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Abstract

Association rules are commonly used to provide decision-makers with knowledge that helps
them to make good decisions. Most of the published proposals mine association rules
without paying particular attention to temporal information. However, in real-life
applications data usually change over time or presenting different temporal situations.
Therefore, the extracted knowledge may not be useful, since we may not know whether the
rules are currently applicable or whether they will be applicable in the future. For this
reason, in recent years, many methods have been proposed in the literature for mining
temporal association rules, which introduce a greater predictive and descriptive power
providing an additional degree of interestingness. One of the main problems in this
research field is the lack of visibility most works suffer since there is no standard
terminology to refer to it, making it difficult to find and compare proposals and studies in
the field. This contribution attempts to offer a well-defined framework that allows
researchers both to easily locate the previous proposals and to propose well-grounded
methods in the future. To accomplish both objectives, a two-level taxonomy is proposed
according to whether the time variable is considered to provide order to the data collection
and to locate some temporal constraints, or whether it is considered as an attribute within
the learning process. Some recent applications, available software tools, and a
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bibliographical analysis in accordance with the Web of Science are also shown. Finally,
some critical considerations and potential further directions are discussed.

INTRODUCTION

In recent years, the amount of data collected from different application areas has led to

a situation in which the extraction of interesting knowledge from large datasets is a very

attractive and challenging task. Association discovery is one of the most common Data

Mining (DM) techniques used to extract interesting knowledge from large datasets. The

association rules are represented as X Ñ Y , where X and Y are sets of items (symbols) that

satisfy X X Y “ m (Agrawal, Imielinski, & Swami, 1993). These rules allow us to generate

suitable descriptive or predictive models from collected data, which not only explain it better,

but also enable us to predict new data (Han & Kamber, 2006; Zhang & Zhang, 2002). They

have been successfully applied in a wide variety of areas, such as biomedicine (Buxton,

Vohra, Guo, Fogleman, & Patel, 2019), traffic safety (A. Das, Ahmed, & Ghasemzadeh,

2019), software engineering (Miholca, Czibula, & Czibula, 2018), energy (Q. Xiao, Li, Tang,

Li, & Li, 2019), demographic research (Degirmenci & ozbakir, 2018), and so on.

Many of the published methods mine association rules without paying particular attention

to temporal information, considering that the extracted knowledge does not change over

time, thus representing the same knowledge for all temporal situations. However, in real-

life applications data usually change over time or represent different temporal situations, in

such a way that this temporal information is usually included in the data collected. If such

temporal components are not properly taken into account, the knowledge extracted may not

be useful since we will not know whether the association rules are applicable at the present

time or whether they will be applicable in the future (W. Lin, Orgun, & Williams, 2002;

Roddick & Spiliopoulou, 2002). Moreover, interesting knowledge may be overlooked due to

its association with a particular time period or with special events such as sports games (Saleh

& Masseglia, 2011) among others. Designing DM algorithms capable of handling temporal

information is therefore challenge for researchers.

Over the last few years, many methods have been proposed in the literature for mining
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Temporal Association Rules (TARs) from datasets with temporal information, providing a

greater predictive and descriptive power and an additional degree of interestingness (Ao, Luo,

Wang, Zhuang, & He, 2018; Cariñena, 2014; Hong, Lan, Su, Wu, & Wang, 2016; Mannila,

Toivonen, & Verkamo, 1997; Teng, Chen, & Lu, 1990; Y. Li, Ning, Wang, & Jajodia, 2003;

Papapetrou, Kollios, Sclaroff, & Gunopulos, 2009). In addition to dependencies among items

of the same transaction (intratransaction), these rules also represent dependencies among

items of different transactions (intertransaction) that refer to different time moments in the

antecedent and the consequent (Deogun & Jiang, 2005; Lu, Feng, & Han, 2000; Tung, Lu,

Han, & Feng, 2003). Rules such as “after receiving a radiation treatment for 7 days, can-

cer patients suffer from both nausea and magnesium deficiency” are generally mined from

sequential data in which the events are linearly ordered over time. Classical algorithms are

usually extended to mine TARs establishing a time window in which they find the frequent

itemsets (sequences, episodes, etc) that will be used to generate the rules (Mannila et al.,

1997). In other cases, the time variable is also considered in order to represent some type

of temporal constraint, such as temporal distance constraints among events, etc (Höppner,

2001; Harms & Deogun, 2004). Other approaches introduce the time variable in the learning

process to analyze temporal areas in which rules occur. For instance, these approaches can

induce rules representing situations that appear periodically over user-defined time inter-

vals (Ozden, Ramaswamy, & Silberschatz, 1998; Y. Li et al., 2003).

