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Abstract: Introduction: Various classifications for osteoporotic vertebral fractures (OVFs) have
been introduced to enhance patient care and facilitate clinical communication. However, there is
limited evidence of their effectiveness in predicting vertebral collapse, and very few studies have
compared this association across different classification systems. This study aims to investigate
the association between OVF categories, according to the most widely used classification systems,
and vertebral collapse. Patients and Methods: A retrospective single-center study was conducted
involving patients diagnosed with acute OVFs at the emergency department of a tertiary-level
academic hospital with a minimum follow-up of 6 months. Vertebral fractures were independently
classified by two radiologists according to several classification systems, including those proposed
by Genant, Sugita, the German Society for Orthopedics and Trauma (DGOU), and the AO Spine.
Associations between vertebral collapse and OVF classification systems were analyzed using bivariate
and logistic regression analyses. Results: This study included 208 patients (82.7% females; mean age
of 72.6 ± 9.2 years). The median follow-up time was 15 months, with L1 being the most common
fracture site (47.6%). The most frequent OVF types observed, according to Genant’s morphological,
Genant’s quantitative, Sugita ’s, DGOU’s, and AO Spine’s classifications, were biconcave (50%),
grade 0.5 (47.6%), bow-shaped (61.5%), OF2 (74%), and A1 (61.5%), respectively. All classifications,
except for Genant’s quantitative system, were significantly associated with vertebral collapse in
bivariate analyses. Logistic regression analyses showed a significant association (p = 0.002) between
the AO Spine classification and vertebral collapse, with 85.7% of A4 fractures developing collapse
on follow-up. Conclusions: The AO Spine classification showed the highest predictive capacity
for vertebral collapse. Specifically, A4 fracture types showed a very high risk of vertebral collapse,
confirming the need for non-conservative management of these fractures. Further multicentric and
prospective studies are warranted to confirm these findings.

Keywords: fracture; spine; osteoporosis; vertebra; collapse; prognosis; classification; AO spine;
imaging; radiology

1. Introduction

Osteoporotic vertebral fractures (OVFs) represent the most frequently occurring type of
osteoporotic fracture and are associated with high morbidity and mortality [1,2]. Vertebral
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collapse, usually defined as a significant loss of vertebral height (>50%), is a potential end-
stage evolution of OVFs [3]. It is associated with increased kyphotic deformity, pain, and
fracture site instability, potentially affecting patient management [4]. Therefore, preventing
vertebral collapse is important for clinical practice.

A number of factors have been identified as potential predictors of vertebral collapse,
including middle column injury, burst fractures, location in the thoracolumbar transition
(T12-L1), and ages over 50 years [5,6]. However, they are not completely understood,
and a knowledge gap still exists. Probably the most relevant approaches are based on
the identification of biomarkers associated with imaging parameters obtained in X-rays,
computed tomography (CT), or magnetic resonance imaging (MRI). Different classification
systems have been developed with the aim of characterizing and predicting which OVFs
could require specific therapeutic approaches to prevent the progressive loss of vertebral
height and eventual collapse, which can be consulted in more detail in previous studies [7].

For example, the semiquantitative Genant et al.’s classification [8] categorizes vertebral
fractures based on the morphology and degree of area and height loss. Sugita et al. classified
fractures into 5 morphological types based on radiographic findings, with swelled, bow-
shaped, and projecting types being frequently associated with the presence of intravertebral
cleft and late collapse, as well as with a worse prognosis [9]. The German Society for
Orthopedics and Trauma (DGOU) proposed a classification system for OVFs that offers
a comprehensive score based on the type of fracture and clinical factors. Initial results
suggest that this score is an appropriate tool for the preoperative assessment of OVFs [10].
Similarly, the AO Spine classification system [10] developed a comprehensive classification
system, including specific categories for typical OVFs (A category), which shows a high
interobserver agreement [11].

However, there is no universal agreement on which of these systems is the best to
guide patient management. Some authors have pointed out the need to further explore the
role of available classifications in predicting fracture evolution, with particular emphasis
on their role in specific therapies, such as percutaneous vertebroplasty [12]. However, the
evidence is still scarce in this context, and factors such as the incidence of different types of
OVFs and collapse, according to each classification system, are required.

The aim of this study is to explore the association between the most widely used
classification systems for OVFs and the development of vertebral collapse.

