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Abstract: In the field of sports performance, sports medicine, and physical rehabilitation, there is
a great interest in the development of protocols and reliable techniques and instruments for the
evaluation of strength produced by athletes. In the last ten years, women’s football has increased
its popularity and participation in numerous countries, which has contributed to players devel-
oping more professionally and requiring more specific muscle strength training to improve their
performance. The aim of this study was to analyze the absolute and relative test–retest reliabilities
of peak muscle strength in knee flexion (FLE) and extension (EXT) controlled using a functional
electromechanical dynamometer (FEMD) in a group of seventeen professional female soccer players
(age = 18.64 ± 0.62 years; weight = 54.72 ± 7.03 kg; height = 1.58 ± 0.04 m; BMI = 21.62 ± 2.70 kg/m2).
Peak muscle strength was measured with knee flexion (FLE) and extension (EXT) movements at
a speed of 0.4 m·s−1 unilaterally in a concentric phase (CON) and an eccentric phase (ECC). No
significant mean differences were found in the test–retest analysis (p > 0.05; effect size < 0.14), and
high reliability was reported for peak muscle strength assessments in both the CON (ICC) = 0.90–0.95)
and the ECC (ICC = 0.85–0.97). Furthermore, stable repeatability was presented for extension in
the CON (CV = 7.39–9.91%) and ECC (CV = 8.65–13.64). The main findings of this study show that
peak muscle strength in knee flexion and extension in CON and ECC is a measure with acceptable
absolute reliability and extremely high relative reliability using the FEMD in professional female
soccer players.

Keywords: muscle strength; dynamometer; reliability; female soccer

1. Introduction

In the field of sports performance, medicine, and physical rehabilitation, there is a
great interest in the creation of protocols and reliable techniques and instruments for the
evaluation of the multiple manifestations of muscle strength produced by athletes [1,2].
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According to several studies [3–6], well-developed muscular strength and power reduce
the probability of injury during competitive play and influence the performance of a soccer
player. Because this physical capacity facilitates fast movements such as sprinting, jumping,
and changes in direction, high-intensity actions are fundamental during competition in
both men’s and women’s soccer [7–9].

Over the last ten years, women’s soccer has increased in popularity and participation
in numerous countries, which has contributed to players developing more professionally
and requiring more specific muscle strength training to improve their performance [10,11].
When organizing personalized training programs, a deeper understanding of the changes
in players’ physical performance is necessary due to the increasing performance level and
competitive expectations of sports teams [12]. Therefore, to analyze an athlete’s degree of
physical fitness and, more importantly, muscle force production, they must be assessed
using accurate equipment and reliable measurements [13].

There are currently devices on the international market that evaluate muscle strength
with concentric or eccentric resistance, allowing for the free and multi-joint movement of
the entire body using a cable or rod without proximal stabilization. One such device is
the functional electromechanical dynamometer (FEMD), which incorporates a reel around
which a cable is wound to the device [14]. In comparison to the gold standard or isokinetic
device, the FEMD is less expensive and easier to use. It can perform in two modes, (a)
dynamic with movement (tonic, kinetic, elastic, inertial, and conical) and (b) static without
movement (isometric and vibratory), allowing for training and evaluation through a stable
and variable resistance/speed [15,16].

Prior studies have demonstrated the validity [17] and reliability of FEMD in a variety
of experimental settings, such as in the study by de Andrades-Ramírez et al. [18], which
presented an acceptable absolute reliability for all strength assessments (CV < 10%) and an
extremely high relative reliability (ICC = 0.92–0.99) in assessments of peak isometric and
isometric/vibratory muscle strength in young university students. In the study by Baena-
Raya et al. [19], the FEMD was found to have high absolute (CV = 2.22–2.51%) and relative
(ICC = 0.94–0.95) reliability for peak muscle strength in twenty-seven male collegiate ath-
letes for an isometric mid-thigh pull-up exercise. In the study by Jerez-Mayorga et al. [20],
relative reliability classified as “high” (ICC = 0.95–0.98) and absolute reliability classified as
“stable” (CV < 10%) were observed for the muscle strength assessment protocols used and
for mean and peak muscle strength in the concentric phase of five sit-to-stand measure-
ments using three incremental loads controlled by an FEMD in sixteen healthy young adult
subjects. Martinez-Garcia et al.’s study [21] reported that the absolute reliability was “ac-
ceptable” (CV = 5.12–8.27%) and relative reliability was “extremely high” (ICC = 0.81–0.98)
of the FEMD for mean muscle strength in a strength test of the shoulder internal and
external rotators in standing position in the concentric and eccentric phases in thirty-two
young university students.

