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INTRODUCTION

CRUMS is a eukaryotic supergroup composed of mor-
phologically diverse heterotrophic organisms (Brown 
et al., 2018; Zhao et al., 2012). The CRuMs branch sister 
to the Amorphea (Brown et al., 2018; Burki et al., 2020), 
making them an important clade for reconstructing early 
eukaryotic evolution (Blaz et  al.,  2023). The diversity of 
cellular forms within CRuMs includes filopodial amoe-
bas within the Rigifilida (Mikrjukov & Mylnikov,  2001; 
Yabuki et  al.,  2013), gliding nanoflagellates within the 

Mantamonadida (Blaz et  al.,  2023; Cavalier-Smith 
et al., 2014; Glücksman et al., 2011), and large multiflag-
ellated predatory swimming protists within the class 
Diphyllatea (Brugerolle, 2006; Brugerolle et al., 2002; Orr 
et  al.,  2018). Based on morphological observations and 
SSU (small subunit) rRNA gene phylogenies, the class 
Diphyllatea (order Diphylleida) has been proposed to 
group the families Diphylleidae and Sulcomonadidae. The 
Diphylleidae includes the biflagellate, Diphylleia rotans, 
and the quadriflagellate, Collodictyon triciliatum (Cavalier-
smith, 2013; Ruggiero et al., 2015; Zhao et al., 2012), whereas 
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Abstract
The Diphyllatea (CRuMs) are heterotrophic protists currently divided into 
three distinct clades (Diphy I–III). Diphy I are biflagellates in the genus 
Diphylleia, whereas Diphy II and III represent cryptic clades comprising 
Collodictyon-type quadriflagellates that were recently distinguished based on 
rRNA gene phylogenies. Here, we isolated Diphyllatea from freshwater crater 
lakes on two South Pacific islands and generated high-quality transcriptomes 
from species representing each clade, including the first transcriptomic data 
from Diphy III. Phylogenomic analyses support the separation of Diphy II and 
III, while transcriptome completeness highlights the utility of these data for 
future studies. Lastly, we discuss the biogeography and ecology of Diphyllatea 
on these remote islands.
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the Sulcomonadidae is represented by the biflagellate spe-
cies, Sulcomonas lacustris (Brugerolle, 2006).

A recent advance in the taxonomy of Diphyllatea came 
following the isolation and morphological characterization 
of 11 new isolates (Orr et al., 2018). Orr et al. (2018) sequenced 
the SSU rRNA genes of these organisms and generated the 
most complete phylogeny, in terms of diversity, of the group 
to date. Based on this phylogeny, the authors proposed that 
Diphyllatea is composed of three major clades: Diphy I, II, 
and III. Diphy I corresponds to the biflagellated Diphylleia, 
while clades II and III are sister groups comprising cryptic 
quadriflagellated species with a Collodictyon triciliatum-
type morphology. Importantly, this work identified Diphy 
III as a distinct clade at the same taxonomic level as Diphy 
I and II. Given SSU rRNA gene sequence divergence be-
tween Diphy II and III (79–89% sequence identity), the 
authors argued that these two cryptic clades, which were 
morphologically indistinguishable using light microscopy, 
could represent different genera (Orr et al., 2018). However, 
the SSU rRNA gene can misrepresent microbial species di-
versity (Piganeau et al., 2011), and there is little molecular 
data available from the Diphyllatea for confirmatory phy-
logenomic analyses or wider comparative genomic studies. 
Currently, there is only one high-quality transcriptome 
available for D. rotans (Brown et al., 2018) (Diphy I clade) 
and a few 454 pyrosequencing contigs from C. triciliatum 
(Diphy II clade) (Zhao et al., 2012). Accordingly, we lack 
the data required to confirm the phylogenetic relationships 
within the Diphyllatea and understand CRuMs evolution 
more broadly.