2. Materials and Methods
2.1. Study Design and Participants

We conducted a retrospective single-center study based on a consecutive series of
patients diagnosed with acute OVFs in our institution, which is a tertiary hospital special-
izing in traumatology that attends to patients from 3 secondary hospitals, from January
2019 to December 2022. This study was approved by our Institutional Review Board (code
TFG-FX-2019). The Strengthening the Reporting of Observational Studies in Epidemiology
(STROBE) guidelines [13] were followed when designing and reporting this study.

2.2. Inclusion and Exclusion Criteria

We performed a systematic search in our radiology information system, including all
thoracic and lumbar spinal X-rays and CTs performed during the study period, with the
keywords ‘vertebr*’ and ‘fracture’. All reports were read by two independent researchers,
who did not participate in the radiological assessment of fractures, and medical records of
patients meeting radiological criteria were revised.

The following inclusion criteria were established:

1. Patients diagnosed with acute OVF, identified on X-rays and CT.
2. Patients with imaging follow-up of their fracture at least 6 months after diagnosis.
3. Management with conservative medical treatment.
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The exclusion criteria were as follows:

1. Genant et al.’s grade 3 (loss of height/area > 40%) OVFs at initial diagnosis.
2. More than 1 acute OVF.
3. Patients treated by surgery or vertebral augmentation.
4. Patients with poor-quality images, such as rotated, non-parallel radiographs.

2.3. Variables of the Study

Sociodemographic data (age and sex), the OVF location, and cause were obtained. The
dependent variable was vertebral collapse, defined as the presence of >50% loss of vertebral
body area or height at the end of follow-up. All fractures at initial diagnosis and follow-up
were independently classified by 2 different radiologists, according to the classification
systems proposed by Genant et al. (morphological and quantitative, including grade 0.5 for
OVFs with 20% loss of vertebral height/area) [8], Sugita et al. [9], the German Society for
Orthopaedics and Trauma [13], and the AO Spine [14]. In case of a disagreement, the case
was revised and discussed until an agreement was reached.

2.4. Statistical Analysis

We carried out a descriptive analysis of the measured variables by expressing quali-
tative variables as absolute (n) and relative (%) frequencies, and numerical data as mean
(X) and standard deviation (SD). Next, bivariate analyses were performed to explore the
association between fracture type, according to each classification system, and vertebral
collapse, using chi-squared tests (or Fisher’s exact tests, if the data did not meet statistical
assumptions for parametric tests). Then, logistic regression analyses, to predict the de-
pendent variable ‘vertebral collapse’, were applied to the variables that were statistically
significant in bivariate analyses. In these analyses, we processed categorical variables
by comparing each category to a reference category, which provided a single coefficient
that summarized the overall effect of the variable on the odds of vertebral collapse. For
the classification systems that resulted significance, we calculated the risk of vertebral
collapse for each vertebral fracture category using odds ratios. Finally, receiver operating
characteristic (ROC) curve analysis for the classification systems significantly associated
with the primary outcome was performed.

Two-tailed tests were performed with significant values set at p < 0.05. All statistical
analyses were carried out with R software version 4.3.2 for Windows (Vienna, Austria) [15].

3. Results
3.1. Characteristics of the Sample

The final sample included a total of 208 patients (82.7% women; mean age, 72.8 ± 9.2
years). The median follow-up time was 14.5 months (interquartile range, 14.5 months). The
most frequent cause of the fracture was falling from standing height, which occurred in
190 cases (91.3%), followed by spontaneity or exertion (4.3% each). The most frequently
fractured vertebral body was L1 (48.3%), followed by T12 and L2 (15% each). Vertebral
collapse was observed in 85 cases (40.9%).

3.2. Classification of Osteoporotic Vertebral Fractures and Association with Collapse

Regarding the incidence of different types of OVFs according to each classification,
the most frequent ones, according to Genant et al.’s morphological classification, were
biconcave fractures (50%), and the most prevalent quantitative grading category was grade
0.5 (47.6%). Regarding Sugita et al.’s classification, the most frequent type was bow-shaped
(61.5%). For the AO Spine classification, the most frequent fracture type was A1 (61.5%).
Finally, according to the DGOU classification, the most frequent OVF type was OF2 (74%).

Bivariate analyses showed significant associations between all classification systems,
except Genant et al.’s quantitative, and vertebral collapse. The highest rate of collapse
among all classifications was observed in the A4 category of the AO Spine, with 24 out of
28 (85.7%) OVFs developing vertebral collapse on follow-up. Figure 1 shows illustrative
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examples of A1-A4 AO Spine classification fractures, and Figure 2 summarizes the incidence
of collapse in these fractures. Table 1 shows the incidence of the different types of OVFs
and the results of bivariate analyses.

