
be transferred to the new model based on their importance. Only the k-th percentile of
filters with higher values after applying the OCNNA process (PCA for feature selection,
Frobenius norm for summary, and CV for measuring variability) will form part of the new
optimized model.

OCNNA was evaluated through a comprehensive and detailed experimentation in-
cluding the best known datasets (CIFAR-10, CIFAR-100, and Imagenet) and CNN architec-
tures (VGG-16, ResNet-50, DenseNet-40, and MobileNet). The experimental results, based
on the comparison with 20 state-of-the-art CNN simplification techniques and obtaining
successful results, confirm that more efficient CNN models, following typical Green AI
metrics, can be obtained with small accuracy losses. As a result, OCNNA is a competitive
CNN construction method based on pruning which could ease the deployment of AI
models onto edge devices (e.g., IoT devices) or other resource-limited devices.
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32. Buciluǎ, C.; Caruana, R.; Niculescu-Mizil, A. Model compression. In Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Philadelphia, PA, USA, 20–23 August 2006.

33. Hinton, G.; Vinyals, O.; Dean, J. Distilling the Knowledge in a Neural Network. arXiv 2015, arXiv:1503.02531.
34. Wang, L.; Yoon, K. Knowledge Distillation and Student-Teacher Learning for Visual Intelligence: A Review and New Outlooks.

IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 3048–3068. [CrossRef]
35. Liu, Z.; Sun, M.; Zhou, T.; Huang, G.; Darrell, T. Rethinking the Value of Network Pruning. arXiv 2019, arXiv:1810.05270.
36. Liu, Z.; Li, J.; Shen, Z.; Huang, G.; Yan, S.; Zhang, C. Learning Efficient Convolutional Networks through Network Slimming.

In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017;
pp. 2755–2763. [CrossRef]

37. Luo, J.H.; Zhang, H.; Zhou, H.Y.; Xie, C.W.; Wu, J.; Lin, W. ThiNet: Pruning CNN Filters for a Thinner Net. IEEE Trans. Pattern
Anal. Mach. Intell. 2019, 41, 2525–2538. [CrossRef]

38. Molchanov, P.; Tyree, S.; Karras, T.; Aila, T.; Kautz, J. Pruning Convolutional Neural Networks for Resource Efficient Inference.
arXiv 2017, arXiv:1611.06440.

39. Qi, C.; Shen, S.; Li, R.; Zhao, Z.; Liu, Q.; Liang, J.; Zhang, H. An efficient pruning scheme of deep neural networks for Internet of
Things applications. EURASIP J. Adv. Signal Process. 2021, 2021, 31. [CrossRef]

40. Hu, H.; Peng, R.; Tai, Y.W.; Tang, C.K. Network Trimming: A Data-Driven Neuron Pruning Approach towards Efficient Deep
Architectures. arXiv 2016, arXiv:1607.03250.

41. Lin, M.; Ji, R.; Wang, Y.; Zhang, Y.; Zhang, B.; Tian, Y.; Shao, L. HRank: Filter Pruning using High-Rank Feature Map. arXiv 2020,
arXiv:2002.10179.

42. Liu, Y.; Fan, K.; Zhou, W. FPWT: Filter pruning via wavelet transform for CNNs. Neural Netw. 2024, 179, 106577. [CrossRef]
[PubMed]

43. Wang, J.; Jiang, T.; Cui, Z.; Cao, Z. Filter pruning with a feature map entropy importance criterion for convolution neural
networks compressing. Neurocomputing 2021, 461, 41–54. [CrossRef]

44. He, Y.; Kang, G.; Dong, X.; Fu, Y.; Yang, Y. Soft filter pruning for accelerating deep convolutional neural networks. arXiv 2018,
arXiv:1808.06866.

45. He, Y.; Liu, P.; Wang, Z.; Hu, Z.; Yang, Y. Filter Pruning via Geometric Median for Deep Convolutional Neural Net-
works Acceleration. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Long Beach, CA, USA, 15–20 June 2019; pp. 4335–4344. [CrossRef]

46. Wang, Y.; Zhang, X.; Xie, L.; Zhou, J.; Su, H.; Zhang, B.; Hu, X. Pruning from Scratch. arXiv 2019, arXiv:1909.12579. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2022.3140773
http://dx.doi.org/10.1109/TPAMI.2023.3290213
http://www.ncbi.nlm.nih.gov/pubmed/37379198
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1145/3381831
http://dx.doi.org/10.1162/106365602320169811
http://dx.doi.org/10.1609/aaai.v33i01.33014780
http://dx.doi.org/10.1038/s42256-018-0006-z
http://dx.doi.org/10.1016/j.neucom.2021.08.098
http://dx.doi.org/10.1145/3321707.3321729
http://dx.doi.org/10.1109/TPAMI.2021.3054824
http://www.ncbi.nlm.nih.gov/pubmed/33497330
http://dx.doi.org/10.1016/j.neucom.2021.07.045
http://dx.doi.org/10.1109/CVPR.2018.00286
http://dx.doi.org/10.1109/TPAMI.2021.3055564
http://dx.doi.org/10.1109/ICCV.2017.298
http://dx.doi.org/10.1109/TPAMI.2018.2858232
http://dx.doi.org/10.1186/s13634-021-00744-4
http://dx.doi.org/10.1016/j.neunet.2024.106577
http://www.ncbi.nlm.nih.gov/pubmed/39098265
http://dx.doi.org/10.1016/j.neucom.2021.07.034
http://dx.doi.org/10.1109/CVPR.2019.00447
http://dx.doi.org/10.1609/aaai.v34i07.6910


