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a b s t r a c t

This paper presents a comprehensive overview of modelling, simulation and implementation of neural
networks, taking into account that two aims have emerged in this area: the improvement of our un-
derstanding of the behaviour of the nervous system and the need to find inspiration from it to build
systems with the advantages provided by nature to perform certain relevant tasks. The development and
evolution of different topics related to neural networks is described (simulators, implementations, and
real-world applications) showing that the field has acquired maturity and consolidation, proven by its
competitiveness in solving real-world problems. The paper also shows how, over time, artificial neural
networks have contributed to fundamental concepts at the birth and development of other disciplines
such as Computational Neuroscience, Neuro-engineering, Computational Intelligence and Machine
Learning. A better understanding of the human brain is considered one of the challenges of this century,
and to achieve it, as this paper goes on to describe, several important national and multinational projects
and initiatives are marking the way to follow in neural-network research.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction and goals of neural-network research

Generally speaking, the development of artificial neural net-
works or models of neural networks arose from a double objec-
tive: firstly, to better understand the nervous system and secondly,
to try to construct information processing systems inspired by
natural, biological functions and thus gain the advantages of these
systems. Although currently computers are capable of carrying out
some tasks more efficiently than the human brain, computers are
not capable of equalling the brain's cognitive capacity, its flex-
ibility, robustness and energy efficiency.

From the system engineering point of view a neural network is
considered as a “black-box” as it imitates a behaviour rather than a
structure and can reproduce any function; however studying the
structure of the network does not provide any useful information
about the system being modelled [1]. The physical organisation of
the original system is not considered; instead a very flexible neural
structure with a proven problem solving quality is used where
problems of a similar nature are concerned. An advantage of the
neural network is that it behaves as a non-linear black box,
@ugr.es (B. Prieto),
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modelling and describing virtually any non-linear dynamics. As far
as conventional statistics are concerned, the neural network may
be considered as a non-identifiable model in the sense that various
networks with varying topologies and parameters may be ob-
tained which produce the same results.

Many of the topics thought up in the field of artificial neural
networks, after a long and effective youth, have now acquired
maturity and consolidation. They have proven to be very compe-
titive in the resolution of real-world problems compared to more
traditional data-analysis methods, usually based on explicit sta-
tistical modelling.

The concept of neural networks germinated independently but
over time new contexts and disciplines have arisen, covering
wider objectives which naturally include neural networks. In fact,
artificial neural-network techniques combine naturally with oth-
ers forming a set of computational procedures with a solid theo-
retical base, and with an unquestionable efficiency in the resolu-
tion of real problems in various fields of information processing. As
a result, nowadays artificial neural networks are no longer con-
sidered as a self-contained field of research, rather they have be-
come an integral part of new contexts and disciplines, among
which we can find Computational Neuroscience, Neromorphic
Computing, Neuroengineering, Natural Computation, Computa-
tional Intelligence, Soft Computing, Machine Learning and Neu-
roinformatics that will also be briefly considered in this paper.
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In recent years, government authorities in Europe and the USA
have approved long term initiatives for the study of the human
brain and have dedicated considerable economic resources to this
end. Artificial neural networks, in various forms and at different
levels, have been included in these research projects and the an-
nouncements of the projects have clearly set out the main chal-
lenges to be overcome in this field in the coming years.

Artificial neural systems for information processing constitute
an inter-disciplinary subject, given that both neuroscientists and
psychologists will benefit from the incorporation of methods and
quantitative techniques allowing, via simulation, a greater in-
depth knowledge of their field, whilst computer scientists and
engineers will discover ideas inspired by biology, (such as learning
models) allowing them to construct systems to satisfy the needs
and challenges of the real world, and finally physicists and applied
mathematicians will encounter new domains and challenges
leading to advances in their fields. Currently, the computational
models for artificial neural networks closest to biology (“bio-in-
spired” or “bio-mimetic”) have a double objective:

1. To carry out reverse engineering on the human brain; that is to use
computational models in the fields of neuroscience, cognitive
science, and psychology to frame hypotheses that can be di-
rectly tested by biological or psychological experiments. The
computer simulation of these models allows in-virtual (in-silico)
experimentation, capable of predicting the behaviour of certain
structures and functions and obtaining empirical results very
close to those obtained from in-vitro or in-vivo experiments
with biological samples. A greater knowledge of the structures
and functions of the human brain is thus acquired without re-
sorting to invasive methods to collect data or to carry out reflex-
reaction tests. These techniques may even predict how different
patterns of gene expression produce neurons with dissimilar
morphologies identifying different molecules and diverse sy-
naptic connections.

2. To carry out artificial systems which attempt to imitate natural
networks. As we have already commented, modern computers
are currently unable to equal the cognitive capacities, the flex-
ibility, the robustness and the energy efficiency of the human
brain. In fact, compared to computers, the brain works slowly
(with spiking frequency signals of the order of hundreds of Hz)
and with apparently low precision (stochastic individual neural
processes). However, the whole brain carries out well organized
computations in parallel (around 1016 synaptic operations
per second), works in real time (in continuous interaction with
the environment) with closed perception-action loops, and a
very low energy consumption (approximately 30 W) beating
the most powerful computers in certain “biologically relevant
tasks”, such as “manipulating objects”, recognizing a scene after
having viewed it once, etc. It also provides an elegant de-
gradation of capabilities, self-repair, and modification through
learning. These properties inspire scientists and engineers to
search for new and disruptive computing models.

The origins of artificial neural networks were based on trying to
mimic how the human brain performs a particular task via the use
of simplified mathematical models. The basic concept consists of
considering the brain as an information processing, highly com-
plex, non-linear, parallel computer system. The most significant
features of the domain are:

� The use of massive interconnection networks of simple pro-
cessing units (neurons).

� Asynchronous parallel and distributed processing.
� Non-linear dynamics.
� Global interconnection of network elements.
� Self-organization.
� High-speed computational capability.
� Modification of the parameters of the network to carry out a

specific task or adaptation to its environment via a learning
process.

As will become evident in Section 2.3, artificial neural networks
are being successfully applied in a wide range of areas and fields,
contributing to the resolution of scientific and industrial real-
world problems by performing specific tasks related to the capa-
city of inferring the underlying knowledge in observations and, in
general, in conjunction with other information processing tech-
niques or procedures.

These characteristics, as well as the general current state of the
art and challenges for future research in the field of neural net-
works will be analysed in this paper. The text is organized in the
following way: Section 2 analyses the concepts and the seminal
research related to artificial neural networks that have arisen
when models have been developed which aim to clarify human
cognition and to build computer systems capable of resolving real-
world problems. Section 3 focuses on describing the various fra-
meworks and disciplines which artificial neural networks are
currently integrated into and the role they play in each of these
areas. Section 4 describes the main objectives and challenges of
large governments with projects such as the Human Brain Project
and the Brain Initiative, approved in recent years by government
authorities of the European Commission and the USA, both of
which are dedicating huge economic resources to this research,
within which artificial neural networks appear in various forms.
Section 5 presents our conclusions. Finally, we would like to point
out that we have not tried to include exhaustive bibliographic
references, citing every published contribution related to a specific
topic, rather we have tried to provide support for our comments
via some examples.
2. Topics related with ANNs

Various aspects of artificial neural networks may be considered
from diverse points of view, such as: data problems, learning,
models, structures and algorithms, simulators and hardware im-
plementations, fields of use and real applications derived from
biological inspiration.

Interest in artificial neural networks has evolved from their
capacity to process information, which comes in data format. It is
frequently necessary to carry out a pre-processing of the data
before presenting it to the neural network. The main data pro-
blems which may occur are the following:

1. Limited data for learning. When only a limited amount of data
is available cross-validation techniques are commonly used
based on dividing the available data into two groups, one for
learning and the other to validate the behaviour of the network.
In order to gain a better knowledge of the network, the size and
number of elements may be modified for training and evalu-
ating the network in different situations [2,3].

2. Imbalanced data. A problem which occurs in learning, usually
when in a classification problem there are many more elements
of some classes than others [4]. There are several techniques to
solve this problem, mainly focused either at the data level
(sampling methods) or at the classifier level (modifying it
internally). The sampling methods in imbalanced learning
applications try to modify the imbalanced data set by some
mechanisms in order to provide a balanced distribution by
considering the representative proportions of class examples in
the distribution. The cost-sensitive learning methods target the
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imbalanced learning problem by using different cost matrices
that describe the costs of misclassifying any particular data
example [5]. Specific kernel-based learning methods and active
learning methods for imbalanced learning have also been
developed.

3. Incomplete data. Sometimes a collection of data to resolve a
specific task is available but it has become incomplete due to
being lost or because some of its variables or features are un-
known. The solution to this problem is centred on approx-
imating missing values, discovering a relationship between the
known and the unknown data. Techniques based on neural
networks [6] and from other perspectives, such as Multiple
Kernel Learning [7], exist to solve this problem.

4. Deluge of data. We are now in the era of big data. The econo-
mist, K.N. Cukier [8], stated at the beginning of the present
decade (2010s), there were about 1 trillion web pages and one
hour of video downloaded to YouTube every second, amounting
to 10 years of content every day; the genomes of 1000s of
people, each of which has a length of 3. 8�109 base pairs, have
been sequenced by various laboratories; Walmart handles more
than 1M transactions per hour and has databases containing
more than 2. 5 Petabytes of information, and so on. The
generation of data is growing exponentially, and it is forecasted
to reach more than 16 zettabytes in 2017 (1
zettabyte¼270E1021) [9]. Neural networks, based on real-time
learning, provide fast and efficient learning, using massively
parallel computations for big data analysis of the internet as
well as in other contexts.

5. High-dimensionality. Data in real-world applications are fre-
quently over abundant from the resolution of a specific problem
point of view. As is shown in Section 2.1, there are models for
neural networks that allow the discovery of latent factors with
high dimensional data, reducing their dimensionality by pro-
jecting the data in a subspace of smaller dimension, thereby
extracting the "substance" of the data.

Learning consists of estimating the parameters of a model of
given data, and this concept is one of the most notable contribu-
tions of neural networks to the field of information processing
systems. Learning makes it possible:

1. To not have to know the mechanisms (internal models) which
are underlying a specific process in order to be able to imple-
ment it.

2. For the same neural network model to be used for various tasks.
A neural network can be considered as a class of universal ap-
proximators which can implement a non-linear input-output
mapping of a general nature [10].

3. To adapt the system to changes in the surrounding
environment.

Three basic types of learning can be considered:

1. Predictive or supervised learning. The goal is to learn a map-
ping from inputs to outputs, given instances of a labelled
training set of input-output pairs. It needs a knowledge of the
desired answer for a certain input (input-output mapping), and
the parameters are set, minimizing a cost function [11].

2. Descriptive or unsupervised learning. The learning is carried
out on the basis of input patterns for which there is no specified
output, i.e., “self-organized manner”. The aim is to produce new
knowledge (“latent structures”) in the data, and to achieve
better joint probability density estimators [12].

3. Reinforcement learning. In the same way that unsupervised
learning is done without a teacher to provide the desired re-
sponse at each step of the learning process, and based on the
use of reward or punishment signals to estimate the para-
meters. The input-output mapping is performed through the
continued interaction of a learning systemwith its environment
so as to minimize a scalar index of performance [13].

There are variations of the basic types mentioned above such as
semi-supervised learning, where traditional learning is combined
with both unlabelled data and labelled data.

In the following sections we refer to the following topics in
relation with neural networks: models, structures and algorithms
(Section 2.1), simulators and hardware implementations (Section
2.2), and fields of use and real applications based on neural models
(Section 2.3).

2.1. Models, structures and algorithms

As mentioned in Section 1, one of the objectives of the devel-
opment of neural network models is to improve our under-
standing of human neural systems and to be able to carry out
experiments and predictions with models without having to resort
to the use of biological tissues, which frequently requires the use
of invasive techniques. When the objective of a model is to facil-
itate research in the fields of neural biology or neuroscience, the
most important and difficult task is to have the most detailed
knowledge possible of the neural circuitry and mechanisms re-
sponsible for specific cognitive functions [14]. Obviously, we can-
not simulate or emulate something, for example the human brain,
with insufficient knowledge.

From the point of view of the engineering and construction of
systems, which is the other objective of research into neural net-
works, it has not so far been possible to develop a model which
could be considered as “universal” in the sense that it could ap-
plied efficiently to any information processing domain. The effi-
ciency of a model can be established in terms of its precision in the
resolution of a particular problem, and its complexity that de-
termines the necessary resources for its implementation, with the
aim of obtaining certain performances in issues such as processing
speed, miniaturization and energy consumption. Generally
speaking, a model functioning well in a specific domain or appli-
cation may not be effective in other situations. As a result, a huge
quantity of models has been developed with the aim of covering
every type of problem in the real world. Besides various types of
data, different algorithms and types of training have to be con-
sidered for each model. The engineer always has to try to find the
best combination of models, algorithms and data in order to ob-
tain the greatest possible efficiency as far as complexity and pre-
cision are concerned.

It can be considered that the development and maturation of
artificial neural networks and model techniques have been pro-
duced in four periods, each of approximately two decades, the
1940s and 50s, the 1960s and 70s, the 1980s and 90s and the
period of 2000 to the present day (see Table 1).

In the first period (the 1940s and 50s), models of individual
neurons and their learning rules were proposed, as in the case of
perceptron. The contributions of greatest influence in this period
are described below.

The scientific community considers that the pioneers in the
field of neural networks were McCulloch and Pitts [15], who were
the first (1943) to introduce a formal neuron model which was
both simple and unifying.

In 1949 the psychologist Hebb [16,17] launched the idea of
biological neural networks which store information in the weights
of their interconnections (synapses), and suggested a physiological
learning procedure based on the modification of the synapses. This
rule of adaptation and learning (unsupervised) has been widely
used and continues to be used in numerous models.