In a previous study, Sánchez-Sánchez et al. [22] analyzed the reliability of a FEMD on
eccentric swing exercise measurements of a hamstring strength movement in male soccer
players, presenting a “high” absolute reliability (CV = 2.80%) and “extremely high” relative
reliability (ICC = 0.94) in mean muscle strength for a velocity of 0.4 m·s−1. In addition,
high absolute reliability (CV = 4.66%) and “extremely high” reliability relative (ICC = 0.91)
were obtained for peak muscle strength. However, for the motor action of knee flexion and
extension in the concentric and eccentric phases in female soccer players, the absolute and
relative reliability for peak muscle strength with FEMD has not yet been demonstrated.

Considering that most FEMD studies have been performed on young male college
students and little evidence exists in women and none in female soccer players, the aim
of this study was to analyze the absolute and relative test–retest reliability of maximal
muscle strength in knee flexion–extension as measured using a FEMD in a group of young
competitive female soccer players. The research hypothesis is that this test will be a reliable
method for the evaluation of concentric and eccentric strength in knee flexion and extension,
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and the information obtained can be used to better control muscle strength and sports
performance.

2. Materials and Methods
2.1. Study Design

A repeated-measure design was used to determine the reliability of a knee FLE-EXT
peak muscle strength test with a FEMD. Participants attended 2 familiarization sessions
(at least 48 h apart); the first session was used to assess anthropometry and to familiarize
participants with the measurement procedures and FEMD. Participants then began the
experimental trials. On each of these days, participants performed maximal muscle strength
assessments for the knee musculature. Each assessment was performed in the Physical
Activity Sciences Laboratory at the Universidad de las Américas Concepción Chile. All
assessments were performed at the same time of day (±1 h) for each participant and
below uniform standard conditions of time (±1 h), temperature (≈21 ◦C), and humidity
(≈60% humidity).

2.2. Participants

Seventeen professional female soccer players (age = 18.64 ± 0.62 years; weight =
54.72 ± 7.03 kg; height = 1.58 ± 0.04 m; BMI = 21.62 ± 2.70 kg/m2; skeletal muscle
mass = 22.67 ± 2.56 kg; body fat mass = 13.49 ± 3.50 kg; body fat percentage =
24.18 ± 4.14%) gave their consent to participate in the research study. The participants
(a) did not present any musculoskeletal pathology in the lower limbs, (b) had at least
3 years of experience in sports practice, and (c) attended more than 85% of the team’s
training sessions. Before giving their assent or writing parental or legal guardian ap-
proval, the study participants were all told about the purpose, nature, and hazards of
the experimental technique. The study protocol was approved by the Ethics and Re-
search Committee of the Universidad Católica de la Santísima Concepción No. 01/2024
(approved 1 April 2024) and was conducted following the Declaration of Helsinki [23].

2.3. Anthropometric Measurement

Weight and body composition were assessed with a multifrequency octopolar BIA
analyzer (model InBody 120, Arlington Heights, IL, USA) at a measurement range of 5 to
250 kg and an accuracy of 0.1 kg).

2.4. Materials

Peak muscle strength was assessed with a FEMD (Dynasystem, Model Research,
Granada, Spain) with a precision of 3 mm for the displacement, 100 g for the detected
load, a sampling frequency of 1000 Hz, and a range of velocities between 0.05 m·s−1 and
2.80 m·s−1. Its core control precisely regulates both force and linear velocity using a 2000 W
electric motor. A wide variety of movements can be assessed in different anatomical planes,
and the device can deliver a wide variety of stimuli (isokinetic, isotonic, elastic, isometric,
inertial, eccentric, and vibratory) for the assessment of muscle strength in its different
manifestations. The displacement and speed data are collected with a 2500 ppr encoder
attached to the roller. The data from the different sensors are obtained at a frequency of
1 kHz. The user applies forces to a rope wound on a roller. A load cell detects the tension
applied to the rope, and the resulting signal is passed to an analog to digital converter with
12-bit resolution.

2.5. Familiarization Protocol

Participants underwent a 45 min FEMD familiarization session. Familiarization con-
sisted of using a load of 5% of body weight as the load for the knee FLE exercises and 10%
for knee extension at a displacement velocity of 0.4 m·s−1.
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2.6. Assessment of Muscle Strength

Prior to the assessment of muscle strength, a general warm-up was performed for
(a) 5 min on a stationary bicycle at 60% of the heart rate reserve and 10 min of joint mobility
in the lower limbs, barbell squats, and hamstring bridges and (b) 10 min of a specific
warm-up of the submaximal test at the selected speed with 2 sets of 3 repetitions and a
3 min break between sets. A load of 5% of body weight was used as the load for the
warm-up exercises of the flexor muscles and 10% for the knee extensor muscles. Peak
muscle force data were measured with a FEMD. Knee muscle strength was evaluated
with the following movements: knee EXT and knee FLE. Participants were asked to exert
their maximum effort. Each movement was evaluated at a speed of 0.4 m·s−1 unilaterally,
recording peak muscle strength values using software provided by the FEMD in the CON
with the movement to the end of ROM and an ECC that attempts to retain the movement
backwards.