Mathematics 2024, 12, 3032 18 of 19

47. Yeom, S.K.; Seegerer, P.; Lapuschkin, S.; Binder, A.; Wiedemann, S.; Müller, K.R.; Samek, W. Pruning by explaining: A novel
criterion for deep neural network pruning. Pattern Recognit. 2021, 115, 107899. [CrossRef]

48. Aradhya, A.M.; Ashfahani, A.; Angelina, F.; Pratama, M.; de Mello, R.F.; Sundaram, S. Autonomous CNN (AutoCNN): A
data-driven approach to network architecture determination. Inf. Sci. 2022, 607, 638–653. [CrossRef]

49. Hirsch, L.; Katz, G. Multi-objective pruning of dense neural networks using deep reinforcement learning. Inf. Sci. 2022,
610, 381–400. [CrossRef]

50. Fernandes, F.E., Jr.; Yen, G.G. Pruning Deep Convolutional Neural Networks Architectures with Evolution Strategy. Inf. Sci. 2021,
552, 29–47. [CrossRef]

51. Li, G.; Zhang, M.; Wang, J.; Weng, D.; Corporaal, H. SCWC: Structured channel weight sharing to compress convolutional neural
networks. Inf. Sci. 2022, 587, 82–96. [CrossRef]

52. Geng, X.; Gao, J.; Zhang, Y.; Xu, D. Complex hybrid weighted pruning method for accelerating convolutional neural networks.
Sci. Rep. 2024, 14, 5570. [CrossRef]

53. Sharma, M.; Heard, J.; Saber, E.; Markopoulos, P.P. Convolutional Neural Network Compression via Dynamic Parameter Rank
Pruning. arXiv 2024, arXiv:2401.08014.

54. Jiang, P.; Xue, Y.; Neri, F. Convolutional neural network pruning based on multi-objective feature map selection for image
classification. Appl. Soft Comput. 2023, 139, 110229. [CrossRef]

55. Liu, Y.; Wu, D.; Zhou, W.; Fan, K.; Zhou, Z. EACP: An effective automatic channel pruning for neural networks. Neurocomputing
2023, 526, 131–142. [CrossRef]

56. Louati, H.; Louati, A.; Bechikh, S.; Kariri, E. Joint filter and channel pruning of convolutional neural networks as a bi-level
optimization problem. Memetic Comput. 2024, 16, 71–90. [CrossRef]

57. Jayasimhan, A.; Pabitha, P. ResPrune: An energy-efficient restorative filter pruning method using stochastic optimization for
accelerating CNN. Pattern Recognit. 2024, 155, 110671. [CrossRef]

58. Zhang, P.; Tian, C.; Zhao, L.; Duan, Z. A multi-granularity CNN pruning framework via deformable soft mask with joint training.
Neurocomputing 2024, 572, 127189. [CrossRef]

59. Lian, Y.; Peng, P.; Jiang, K.; Xu, W. Cross-layer importance evaluation for neural network pruning. Neural Netw. 2024, 179, 106496.
[CrossRef]

60. Kurita, T. Principal component analysis (PCA). In Computer Vision: A Reference Guide; Springer: Cham, Switzerland, 2019; pp. 1–4.
61. Golub, G.; Van Loan, C. Matrix Computations, 3rd, ed.; JHU Press: Baltimore, MD, USA, 1996.
62. Frobenius Norm—From Wolfram MathWorld. Available online: https://mathworld.wolfram.com/FrobeniusNorm.html

(accessed on 25 April 2023).
63. Everitt, B.; Skrondal, A. The Cambridge Dictionary of Statistics B.S. Everitt Aut; A. Skrondal Aut; Cambridge University Press:

Cambridge, UK, 2011.
64. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.
65. Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. arXiv 2018,

arXiv:1608.06993.
66. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient

Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.
67. Recht, B.; Roelofs, R.; Schmidt, L.; Shankar, V. Do ImageNet Classifiers Generalize to ImageNet? In Proceedings of the