Table 1
Periods of development of artificial neural networks.

Period Facts Concepts applied to artificial neural networks domain

1st period: 1940s
and 1950s.

Models and learning rules of individual neurons. Formal neuron model, perceptrons, associative memories.

2nd period: 1960s
and 1970s.

Development of learning rules for single-layer networks, and the
widespread application of techniques of statistical mechanics for
recurrent networks.

Least mean-square algorithm (delta rule), Adaline, associative memories
implementations, correlation matrix memory, Self-Organizing Maps
(SOM), Adaptive Resonance Theory (ART), etc.

3rd period 1980s and
1990s.

Renewal of interest in the field of neural networks and a deepening
study of self-organizing maps. Application and development of
learning rules for multi-layer networks. Application of Bayesian
methods and Gaussian processes.

Vector quantization (VQ), Discrete-Time Hopfield Neural Network,
Principal Components Analysis (PCA), Boltzmann Machine (BM),
Independent Component Analysis (ICA), Back-propagation learning (BP)
(generalized delta rule), Radial Basis Functions (RBF), Cellular Neural
Network (CNN), Natural gradient descent learning, Support Vector
Machines (SVM), etc.

4th: 2000 until the
present day.

Exhaustive theoretical studies to optimize and improve previous
models: convergence analysis, statistical equilibrium, stability,
estimation of states and control of synchronization.

Incremental Extreme Learning Machine (I-ELM).
Deep Neural Networks (DNN).

A. Prieto et al. / Neurocomputing 214 (2016) 242–268 245
Three years later (1952) Hodgkin and Huxley [18] established
some dynamic equations which satisfactorily model the firing
process and spike propagation in biological neurons. In this same
line, Uttley [19] (1956) introduced the concept of the leaky in-
tegrate and fire neuron.

In 1956 Taylor [20] published a paper on associative mem-
ories, which are distributed units that learn or memorize by as-
sociation, and try, to a certain degree, to imitate the process of
association used in many different cognition models.

Later on, in 1958, Rosenblatt [21] presented a rule for learning
(supervised) to establish the value of the weights and threshold
for the McCulloch and Pitts neuron, with the aim of carrying out a
specific information processing task. This showed that learning
converges and these systems were denominated as perceptrons.

The second period (the 1960s and 1970s) is characterized by
the development of learning rules for single-layer networks and
the widespread application of techniques of statistical mechanics
for recurrent networks.

In 1960 Widrow and Hoff [22] introduced the least mean-
square algorithm (also known as the delta rule) and used it to
propose the Adaline (Adaptive Linear Element), which is an
adaptive pattern-classification neuron.

The FitzHugh-Nagumo neuron model [23,24,25] has been
widely used to emulate the firing behaviour of the oscillating
biological neurons of the sensory system. It uses phase space
methods in conjunction with Hodgkin-Huxley equations and di-
vides the phase plane into regions matching the physiological
states of nerve fibres (active, resting, refractory, enhanced, de-
pressed, etc.) forming a physiological state diagram, with the help
of which many physiological phenomena can be condensed.

In 1967 Minsky [26] published a book on the study of the
McCulloch and Pitts’ model from the perspective of the automata
and computation theories. Two years later (1969) Minsky himself,
together with Paper [27], published a new book which showed the
limitations of the isolated perceptrons (of one layer) to carry out
certain information processing tasks, as these require the inter-
connection of perceptrons in various layers, when at that time the
learning rules for these groupings were unknown. This book was
very discouraging and considerably halted the study of neural
networks for the next 15 years.

In 1972, Anderson [28], Kohonen [29] and Nakano [30], work-
ing individually, introduced the concept of correlation matrix
memory. In this same year, also working independently, Kohonen
and Amari, in a research line initiated by Taylor in 1956, proposed
the idea of implementing associated memories with recurrent
neural networks.

Nagumo and Sato [31] proposed a nonlinear model of a neuron
that improved a previous model by Caianiello [32] where there is a
critical value for the excitation level received by a neural unit
below which an excitatory pulse cannot fire that driven unit. In the
improvement suggested by Naguno and Sato, whenever a se-
quence of pulses with constant frequencies and progressively de-
creasing amplitudes is applied to the neural unit, the firing fre-
quency of that unit decreases, as occurs in biological neurons.

In 1974, Little [33] introduced the concept of statistical me-
chanics related to the study of recurrent neural networks.

The first study on the formation of self-organizing maps using
competitive learning and biologically inspired by the formation of
topologically organized maps in the brain was done by Willshaw
and von der Malsburg [34] (1976).

In the third period (the 1980s and 90s) there was a renewal of
interest in the field of neural networks, the application and de-
velopment of learning rules for multi-layer neural networks, and a
deepening of the study of self-organizing maps was initiated. This
period was characterized by the application of Bayesian methods
and Gaussian processes, and the Support Vector Machines (SVMs)
emerged. These exist alongside “biologically plausible” models
which try to imitate, more or less faithfully, the behaviour of the
brain, explain cognitive brain functions, such as learning and
memory in terms of the behaviour of neurons and neuron popu-
lations, together with other models and algorithms orientated to
the analysis of data whose origins are found in other domains of
statistical mechanics, Shannon's information theory or multi-
variate statistics. The most relevant contributions of this third
period are described below.

The techniques of obtaining self-organizing maps (SOM) (by
unsupervised learning) proposed in 1976 by Willshaw and van der
Malsburg, previously cited, were completed in 1980 by Amari [35]
and in 1982 by Kohonen [36]. The self-organizing maps represent
a model that searches for any low dimension structure which may
be underlying the data, and sets a neighbourhood function with
the aim of preserving the topological distances of the input space.
The SOM are inspired by biological neural models, and it has al-
ready been proved that networks with a small number of nodes
develop a process similar to K-means, whilst those formed by large
quantities of nodes (thousands) may create emergent properties.

Another technique which uses unsupervised learning is vector
quantization which obtains probability distribution from data,
and represents an integration of unsupervised learning with
Bayesian techniques [37].

In 1982 Hopfield applied the concept of the state of statistical
physics in recurrent neural- network models, proposing networks
with symmetric synaptic connections (Discrete-Time Hopfield
Neural Network [38]).

Later, the Generalized Hopfield networks (GHN) including
multilevel instead of two-level neurons and continuous-time
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functioning were proposed and analysed in some papers. As Zur-
ada, Cloete, and van der Poel [39] proved in 1996, GHN show
multiple stable states and preserve the stability properties of the
original Hopfield networks. Other models based on the Hopfield
networks have been proposed for different purposes, for example,
the paper by Frasca5 applied Hopfield networks for learning from
unbalanced data.

Although Principal Components Analysis (PCA) was already
introduced in 1901 by K. Pearson with the aim of carrying out a
linear regression analysis in the biological domain, but it was not
widely used in the field of neural networks until the 1980s [40,41].
PCA is a technique for dimensionality reduction, finding the sub-
space in which data have the maximum variance.

A phenomenological model that reduces the number of dif-
ferential equations of more complex previous models to only three
was proposed by Hindmarsh and Rose in 1984 [42,43]. This rela-
tively simple model accurately describes the dynamics of the ac-
tion potentials and explains various phenomena of the oscillatory
activity of the neuronal units.

An example of the application of the information theory for the
design of algorithms is the Bolzmann Machine [44], which was
proposed in 1985 by Ackley, Hinton and Sejnowski, based on the
concept of simulated annealing, which produces a recurrent sto-
chastic network, conveniently modelling the input patterns ac-
cording to a Boltzmann distribution. The simulated annealing,
mentioned previously, is a method to resolve optimization pro-
blems based on the principles of statistical mechanics thought up
at that time by Kirpatrick, Gelatt and Vecchi [45] (1983) and Cerny
[46] (1985).

Also in 1985 Herault, Jutten and Anns tackled the blind source
separation problem [47,48], which consisted of extracting the
original signals (the “sources”) from an unknown mixture of them.
The underlying concept of this problem became known as in-
dependent component analysis (ICA) and was later dealt with in
detail by Comon [49], Hyvarinen and Oja [50] in 1994.

In 1986 Rumelhart, Hinton and Williams [51] applied and po-
pularized the Back Propagation (BP) algorithm in the context of
the neural networks, and answered the difficulties identified by
Minsky and Paper in 1969 with respect to perceptron learning.
They simply used the on-line gradient descent on the error func-
tion algorithm in feed-forward networks of graded-response
neurons (multilayer perceptrons), and empirically proved the
emergence of valuable internal representations in the hidden
layers. It is interesting to note that Minsky and Papert referred to
their doubts about the possibility of developing a method for
multilayer perceptron learning starting from the Widrow-Hoff
Delta Rule. In reality the BP algorithm was discovered and im-
proved over almost three decades (1960s-1970s-1980s) by many
researchers, among whom may be mentioned Bryson, Denham,
and Dreyfus [52] (as pioneers), Ho, Linnainmaa, Parker, Werbos,
LeCun, and Speelpenning [53].

As a result of the introduction by Grossberg [54] (1976) of the
Adaptive Resonance Theory (ART) as a model of human cognitive
information processing, from 1987 Carpenter and the same
Grossberg proposed a real-time neural-network model that per-
formed unsupervised and supervised learning, pattern recognition
and prediction. Amongst these models we can find ART1 [55]
(1987) for binary input patterns and fuzzy ART [56] (1991) for
analog input patterns.

Several remarkable concepts were proposed in 1988:

1. For example, Linsker [57] applied the concept of entropy, which
comes from information theory, and establishes a maximum
mutual information (Infomax) principle, discovering a new
concept of self-organizing in a perceptual network which can be
applied to the resolution of problems related to statistical inference.
2. Broomhead and Lowe presented a new model for the con-
struction of neural networks, different from multilayer percep-
trons, which was based on the use of Radial Basis Functions
(RBF) [58]. A RBF is based on a kernel method which frequently
uses Gaussian functions.

3. Finally, in the same year, (1988), Chua and Yang proposed a
model known as the Cellular Neural Network [59]. These
networks are formed by a two-dimensional structure of con-
nected cells, each of which is completely characterized by a
non-linear differential equation and connected with its close
neighbours. They have applications in real-time signal proces-
sing [60], for example, being able to build artificial retinas [61].

One year later, in 1989, Mead [62] published the book Analog
VLSI and Neural Systems in which he links concepts of neuro-
biology and VLSI “neuromorphic” chips such as artificial retinas
and cochleas. In the same year Y. H. Pao describes a system ar-
chitecture and a network computational approach compatible
with a general-purpose artificial neural-net computer [63].

The nonlinear dynamics shown in biological neurons is not
usually described with enough accuracy by artificial neuron
models. In 1990, Aihara, Takabe and Toyoda [64] proposed a model
for single neurons with chaotic behaviour also including the
properties of graded response, relative refractoriness and spatio-
temporal summation of inputs shown in biological neurons. De-
spite its simplicity, this model provides a qualitative description of
the chaotic responses experimentally observed.

Schutter and Brower [65,66] in 1994 proposed a detailed
compartmental model of a cerebellar Purkinje-cell dendritic
membrane. This model is based on an anatomic reconstruction of
single Purkinje cells and includes ten different types of voltage-
dependent channels modelled by Hodgkin-Huxley equations, and
the use of voltage-clamp empirical data of this type of neuron.

In 1995, Bell and Sejnowski [67] dealt with the problem of
blind deconvolution, more exactly described as blind source se-
paration, previously considered by Herault and Jutten, who in-
troduced models based on the theory of information.

Also worth highlighting are the contributions of McKay [68]
(1992), Bishop [69] (1995) and Ripley [70] (1996), who introduced
Bayesian techniques for inference, regression and classification
[71], and those of Willians and Rasmusen [72] (1996) and Seger
[73] (2004) for the inclusion of using the methodology of Gaussian
processes within the domain of neural networks. All in all, these
years produced closer links between the fields of neural networks
and the probability theory, thus bringing about a new domain with
the name of Statistical Machine Learning [74,75].

In 1998 Amari [76] introduced the rule of natural gradient
descent learning, which allows the application of geometry con-
cepts to information processing in neural networks.

In 1998 Vapnik and collaborators, searching for a learning
analysis for the worst case scenarios, came up with the concept of
Support Vector Machines [77,78]. The underlying idea of the new
model was to use kernels to permit non-linearity. This concept has
become integrated into other domains, producing various kernel
methods [79,80]. The SVM are used in problems of pattern re-
cognition, regression and density estimation, and although it may
be argued that they are within neural networks, they are con-
sidered to be a different field as they do not try to reproduce
biological behaviour.

At the end of this stage starts the development of hybrid
systems that try to obtain the best of different methodologies.
For example, in 1999 J.H. Chiang proposed a fuzzy integral-based
approach for hierarchical network implementation that involves
replacing the max (or min) operator in information aggregation
with a fuzzy integral-based neuron, resulting in increased
flexibility for decision analysis [81].
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Several excellent books dedicated to neural networks and
machine learning were published in this period, such as those by
Haykin [82] and Luo and Unbehauen [83].

In the fourth and last period, which began in approximately
2000 and continues until now, no models have become so popular
and aroused such interest as those produced in previous phases,
nevertheless the theoretical study of previous models has notably
deepened, with exhaustive studies into topics such as convergence
analysis, statistical equilibrium, stability [84–88], estimation of
states and control of synchronization, aiming to optimize and
improve the models [89–95].

The quantitative analysis of neural networks with dis-
continuous activation functions was also a hot topic in this period
[96–99].

An increased interest in Complex-Valued Networks (CVNN)
[100–105] also occurred in this period. They represent parameters
and input values as the corresponding amplitude and phase of a
complex number, also multiplied by a complex-valued weight
[106], as this complex representation is well suited to express real-
world phenomena involving waves such as communications and
frequency-domain processing in general. Moreover, it has been
observed that CVNN show smaller generalization errors in the
coherent signal processing by feed-forward networks. The algo-
rithms corresponding to the required complex back-propagation
(CBP) had been proposed some years previously [107].