The range of motion of the knee was determined with a goniometer, allowing a
functional range for each player of extension from 90◦ to 0◦ and flexion from 150◦ to 90◦.
Subsequently, the warm-up was performed in the same manner as in the familiarization
sessions. Assessments were performed in the seated position for knee extension (Figure 1)
and prone for knee flexion (Figure 2). A series of 3 repetitions was performed for each
of the movements evaluated. The order of strength assessment was as follows: (1) right
knee extension, (2) left knee extension, (3) right knee flexion, and (4) left knee flexion. The
participants were evaluated in the laboratory of Physical Activity Sciences of the University
of the Américas, Concepción, Chile.
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2.7. Statistical Analysis

Means and standard deviations (SDs) were used to report the descriptive statistics col-
lected. The normal distribution of the data was analyzed using the Shapiro–Wilk statistical
model (p > 0.05). The paired samples t-test and the effect size (ES) of the standardized mean
differences for repeated samples were used to compare the magnitude of the muscle force
generated between both sessions. The criteria to interpret the magnitude of the ES were
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the following: very large (>2.00), large (1.20–2.00), moderate (0.60–1.19), small (0.2–0.59),
and null (<0.20) [24]. The absolute reliability was measured using the standard error of
measurement (SEM); in addition, the coefficient of variation (CV) and the relative reliability
were evaluated using the intraclass correlation coefficient (ICC) model. The following
criteria were used to determine high (CV ≤ 5%) and acceptable (CV ≤ 10%) reliability [25].
Relative reliability (ICC) was classified as values close to 0.9 (extremely high reliability), 0.7
(very high), 0.5 (high), 0.3 (moderate), and 0.1 (low) [26]. Bland–Altman plots were used
to quantify systematic bias and 95% limits of agreement between the test and retest [27].
The heteroscedasticity of errors in Bland–Altman plots was defined as a coefficient of
determination (R2 > 0.1) [28]. Pearson’s correlation coefficient was used to calculate the
correlation of all peak muscle strength measurements between both testing sessions. The
criteria for interpreting the magnitude of r were perfect (1.00), almost perfect (0.90–0.99),
very large (0.70–0.89), large (0.50–0.69), moderate (0.30–0.49), small (0.10–0.29), and null
(0.00–0.09) [29]. For all statistical model calculations, a 95% confidence interval was used
in their analysis. Statistical significance was accepted at a p-value < 0.05. All reliability
analyses were performed using a custom spreadsheet [24], while other statistical model
analyses were performed using JASP software (version 0.16.4).

3. Results

No significant differences were found (p > 0.05), and null ES (ES < 0.14) were detected
in the measures of maximum muscle strength in the right and left knee extensors and flexors
in their concentric or eccentric phases. In the test–retest reliability measures, acceptable
absolute reliability and extremely high relative reliability were obtained for all peak muscle
strength assessments, as presented in Table 1.

Table 1. Evaluation of peak force in extension and flexion of the right knee in the concentric and
eccentric phases.

Mean ± SD (N) p-Value ES SEM CV% ICC

Test Retest (95% CI) (95% CI) (95% CI)

Right knee extension

Concentric 175.07 ± 63.99 171.24 ± 56.59 0.43 0.06 14.85
(10.87–23.42)

8.13
(6.06–12.37)

0.95
(0.85–0.98)

Eccentric 253.62 ± 85.53 265.14 ± 84.72 0.34 0.14 24.59
(25.76–52.65)

13.34
(6.67–13.97)

0.85
(0.64–0.94)

Left knee extension

Concentric 159.33 ± 50.17 165.31 ± 47.96 0.29 0.12 16.17
(12.04–24.60)

9.96
(7.42–15.16)

0.90
(0.76–0.96)

Eccentric 261.36 ± 98.36 264.85 ± 95.19 0.59 0.04 18.89
(14.07–28.74)

7.18
(5.35–10.92)

0.97
(0.91–0.99)

Right knee flexion

Concentric 86.69 ± 25.17 89.57 ± 24.57 0.21 0.11 6.51
(4.85–9.91)

7.39
(5.50–11.24)

0.94
(0.85–0.98)

Eccentric 162.17 ± 45.25 175.85 ± 54.20 0.14 0.02 14.62
(10.89–22.25)

8.65
(5.35–13.16)

0.93
(0.81–0.97)

Left knee flexion

Concentric 87.46 ± 30.45 91.76 ± 29.98 0.17 0.14 8.88
(6.61–13.52)

9.91
(7.38–15.08)

0.92
(0.80–0.97)

Eccentric 158.51 ± 47.07 173.94 ± 53.56 0.12 0.13 16.05
(11.95–24.42)