While this research area has received significant attention in recent years, the field

suffers from a lack of standard terminology, making it difficult to find and compare pre-

vious proposals and studies in the field. As an example, the following terms have been

used in the literature to refer to this field: “sequential rules” (Teng et al., 1990), “episode

rules” (Mannila et al., 1997), “inter-transaction association rules” (Lu et al., 2000), “predic-

tion rules” (Deogun & Jiang, 2005), “cyclic association rules” (Ozden et al., 1998), “calen-

dar association rules” (Ramaswamy, Mahajan, & Silberschatz, 1998), “periodical association

rules” (D. Li & Deogun, 2005), “interval-based temporal association rules” (Höppner & Kla-

wonn, 2001), and so on. Notice that some of these terms (such as “sequential rules” or

“episode rules”) could be even more general than TARs since the data can be sequentially

ordered by different criteria other than time.
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For all of the above reasons, this contribution aims to provide an overview of the current

state of the TAR field by collecting, organizing and summarizing the previous proposals

in order to help students and researchers who may be less familiar with the literature to

easily locate the previous proposals and to propose well-grounded methods in the future.

To that end, this contribution offers a well-defined framework proposing a new and easy to

understand two-level taxonomy. Firstly, it establishes whether the time variable is considered

to provide order to the data collection and to locate some temporal constraints, or whether

it is considered as an attribute within the learning process. Secondly, it proposes different

categories (identifying different use cases) based on the temporal information type or on how

this temporal information is included in the learning process. It facilitates understanding

of the state-of-the-art for researchers without a strong background in the field and enables

them to search for articles related to the temporal type problems that they are trying to

solve. Some of the most relevant proposals associated with each category are introduced

as well as some contributions regarding previously recorded real-world applications, so that

researchers facing problems with data collections that include temporal information might

easily understand the previous proposals which contain potential solutions or inspiration

relating to their specific problem.

In addition, this contribution includes a specific section comprising a list of recent real-

world applications in which TARs have been successfully applied, highlighting the different

application domains and linking them to the use cases in the proposed taxonomy. It also

identifies some free and open source software (from several repositories: CRAN, Github,

Pypi) and open-source datasets that support the use of TARs to address real-world appli-

cations. Notice that open source resources ease the application and adaptation of TARs to

new problems and are essential to spreading TARs to industry and to new subjects.

A bibliographical analysis of the research field is also shown in accordance with the Web

of Science (WoS) 1. We also draw visual science maps (Moya-Anegón et al., 2004) based

on the free software Science Mapping Analysis Tool (SciMAT) (M. J. Cobo, López-Herrera,

Herrera-Viedma, & Herrera, 2012) and The Open Graph Viz Platform (Gephi). Finally, some

critical considerations and potential research directions are discussed, in order to provide

1https://www.webofknowledge.com/
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some recommendations that should be taken into account for further publications and some

possible further directions, such as the need for new metrics and/or application of temporal

information to IoT applications among others, in a similar way to that performed in temporal

pattern mining (Radhakrishna, Kumar, & Janaki, 2015; Aljawarneh, Radhakrishna, Kumar,

& Janaki, 2017; Radhakrishna, Aljawarneh, Kumar, & Janaki, 2019).

The paper is organized as follows. The second section presents some fundamental con-

cepts regarding association rules and TARs. The third section presents the proposed taxon-

omy to classify the methods for mining TARs. The fourth and fifth sections introduce each

of the categories of the taxonomy, presenting some of the most relevant proposals for each

one. The sixth section focuses on available software tools and application papers of TARs.

The seventh section shows a bibliographical analysis of the published proposals on TARs,

revealing the main up-to-date research tendencies. The eighth section takes into account

some critical reflexions and potential research directions. Finally, the ninth section makes

some concluding remarks.