One of the new models which has aroused interest is the
Incremental Extreme Learning Machine, proposed in 2006
by G.B. Huang, L. Chen, and C.K. Siew [108,109]. Unlike the
conventional neural-network theories and implementations,
these authors show that single-hidden-layer, feed-forward net-
works with randomly generated additive or RBF hidden nodes
(according to any continuous sampling distribution) can work as
universal approximators and the resulting incremental extreme
learning machine (I-ELM) outperforms many common learning
algorithms.

The Deep Neural Networks (DNN) make up another concept
which has aroused great interest in recent years. They are built
from a cascade of hidden layers of units between the input and
output layers [53,110]. The characteristics represented by each
processing layer define a hierarchy of abstraction levels, from the
lowest abstract to the highest, which infers useful representations
via a learning process from large-scale unlabelled data.

Different network models are suitable for forming a deep
neural network, either feed-forward networks or recurrent neural
networks, the latter being very useful in applications for speech
processing [111,112], computer vision [113,114], and in natural
language processing [115]. The weights and thresholds of the
neurons in each layer can be determined by either supervised or
unsupervised learning [116].

One of the most relevant issues in DNN systems is the high
computational cost required for training/testing. An important
development in this field has been the elaboration of layer-wise
unsupervised pre-training methods, using a greedy algorithm that
can learn DNN based on restricted Boltzmann machines (RBMS)
[117]. Thanks to powerful computing platforms, such as a cluster of
computers or GPU, DNN has been successfully used [118]. The
existence of novel learning algorithms that try to reduce the
computational time for deep learning is also very relevant; see, for
example the proposal presented in [119].

To some extent, the idea behind deep hierarchical representa-
tions can be considered as inspired by recent results in the field of
neuroscience regarding the interpretation of processing patterns
and the communication of information within the nervous system,
such as neural codification, which tries to establish a relationship
between stimulation and neural responses with the electric ac-
tivity of neurons in the brain [120].
In spite of the dominance of models based on the theory of
probability, the bio-inspired models have not been forgotten and
are frequently taken up again and improved, mainly due to the
advances in measurement techniques in the field of neuroscience,
allowing the discovery of new functions and the fine-tuning of
behaviour which should mimic bio-inspired models. Amongst
these, it is worth highlighting the great interest that models based
on spiking neurons (integrate-and-fire neurons, in general) has
produced.

The fundamental difference between the models of integrate-
and-fire neurons compared to the traditional ones is based on the
way of representing information. Whilst in the traditional models
information is represented in the amplitude of the signals or is
digitally codified, the hardware implementation models of spiking
neurons are based on coded analog variables by time differences
between pulses, which has practical advantages over other en-
coding methods, and are significantly more realistic as there is
experimental evidence that many biological neural systems use
the timing of single action potentials (or spikes) to encode in-
formation. In 1997W. Maass [121] showed that the networks of
spiking neurons are computationally more powerful than con-
ventional models based on threshold or sigmoidal functions. There
are biologically relevant tasks that can be implemented by a
simple spiking neuron that would require hundreds of units in a
sigmoidal neural network. Moreover, any function that can be
computed by a small sigmoidal neural net can also be computed
by a small network of spiking neurons. There are a large number of
studies dedicated to these types of networks [121,122].

As in previous periods, new biological models have been pro-
posed in this fourth period (Table 2). In general, these models
show that the ones proposed in earlier stages, such as the Hodg-
kin-Huxley model, could be simplified without drastic con-
sequences to the description of the spiking behaviour. The goal is
not only to simplify the differential equations governing the dy-
namic behaviour of neurons, but also to reduce the large number
of parameters (a hundred or more) that must be extracted from
experimental data to provide a detailed characterization of the
electrophysiological neuron behaviour.

In 2002 Maass showed the inefficiency of conventional com-
puting (Von Neumann machines) to process biological information
in realistic scenarios where real-time processing of time-varying
input streams is required, and introduced the concept of the Li-
quid state machine (LSM) [123–125]; where a readout unit
(neuron) that receives inputs from hundreds or thousands of
neurons in a neural circuit learns to extract relevant information
from the high-dimensional transient states of the circuit and
transforms transient circuit states into stable readout units.

In particular, each readout unit learns its own conception of
equivalence among dynamical states within the neural circuit, and
performs its task on different inputs. Precisely, this unexpected
finding about the equivalent states assigned to readout units in a
dynamical system explains how invariant readout units are pos-
sible despite the fact that the neural circuit may never reach the
same state again.

The idea of LSM has been quite successful because it has led to
obtaining reasonably realistic models for biological neurons
(“spiking neurons”) and biological synapses (“dynamical synapses”)
being able to reproduce some parts of the brain functionality.
Moreover, multiple computations, in the same or in different time
scales, can be done using the same LSM.

In 2003, Izhikevich introduced a simple model that mimics the
spiking and bursting behaviour of known types of cortical neurons
[126]. This simple model of spiking neurons combines the biolo-
gical plausibility of Hodgkin-Huxley-type dynamics with the
computational efficiency of integrate-and-fire neurons, thus
making it possible to simulate large-scale brain models (about tens



Table 2
Some prominent mathematical biological models.

1943 Formal neuron model proposed by McCulloch & Pitts [15]
1949 Synapsis behaviour proposed by Hebb [16,17]
1952 Firing process and spike propagation model proposed by

Hodgkin & Huxley
[18]

1961 Neuron model proposed by FitzHugh & Nagumo (FHN) [23,26,27]
1972 Mathematical neural model proposed by Nagumo and Sato [31]
1984 Neural model proposed by Hindmarsh-Rose. [42,43]
1990 Chaotic neural networks proposed by Aihara, Takabe &

Toyoda.
[62]

1994 Active membrane model of the cerebellar Purkinje cell
proposed by Schutter & Bower

[65,66]

2002 Liquid state machine (LSM) proposed by Maass [123–125]
2003 Simple model of spiking neurons proposed by Izhikevich [126]
2005 Adaptive exponential integrate-and-fire model (AdEx or

aEIF), proposed by Brette & Gerstnetl
[127,128]
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of thousands of cortical spiking neurons in real time with a re-
solution of 1 ms) on a desktop PC. Depending on four parameters,
the model reproduces spiking and bursting behaviour of known
types of cortical neurons. This model is used today by various
general neural network simulators (see Section. 2.2.1).

In 2005, Brette and Gerstnet [127,128] introduced a two-di-
mensional adaptive exponential integrate-and-fire model, known
as AdEx or aEIF. It combines an exponential spike mechanism with
an adaptation equation, whose parameters can be systematically
extracted from a series of standard stimulations. The AdEx model
(1) combines an extension to quadratic or exponential integrate-
and-fire neurons with allows the replacement of the strict voltage
threshold by a more realistic smooth spike initiation zone;
(2) makes possible the inclusion of sub threshold resonances or
adaptation as described in the Izhikevich model; and (3) changes
the stimulation method from current injection to conductance
injection, thus allowing the integrate-and-fire models to move
closer to a situation that cortical neurons would experience in vivo.
The model correctly predicts the timing of the spikes in response
to injection of noisy synaptic conductances.

An important issue in artificial neural networks, which has
been the subject of many research studies, is the choice of size and
the optimization of the structure.

The Kolmogorov theorem [129] shows that any continuous
function of n variables can be mapped to a single function of one
variable. From this theorem, the existence of three layer feedfor-
ward networks can be proved for every pattern recognition pro-
blem that was classifiable. Nevertheless, a way to get the mapping
that solves a practical problem is not obtained from this proof as
the Kolmogorov theorem is strictly an existence theorem. Al-
though many methods for designing neural networks have been
developed, no method to obtain an optimal or suitable archi-
tecture to solve any problem is yet known, and therefore, given a
problem and a data set, several sets of neurons and different layer
alternatives must be tested in order to discover a suitable archi-
tecture to solve the proposed problem. This search is often carried
out by using genetic algorithms [130,131].

As is well-known, a neural network with a small number of
hidden units is not capable of learning training data and therefore
the accuracy of the system is limited. On the contrary, an over-
fitting problemmay be obtained if the network has a large number
of hidden neurons, and again, the performance of the system is
limited. Three techniques are extensively used in the bibliography
to determine the neural network structure automatically, namely
constructing, pruning and hybrid approaches.

Constructive methodologies begin with a reduced number of
hidden units and incrementally add nodes during training with
the goal of increasing the accuracy of the obtained network sys-
tems, until a satisfactory solution is found. Examples of these
constructive methodologies are: growing cell structure [132],
constructive back-propagation [133], or an extreme learning ma-
chine with adaptive growth of hidden nodes [134].

Pruning algorithms begin with a large network and during the
training procedure; hidden units or weights are removed in order
to reduce the complexity of the system, thus obtaining a minimum
network size with good generalization performance. This metho-
dology is generally based on some measure of the parameter's
relevance or significance, including sensitivity or significance
methods [135], regularization and penalty term methods [136], or
using other techniques such as optimal brain damage [137] or
optimally pruned extreme learning machine [138]. The hybrid
approach is a complementary method where the advantages of
growing and pruning are combined simultaneously during the
learning process [139–141]. In recent years several meritorious
books on the topic of neural networks and machine learning have
continued to appear, such as those by Haykin [142], Coolen [37]
and Murphy [74].

Currently, due to the increase both in the accessibility and in
the processing power of computers, research on the theoretical
and practical aspects of the models mentioned has increased
considerably with the aim of searching for and advancing our
knowledge of the brain and its capacity to solve problems, and also
into the response to new engineering challenges within the field of
information processing.

2.2. Simulators and specialized hardware

From the neurobiological point of view, the fundamental aim of
obtaining models of the various neural functions is to build pro-
cessing systems which imitate the behaviour of natural processing
systems, thus producing virtual laboratories where experimental
approaches and clinical studies can be emulated in the most rea-
listic way possible, without the need to use frequently invasive
techniques on humans or animals.

From the engineering point of view, the aim is to produce
systems imitating the properties of natural systems, such as cog-
nitive capabilities, flexibility, robustness, the ability to learn, de-
velop and evolve over a wide range of temporal scales, energy-
efficiency, integration density, and fault tolerance, which are not
achievable when using traditional procedures.

To sum up, a model by itself is not very useful; it is just an
intermediate stage to facilitate the imitation or replication of the
behaviour of the neural function or system via a computer pro-
gramme (simulator) or via its implementation with specific
hardware (neural hardware).

The following section goes on to describe the bases of the two
basic types of implementation of artificial neural networks: firstly
via software simulators (Section 2.2.1) and secondly by means of
neural hardware (Section 2.2.2).

2.2.1. Simulators
To understand how the brain works, we need to combine ex-

perimental studies of animal and human nervous systems with
numerical simulation of large-scale brain models.

This section is about general neural-network simulators, as
well as software applications that are used to mimic the behaviour
of artificial and biological neural networks. With the term “gen-
eral” we mean that these programmes: a) run on general purpose
computers and b) are used to simulate different kinds of neurons
and networks, being able to modify in each simulation different
parameters of these networks and also their topology thus al-
lowing the customization of specific functionalities that the user
may require. Within this field, simulators that are accessible in
terms of documentation and also the source itself (free open
source) are the main focus.



Fig. 1. Main levels of detail of a biological neural system.
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Although there are a lot of simulators available (some of them
developed only for specific structures and functions), in recent
years different neural simulators have been developed for general
purpose at different scales of detail (single detailed neurons,
neural networks of different size and complexity, etc.) with li-
braries of models. They allow the user to set the neuron model and
adaptation parameters, as well as to configure the network con-
nectivity. With these simulators in-virtual (in-silico) experi-
mentation can be done, predicting the behaviour of certain
structures and functions, and obtaining empiric results towards
matching measurements taken from biological structures (with in-
vitro or in-vivo experimentation).

The simulations can be done at different scales and levels of
detail. The structure and behaviour of the brain needs to be stu-
died at different hierarchical levels of organization, covering pro-
teins, genes, synapses, cells, microcircuits, brain regions, and
cognition-behaviour (the whole brain) functions (Fig. 1). Different
software applications have been developed to specifically perform
simulations at one or various scales.

There are simulators which aim to mimic intra-cellular me-
chanisms in order to reproduce electrophysiological measure-
ments with a strong focus on biological emulations leading to-
wards a better understanding of the biological neural substrate. In
this case, detailed biophysical representations of neurons are used,
such as the Hodgkin-Huxley conductance model and the models
described in Section 2.1 and listed in Table 2 (models proposed by
FitzHugh-Nagumo, Hindmarsh-Rose, Schutter-Bower, Izhikevich,
etc.).

In any case, the computational cost of neural-network simula-
tion is proportional to its complexity; i. e. the level of detail of the
neural models as well as the density and topology of the network.
Whilst there are studies that require the simulation of the spiking
generation processes or even a spike waveform, many other stu-
dies can adopt much simpler models such as the Integrate-and-
Fire model. This model implements neural dynamics that are
much simpler than the Hodgkin-Huxley model, simplifying the
spike generation process by simple threshold firing mechanisms
(when the membrane potential reaches a certain threshold the
neuron fires a spike). Once the neuron generates a spike the cell
undergoes a refractory period in which no further spikes are
produced. There are other models, such as Izikevich's [126] and
AdEx [143] that allow simulations using simple models (of just a
few coupled differential equations) but with rich dynamics that
facilitate the emulation of different neural biophysical behaviours
(such as short term firing adaptation, burst response, etc.).