9.65
(7.19–14.69)

0.91
(0.77–0.97)

N: newton; p-value: significance level; SD: standard deviation; ES: Cohen’s d effect size; SEM: standard error
of measurement; CV%: coefficient of variation; ICC: intraclass correlation coefficient; 95% CI: 95% confidence
interval; s: seconds.
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The Bland–Altman plots reveal a low systematic bias (−15.43–3.825 N) for the as-
sessment of peak muscle strength in right knee extension (RKE), peak muscle strength
in left knee extension (LKE), peak muscle strength in right knee flexion (RKF), and peak
muscle strength in left knee flexion (LKF) in the concentric and eccentric phase, as well as a
coefficient of determination of R2 = 0.223−0.018, as shown in Figure 3.
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Figure 3. Bland–Altman plots of test–retest for peak muscle strength in right knee extension (RKE),
peak muscle strength in left knee extension (LKE), peak muscle strength in right knee flexion (RKF),
and peak muscle strength in left knee flexion (LKF) in the concentric and eccentric phases in both test
sessions during maximal muscle strength assessment using a FEMD.
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The magnitude r was almost perfect (0.926) for RKE and very large for LKE, RKF, and
LKF (0.756–0.848) in the concentric phase. In the eccentric phase, the magnitude r was
almost perfect for RKE and KLE (0.901–0.941) and very large for RKF and LKF (0.779–0.826),
and all results were highly significant (p = 0.001), as can be seen in Figure 4.
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4. Discussion

The purpose of this study was to analyze the absolute and relative test–retest reliabili-
ties of peak muscle strength in knee flexion–extension controlled using a FEMD in a group
of young female soccer players. This study reported consistent to acceptable reliability
in all strength evaluations, with no significant variation found between the two sessions
measuring peak muscle strength. The results of our study confirm that the assessment of
peak muscle strength in knee flexion and extension, both concentrically and eccentrically
with FEMD is reliable.

For many decades, knee flexion and extension strength have been evaluated using
isokinetic devices, which are considered the gold standard for strength assessment [30,31].
However, multi-joint isokinetic devices have emerged, and these devices can be used to
reliably and effectively evaluate and train specific muscle activation patterns through
various stimuli, as demonstrated by the use of the FEMD [32]. In previous studies,
FEMDs have proven to be reliable for assessing trunk strength in flexion–extension and
rotation [33–35], as well as shoulder [36] and hip strength [17]. Similar results were found
in all studies that examined the reliability of the FEMD for the assessment of strength;
however, in our study, we found higher absolute reliability values than those found in the
trunk and shoulder flexion and extension studies [35,36]. The assessment of peak muscle
strength in knee flexion and extension is an assessment that has been performed with a
FEMD, and the population evaluated is female soccer players, a population that has not
been studied with FEMDs, since most of the research previously conducted with FEMDs
was in young university students.

Similar results to those of our study were obtained in the level of reliability in the
study by Sánchez-Sánchez et al. [22], which analyzed the peak muscle strength for the
hamstring exercise protocol with eccentric swing at a displacement velocity of 0.4 m·s−1,
equal to that of this study. In the scientific literature, speed in isokinetic tests has been
examined [37,38]. Research indicates that when evaluating strength in the various isokinetic
tests, velocities less than 0.6 m·s−1 are often the most accurate [38]. Although it is possible
that the concentric phase of movements is not practiced as frequently as the concentric
phase, which could explain the greater impact of learning in the eccentric phase [39].

These new functional electromechanical devices need an appropriate and detailed
familiarization process to ensure the repeatability of measurements in the assessment of
different manifestations of strength, especially with variable movements [22]. In a study



Appl. Sci. 2024, 14, 8744 9 of 11

by Koopmann et al. [40], carried out on young handball players, handball throwing skills
showed poor reliability when no familiarization process was carried out to ensure the
learning of the athletic movement to be assessed.

The peak strength, speed, and power of the musculature may be better understood
through the study of a trustworthy evaluation methodology using FEMDs. The previously
assessed procedures exhibited dependable values, enabling the utilization of the evaluation
circumstances that corresponded to each study across all of them. While this study proved
the good reliability of the FEMD, future research should take into consideration some
limitations. Since training history at other levels of competition alternating in games was
not considered, it is not possible to generalize our findings to all athletes in other sports.
Future studies should be initiated that analyze different motor gestures of each sport in
different populations and levels of competition.

5. Conclusions

The main result of our study reports that the evaluation of peak muscle strength in
knee flexion and extension, both concentrically and eccentrically with FEMDs, has relative
and absolute reliability when evaluating professional female soccer players. This makes it
easier to track the progress and development of female footballers by providing another
more affordable option for recording various manifestations of muscle strength and what it
implies for the development of skills specific to the sport.
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