To address this, we generated four new transcriptomes 
representing each of the three clades of Diphyllatea, with 
the aim of reconstructing the evolutionary relationships 
within the group and improving the availability of CRuMs 
transcriptomic data. To accomplish this, we isolated single 
cells from water samples derived from four freshwater volca-
nic crater lakes on two geographically distant South Pacific 
islands, Uvea (Wallis & Futuna) and Upolu (Samoa). These 
transcriptomes include one representative of Diphy I, two 
from Diphy II, and the first transcriptome from Diphy III. 
These high-quality transcriptomes will provide a useful 
resource for future genomic studies and permitted phylog-
enomic analyses, confirming that Diphy III is a distinct 
clade sister to Diphy II. Lastly, we hypothesize about how 
these freshwater protists colonized the remote and isolated 
crater lakes in the South Pacific and discuss their potential 
ecological role as microbial predators and grazers.

M ATERI A LS A N D M ETHODS

Sample collection, cell isolation, transcriptome 
sequencing, and assembly

Water samples were collected from freshwater vol-
canic lakes on the islands of Uvea (Wallis and Futuna) 
and Upolu (Samoa) between the 24th of April and 

15th of May of 2023 as part of an effort to character-
ize the protist diversity of volcanic crater lakes in the 
South Pacific. The water samples used in this study 
were collected from lakes Kikila (surface water, first 
10 cm; 13°17′48.3″ S 176°11′24.7″ W) and Lanutavake 
(3 m depth; 13°19′16.2″ S 176°12′50.6″ W) on the island 
of Uvea (Wallis and Futuna) and from lakes Lanoto'o 
(at 1.5 m depth; 13°54′39.6″ S 171°49′40.1″ W) and Pue (at 
3 m depth; 13°56′13.0″ S 171°45′14.7″ W) on the island of 
Upolu (Samoa) (Figure 1A). Water was collected using 
a 5 L Niskin water sampler deployed from an inflatable 
kayak. For each sample, 40 mL of lake water was stored 
in a 25 cm2 vented cell culture flask at room temperature 
and taken to the laboratory for further analysis.

Diphyllatea cells were identified based on morphol-
ogy using an Olympus CKX53 inverted microscope, 
and single cells were isolated using glass capillary mi-
cropipettes. We generated two samples per lake, which 
each contained pools of 3–7 morphologically consis-
tent cells for downstream cDNA synthesis using the 
Smart-Seq2 protocol (Picelli et al., 2014). The cells were 
washed at least three times in sterile molecular-grade 
water (Fisher Scientific), photographed when possible, 
and transferred to a 0.2 mL thin-walled PCR tube con-
taining 2 μL of cell lysis buffer (0.2% Triton X-100 and 
RNase inhibitor (Invitrogen)). The samples were in-
cubated with free dNTPs and the oligo-dT primer (5′–
AAGCAGTGGTATCAACGCAGAGTACT30VN-3′), 
which anneals to RNA molecules containing a poly(A) 
tail. Next, the reverse transcription (RT) reaction was 
performed using Superscript II reverse transcriptase 
(Invitrogen) and a template-switching oligo (TSO) (5′-AA
GCAGTGGTATCAACGCAGAGTACATrGrG+G-3′ ).  
The resulting cDNA was amplified using the IS PCR 
primer (5′ AAGCAGTGGTATCAACGCAGAGT-3′) 
and KAPA HiFi HotStart ReadyMix (2X; KAPA 
Biosystems) for 18 PCR cycles. All steps were per-
formed using reaction mixes and thermal cycler con-
ditions described in the Smart-Seq2 protocol (Picelli 
et  al.,  2014). Finally, the cDNA was purified using 
Ampure XP beads (Beckman Coulter), and the cDNA 
concentration was quantified with a Qubit 2.0 fluoro-
meter (Thermo Fisher Scientific Inc.). Prior to high-
throughput sequencing, 2 μL of the final cDNA product 
was used as a template for PCR amplification of the 
18S rRNA gene. GoTaq DNA Polymerase (Thermo 
Fisher Scientific) and the general eukaryotic primers 
82F (5′-GAAACTGCGAATGGCTC-3′) and 1520R 
(5′-CYGCAGGTTCACCTAC-3′) were used with an 
annealing temperature of 55°C (30 s) and an extension 
time of 2 min (72°C). PCR products were sequenced 
using Sanger sequencing (performed by Eurofins), 
and sequences were identified by performing BLASTn 
searches against the nonredundant NCBI database 
(Pruitt et al., 2007). After identification, sequencing li-
braries were prepared using the Novogene NGS RNA 
library prep set protocol (PT042) and sequenced on a 
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single lane of an Illumina Novoseq 6000 using 150-bp 
paired-end reads. All raw reads have been deposited in 
NCBI Bioproject PRJNA1100983.