Simulations of large-scale networks typically use simpler
models [144]. Furthermore, in the field of artificial neural net-
works, the focus is usually on computational primitives and they
usually adopt rate-based models. In these models the neural re-
sponse can be represented by an analog level (vi) which is called
the firing rate or activation of the neuron i. These models do not
aim to be biologically plausible, because they leave out aspects of
the biological substrate, such as how spike timing is related with
processing and adaptation mechanisms (STDP, Spike Time De-
pendent Plasticity). This section focuses mainly on simulators that
use spiking neural models, although rate-based models can be
easily simulated with simpler software applications which are
more suitable for artificial neural networks (allowing easier and
faster simulations).

Generally speaking, neural biophysics is represented through
hybrid mathematical models. On the one hand it is defined as
neural state dynamics through differential equations (ordinary or
partial and deterministic or stochastic), and on the other hand, a
non-linear equation defines the synaptic trigger depending on the
neural state and the received spikes. From a computational point
of view, neural simulators can be seen as programmes that solve
large scale coupled differential equations with numerical methods.
The input and output variables are related (interconnected) ac-
cording to the network topology and external stimuli.

There are three strategies to simulate spiking neural networks:
time-driven, event-driven and hybrid (that integrates both the
previous approaches). In the first, time-driven scheme, all the
neural states are iteratively updated in each time slot, dt. These
simulators are very easy to develop and can be applied to any
model as the spike times are confined to temporal time slots. In
terms of accuracy, the main problem comes from the discretization
of time that leads to some error in the results, which is higher as dt
increases. Thus, reducing dt (or even adopting methods to use
dynamic dt that change throughout the simulation according to
the neural state variable dynamics) leads to more accurate simu-
lations, but the computational workload also increases dramati-
cally as dt becomes shorter. Furthermore, in terms of scalability,
the time driven computational load depends on the network size
(in terms of number of neurons) because all the neural states of
each neuron need to be updated periodically independently of
their input/output variables.

With the event-driven strategy, the neural states are only up-
dated when they receive or generate a spike. In this case, the
neural model needs to allow discontinuous updates (for instance
with linear or more complex dynamics that can be defined
through analytic expressions). This will allow the calculation of a
new neural state from a previous one (estimated in a previous
simulation time). This can also be done using pre-calculated tables
defining the neural dynamics along time intervals, which allows
discontinuous simulations, making it unnecessary to iteratively
calculate the neural state in intermediate instants intensively
[145–148]. In this approach, the workload of a simulation depends
on the global activity of the network and not on its size. For both
strategies the computational complexity is optimal as it scales
linearly with the number of synapses, although each scheme has
its own assets and disadvantages [147,149].

A ranking of the different simulators cannot be done, due to
changes and improvements being continuously carried out in most
of them (and new ones that are being developed whilst others are
discarded). Furthermore, the best choice depends very much on
the research being addressed (either closer to biological
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plausibility or more focused on artificial neural system design).
However, when choosing a specific simulator there are different
factors that need to be taken into account [150]:

1. Scale or level of the simulation. For example, focus on the
individual behaviour of a single neuron or global behaviour of a
network (microcircuits, brain regions, etc.).

2. Flexibility related to the model neuron that can be used. There
is a whole range of cell models from complex ones with in-
ternal dynamics defined at ion channel level and Hodgkin-
Huxley models, to simpler ones, such as the adaptive ex-
ponential integrate-and-fire (AdEx) [143], Izhikevich [126],
linear and non-linear IF neurons, etc.

3. Precision or biological plausibility: aiming to reproduce the
neural response of biological neurons when stimulated with
the same input patterns.

4. Possibility of simulating short-term and long-term synaptic
plasticity.

5. Simulation strategy: event-driven (exact or approximated) or
time-driven (with interpolation or not for spike times).

6. Possibility of simulating conductance-based (COBA) synaptic
interactions.

7. Support parallel processing and distributed simulation for
Table 3
Some examples of simulators.

Acronym Description

BRIAN [156,157] Brian spiking neural network simulator

DigiCortex Biological Neural Network Simulator

ECANSE [158] Siemens Environment for Computer Aided Neural Software
Engineering

EDLUT [147,148] Event Driven Look-Up-Table simulator
emergent [159] Emergent Neural Network Simulation System
GENESIS [150,160,161] GEneral NEural SImulation System

Mvaspike [150,162] Modelling and simulating large, complex networks of biolo-
gical neural networks, event-based.

NCS [150,163,164] NeoCortical simulator

NENGO [165–167] Graphical and scripting based software for simulating large-
scale neural systems.

NEST [150,168] Neural Simulation Tool
Neuron [150,169–172] Neuron for empirically-based simulations of neurons and

networks of neurons
Neuroph Java neural network framework

NN Toolbox MATLAB Neural Network Toolbox

OpenNN Open Neural Networks Library
PCSIM and CSIM [150] Parallel neural Circuit SIMulator

SimBrain Computer simulations of brain circuitry
SNNAP Simulator for Neural Networks and Action Potentials

SNNS [173] Stuttgart Neural Network Simulator

SpikeNET [174,175] Neural simulator for modelling large networks of integrate
and fire neurons

PSICS Parallel Stochastic Ion Channel Simulator
XNBC [176,177] X- NeuroBioClusters
XPP /XPPAUT [150,178] General numerical tool for simulating, animating, and ana-

lyzing dynamical systems.

VERTEX [179] Virtual Electrode Recording Tool for EXtracellular potentials
very large networks (for instance, distributed and multi-
threaded simulations.) [151–154].

8. Type of user interface.
a. Graphical or not.
b. Possibility of interacting through the graphic interface for

simple analyses (spike count, correlations, etc.) or complex
(parameter fitting, FFT, matrix manipulations, etc.).

9. Help and support: e-mail, telephone, e-mail consulting, mail-
ing lists, forum of users and community of developers.

0. Documentation. Tutorials, an on-line reference manual, pub-
lished books concerning the simulator, list of publications of
papers that use the simulator, etc.

1. Price of licence and maintenance.
2. Whether or not it is an open source.
3. Existence of a web-site for:

a. Downloading the programme
b. Obtaining all the documentation and
c. Accessing the cell models that are used.

4. Possibility of importing and exporting (for instance in XML)
model specifications, or other similar approaches such as PyNN
(Python package for simulator-independent specification of
neuronal network models [155]). Note that XLM is a standard
for exchanging structured information between platforms.
Original proposers Web site

Romain Brette http://briansimulator.org/
Dan Goodman
Marcel Stimberg
Ivan Dimkovic http://www.dimkovic.com/node/1;
Ana Balevic http://www.artificialbrains.com/digicortex
Roman Blaško (Siemens) http://www.trademarkia.com/ecanse-

75026210.html
Eduardo Ros & col. https://code.google.com/p/edlut/
Randall C. O’Reilly https://grey.colorado.edu/emergent/
James Bower http://genesis-sim.org/
Dave Beeman
Inria Sophia Antipolis (France) http://mvaspike.gforge.inria.fr/

Wilson C. E., http://www.cse.unr.edu/brain/ncs
Goodman P. H.,
Harris F.C.
Chris Eliasmith http://www.nengo.ca/
Terry Stewart
Bryan Tripp
NEST Initiative www.nest-initiative.org/
Michael Hines www.neuron.yale.edu/neuron/

Zoran Sevarac http://neuroph.sourceforge.net/
Ivan Goloskokovic
Jon Tait
Mathworks http://es.mathworks.com/products/neural-net

work/index.html
Roberto López http://www.intelnics.com/opennn/
Thomas Natschlager Pecevski
Dejan

http://www.lsm.tugraz.at/pcsim/

Jeff Yoshimi http://www.simbrain.net/
John Byrne http://nba.uth.tmc.edu/snnap/
Douglas Baxter
University of Stuttgart, http://www.ra.cs.uni-tuebingen.de/SNNS/
Maintained at University of
Tübingen
Arnaud Delorme http://sccn.ucsd.edu/�arno/spikenet/
Simon Thorpe
Matthew Nolan http://www.psics.org/
Jean-François VIBERT http://ticemed-sa.upmc.fr/xnbc/,
G. Bard Ermentrout http://www.math.pitt.edu/�bard/xpp/xpp.

html
John Rinzel
Richard John Tomsett, and http://vertexsimulator.org/
Marcus Kaiser

http://www.briansimulator.org/
http://www.dimkovic.com/node/1
http://www.artificialbrains.com/digicortex
http://www.trademarkia.com/ecanse-75026210.html
http://www.trademarkia.com/ecanse-75026210.html
http://https://www.code.google.com/p/edlut/
http://https://www.grey.colorado.edu/emergent/
http://www.genesis-sim.org/
http://www.mvaspike.gforge.inria.fr/
http://www.cse.unr.edu/brain/ncs
http://www.nengo.ca/
http://www.nest-initiative.org/
http://www.neuron.yale.edu/neuron/
http://www.neuroph.sourceforge.net/
http://www.es.mathworks.com/products/neural-network/index.html
http://www.es.mathworks.com/products/neural-network/index.html
http://www.intelnics.com/opennn/
http://www.lsm.tugraz.at/pcsim/
http://www.simbrain.net/
http://www.nba.uth.tmc.edu/snnap/
http://www.ra.cs.uni-tuebingen.de/SNNS/
http://www.sccn.ucsd.edu/~arno/spikenet/
http://www.sccn.ucsd.edu/~arno/spikenet/
http://www.psics.org/
http://www.ticemed-sa.upmc.fr/xnbc/
http://www.math.pitt.edu/~bard/xpp/xpp.html
http://www.math.pitt.edu/~bard/xpp/xpp.html
http://www.math.pitt.edu/~bard/xpp/xpp.html
http://www.vertexsimulator.org/
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Fig. 2. Alternatives for platform simulation and neural hardware.
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5. Requirements of the platform (for instance, specific hardware
requirements) that are needed for the simulator.

6. Operating Systems (LINUX, Windows, Mac-OS X, etc.) or frame-
work (MATLAB, etc.), in which the simulations need to be run.

7. Possibility of interfacing the simulator to outside signals, such
as a camera, or signals of real neurons.

8. Possibility of interrupting the simulation, storing the partial
results and continuing the simulation from this point in the
future.

9. Possibility of coupling the simulation with front-ends, such as
Python or MATLAB, for interacting with the models, performing
analysis, etc. without the necessity of modifying the original
code.

0. Possibility of incorporating the simulator to a user-extendable
library with new features, for example biophysical mechanisms
without requiring modification of the original code.

Table 3 includes a list of widely known neural simulators. Most
simulators in this table cover the main factors indicated, but at
different levels. It is very complex to summarize to what extent
they meet these factors. Furthermore, almost all of them are
constantly being further developed with improvements and
changes. Thus, it is preferable to include the website of each si-
mulator, where it is possible to find the specific details and always
in an updated form.

There are many other programs and frameworks, either of
general purpose or that simulate functions or neural structures
described in the literature, for instance: IQR [180], NeuroSpaces
[181], NNET [182], NeuralSyns [183], NEUVISION [184], NeuroWeb
[185], RSNNS [186], and See [187], or of particular models or levels
as referenced in [188–192].

There is no specific simulator that is currently being used by
the whole community (since some different approaches are more
suitable than others, depending on the research task being ad-
dressed). There is no simulator that covers all simulation levels,
scales, etc. On the other hand, there is the challenge of making the
different simulation approaches compatible, being able to transfer
models and structures from one simulation platform to the other,
or being able to reproduce the same results easily with different
simulators. For this purpose, platform independent cell-model
descriptions are being proposed; for instance, PyNN, and also
various simulators including interfaces with NEURON, which can
be considered as the most widely used simulator for biologically
plausible cell models.

Many of these simulations have been extended over the years
to allow different kinds of simulations and increase their efficiency
or provide support for different communities. NEURON and GEN-
ESIS are probably the most widely used simulators for detailed
neuron models. They are usually used at a molecular level of ab-
straction (defining ionic channel densities and characteristics),
multi-compartmental models, etc. In this framework, detailed
model dynamics can be defined by hundreds or even thousands of
differential equations, and a single detailed neuron simulation
may require intensive numerical calculation. They have also been
extended towards their use in parallel computers, but they are
usually used for small scale neural systems (in terms of number of
cells). Other simulators are more focused on “point neurons” (in
which the neural model dynamics are defined by just a few cou-
pled differential equations), as is the case of NEST, EDLUT, BRIAN,
SpikeNET, etc. Even at a specific abstraction level, different simu-
lators have been extended towards different goals, for instance,
NEST has been extended with different libraries and interfaces
towards facilitating network definition and simulation monitoring,
and recently also optimized for massive parallel computers for
large scale simulations. EDLUT has been extended for use on em-
bedded real-time simulations, for instance in the framework of
embodiment set-ups related with neuro-robotics or real-time si-
mulations on conventional computers, without requiring specific
neural hardware. Thus, depending on the ultimate goal of study,
the level of abstraction and experimental set up, some tools may
be more appropriate than others.

Another challenge is optimizing the networks [193] and
adapting the simulators to new hardware platforms and new
“neural friendly processors” [194], such as the ones described in
the next section, in such a way that they can take full advantage of
their computational capabilities to efficiently simulate large-scale
neural networks.

2.2.2. Simulation platforms and neural hardware
As commented at the beginning of Section 2.2, a model (of

neuron or network) by itself is not very useful and is just an in-
termediate stage to facilitate the emulation or replication of the
behaviour of a neural function or system. The simulation or phy-
sical implementation may be carried out using conventional
computers (where simulators described in the previous Section,
2.2.1 can be executed) or by using neural hardware when a greater
velocity is required, or when a model is used for a specific appli-
cation that, for example, requires being inserted in more complex
systems with a reduced size and working in real time. There are
two dimensions to consider when buying different simulation
platforms or neural network emulators: firstly, flexibility, which
refers to the faculties the system offers to parameterize or scale
the network model, the topology and the learning algorithms; and
secondly, efficiency, which is considered as the degree of adapta-
tion (tuning) of the network with the application, as far as au-
tonomy is concerned, the computing speed, miniaturization and
energy consumption. Generally speaking, implementations in
conventional computers are more versatile but less efficient. On
the other hand, implementations in hardware systems and circuits
specifically designed to emulate a function or neural network, are
less flexible, but much more efficient (Fig. 2). In the next section
the different implementation possibilities, with the help of ex-
amples from contributions of various research groups for each one
are briefly described.