Diagnostics 2024, 14, x FOR PEER REVIEW 4 of 10 
 

 

(61.5%). Finally, according to the DGOU classification, the most frequent OVF type was 
OF2 (74%).  

Bivariate analyses showed significant associations between all classification systems, 
except Genant et al.’s quantitative, and vertebral collapse. The highest rate of collapse 
among all classifications was observed in the A4 category of the AO Spine, with 24 out of 
28 (85.7%) OVFs developing vertebral collapse on follow-up. Figure 1 shows illustrative 
examples of A1-A4 AO Spine classification fractures, and Figure 2 summarizes the inci-
dence of collapse in these fractures. Table 1 shows the incidence of the different types of 
OVFs and the results of bivariate analyses. 

 
Figure 1. Illustrative examples of osteoporotic vertebral fractures in our sample based on the AO 
Spine classification system. (A) A1-type fracture of L1 (white arrow). Note the subtle loss of vertebral 
height and the trabecular fracture line below the superior endplate, as well as the absence of poste-
rior wall displacement. (B) A2-type fracture of L3 (white arrow) with a typical pincer-like morphol-
ogy, involving the central part of the vertebral body. (C) A3-type fracture of L1 (white arrow) in-
volving the superior endplate, with mild displacement of the posterosuperior wall to the spinal ca-
nal. (D) A4-type fracture of L2, with involvement of the superior and inferior endplates (white ar-
rows) and displacement of the posterosuperior wall to the spinal canal (orange arrow). 

 
Figure 2. The incidence and rate of collapse of osteoporotic vertebral fractures, according to the AO 
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Figure 1. Illustrative examples of osteoporotic vertebral fractures in our sample based on the AO
Spine classification system. (A) A1-type fracture of L1 (white arrow). Note the subtle loss of
vertebral height and the trabecular fracture line below the superior endplate, as well as the absence
of posterior wall displacement. (B) A2-type fracture of L3 (white arrow) with a typical pincer-like
morphology, involving the central part of the vertebral body. (C) A3-type fracture of L1 (white arrow)
involving the superior endplate, with mild displacement of the posterosuperior wall to the spinal
canal. (D) A4-type fracture of L2, with involvement of the superior and inferior endplates (white
arrows) and displacement of the posterosuperior wall to the spinal canal (orange arrow).
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Table 1. Univariate and bivariate analyses of the types of osteoporotic vertebral fractures, according
to different classification systems in our sample. 1 Data are expressed as absolute (n) and relative (%)
frequencies. * Statistically significant p-value.

Type of Fracture Total Sample
n (%) 1

No Collapse
(n = 85)
n (%)

Collapse
(n = 143)

n (%)
p-Value

Genant (morphological) a a
Wedge 91 (43.8) 54 (51.9) 50 (48.1)

0.01 *Biconcave 104 (50) 64 (70.3) 27 (29.7)
Crush 13 (6.3) 5 (38.5) 8 (61.5)

Genant (semiquantitative
grading)

Grade 0.5 99 (47.6) 58 (58.6) 41 (41.4)
0.843Grade 1 46 (22.1) 26 (56.5) 20 (43.5)

Grade 2 63 (30.3) 39 (61.9) 24 (38.1)

Sugita
Swelled-front 32 (15.4) 12 (37.5) 20 (62.5)

0.008 *
Bow-shaped 128 (61.5) 88 (68.8) 40 (31.3)
Projecting 26 (12.5) 12 (46.2) 14 (53.8)
Concave 11 (5.3) 5 (45.5) 6 (54.5)
Dented 11 (5.3) 6 (54.5) 5 (45.5)

AO Spine
A1 128 (61.5) 87 (68) 41 (32)

<0.001 *
A2 3 (1.4) 2 (66.7) 1 (33.3)
A3 49 (23.6) 30 (61.2) 19 (38.8)
A4 28 (13.5) 4 (14.3) 24 (85.7)

DGOU
OF1 9 (4.3) 7 (77.8) 2 (22.2)

0.049 *
OF2 154 (74) 97 (63) 57 (37)
OF3 39 (18.8) 17 (43.6) 22 (56.4)
OF4 6 (2.9) 2 (33.3) 4 (66.7)

3.3. Prediction of Vertebral Collapse: Regression and ROC Curve Analyses

Univariate binary logistic regression analyses, including the classifications that were
associated with vertebral collapse in bivariate analyses, showed statistically significant
associations for the AO Spine (p < 0.001) and the DGOU (p = 0.007) classifications. Multi-
variate regression analysis, including both classifications, was significant only for the AO
Spine classification (p = 0.001). A trend toward significance was observed in the DGOU
classification (p = 0.121) (Table 2). Regression analyses of the categories of the AO Spine clas-
sification showed statistically significant associations for A4 (p < 0.001; OR, 12.73 [95%CI,
4.57–45.47]) (Table 3). The rest of the fracture categories were not significantly associated
with vertebral collapse.