The quality of the raw sequencing reads was assessed 
using FastQC v0.12.1 (Andrews,  2010). Low-quality 
reads, adapters, and primer sequences were trimmed 
using Trimmomatic v0.39, and the remaining reads were 
assembled with rnaSpades v3.13.0 (Bolger et  al.,  2014; 
Bushmanova et al., 2019). To remove bacterial contam-
ination, both BLASTn searches against the NCBI nt 
database and Diamond v2.1.7 BLASTx searches against 
UniProt reference proteomes were conducted (Buchfink 
et al., 2021; Consortium, 2022). The bacterial reads were 
filtered out using BlobToolKit v4.2.1 and Bowtie v2.5.1 
(Laetsch & Blaxter, 2017; Langmead et al., 2009). Given 
our SSU rRNA gene sequencing results, we combined 

assembled transcripts derived from similar strains 
(SSU rRNA gene sequence similarity >99%) that were 
obtained from the same lake sample. Accordingly, we 
generated the following four merged Diphyllatea tran-
scriptomes: Col11/12 (Lake Kikila), Col16/17 (Lake 
Lanoto'o), Col19/20 (Lake Pue), and Col24 (Lake 
Lanutavake). Protein coding regions were predicted 
using TransDecoder v5.7.1 (https://​github.​com/​Trans​
Decod​er/​Trans​Decoder) and clustered with CD-HIT 
v4.8.1 (Li & Godzik, 2006) at 99% identity. To maximize 
sensitivity for capturing ORFs, Diamond v2.1.7 BLASTx 
searches against the UniProt database were carried 
out to retain ORFs with homology to known proteins 
(Buchfink et  al.,  2021; Consortium, 2022). The com-
pleteness of the predicted proteomes was assessed using 
BUSCO v5.5.0 (Manni et  al.,  2021; Simão et  al.,  2015) 

F I G U R E  1   (A) Maps depicting the locations of the sampled lakes on the islands of Upolu (Samoa) and Uvea (Wallis & Futuna). Numbers 
correspond to each of the lakes: Lake Lanoto'o (1), Lake Pue (2), Lake Kikila (3) and Lake Lanutavake (4). (B) BUSCO completeness bar 
charts for all the transcriptomic data available for the Diphyllatea based on the eukaryotic_odb10 dataset. (C, D) DIC light micrographs of 
Collodictyon sp. cells (Diphy II) from Lakes Lanoto'o (C) and Kikila (D); scale bars 10 μm. (E) Maximum-likelihood phylogenomic tree of 
CRuMs and their relatives constructed using a dataset comprising 126,700 amino acid positions derived from 351 concatenated proteins, 
representing 18 CRuMs species and their relatives. The phylogeny was inferred using the PMSF approximation of the LG + C60 + G model and 
statistical support was assessed using ultrafast bootstraps (UFBS) and nonparametric bootstraps (NPBS). Bayesian posterior probabilities (PP) 
are also shown and were inferred using the CAT-Poisson model. Nodes with full statistical support are indicated with black circles and the scale 
bar represents the average number of substitutions per site. Light and dark blue coloring corresponds to the island of Uvea (Wallis & Futuna) 
and Upolu (Samoa), respectively.
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using the eukaryota_odb10 lineage dataset. Assembled 
transcripts and proteomes are available in a Figshare 
data repository (https://​figsh​are.​com/​proje​cts/​Diphy​
llatea_​from_​the_​South_​Pacif​ic/​200110).