2.2.2.1. General purpose platforms. The most immediate, cheapest
and flexible implementation (although the most inefficient), con-
sists of using conventional computers, where the majority of the
simulators described in Section 2.2.1 can be executed, but the
advantage of parallelism, inherent to the functioning of the neural
network due to the sequential execution of the programme (one
instruction after another, data and data), is lost. Moreover, if the
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neural model is complex, as is the case of Deep Neural Networks,
and/or the network to simulate is large this may be insufficient for
obtaining results in a reasonable time on a conventional computer
although it has a multi-core processor. In these cases it is neces-
sary to opt for distributing the neural-network simulations in
clusters or in supercomputers [153,195,196]; in other words,
multi-computer platforms with parallel processing have to be
used. Indeed, parallel processing in present and future high per-
formance computers, implementing different levels of hetero-
geneous parallelism, constitutes an opportunity to simulate com-
plex neural structures.

The most advanced simulators described in Section 2.2.1 in-
clude facilities or versions to be executed in multi-computers,
using, for example, MPI interfaces. To carry out simulations in
multi-computers it is necessary to work widely in the paralleli-
zation of the algorithms of various neural models, (back propa-
gation [197,198], ART, neocognitron [199], recurrent NN, self-or-
ganizing NN, Bolzmann Machines [200], spiking models [201],
etc.). Thus, in the EPFL, within the Blue Brain Project [202], a
parallel version of the NEURON code has been developed, running
on an IBM Blue Gene/P supercomputer with 16,384 computing
cores and a peak performance of 56 TFlops, with this configuration
facilitating the simulation of models at a cellular-level with up to
1 million detailed, multi-compartment neurons.

There are also platforms with resources to allow researchers to
interactively visualize, analyse and “steer” within the simulation
processes, and the platforms may even contain sensors for the
acquisition of in-vivo signals [203] thus making bidirectional
biology-silicon interfaces available.

Obviously, the computational load of the simulation of a neural
network depends not only on the number of N neurons, but also
on the topology of the network and the complexity of the neuron
model, making the level of detail in which the simulation is carried
out notably influence the computational resources required. To
carry out single neuron to cellular level simulations of neural
microcircuits, supercomputers with a processing power of the
scale of Teraflops are essential, as the development of the Blue
Brain Project, mentioned previously, has made clear [204].
Nevertheless, to carry out cellular-level simulations, for example of
the whole mouse brain, or for molecular level simulations of single
neurons, supercomputers with a processing power in the range of
Petaflops are necessary. Once we achieve supercomputers with the
potential of Exaflops, we will be able to carry out cellular level
simulations of the complete human brain including dynamic
switching to molecular-level simulation of some of its parts [205].

2.2.2.2. Neural hardware. There are certain applications or simu-
lations for which general purpose computers and off-the-shelf
devices and circuits are insufficient. These applications require
specialized architectures, processors or systems specifically de-
signed for the emulation of neural networks, in which the most
common operations of the neural network have been boosted, and
that really function with the inherent parallelism of these net-
works in such a way as to permit the processing of large quantities
of data in a reasonable time (real time).

Generally speaking, the ad-hoc systems and hardware designed
to emulate neural networks or abbreviated, neural hardware, try
to offer a vehicle in which neural networks can be emulated di-
rectly in hardware rather than simulated on a general purpose
computer which is structurally different from the neural network
to be simulated, and thus obtain advantages such as: large scale
network simulation, truly parallel processing capabilities, self-
adaptation, fault tolerance [206], cost reduction, miniaturization
and reduction of energy consumption. There are commercial ap-
plications available, such as video streaming, which requires the
processing of large quantities of data, including learning and
recognition, in real time. Other examples of real-world applica-
tions which use neural hardware, cited in [207], are optical char-
acter recognition, voice recognition, traffic monitoring, experi-
ments in high energy physics, adaptive control, embedded mi-
crocontrollers for autonomous robots, and autonomous flight
control.

To measure the performances of neural hardware the following
parameters have traditionally been used:

1. Processing speed: Connections-per-second (CPS), measured as
the rate of multiply/accumulate operations and transfer func-
tion computation during the recognition phase.

2. Learning speed: Connection-updates-per-second (CUPS) mea-
sured as the rate of weight changes during the learning phase
involving calculation and update of weights.

3. Synaptic energy: average energy required to compute and up-
date each synapse; measured as WCPS (watt per connection-
per-second) or J per connection [208].

4. Accuracy: Bit connection primitives per second (CPPS) measured
as the product of the number of connections per second mul-
tiplied by the precision (number of bits) of the input signals and
by the precision (number of bits) of the weights.

2.2.2.3. Neuromorphic circuits. A custom neural circuit is an ap-
plication-specific integrated circuit (ASIC) which replicates a
neural function, structure or behaviour [209–213] more or less
similar to the biological, counterpart and sometimes known as a
neurochip. The term silicon neuron (SiN) is used to designate a
hybrid analog/digital very large scale integration (VLSI) circuits
that emulate the electrophysiological behaviour of real neurons
[214]. Within the neural hardware, the qualification “neuro-
morphic”, thought up by Carver Mead [62], makes reference to
the systems and circuits whose architecture and design principles
are based on those of biological nervous systems. Among examples
of neuromorphic circuits are silicon retinas [62,215–218] a silicon
model of the cerebral cortex [219,220], auditory organ [221] and
vestibular systems [222]. Neuromorphic systems deal with sharing
important properties of the human brain, such as fault tolerance,
the ability to learn and very low energy consumption.

In general, a custom neural circuit is made up of a multitude of
processing elements (neurons) and synaptic connections which
carry out more or less simple operations compared with the bio-
logical model. The operations are, for example, the product of
every input for a weight, sums, mapping via the activation of a
non-linear function, storage of weights, detection of the threshold,
generation of spikes, etc. Some parameters of interest are the clock
and data transfer rates, weight storage (analog/digital), hardwired
or programmable interconnections, data representation in fixed
point or floating-point, bits of precision, and degree of cascad-
ability. It is common that some functions are carried out on a host
computer, which is outside the neural network, particularly when
a high level of programming is needed. Therefore, there are cir-
cuits with an on-chip/off-chip activation function, learning on-
chip/off-chip or chip-in-the-loop training, etc.

Neural circuits may be digital, analog or hybrid. The benefit of
using one or other technology depends on the application to be
used. The analog implementations [223,224] have the advantage
of being able to directly emulate the cerebral dynamics, obtain
better response times and facilitate the integration of the net-
works with a greater number of neurons and synapses. On the
other hand, the digital techniques are more flexible, they can be
reprogrammed and reconfigured on-line, they allow the long-term
storage of weights with greater precision, they have greater im-
munity to noise, the communication between chips is done
without any loss of information and there is a good support of CAD
tools in their design. To sum up, some operations are carried out
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more efficiently with digital technology, and others are better with
analog technology. The hybrid custom neural chips try to take
advantage of both designs, for example, the weights can be stored
digitally, achieving a controlled precision, whilst analog processing
elements increase the processing velocity.

As we mentioned in Section 2 there are various mathematical
and topological network models that can be accurately simulated
by computer programmes. However, many of these models are not
able to exactly map on neural chips or on neural hardware,
especially if they are based on analog circuits. This leads to a re-
duction in the efficacy of the learning and the precision of results.
To resolve these problems researchers have suggested, see for
example [193,194,225–228], changes in the models and learning
processes with the aim of adapting them to the possibilities and
limitations of the hardware, thus obtaining hardware friendly
models or hardware friendly learning algorithms.

Neural chips may form part of various systems, such as neural
accelerators, neuromorphic computers and embedded systems, as
we will go on to describe.

2.2.2.4. Neural accelerators. A neural accelerator is a non-auton-
omous system which functions by being connected via a wide-
band bus to a general purpose computer which acts as a host, in
order to increase performance in the execution of some tasks in-
herent to neural computation. These accelerators are embedded in
the host as co-processor boards which contain specialized pro-
cessors, such as GPU [229–232], DSP [233,234], FPGA [235] or si-
licon neurons, as well as an additional solid-state memory. The
system interface with the user is carried out via the peripherals of
the host. Generally speaking, these heterogeneous platforms (with
different types of processors) allow the simulation of different
types of neurons and they can configure or programme various
topologies efficiently on a single computer.

2.2.2.5. Neuromorphic computers and systems. A neuromorphic
computer (sometimes known as a neurocomputer [236]) is an
autonomous, customized, high-performance platform, built with
the aim of emulating biological nervous tissue at different levels,
mainly made up of individual synapses and neurons, and with
similar programmability to a general purpose computer. These
systems are based on very different computer architectures to
those of von Neumann, with a structure and function inspired by
the structure and function of the brain and usually containing
neuromorphic circuits.

Among the actions or programmes proposed to build neuro-
computers it is worth mentioning:

� SyNAPSE (Systems of Neuromorphic Adaptive Plastic Scalable
Electronics) [237,238] which is a DARPA-funded program to
develop an electronic neuromorphic machine that scales to
biological levels and attempts to build a new kind of computer
with similar form and function to the mammalian brain [239].
This project started in 2008 and it is scheduled to run until
about 2016. The project is primarily contracted to IBM and HRL,
who in turn sub-contract parts of the research to various US
universities. The ultimate aim is to build an electronic micro-
processor system that matches a mammalian brain in function,
size, and power consumption. It should recreate 10 billion
neurons, 100 trillion synapses, consume one kilowatt, and
occupy less than two litres of space. The brain-inspired archi-
tecture consists of a network of neuro-synaptic cores, distrib-
uted and operating in parallel, communicating with one another
via an on-chip event-driven net, without a common clock. Each
core integrates memory, computation, and communication.
Individual cores can fail and yet, like the brain, the architecture
can still function. Chips communicate via an inter-chip interface
leading to seamless scalability like the cortex, enabling creation
of scalable neuromorphic systems. Within this field IBM has
developed TrueNorth [240], a self-contained chip to achieve:

1. One million individually programmable neurons.
2. 256 million individually programmable synapses on one chip,

which is a new paradigm.
3. 5.4G transistors.
4. 4,096 parallel and distributed cores, interconnected in an on-

chip mesh network.
5. Over 400 million bits of local on-chip memory (�100 Kb per

core) to store synapses and neuron parameters.

� SpiNNaker (Spiking Neural Network Architecture) [241,242] is a
massively-parallel multi-core computing system, based on a
six-layer thalamocortical model, designed at the University of
Manchester to improve the performance of human brain simu-
lations. In contrast to traditional architectures for computers
based on repeatable determinists and reliable computation, the
communications between the Spinnaker nodes are carried out
via simple messages, (40 or 72 bits), which are inherently
unreliable and whose efficacy is based on the principles of
massive parallel computation, having incorporated mechanisms
for fault detection and recovery. The basic building block of the
machine is the SpiNNaker multicore System-on-Chip, a Globally
Asynchronous Locally Synchronous (GALS) system with 18
ARM968 processor nodes residing in synchronous islands,
surrounded by a light-weight, packet-switched asynchronous
communications infrastructure. Each computer node contains,
besides 128 Mbytes off-die SDRAM, two silicon dice: the
SpiNNaker chip and a Mobile DDR (Double Data Rate) SDRAM
SpiNNaker. The project anticipates a total of 57 Knodes (in total
up to 1,036,800 ARM9 cores and 7 Tbytes of distributed RAM)
[243]. The machine has the ability to simulate different neural
models (simultaneously, if necessary) in contrast to other
neuromorphic hardware [244]. This platform is being further
developed in the framework of the Human Brain Project (see
Section 4).

� The neuromorphic computing system of Heidelberg University.
Various neuromorphic systems and circuits have been devel-
oped in this university, one of which is currently operational
which features 200,000 neurons and 50,000,000 synapses on a
complete silicon wafer manufactured in a 180 nm CMOS tech-
nology. The Brain Scales project (HICANN chip) aims to reduce
the number of transistors of the electronic circuits required to
emulate the neurons by using an analog approach [245]. Within
the Human Brain Project (see Section 4), this research platform
is being further developed using the concept of universal and
configurable physical models of neural circuits which serve as
prototypes for a completely new kind of computer architecture
[246].

� Neurogrid is a neuromorphic system for simulating large-scale
neural models in real time which is enough to include multiple
cortical areas, yet detailed enough to account for distinct cel-
lular properties [247]. The fundamental component is not a
logic gate, as in a sequential, step-by-step Von Neumann
architecture, but rather a silicon neuron, whose behaviour and
connectivity are programmable. The design criteria were the
following: 1) emulation of the synapse and dendritic tree with
shared electronic circuits [248], in a way in which the number of
synaptic connections are maximized; 2) all the electronic
circuits are made with analog technology, except those that
correspond to axonal arbours, thus maximising energy effi-
ciency; and 3) the neural arrays interconnect with a tree
network topology. These options facilitate the simulation of a
million neurons, with billions of synaptic connections in real
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time, using 16 neurocores integrated on a board, consuming
3 W, approximately 100,000 times less energy than if the
simulation was done with a supercomputer. Creating and
simulating cortical models on Neurogrid is straightforward: it
is enough to describe the neural model by writing a Python
script: assigning each of Neurogrid's sixteen neurocores to
model a different cortical layer (or cell-type), tailoring its silicon
neurons to emulate the cell-population's ion-channel repertoire
and routing its softwires to match their synaptic connectivity.
The Neurogrid software has a GUI to visualize the simulation
results and change the model parameters interactively.