TEMPORAL ASSOCIATION RULES

Association rules enable the identification of dependences or correlations between the el-

ements or values (items) of a dataset, which can be of different types (discrete, binary,

quantitative, etc). These rules are defined as an expression of the type X Ñ Y (with

X X Y “ m), where X and Y are sets of items (itemsets) (Agrawal et al., 1993). For in-

stance, the rule {high prices of airline 1}Ñ{low prices of airline 2} could be extracted from

travel agency data, indicating that the second airline offers low prices when the first airline

raises the prices. They are commonly evaluated making use of the classical measures support

and confidence. The support of an itemset I (which will be called SuppIq) is defined as the

frequency with which I appears in a dataset. Based on this definition, the measures support

and confidence of the rule X Ñ Y are defined as follows:

SupportpX Ñ Y q “
SuppXY q

| N |
, ConfidencepX Ñ Y q “

SuppXY q

SuppXq
, (1)

where | N | is the number of examples/transactions in the dataset, and SuppXY q and SuppY q
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are the support of the itemsets XY and X, respectively. Many methods based on the classic

support-confidence framework have been proposed to mine association rules. The user defines

a minimum support (minSup) and a minimum confidence (minConf ) to firstly extract all

the itemsets with support greater than or equal to minSup (frequent itemsets) (Fournier-

Viger, Lin, Vo, et al., 2017), and then, all the rules with confidence greater than or equal

to minConf are obtained from them. However, it has been pointed out that they present

several problems (Berzal, Blanco, Sánchez, & Vila, 2002). On the one hand, the confidence

is unable to detect statistical independence or negative dependence between the antecedent

and the consequent since it does not take into account the consequent support. On the other

hand, itemsets with very high support can result in unhelpful rules since they are present in

many examples of the datasets and any other itemset of the dataset (despite its meaning)

may seem to be a good predictor of their presence. Therefore, several authors have proposed

other measures to overcome these problems and to select and rank the rules on the basis

of their potential interest to the user (Geng & Hamilton, 2006; Tan, Kumar, & Srivastava,

2002).

As we explained in the introduction, there is a need to explicitly consider the temporal

information when it is available. For this reason, in recent years many methods have been

proposed for mining TARs from temporal datasets. Temporal datasets can be defined in

different ways depending on the time attribute: each transaction/sequence in the dataset is

associated with a time-stamp; each item/event in a transaction is associated with a time-

interval; and each item/event in a transaction/sequence is associated with a time-stamp in

which it occurs. In contrast with the classical association rules, TARs usually add a time

constraint (a point in time or a time range) to the rule to indicate when it holds. These rules

can be defined from several temporal itemsets and frameworks, but two of the most popular

frameworks to extract temporal itemsets are: sequential patterns and episodes.

The term of sequential pattern was introduced by Agrawal and SriKant (Agrawal &

Srikant, 1995) from a customer dataset. We will consider the same customer dataset as an

example in order to introduce this term, where a customer identifier (id), a time stamp,

and a list of products (itemset) are included in each transaction. A new dataset can be

generated from this one, in which the transactions with the same id are ordered by their
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timestamps and arranged in a single sequence, called customer´sequence. Notice that, each

customer ´ sequence is a sequence of itemsets. For instance, let us take a simple problem

of a customer dataset with 4 customers and 5 items: a, b, c, d and e (see Table 1). Table 1a

shows the values of the 9 transactions of the dataset ordered by id and time stamp. Table 1b

shows the customer-sequences obtained from Table 1a.

ID Time Stamp Purchased Items

1 April 26, 2019 a

1 April 27, 2019 b

1 April 28, 2019 c,d

2 April 27, 2019 b,c

2 April 28, 2019 a

3 April 26, 2019 d,e

4 April 26, 2019 a

4 April 27, 2019 b

4 April 28, 2019 c

(a) A simple example of a customer dataset.

ID Customer-Sequence

1 x(a), (b), (c,d)y

2 x(b,c), (a)y

3 x(d,e)y

4 x(a), (b), (c)y

(b) Dataset with customer-sequences.

Table 1: A simple problem with 4 customers and 5 items.