Table 2. Univariate and multivariate logistic regression analysis for the outcome “vertebral collapse”.
OR, odds ratio. aOR, adjusted odds ratio.

Classification System p-Value [Univariate] OR [95% CI] p-Value [Multivariate] aOR [95%CI]

Sugita 0.852 1.024 [0.800–1.309] - -

Genant
(morphological) 0.266 0.770 [0.485–1.221] - -

Genant (quantitative) 0.709 0.941 [0.683–1.296] - -

AO Spine <0.001 1.418 [1.192–1.686] 0.001 1.356 [1.130–1.626]

DGOU 0.007 2.059 [1.215–3.490] 0.121 1.545 [0.891–2.679]
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Table 3. Odds ratios (OR) for the AO Spine classification fracture categories and vertebral collapse.
1 Ref, reference category (the one with the highest frequency was chosen). * Statistically significant
p-value. 95% confidence interval (CI).

AO Spine [Ref 1, A1] Estimate Std. Error p-Value OR [95%CI]

Intercept −0.752 0.189 <0.001 * 0.47 [0.32–0.68]

A2 0.059 1.239 0.926 1.06 [0.05–11.38]

A3 0.296 0.349 0.397 1.34 [0.67–2.65]

A4 2.544 0.572 <0.001 * 12.73 [4.57–45.47]

The ROC curve analysis of the AO Spine classification to predict vertebral collapse
showed an area under the curve (AUC) of 0.646 (95%CI, 0.567–0.725), mainly explained by
the effect of the A4 fracture type (AUC, 0.625, 95%CI, 0.574–0.676). For this category, the
sensitivity and specificity for vertebral collapse were 0.282 and 0.967, respectively. Figure 3
shows the ROC curve for the AO Spine classification.
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to the reference of a random classification (line of no discrimination).

4. Discussion

Our results provide interesting insights regarding the epidemiology and status quo
of conservatively managed OVFs and their classifications. First of all, the epidemiological
data found are consistent with previous studies; there was an evident female predominance
(82.7%) of old age (median: 72.8 years), and the most frequent fractured vertebral body
levels were T12 and L1, as in previous studies [16–18]. Interestingly, we observed a high
incidence of vertebral collapse (40.9%) in the sample. This indicates that conservative
management was of limited value in avoiding poor fracture evolution in OVFs with the
characteristics defined in our inclusion criteria. However, it should be noted that the
criteria used to define failure of conservative treatment are heterogeneous in the literature,
as pointed out in the systematic review by Petitt et al. [19]. Notably, a relatively high
number (37%) of burst (AO Spine A3 and A4) fractures were observed in our sample,
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which may explain the fact that the incidence of vertebral collapse was significantly higher
compared to previous studies. For instance, Funayama et al. reported 20.9% collapse in
a cohort of patients with OVFs managed conservatively with bed rest [20], and a similar
figure to that was reported by Kanchiku et al. (16 + 11%) [21].

In addition, the distribution of the types of OVFs, according to different classification
systems, offers important information. Regarding Genant et al.’s classification, we found
that the most frequent morphological types were biconcave fractures (50%), and the most
prevalent quantitative grading was grade 0.5 (48.3%). It should be noted that we excluded
grade 3 OVFs, since the loss of vertebral height in this category (>50%) is almost in the
range of collapse. For the AO Spine classification, the most frequent fracture type was
A1 (56.7%). Notably, there were no A0 fractures, and only 3 cases of A2 category were
found. These results are similar to those of previous studies [22]. We hypothesize that
the absence of A0 fractures may be due to the fact that they are more subtle and could
have been missed in the original reports—note that we performed a retrospective study
on the radiological information system through keywords—or even confused for non-
fused transverse processes. In any case, these fractures are managed conservatively and
straightforwardly, as they do not affect segmental stability [23]. On the other hand, the
low number of A2 fractures (only 3) found in our sample should be considered when
interpreting our results, as it limits the reliability of the prognostic models used on the AO
Spine fracture subtypes. Finally, according to the DGOU classification, the most frequent
type was OF2 (75%).