2.2.2.6. Embedded neuromorphic systems. Another category within
neural hardware is that of the embedded neuromorphic systems
for use in high-performance computing, advanced services, and
products of consumer electronics [249], smart sensors, robotics,
etc. But in contrast to the neuromorphic computers they are or-
iented towards very specific applications in real time, and do not
function autonomously, rather they carry out their functions
within a larger electronic or mechanic system where they are
embedded. In these cases it is typical to use co-designed hard-
ware/software techniques [250,251,235]. These systems may con-
tain custom neural circuits, FPGAs or off-the-shelf hardware

2.2.2.7. Other trends and technologies. Custom neural chips are
expensive due to their high development and production costs,
which, like any integrated circuit, are only commercially profitable
if they are produced in very large quantities. Therefore, in recent
years the majority of hardware implementations have been carried
out with Field Programmable Gate Arrays (FPGA) [252–254]. The
same FPGA can be configured or reconfigured to implement var-
ious models of ANN. The FPGAs are integrated circuits which are
extremely attractive due to the following peculiarities: a) flex-
ibility and programmability (via hardware description language
they can be tailored to the function or functions to be carried out),
b) a reduced development time thanks to the well-proven CAD/
CAE tools available, c) the possibility of including certain analog
functions, such as comparators and A/D and D/A converters at
some E/S pins, d) availability of many “hard” computing cores in-
tegrated in the FPGA itself (with performances close to those of
ASIC), and e) very reasonable costs. The relatively low number of
neurons (thousands) that can be implemented in an FPGA is one of
the limitations presented in comparison with custom (ASIC)
implementations.

Researchers in recent years have also notably increased their
interest in the implementation of models based on the use of
spikes for communication between neurons, which, as commented
in Section 2, are closer to natural behaviour, and the hardware
implementations of spiking neurons are extremely useful for a
large variety of applications [255–259]. Therefore, various models
with spiking dynamics have been proposed, which go from the
simplest, such as the integrate-and-fire (I&F) basic model, to other
more complex models which are closer to biology, such as the
Hodgkin–Huxley, Morris–Lecar, FitzHugh-Nagumo [260] and Mi-
halas–Niebur. More details can be seen in [214].

Currently there is a growing and unusual interest in the de-
velopment of neuromorphic circuits, using a new electric com-
ponent known as a memristor. This component is a bipolar ele-
ment, which complements the three other passive, basic elements
which are used in circuit theory (resistor, capacitor, and inductor)
just as L. Chua [261] predicted. An efficient physical implementa-
tion and a nanoscale of the memristor were not obtained until
2008 in the HP Laboratories [262]. The term memristor comes
from the contraction of “memory resistor”.

The resistance to the passing of the current within the mem-
ristor is a function of the electrical currents that previously flowed
through it, that is to say, the more current that has flowed before,
the more easily the current then flows. Therefore every memristor
has the capacity to carry out simultaneous logical operations and
storage, in a similar way to the synapses of the neural circuits of
the brain [263]. It has been demonstrated that it is possible to
design circuits with memristors to model different biological
functions, models and systems [264,265] such as that of the
Hodgkin-Huxley model [266], associative memories [267], cellular
neural networks [268], and mixed time-varying delayed neural
networks [269].

At the end of 2011, in the Hughes Research Laboratories (HRL
Labs, LLC), researchers managed to construct a memristor array on
a CMOS chip. This circuit has very low energy consumption and a
density of memory components of 30 Gbits/cm [2], never pre-
viously reached by any other electronic technology. The use of
memristors makes the construction of very large arrays of cores
possible with sufficient numbers of neurons to match the human
brain more closely [270].

Despite proposals regarding optical technology to implement
weighted interconnections, associative memory and other neural
functions that have been carried out for years [271–276], currently
microelectronic technology continues to be the most adequate for
physically implementing neural networks, as it provides stable
processes, it is familiar, controllable and reproducible, besides
being relatively cheap and available worldwide. Quantum tech-
nology [277,278] and molecular technology [279] have certain
capacities, such as the possibility of functioning concurrently, but
the research is still at a very early stage in the field of neural-
network implementations. In fact, there are researchers who are
exploring the possibilities of these technologies in this field [280–
284] and have so far obtained sufficient practical results to be a
substitute for electronic technology.

The most notable development of neurochips or silicon neu-
rons took place in the 1980s and at the beginning of the 1990s,
when it was realized that the computers at that time were not
sufficiently powerful to satisfactorily emulate long, complicated
neural algorithms. However the notable increase in the perfor-
mance of general purpose hardware, faster than Moore's law, and
the better scalability of the algorithms in these platforms com-
bined to produce a lack of interest in developing specialised
hardware [285]. It is necessary to remember that the characteristic
that was required of the neurochips was parallelism and this was
introduced little by little in conventional computer architectures,
even at the level of processors.

Another inconvenience comes from the fact that the develop-
ment of neurochips has a very limited commercial interest, due to
their high specialisation. The more specialised a chip is, the less
use it has in a number of problems, although its efficiency and
yield is greater. This leads to there being no market for the pro-
duction of microchips in large quantities as they would be com-
mercially unviable. Nevertheless, the scientific and technological
interest in these types of circuits is undeniable. As we mentioned
previously, an alternative to custom-made chips, specialised in
neural networks, is the use of FPGAs, as they can be produced in
large quantities, making them commercially viable.

As a conclusion to this section, it can be stated that the de-
velopment of neural hardware has significantly influenced pro-
gress in:

1. The development of specialised hardware to support neuro-
biological models of computation and apply it to obtain solu-
tions for advanced services, industry and consumer electronics.

2. The exploration of new computer architectures inspired by the
brain and based on new concepts of coding, learning, massive
parallelism and processing with stochastic variables, far from
the traditional concepts based on discrete logic as Robert Noyce
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already stated in 1984 [285]: “Until now we have been going the
other way; that is, in order to understand the brain we have used
the computer as a model for it. Perhaps it is time to reverse this
reasoning: to understand where we should go with the computer,
we should look to the brain for some clues”.

2.3. Areas of use and real world applications

This section shows some examples of the implementation of
systems to solve real-world problems using computational models
inspired by neural networks in nature. These implementations
may be more or less close to reality and are frequently used in
conjunction with other data processing techniques, such as the
statistical learning theory and the information theory.

Neural networks are especially useful to infer underlying
knowledge in observations or when the data or the tasks are so
complex that they are unrealizable within reasonable times with
traditional methods. The information processing systems based on
neural networks have become standard tools, especially useful for
solving real world problems, since the end of the 1980s [286].

In order to analyse the use of artificial neural networks, three
dimensions can be considered: 1) areas of application, 2) fields of
application, and 3) achievable tasks.

The neural network areas of application are varied, some of
them are: astronomy, mathematics, physics, chemistry, earth and
space sciences, life and medical sciences, social and behavioural
sciences, economics, arts and humanities, and engineering. The
neural network fields of application include disciplines related to
the areas mentioned above, as shown in Table 4. The terminology
used in both cases belongs to the fields and disciplines of the In-
ternational Standard Nomenclature for Fields of Science and
Technology of UNESCO.

This section includes references to examples that illustrate the
variety of applications, without trying to be exhaustive as not all
the cases reported in the literature are included.

It is difficult in each field of application and even for each task,
to compare the use of neural networks versus other techniques
(e.g., statistical methods or a support vector machine); therefore
we prefer to make some general considerations.

There is a current trend in the neural network community to-
wards more biologically plausible neural networks, and with the
momentum of the Human Brain Project, models of plasticity,
learning and memory capabilities or large-scale models of cogni-
tive processes are mainly considered. It is important to highlight
that in comparison with other statistical methods or the support
vector machine, ANN has a relevant characteristic, since the time
Table 4
Some fields of application of neural networks.

� Administrative & Business management
[287–289].

� Bioinformatics [290].
� Biometric identification [74,291–293].
� Control and industrial automation

[294,295].
� Chemistry [296,297].
� Digital communications [298].
� Ecology [299,300].
� Electromechanics [301,302].
� Energy resources [303–306].
� Finances [307–313].
� Genetics [314].
� Geology [315,316].
� Internet (e-commerce, internet search,

filtering) [317–319].
� Image processing [320–322].
� Manufacturing [323,324].

� Medical diagnosis [325–330].
� Medicine and health [331–334].
� Microbiology [335].
� Meteorology, climatology

[336–341].
� Molecular biology [342,343].
� Natural resources [344–346].
� Organization and management of

enterprises [347–350].
� Remote sensing.
� Robotics [351–353].
� Signal processing [49,50,354–360].
� Space [361,362].
� Speech and language processing

[363–365].
� Scientific taxonomies [366].
� Etc.
and temporal correlation of neuron activity is very relevant in
neural signal processing.

An important characteristic of ANN is the self-adaptive
behaviour, again essential in applications that need to adapt to
changing environments (control and industrial automation,
meteorology, climatology, etc). In fact, the morphology has great
importance in the network's ability to learn, and it is necessary
to implement dynamic framework structures that can be used to
modify ANN configuration, such as “structural learning” as a
mechanism to create specific network topologies that facilitate
the processing roles of different neural layers. In this way,
dendritic growth can be included, as well as increasing and
decreasing neurons/layers, interconnection changes, morphol-
ogy, etc.

Another important characteristic of ANN is the parallel com-
puting architecture, with its essential behaviour in real-time ap-
plications, such as speech processing and image processing, using
frameworks that can carry out these tasks as efficiently as human
performance. This has a great impact in multiple disciplines and
applications, from speech and natural language processing, to
image processing, or problems in bioinformatics and biomedical
engineering.

Nevertheless, SVM and statistical methods are very good tools
that have been extensively used in many different classification
problems. An advantage of these methods is that they provide a
good generalization capability and the problem of over-fitting
(very relevant in conventional ANN) is avoided. As disadvantages
(in comparison with ANN) it is important to highlight that the
model obtained is less transparent or easy to understand, con-
suming a great deal of time in training and frequently the de-
termination of optimal parameters is difficult to obtain (mainly in
nonlinearly separable data).

The most important basic tasks or processing information op-
erations that neural networks can perform are: complex pattern
recognition, function estimation, classification problems, and dis-
covery of latent factors. The tasks, according the learning process,
are [74,142]:

Supervised learning:

1. Classification [367–371] including pattern recognition, se-
quence recognition, identification of new or unknown data,
and decision-making. The goal is to learn a mapping of each
input into an output class.

2. Pattern association by means of associative memories.
3. Regression analysis [372] or functional approximation, in-

cluding tasks such as system identification, modelling, fitness
approximation, time series prediction [373–375] and forecasting
[376,377]. This is similar to the classification task, but the output
variable is continuous.

Unsupervised learning:

1. Discovering clusters (clustering data into groups [378–380]).
2. Extraction of latent factors. This task is usually done reducing

their dimensionality by projecting the data in a subspace of
smaller dimension; which extracts the "substance" or latent
factors of the data. The most common approach to dimension-
ality reduction is the Principal Component Analysis (PCA) [41]. It
is possible to adaptively extract the principal and minor
components from the autocorrelation matrix of the input
signals. The principal component subspace contains the rele-
vant information and the significant characteristics of the input
signal, whilst the minor component subspace represents an
additive noise that corrupts the principal information.

3. Discovering graph structures to establish the degree of cor-
relation between different variables.



Table 5
Some real-world problems resolvable with learning techniques and application fields.

Classification and clustering

● Face detection and recognition [74,291–293] Biometric identification
● Traffic sign recognition [320]. Image processing
● Texture classifier [321].
● Handwriting recognition [322].
● Document classification and e-mail spam filtering [74]. Internet
● Detecting intrusions and attacks through the Internet [317,318].
● Biomedical images classification [325,326]. Medical diagnosis.
● Classification and diagnostic prediction of cancers [327,328].
● Microarray gene expression cancer diagnosis [329].
● Pattern recognition on medical images [330].
● Supervised pattern recognition in food analysis [331]. Medicine & health
● Cloud classification [337] and detection via satellite remote sensing [338]. Meteorology
● Virtual screening of compounds [332]. Pharmacology
● Classifying flowers [74]. Scientific taxonomies
● Classification of EGG signals (in BCI, etc.) [355,356]. Signal processing
● Satellite selection for GPS navigation [361]. Space

Modelling, functional approximation and forecasting
● Brand choice decisions [288]. Business management
● Modelling processes in Analytical Chemistry [297] Chemistry
● Modelling the Escherichia coli fermentation process [296].
● PID controllers design [295]. Control
● Prediction pollutant levels [300]. Ecology
● Forecasting financial and economic time series [309]. Economy and finances
● Corporate credit ratings [312]. Credit scoring and prediction [310,311].
● Financial distress prediction [313].
● Modelling in induction motors [301]. Electro-mechanics.
● Adaptive position tracking control of permanent magnet synchronous motor [302].
● Modelling of energy systems [303–305]. Energy resources.
● Electrical load forecasting [306].
● Model for analysis of the Drosophila Melanogaster genome [314]. Genetics
● Prediction of geological risks [315]. Geology
● Predicting the age of a viewer watching a given video on YouTube [74]. Internet
● Decision making [347,348]. Multiple criteria decision-making [349,350]. Management.
● Machinery diagnosis [323]. Mechanics
● Modelling for knee rehabilitation [333]. Medicine & health.
● Predicting the amount of prostate specific antigen (PSA) in the body [74].
● Predicting climate variables (temperature, wind speed, etc.) [339–341] Meteorology
● Protein function prediction [342]. Molecular biology
● Modelling, predicting and forecasting water resources [344–346]. Natural resources
● Tracking control of a biped robot [352]. Robotics
● Enhancing robot accuracy [353].