SSU rRNA gene phylogeny and phylogenomic 
analyses

To identify the species isolated for transcriptomics, the 
Diphyllatea SSU rRNA gene dataset developed by Orr 
et al. (2018) was expanded with SSU sequences extracted 
from the sequenced transcriptomes. These 38 sequences 
were aligned with MAFFT v.7 (Katoh & Standley, 2013) 
and trimmed with trimAL v.1.2 (Capella-Gutiérrez 
et  al.,  2009) using a gap-threshold of 30%, resulting in 
an alignment with 1078 sites. The resulting alignment 
was used to generate a maximum likelihood phylogeny 
with IQ-TREE v.1.6.11 (Nguyen et  al.,  2015) using the 
GTR + F + I + R2 model, selected using ModelFinder 
(Kalyaanamoorthy et  al.,  2017) based on Bayesian in-
formation criteria (BIC). Statistical support was inferred 
from 1000 ultra-fast bootstraps.

Using the transcriptomic data, we also performed 
a multigene phylogenomic analysis using a CRuMs-
enriched dataset comprising 351 conserved protein mark-
ers from 18 species (Blaz et  al.,  2023; Lax et  al.,  2018). 
Each protein marker was aligned with MAFFT v.7 and 
trimmed with trimAL v.1.2 with the automated1 option. 
Single-protein trees were inferred from each trimmed 
alignment using FastTree v2.1.11 (Price et  al.,  2009). 
Alignments and trees were manually inspected to dis-
card contaminants and paralogs and were edited using 
Geneious v11.0.18 (Kearse et  al.,  2012). Representative 
taxa were then selected (10 CRuMs +8 outgroups from 
Amorphea, Ancyromonadida, and Malawimonadida), 
and the resulting proteins were realigned and trimmed as 
stated above before finally being concatenated with al-
vert.py from the barrel-o-monkeys package (http://​roger​
lab.​bioch​emist​ryand​molec​ularb​iology.​dal.​ca/​Softw​are/​
Softw​are.​htm#​Monke​ybarrel). This resulted in a concat-
enated matrix with 126,700 amino acid positions.

The maximum likelihood (ML) phylogenomic trees 
were inferred using IQ-TREE v1.6 using the PMSF ap-
proximation (Wang et al., 2018) with a guide tree using 
the LG + C60 + G model. Statistical support was gener-
ated from two reconstruction rounds with 1000 ultrafast 
bootstraps and 100 nonparametric bootstraps. All ML 
substitution models were selected using ModelFinder 
based on BIC. Bayesian inference was performed using 
PhyloBayes-MPI v1.5a (Lartillot et  al.,  2013). Four 
MCMC chains were run for 10,000 generations using the 
CAT-Poisson model, sampling one every tenth tree. Of 
the four chains, three properly converged (max differ-
ence = 0.0277) as assessed using Tracer and PhyloBayes 
using a burn-in of 25% (Rambaut et al., 2018). Phylogenies 
were visualized using FigTree v.1.4.4 (http://​tree.​bio.​ed.​

ac.​uk/​softw​are/​figtr​ee/​). All alignments and trees are 
available in a Figshare data repository (https://​figsh​are.​
com/​proje​cts/​Diphy​llatea_​from_​the_​South_​Pacif​ic/​
200110).

RESU LTS A N D DISCUSSION

Four new transcriptomes of Diphyllatea

To investigate the phylogenetic relationships amongst 
the Diphyllatea, we sequenced seven transcriptomes of 
Diphyllatea, including two from Lake Kikila (Col11 and 
12), two from Lake Lanoto'o (Col16 and 17), two from 
Lake Pue (Col19 and 20), and one from Lake Lanutavake 
(Col24) (Figure  1A). Based on relatedness (SSU > 99% 
pairwise identity), SSU rRNA gene phylogeny (Figure S1), 
and sample locality, we merged the transcripts of Col11/12, 
Col16/17, and Col19/20, resulting in our final dataset of 
four transcriptomes, including Col24. After removing 
bacterial contamination, we retrieved high BUSCO pres-
ence values (89% to 94.2%) for three of our transcrip-
tomic datasets, which is a significant improvement from 
the 22.6% BUSCO completeness score from the currently 
available 454 contigs of C. triciliatum (Blaz et  al.,  2023; 
Zhao et al., 2012) (Figure 1B; Table S1). In contrast, Col24 
(our nonmerged sample) had a lower BUSCO presence of 
44%. However, Col24 is closely related to Diphylleia (Diphy 
I; SSU pairwise identity of 99.7%), for which there is a 
good-quality transcriptome available (Brown et al., 2018) 
with a BUSCO presence of over 90% (Blaz et al., 2023). 
Our results highlight that single-cell transcriptome data 
can be improved by pooling isolated cells or data derived 
from individual cells, as has been observed in other stud-
ies (Keeling & Del Campo,  2017; Mangot et  al.,  2017). 
Given their quality, these new Diphyllatea transcriptomes 
will also provide a valuable resource for future compara-
tive genomic studies.