36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; Volume 97, pp. 5389–5400.
68. imagenet_v2|TensorFlow Datasets—tensorflow.org. 2022. Available online: https://www.tensorflow.org/datasets/catalog/

imagenet_v2 (accessed on 10 May 2023).
69. Tensorflow. Image Data Generator v2.14.1; Tensorflow. 2022. Available online: https://www.tensorflow.org/api_docs/python/tf/

keras/preprocessing/image/ImageDataGenerator (accessed on 20 May 2023).
70. Guillemot, M.; Heusele, C.; Korichi, R.; Schnebert, S.; Chen, L. Breaking Batch Normalization for better explainability of Deep

Neural Networks through Layer-wise Relevance Propagation 2020. [arXiv:cs.LG/2002.11018].
71. Lin, S.; Ji, R.; Li, Y.; Deng, C.; Li, X. Toward Compact ConvNets via Structure-Sparsity Regularized Filter Pruning. IEEE Trans.

Neural Netw. Learn. Syst. 2020, 31, 574–588. [CrossRef] [PubMed]
72. Ravi Ganesh, M.; Blanchard, D.; Corso, J.J.; Sekeh, S.Y. Slimming Neural Netw. Using Adaptive Connectivity Scores. IEEE Trans.

Neural Netw. Learn. Syst. 2024, 35, 3794–3808. [CrossRef] [PubMed]
73. Zhang, Y.; Lin, M.; Lin, C.W.; Chen, J.; Wu, Y.; Tian, Y.; Ji, R. Carrying Out CNN Channel Pruning in a White Box. IEEE Trans.

Neural Netw. Learn. Syst. 2023, 34, 7946–7955. [CrossRef]
74. Liu, G.; Zhang, K.; Lv, M. SOKS: Automatic Searching of the Optimal Kernel Shapes for Stripe-Wise Network Pruning. IEEE

Trans. Neural Netw. Learn. Syst. 2023, 34, 9912–9924. [CrossRef]
75. He, Y.; Zhang, X.; Sun, J. Channel Pruning for Accelerating Very Deep Neural Networks. arXiv 2017, arXiv:1707.06168.
76. Yvinec, E.; Dapogny, A.; Cord, M.; Bailly, K. RED++ : Data-Free Pruning of Deep Neural Networks via Input Splitting and Output

Merging. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 3664–3676. [CrossRef]

http://dx.doi.org/10.1016/j.patcog.2021.107899
http://dx.doi.org/10.1016/j.ins.2022.05.100
http://dx.doi.org/10.1016/j.ins.2022.07.134
http://dx.doi.org/10.1016/j.ins.2020.11.009
http://dx.doi.org/10.1016/j.ins.2021.12.020
http://dx.doi.org/10.1038/s41598-024-55942-5
http://dx.doi.org/10.1016/j.asoc.2023.110229
http://dx.doi.org/10.1016/j.neucom.2023.01.014
http://dx.doi.org/10.1007/s12293-024-00406-6
http://dx.doi.org/10.1016/j.patcog.2024.110671
http://dx.doi.org/10.1016/j.neucom.2023.127189
http://dx.doi.org/10.1016/j.neunet.2024.106496
https://mathworld.wolfram.com/FrobeniusNorm.html
https://www.tensorflow.org/datasets/catalog/imagenet_v2
https://www.tensorflow.org/datasets/catalog/imagenet_v2
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator
http://arxiv.org/abs/2002.11018
http://dx.doi.org/10.1109/TNNLS.2019.2906563
http://www.ncbi.nlm.nih.gov/pubmed/30990448
http://dx.doi.org/10.1109/TNNLS.2022.3198580
http://www.ncbi.nlm.nih.gov/pubmed/35998170
http://dx.doi.org/10.1109/TNNLS.2022.3147269
http://dx.doi.org/10.1109/TNNLS.2022.3162067
http://dx.doi.org/10.1109/TPAMI.2022.3179616


Mathematics 2024, 12, 3032 19 of 19

77. Ding, G.; Zhang, S.; Jia, Z.; Zhong, J.; Han, J. Where to Prune: Using LSTM to Guide Data-Dependent Soft Pruning. IEEE Trans.
Image Process. 2021, 30, 293–304. [CrossRef]

78. Liu, J.; Zhuang, B.; Zhuang, Z.; Guo, Y.; Huang, J.; Zhu, J.; Tan, M. Discrimination-aware Network Pruning for Deep Model
Compression. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 4035–4051. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TIP.2020.3035028
http://dx.doi.org/10.1109/TPAMI.2021.3066410

	Introduction
	Previous work
	Neuroevolution
	Neural Architecture Search
	Quantization
	Knowledge Distillation
	Pruning
	Summary

	Proposal
	Notation
	OCNNA: The Algorithm
	Implementation

	Empirical Evaluation
	Common Architectures and Datasets
	Metrics
	Training Process Settings
	Results and Analysis on CIFAR Datasets
	Results and Analysis on Imagenet Dataset

	Sensibility Study
	Conclusions
	References