Discovering clusters
● Autoclass system [362], discovered a new type of star, based on clustering astrophysical measurements [74]. Astronomy & space
● Cluster users into groups, according to their web purchasing or browsing profile in order to customize the advertisements to
be displayed to each group [74,289].

Business management.e-commerce

● Cluster flow-cytometry data into groups, to discover different sub-populations of cells [74,366]. Scientific taxonomies
Discovering latent factors
● Motions capture data to a low dimensional space, and using it to create animations [74]. Computer graphics
● Using PCA to interpret gene microarray data [74]. Genetics
● Detection of changes on the Earth's surface [316]. Geology
● Filtering for network intrusion detection [319]. Internet
● Feature extraction in gearbox fault detection [324]. Mechanics
● Using latent semantic analysis (a PCA variant) for document retrieval [74]. Natural language.
● Speech processing and language modelling [363–365].
● Signal processing in Brain Computer Interfaces (BCI) [334]. Medicine & health
● Signals separation into their different sources [49,50,357–360]. Signal processing

Discovering graph structure
● Determination of the phosphorylation status of some proteins in a cell [343]. Molecular biology.
● Improving financial portfolio management by learning a sparse graph [74]. Economy and finances
● Predicting traffic jams on freeways [74]. Engineering
● Recovering, from time-series EEG data, the neural “wiring diagram” of a certain kind of bird [74]. Neuroscience

Matrix completion
● Inpainting images to obtain realistic textures [74]. Computer graphics
● Market basket analysis and predicting in commercial mining data [74]. Economy and finances
● Collaborative filtering for, say, predicting the desired movies by a person on the basis of what they have previously seen [74]. Internet
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4. Matrix completion and beam forming that, for example,
makes it possible to estimate values for missing data or to re-
construct a signal, that is, to find a previously unknown signal
from corrupted or imperfect observations.
Different examples of applications, including its application
field and the kind of task achieved, are shown in Table 5.

Signal processing [83] is a particularly useful field in neural
networks. This field includes different kinds of data such as audio,
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video, speech, image, communication, biomedical, geophysical,
radar, sonar and seismic. Different techniques have been devel-
oped in order to perform:

� Filtering. It achieves some mapping from the input to the output
signals, changing time-invariant or adapting theweight coefficients.

� Signal detection involves inferring from (imperfect) observa-
tional data whether or not a target signal is present.

� System identification, including blind source separation.
� Signal reconstruction [381].
� Signal compression, with the aim of reducing the bit rate of a

signal digital representation with minimal losses in the signal
quality.

� Spectral estimation for maximum entropy spectral discovering,
harmonic retrieval, multichannel spectral estimation, two-dimen-
sional spectral estimation, and high-order spectral estimation.

� Array Signal Processing, estimation of the direction of sources
arrival from the signal array.

Most of the above applications can be developed with con-
ventional techniques of information processing, therefore it is not
enough to prove only that a particular task is achievable using an
artificial neural network, but also to have to compare the solution
provided with other alternatives, showing greater efficiency con-
sidering parameters, such as accuracy, robustness, speed, con-
sumption energy, miniaturization and price. One of the notable
advantages of neural networks is their function as a black-box
which allows modelling systems in which no rules that underlie
them and that determine their behaviour are explicitly known. In
any case, the cited examples in this section clearly reveal that
neural networks are being successfully applied in a wide range of
areas and fields, contributing to the resolution of scientific and
industrial real-world problems by performing specific tasks re-
lated to the capacity of inferring the underlying knowledge in the
observations and, in general, in conjunction with other informa-
tion processing techniques or procedures.
3. Current frameworks

In recent years, artificial neural networks are no longer con-
sidered as an isolated field, due to the development of new fra-
meworks and disciplines which are naturally included in this do-
main. Within these contexts, artificial neural networks play an
important role, being relevant to highlighting Computational
Neuroscience, Neuromorphic Computing, Neuro-engineering,
Natural Computing, Machine Learning, Computational Intelligence
and Neuro-informatics. This section briefly describes the role of
neural networks within each of these subjects.

Computational Neuroscience [382] is a discipline that seeks to
understand how brains generate behaviours using computational
approaches. The work of computational neuroscientists is mainly
based on analysing how populations of highly interconnected
neurons are formed during development and how they represent,
process, store, act upon, and become altered by information pre-
sent in the body and the environment [383]. The main objective is
to create models as realistic as possible, from single-neuron
modelling, to complex models of biological neurons, where there
may be complex interactions between inhibitory and excitatory
neurons, to handle challenges in the description of sensory pro-
cessing, and to better understand the behaviour of our memory, its
configuration, structure and evolution of the synapses, etc. In this
discipline, the contributions presented in the development of new
models and neural-network algorithms are able to summarize the
essential biological characteristics at multiple spatial and temporal
scales, from membrane currents, proteins, chemical coupling, etc.
As already mentioned above (Section 2.2.2), the notion "neu-
romorphic" was introduced by Carver Mead [62] referring to ar-
tificial neural networks whose architecture and design principles
are based on the natural nervous system. The main goal of Neu-
romorphic Computing is the establishment of a computing field
derived from knowledge of the structure and functioning of the
brain in order to be able to apply basic research, applied research
and industrial applications, and the development of systems and
neuromorphic computing devices which are able to learn, act and
evolve over a wide range of time scales and levels of energy
consumption, integration density and fault tolerance better than
those obtained with conventional high performance computers.
Speed scales can range from biological real-time to ten thousand
times faster. Neuromorphic Engineering is a discipline in which
the synergy of different fields (such as biology, mathematics,
computer science and electronic engineering) can be used si-
multaneously to design novel artificial neural systems for real
application, with a clear inspiration from biological systems (for
example for vision/perception/auditory/mobility system that
emulate the biological nervous structure of real systems).

Neuroengineering or Neural Engineering [384,385] is a dis-
cipline from the field of biomedical engineering, the main objec-
tive being the application of a knowledge of relationships between
neurons, neural networks and the functions of the nervous system
in the development of engineering techniques to better under-
stand, repair, replace, interact, or exploit the properties of neural
systems. Relevant emphasis is focused on the design and the re-
solution of problems related to the interfaces between neural
tissue and artificial devices or systems, such as neuroprosthetics
and brain-machine interfaces.

Some research fields and applications of neuroingeneering are
[386]: a) Neural imaging, with techniques such as Computed Axial
Tomography (CAT), Magnetic Resonance Imaging (MRI), functional
Magnetic Resonance Imaging (fMRI) and Positron Emission To-
mography (PET) scans. This research field analyses the behaviour
and organization of the brain; b) Artificial Neural Networks which
provide their ability to obtain biologically plausible models of
neural systems that can be used for the analysis and design of
devices that can help patients with diseases or injuries (for ex-
ample cochlear implants for hearing, vision, etc.; c) Neural inter-
faces and Brain Computer Interfaces (BCI); the first has the aim of
designing engineered devices that can replace neuronal function,
and BCI that enables a direct communication between the brain
and the object to be controlled, mainly through the analysis of the
signals of our brain, as well as diagnosing and treating intrinsic
neurological dysfunction [355,387,388]; d) Neural microsystems
and microelectrode arrays, focused on obtaining knowledge about
the electrical, chemical, optical behaviour of neural systems; f)
Neural prostheses are electronic and/or mechanical devices capable
of supplementing or replacing functions lost by disease or failures
of the nervous system, stimulating and recording their activity,
often using microelectrode arrays; g) Neurorobotics or the devel-
opment of autonomous systems, are robotic devices that have
control systems based on principles and models of the brain, and
therefore use brain-inspired algorithms [389–391]; and finally h)
Neuroregeneration, or neural tissue regeneration, restoring the
functions of damaged neurons.

Natural Computing [392] is a research field that explores the
computational process presented in nature and human-designed
computing inspired by nature. Natural computing can be cate-
gorized into three classes of methods: 1) development of nature-
inspired models/techniques of computation (including neural
computation inspired by the functioning of the brain, evolutionary
algorithms, swarm intelligence inspired by the behaviour of
groups of organisms); 2) methods that synthesize nature by means
of computing (artificial life systems inspired by the properties of
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natural life in general, etc.); and 3) methods that use natural
materials (e. g. , molecules) to compute (for example molecular
computing, or DNA computing, and quantum computing, amongst
others).

Computational Intelligence [393] includes a set of methodolo-
gies that are inspired by biological functions exhibited in natural
systems to solve problems of information processing that are in-
effective or unfeasible when solved with traditional approaches
(explicit statistical modelling). Main approaches included within
computational intelligence are Fuzzy Logic [394], which is a para-
digm working with concepts and techniques for dealing with in-
accuracy, granularity of information, approximate reasoning, and
especially, to compute with words; Evolutionary Computation, which
gives the possibility of a systematized random search with the
achievement of optimal and efficient performance by algorithms
that emulate certain aspects of biological evolution and genetics
(crossover, mutation, and survival and reproduction of best adapted
organisms); Reconfigurable Computing, which aims to build systems
with plasticity in which, for example, the hardware (interconnected
circuits) can dynamically and in real time adapt to the environment,
or reconfigured to a failure of any of its elements in order to keep
running, even with limited benefits; and Neurocomputation, which
offers the possibility of designing artificial neural networks with the
capacity to learn, generalize, self-organize, adapt and identify.

In fact, many hybrid computational intelligence methods have
been developed that efficiently combine procedures in the areas of
artificial neural networks, fuzzy logic and evolutionary computation
to be applied in complex domains [395]. One example is the use of
genetic algorithms for the choice of the size and the optimization of
the structure of neural networks, as mentioned in Section 2.1.

Computational intelligence techniques have been successfully
applied in the field of machine learning [74,75], dealing with
complex problems in order to automatically identify patterns in
the data and then predict future data from the discovered patterns,
relevant examples being shared with Neurocomputation techni-
ques, such as Support Vector Machines, Bayesian networks and
Extreme Learning Machines.

Finally, Neuroinformatics [396] deals with all aspects related
to the development of computer models, databases and software
tools necessary to integrate, analyse and exploit the “deluge” data
produced in the field of neuroscience. These data are related, for
example, with the description of multiple levels of brain organi-
zation, ranging from genes and molecules to microcircuits, sys-
tems and behaviour. A relevant goal of data organization is to fa-
cilitate access to data for analysis, modelling and simulations.
4. Challenges towards understanding the biological substrate
of the brain

Biological research on brain and neural systems has advanced
significantly in recent decades, but the complexity of the me-
chanisms involved in different scales has also been discovered.
Moreover, the different technologies that have been developed
(genetically modified organisms, patch clamping, multi-cell re-
cording, fMRI, etc.) have enabled us to more clearly identify the
barriers that must be overcome for an in-depth investigation into
the brain. We have also become aware of the important challenge
of a "better understanding of the brain" and its high potential
impact on our society.

Especially related to artificial neural networks, a deeper un-
derstanding of the brain would allow the reverse engineering of
some computational networks and principles of biological neural
systems and integrate them into new generations of artificial
neural systems and machine learning approaches, particularly
well-suited for our every-day biologically relevant tasks. Thus, the
field of brain research can be seen as a continuous source of in-
formation, models, computational principles, and approaches that
have a potential impact into the next generation of artificial neural
networks.

The human brain is an extremely complex system and the ex-
isting experimental methodologies used for extracting data are
very limited and are mainly rather indirect. Thus, the access to
internal properties of the neural system, network topology,
adaptation mechanisms, etc. is constrained. Although animal ex-
perimentation has advanced significantly in recent years, provid-
ing a great deal of data, there are many specifically human cap-
abilities, such as high level cognition, reasoning, social capabilities,
etc. that are unique to human beings and now need to be re-
searched with non-invasive and indirect techniques. Furthermore,
though the advances in recent years have been impressive, the
lack of a general integration and standardization of the data,
models, etc. makes the reproduction of the results from other
studies difficult, and thus leads to very inefficient incremental and
continuous advances. Many models, experimental setups, and so
on need to be re-developed from scratch by different laboratories.

The better understanding of the human brain requires the
massive international collaboration of many laboratories in dif-
ferent interdisciplinary fields, and it is one of the challenges of this
century. Therefore, two flagship projects (HBP and BRAIN) have
been defined in Europe and USA which are described below in this
section, and in parallel with them other countries have been for-
mulating their own national plans. Some of them are briefly
mentioned below.

For example, Japan has been formulating its own project based
on the following three objectives: to focus on studies of non-hu-
man primate brains that will directly link to a better under-
standing of the human brain, to elucidate the neural networks
involved in brain disorders such as dementia and depression, and
to promote close cooperation between basic and clinical research
related to the brain. This project, dubbed Brain Mapping by In-
tegrated Neurotechnologies for Disease Studies, (Brain/MINDS)
[397], was launched in 2014 and will integrate new technologies
and clinical research. In this programme, challenging goals will be
achieved through long-term research carried out by linking core
research institutions nationwide.

In Australia a specific programme has also been set up with
preliminary funds of around $250 million over 10 years with the
goal of developing the world's first bionic brain. The creation of
the Australian Brain initiative (AusBrain) [398], is the main focus
of a recently released report to improve and better coordinate
Australia's efforts in brain research.

There is also another ambitious initiative in China (Brainnetome)
[399], based on previous developments [400]. The goals of this
programme are to dissect the functional atlas of brain networks for
perception, memory, emotion, and their disorders as well as to
develop advanced technologies to achieve these goals. It also aims
to encourage collaboration among interdisciplinary researchers
through continuous support for up to 25 top laboratories devoted
to brain network studies in China (for more than 10 years).