Third, we found that, among the different classification systems explored, only the
one proposed by the AO Spine was associated with vertebral collapse. In particular,
approximately two thirds of A1 fractures did not collapse. Conversely, 24 out of 28 A4
fractures collapsed in our series, while A3 fractures were very similar in both groups
(collapse, 30.8%; non-collapse, 32.4%). The odds ratio for vertebral collapse in A4 vertebral
fractures (using A1 as the reference standard) was 15.4, although the confidence interval
was ample due to the relatively limited data available for multinomial variables in our
sample. The AUC of the model for AO Spine fractures was moderate (0.646) and particularly
influenced by the A4 category, with poor sensitivity (28.2%) and high specificity (96.7%),
indicating that the model helps predict those fractures which will not collapse. Notably,
this model only takes into account the predictive power of the AO Spine classification,
which could be significantly increased with multivariate models that should be explored in
future studies [3].

Theoretically, both A3 and A4 types are considered unstable fractures, and should thus
be managed surgically or with vertebral augmentation techniques. This is in agreement
with previous reports showing a tendency to surgically manage A3/A4 OVFs [24–26].
However, our results show a neat difference in their prognosis (along with their incidence).
This emphasizes the difficulty of choosing an appropriate and standardized treatment in
osteoporotic burst fractures (i.e., A3 and A4). In addition, the surgical approach to A3 and
A4 fractures tends to differ in real-world practice, with A4 fractures more frequently being
operated through anterior approaches. Moreover, A3 fractures present with worse ASIA
Impairment-Scale scores at admission, compared to A4 fractures [27].

Regarding other classification systems, in the Sugita et al.’s classification, the most
frequent category observed was bow-shaped (60%). Interestingly, although Sugita et al.
suggested that swelled-front, bow-shaped, and projecting types had a higher risk of col-
lapse [9], our findings only partially support the idea that the swelled-front type may
be associated with a higher risk of collapse, as it was present in 62.5% of fractures that
eventually collapsed compared to 37.5% of non-collapse OVFs. For bow-shaped formations,
we observed contrary results, as these were much more frequent in OVFs that collapsed
(68.8% vs. 31.3%), and similar frequencies were observed in the case of projecting fractures
(46.2% and 53.8%). Finally, the fact that the DGOU classification showed a trend toward
significance for its association with vertebral collapse should also be noted. Neverthe-



Diagnostics 2024, 14, 2152 8 of 10

less, none of the categories were significantly associated with vertebral collapse, although
incidence data might suggest that OF1 and OF2 fractures have a lower tendency to collapse.

Further studies should explore the particular role of associated factors with a pre-
dictive capacity for vertebral collapse. A previous study by Pazos Mohri et al. found
that immediate standing collapse of thoracolumbar burst OVFs predicts final vertebral
collapse in patients [28]. It is plausible that, with the introduction of novel diagnostic
approaches, specific factors associated with vertebral collapse will be identified in the
near future. For instance, a recent study by Cho et al. [29], using advanced statistics and
machine learning approaches, reported that the initial shape of the vertebra could predict
progressive collapse in OVFs. Similarly, fractal analysis in CT and MRI images, which
evaluates the complexity of bone microarchitecture, could offer further details about the
structural weaknesses that predispose certain fractures to collapse [30,31]. The potential of
fractal analysis to complement existing classification systems for vertebral fractures makes
it a valuable area for future research.

The limitations of this study include its retrospective, single-center nature, and the
relatively limited sample size, especially considering the multinomial nature, and the
disbalanced categories of the classification systems. In addition, we only explored the role
of classification systems for OVFs, but, as previous studies have highlighted [5,32,33], a
number of factors beyond the type of fracture need to be considered to standardize the
most appropriate treatment. Therefore, future studies, ideally prospective and multicentric,
should confirm our findings and correlate them with other variables that could influence
the prognosis of OVFs.

5. Conclusions

The AO Spine is the most useful classification system to predict vertebral collapse
in osteoporotic vertebral fractures. Specifically, A4 fractures were associated with a high
risk of vertebral collapse, confirming the need for non-conservative management in these
fractures. Further multicentric and prospective studies are warranted to confirm these
findings and refine treatment guidelines.
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