The phylogeny of Diphyllatea

Phylogenetic analysis of the SSU rRNA gene from the 
new Diphyllatea transcriptomes was congruent with the 
analyses of Orr et al. (2018) and supported the presence 
of three distinct Diphyllatea clades (Figure  S1). Col24 
groups within Diphy I, along with the genus Diphylleia, 
whereas Col11, 12, 16, and 17 group within Diphy II 
alongside Collodictyon-type quadriflagellated species 
such as C. triciliatum. Notably, Col19 and 20 branch sis-
ter to Diphy II in the recently identified Diphy III clade. 
Although we could only obtain light microscopy images 
of cells from the Col 11/12 and 16/17 samples (Diphy II; 
Figure 1C,D), our microscopy observations without im-
aging confirmed that the cells isolated from Diphy I and 
III were biflagellated and quadriflagellated, respectively. 
These results therefore corroborate the identification of 
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Diphy III as an independent clade of cryptic quadriflag-
ellated Collodictyon-type species.

To support these results, we generated a concate-
nated multi-gene matrix for phylogenomic analysis. 
Both maximum likelihood and Bayesian inference anal-
ysis using the phylogenomic matrix strongly supported 
the placement of all four new transcriptomes within the 
three clades of Diphyllatea, confirming the genetic dis-
tinctiveness of Diphy III and its sister relationship with 
Diphy II (Figure 1E). Taken together, these results sup-
port the establishment of new taxonomic assignments 
for Diphy II-III, possibly as new genera as suggested by 
Orr et al.  (2018). However, future work focusing on the 
isolation and morphological characterization of Diphy 
II-III species, particularly at an ultrastructural level, will 
be required before formal taxonomic classifications can 
be made. Moreover, it will be essential to obtain molecu-
lar data from Sulcomonas lacustris (Sulcomonadidae) to 
confirm its relationship within the Diphyllatea.

Diphyllatea in crater lakes of South Pacific 
islands

Diphyllatea are globally distributed in freshwater en-
vironments (Orr et al., 2018). However, it is interesting 
to find these exclusively freshwater protists in remote 
and isolated crater lakes in two different South Pacific 
islands, hundreds of kilometers away from each other 
and alternative terrestrial water systems. The long-
range dispersal and biogeography of microbial eu-
karyotes has been extensively discussed previously 
and is thought to be influenced by factors such as cell 
size, environmental tolerance, and the ability to en-
cyst (Bamforth,  1981; Bass et  al.,  2007; Finlay,  2002; 
Foissner, 2006, 2007). The introduction of Diphyllatea 
to these lakes must have involved long-distance travel 
and would have required overcoming significant envi-
ronmental barriers, particularly given that the ances-
tor of Diphyllatea and Rigifilida was likely adapted 
to freshwater (Orr et  al.,  2018; Yabuki et  al.,  2013). 
However, the Diphyllatea are known to produce thick-
walled resting cysts, which could have facilitated their 
dispersal (Foissner, 2007; Orr et al., 2018). The remote-
ness of these crater lakes complicates human-mediated 
dispersal, suggesting that their colonization could 
have been via natural mechanisms such as wind or 
animal vectors like marine birds. This dispersal abil-
ity, in combination with the known role of Diphyllatea 
as predators and grazers of (mainly) algae and cyano-
bacteria (e.g., Klaveness,  1995; Orr et  al.,  2018; Zhao 
et al., 2012), suggests that these protists could serve an 
important role in the establishment of trophic networks 
in emerging freshwater ecosystems. Lastly, our obser-
vations confirm that Diphyllatea represent a useful 
study group for tracking how freshwater protists can 

disperse across wide biogeographical territories and 
significant environmental boundaries.
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