The Norwegian Brain Initiative (NORBRAIN) [401,402] is a
large-scale national infrastructure project. The objectives are to
better understand the integrated functional systems of the brain
and use this knowledge to develop new diagnostic tools and new
treatment against neurological and neuropsychiatric disorders. In
addition this national infrastructure allows neuroscientists, with
different backgrounds, to use new generations of research tools
and to provide insight into how complex mental functions and
dysfunctions emerge from distributed neuronal activity in a local
brain circuit.

Previously there have been other smaller initiatives with goals
aligned with the challenges that are now being addressed by the
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HBP, BRAIN, etc. Some examples of these initiatives in Europe are
the following (according to their initial proposals and public web
sites): SpikeFORCE [403] (2002–2005): its objective was to un-
derstand the neural principles that give an organism the ability to
learn multiple tasks in real-time with minimal destructive inter-
ference between tasks, and to recreate this ability in real-time
spiking neural networks; SenseMaker [404] (2002–2005): the aim
of this project was to conceive and implement electronic archi-
tectures that are able to merge sensory information sampled
through different modalities into a unified perceptual re-
presentation of our environment; FACETS [405] (2005–2009): the
goal of this project was to create a theoretical and experimental
foundation for the realisation of novel computing paradigms
which exploit the concepts experimentally observed in biological
nervous systems; SENSOPAC [406] (2006–2010): aimed at devel-
oping a cerebellum-based control system to solve complex haptic/
touch problems using active sensing; BrainScaleS [407] (2011–
2015): the goal was to understand multiple spatial and temporal
scales in brain information processing based on in-vivo experi-
mentation, computational analysis and computational synthesis;
BBP [408] (started in 2005): the ultimate goal of the Blue Brain
Project was to reverse engineer the mammalian brain; REALNET
[409] (2011–2014) is a project aimed at investigating novel com-
putational architectures inspired by the cerebellar network (the
central role this circuit plays in generating sensory-motor in-
tegration and higher cognitive processing and by the unsurpassed
level of detail that has been reached in understanding its neuro-
biological functions).

Among the largest initiatives that have caused greater ex-
pectation are the Human Brain Project (HBP) launched in Europe
and Brain Research through Innovative Neurotechnologies
(BRAIN) in the USA. Both initiatives share many aspects, such as
addressing the long-term goal of better understanding the neu-
robiological substrate (anatomical, molecular and circuit bases) of
computational primitives of the brain. Both initiatives address this
long-term challenge with a plan that extends over 10 and 12 years,
and will be supported with approximately 1000 million and 5000
million dollars, respectively, though these long term funding
schemes require revisions and modifications according to different
strategies and resource constraints that may arise in these long
time periods.

The HBP initiative [410,411] is focused on an integrated effort
and the development of the six general platforms that facilitate
research in different fields related to the human brain:

1. Neuroinformatics Platform aimed at aggregating neuroscience
data to build multi-level brain atlases and navigate in them.

2. Brain Simulation Platform, to develop software tools to build and
simulate multi-scale brain models at different levels of detail.

3. Medical Informatics Platform, aimed at federating clinical data
and records in order to identify and classify diseases.

4. High Performance Computing, aimed at developing and operating
High Performance Computing (HPC) systems scaled and opti-
mized for brain simulations.

5. Neuromorphic Computing Platform aimed at developing biologi-
cally inspired systems and devices approaching brain-like in-
telligence and other natural properties.

6. Neurorobotics Platform [412] aimed at developing robotic sys-
tems for closed loop cognitive experiments, allowing them to
interface detailed brain models to a simulated body in a
simulated environment.
To sum up, the Human Brain Project's platforms will give
scientists from all over the world a single point of access to
neuroscience data, multi-omic clinical data and analysis tools.
The platforms will allow them to reconstruct and simulate the
brain on supercomputers coupled to virtual bodies acting in
virtual environments (in silico behavioural experiments), and
provide them with pipelines to develop simplified brain models
for implementation in neuromorphic computing systems, with
the ultimate goal of simulating the brain.
The initiative BRAIN will be led by the US National Institutes of
Health (NIH), the Defence Advanced Research Projects Agency
(DARPA), and the National Science Foundation (NSF). BRAIN
aims to accelerate the development and application of new
technologies, so that neuroscientists will be able to produce an
innovative dynamic image of the brain showing how individual
cells and complex neural circuits interact in time and space. The
following areas have been identified as high priorities [413].
1. Discovering diversity: “to identify and provide experi-

mental access to the different brain cell types to determine
their roles in health and disease”.

2. Maps at multiple scales: “to generate circuit diagrams that
vary in resolution from synapses to the whole brain. It is
increasingly possible to map connected neurons in local
circuits and distributed brain systems, enabling an under-
standing of the relationship between neuronal structure
and function”.

3. The brain in action: “to produce a dynamic picture of the
functioning brain by developing and applying improved
methods for large-scale monitoring of neural activity”.

4. Demonstrating causality: to link brain activity to beha-
viour with precise interventional tools that change neural
circuit dynamics.

5. Identifying fundamental principles: “to produce con-
ceptual foundations for understanding the biological basis
of mental processes through the development of new
theoretical and data analysis tools”.

6. Advancing human neuroscience: “to develop innovative
technologies to understand the human brain and treat its
disorders; create and support integrated human brain re-
search networks”.

7. From the BRAIN Initiative to the brain: “to integrate new
technological and conceptual approaches produced in goals
1–6 to discover how dynamic patterns of neural activity are
transformed into cognition, emotion, perception, and action
in health and disease. The most important outcome of the
BRAIN Initiative will be a comprehensive, mechanistic un-
derstanding of mental function that emerges from the sy-
nergistic application of the new technologies and con-
ceptual structures”.

As indicated above, the American BRAIN initiative is more fo-
cused on the development of new technologies that will enable
disruptive advances in the research fields related to the brain.

Paul M. Matthews [414] indicates that new tools for functional
analysis of circuit activity are expected to be delivered to the
BRAIN consortium in the first 4 years and to a wider community in
the following years. New technologies, such as new sensor sys-
tems, will also be studied and potentially lead to new brain-ma-
chine interfaces. Therefore, he highlights that “new technologies
and exploitation opportunities will emerge”, and a plan towards
their translation to actual products is envisaged in the BRAIN in-
itiative. The HBP has also been structured with a starting ramp-up
phase in which their different platforms will be released to the
wider community.

On the other hand Erik Kandel [414] highlights more the im-
pact of the HBP and BRAIN initiatives on the new capabilities to
treat brain related diseases, such as schizophrenia, depression,
bipolar disorders, post-traumatic stress disorder, addiction, Alz-
heimer's disease, amyotrophic lateral sclerosis, Parkinsonism, etc.
He also highlights the opportunity of a better understanding of the
unique characteristics of the human mind.
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Christof Koch [414] highlights the goals addressing the con-
struction of massive online databases of meso-scale connectivity,
systematically classifying cell types, linking their electro-
physiological properties with their dendritic and axonal projection
patterns and the genes that they express in their cell bodies and
finally arriving at the definition of functional properties of neurons
towards creating in silico models of cortical regions. Some sig-
nificant advances are being achieved by the Allen Institute for
Brain Science [415]. He also indicates the importance of making all
this data widely available through dedicated web tools. Interest-
ingly, integration and availability are in fact, one of the main fo-
cuses of the HBP initiative that has been planned and is now fin-
ishing the first version of a general site where data, models, tools
will be made available.

Seth Grant, co-leader of the Strategic Mouse Brain data sub-
project of HBP believes that [416] “A key goal of the Human Brain
Project is to construct realistic simulations of the human brain–this
will require molecular and cellular information and from that we
will be able to model and understand biological and medical pro-
cesses. In adittion, we will be able to use this information to design
and implement new kinds of computer and robots”.
5. Conclusions

As shown in this paper, over the years, neural models and si-
mulations are making it possible to reveal fundamental principles
of neural computation to neuroscientists. Moreover, we can affirm
that the interest in artificial neural networks is growing so much
that its models and algorithms are becoming standard tools in
computer science and information engineering. The goal has been
to obtain systems with similar cognitive capacities, flexibility,
strength and energy efficiency to the human brain.

Section 2 describes the development and evolution of different
topics concerning neural networks, such as data problems, learn-
ing techniques, models, simulators, hardware implementations
and real-world applications. This highlights the fact that after a
long and productive youth, neural networks have formed a robust
set of computation procedures with a robust theoretical base and
undeniable effectiveness in solving real problems in different
fields of information processing.

One of the greatest contributions of neural networks to the
information processing systems is the introduction to the concept
and techniques of learning (Section 2) which have certain well-
defined advantages over other forms based on statistical proce-
dures. Among these advantages are [417]: (1) the possibility of
doing the learning phase with all the data in an incremental way,
online, instead of using samples; simple algorithms being highly
proved, (2) adequate scalability, (3) algorithms easily parallelizable
and executable in massive parallel platforms, and (4) neural
hardware available for real time learning (Section 2.2).

Emphasis has been placed on the description of different models
and algorithms developed over the years that have being grouped in
four phases, each one lasting two decades (Section 2.3). Models of
individual neurons and their learning rules, such as perceptron,
were proposed in the first period (the 1940s and 50s). The second
period (the 1960s and 70s) is characterized by the development of
multilayer network learning rules and the application of statistical
mechanics techniques to recurrent networks. The revival of neural
networks took place in the third period (the 1980s and 90s) and
started with a deeper study of self-organizing networks which was
characterized by the application of Bayesian methods, Gaussian
procedures and the development of support vector machines (SVM).
In the last period (from 2000 to now) the theoretical study of pre-
vious models has deepened, dealing with issues such as con-
vergence analysis and statistical balance, stability, state estimation
and control synchronization. In this period of time new models and
techniques have also been developed, such as Incremental Extreme
Learning Machines and Deep Neural Networks (DNN).

Section 2.2 presents the analysis of the development of simu-
lators and models of physical implementation of neural networks.
Particularly Section 2.2.1 shows that, although there are a lot of
programmes to simulate particular functions or structures, new
generic neural simulators, at different scales (single neurons,
neural networks, etc.) have been developed in recent decades.
These new simulators have template libraries, are user expand-
able, allow the defining different parameters for each model and
even network connectivity.

We can experiment with these in-virtual simulators, predicting
the behaviour of certain structures and functions, and also obtain
empiric results very close to those of biological material. Clearly,
there is not one general purpose simulator which is better than
the others, that is, there is no simulator that is able to simulate any
neuron model or any network topology. It is a challenge to obtain
compatibility with different simulators in order to easily transfer
models or algorithms between them.

Another challenge is the optimization of networks and the
adaptation of simulators to new hardware platforms and new
processors, as we described in Section 2.2.2. This section is dedi-
cated to neural hardware with the objective of improving all their
possibilities and to achieve the simulation of high scale networks.

A challenge not yet achieved is the construction of neuromorphic
circuits or computer chips that properly mimic the human brain. In
fact, one of the top 10 emerging technologies in 2015, established by
the World Economic Forum, is Neuromorphic Engineering [418]. As
shown in Section 2.2.2, computers are based on data movement
between memory circuits and processors through high-speed
backbones. This causes bottle necks in the data and instruction
transfer and to the consumption of a lot of energy wasted as heat.
Nevertheless, the brain contains billions of elements (neurons)
massively interconnected that make either distributed functions of
memorization or processing, intimately related, being extremely
efficient energetically. This is one of the main requirements for to-
day's computer design [419]. Neuromorphic technology is estimated
to produce a qualitative and quantitative leap in the progress of high
performance computation, including intelligent chips that may be
able to learn and adapt, with greater operational speed and less
energy consumption.

Section 2.3 described several real-world applications for neural
networks in information processing, showing their potential in
tasks such as data classification, pattern recognition, functional
estimation and discovery of latent factors, performed more effi-
ciently than by using other techniques.

It is also remarkable that gradually the field of artificial neural
networks has greatly contributed to the birth and development of
other disciplines, where it has become integrated, naturally con-
tributing with relevant concepts. Amongst these disciplines are
Computational Intelligence, Machine Learning, Computational
Neuroscience, Neuro-engineering, Natural Computing, and Neuro-
informatics (Section 3).

In the scientific communities of several countries and in society
in general, as described in Section 4, there is a great interest in
deepening the knowledge of the human brain, this being one of
the challenges of the twenty-first century. This has led the Eur-
opean Commission and the USA to establish two major projects,
leading to studying the human brain thoroughly, and even trying
to simulate it, either partially or totally, with the aid of high per-
formance supercomputation. The aim is to get to know the “al-
gorithms” that govern information processing within a neural
circuit and the interactions between circuits in the brain as a
whole, which, without doubt, will lead to new medical treatments
and new computing technologies.
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In the context of neural networks, the most daring question we
could ask would be: are we currently capable of building a human
brain? [420]. We cannot forget that the human brain has around
90 billion neurons shaping an extremely complex network, but we
have ever more accurate models of the human brain and compiled
data. The Human Brain Project literally states [421]: “Terascale
computers have already allowed us to make the leap from simu-
lations of single neurons to cellular level simulations of neuronal
microcircuits. Petascale computers, now available, are potentially
powerful enough for cellular-level simulations of the whole rodent
brain, or for molecular level simulations of single neurons. Ex-
ascale computers, predicted for the end of this decade, could allow
cellular level simulations of the complete human brain with dy-
namic switching to molecular-level simulation of parts of the brain
when required”.

Undoubtedly, the achievement of the challenges described in
this paper will provide a better understanding of artificial neural
networks and computational neuroscience in general. We will be
able to get a glimpse of the way some unique features of the hu-
man mind are performed, such as high level cognition, reasoning,
decision-making, consciousness, emotion, freewill and creativity
[414].

The authors hope that this paper will be of interest to re-
searchers who want to have a global vision of research and chal-
lenges in the world of neural networks, related to mechanisms of
information processing and with the aim of a better understanding
of the brain and the bio-inspiration to construct systems with
amazing properties and functions inspired by nature.
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