In general, any problem with sequential patterns where a sequence of itemsets can be ob-

tained could be addressed in a similar way. In this way, a sequence of itemsets xX1, X2, ..., Xny

is considered a subsequence of another xY1, Y2, ..., Ymy with n ď m if X1 Ď Yi1 , X2 Ď

Yi2 , ..., Xn Ď Yin and i1 ă i2 ă ... ă in. Thus, the support of a sequence S (SuppSq) is

defined as the frequency with which S is a subsequence of the customer-sequences in the

dataset. For instance, the support of the sequence S “ xpaq, pcqy is 0.5 because S is a subse-

quence of the customer-sequences 1 and 4 of Table 1b. Many methods have been proposed

to mine sequential patterns from different types of datasets (time series, transactions, etc)

and then to generate temporal rules from them (Harms & Deogun, 2004; Q. Li, Feng, &

Wong, 2005).

Another approach is to discover TARs from a time-ordered sequence of events (such as
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alarm streams, web navigation logs, etc) in which events may occur at a point in time or

at a time range (Mannila et al., 1997; Nguyen, Luo, Phung, & Venkatesh, 2018). This task

consists of finding event collections (episodes) that appear frequently enough in a sequence

in order to generate the corresponding rules that enable the prediction of a plausible sub-

sequence continuation. These episodes can be classified into three classes (Mannila et al.,

1997): Serial episode, when the order among events is total2; Parallel episode, when the

order among events has no constraints; and Non-Serial and Non-Parallel episode, when the

events have no constraints in the order but the order among some of them is total. Let us

take a simple sequence with 4 different events (a, b, c and d), where each event has the

associated time stamp in which it occurred:

S “ xpa, 1q, pb, 2q, pd, 3q, pc, 4q, pa, 5q, pc, 6q, pa, 7q, pb, 8q, pc, 9qy

Figure 1 shows a simple example of each episode class together with a corresponding example

subsequence S 1 in which it occurs. An episode A is considered a subepisode of another B

(A ĺ B) if all events and the constraints in the order of A are included in B. Respectively,

the episode B is considered a superepisode of the episode A. For instance, the serial episode

pa, cq is a subepisode of the serial episode pa, c, dq. An episode A occurs in an event sequence

when A is a subepisode of the sequence. Thus, the support of an episode A is usually

calculated establishing a time window w with a width within which the episode must occur.

The support is defined as the fraction of windows w in which the episode occurs (Laxman,

Sastry, & Unnikrishnan, 2005). For instance, let us take a window with width 5 for the event

sequence S listed above. The serial episode pa, b, cq occurs in 5 of the 13 windows w on S

(see Figure 2), its support being 0.38. Many methods have been proposed to mine frequent

episodes and then to generate temporal rules from them (Ao et al., 2018).

Often, in many real applications interesting knowledge is associated with a particular

time period or with special events. The problem is to find valid time intervals during which

rules hold and the discovery of possible periodicities is possible. The periodicity constraint

may even be relaxed in order to find interesting rules for which some of its occurrences will

be misaligned due to noise events. Moreover, the periodicities of real-life events are not

2The order among events is total when all the events occur in this order in the sequence.
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Figure 1: Example of the three classes of episodes.

Figure 2: Windows in which the serial episode pa, b, cq occurs on S with a windows w with

width 5.

always so regular and usually contain some disturbances. Discovering such rules may lead

to the extraction of useful knowledge for the users.

The different frameworks and applications for which the temporal rules are used have

resulted in a lack of standard terminology in the literature. For example, the following terms

have been used to refer to this field: “sequential rules” (Teng et al., 1990), which represent

temporal dependences from a set of sequences; “episode rules” (Mannila et al., 1997), which

are defined as an expression X Ñ Y , where X and Y are episodes that occur in this order

in a sequence of events; “inter-transaction association rules” (Lu et al., 2000), which are de-

fined as “rules that express the association among items from different transaction records”;

“prediction rules” (Deogun & Jiang, 2005), that are defined as ”TARs that are useful for

prediction, presenting a time lag between the antecedent and consequent and including only

the most important factors in the antecedent”; “cyclic association rules” (Ozden et al., 1998),

which are defined as ”rules with the minimum confidence and support at regular time in-

tervals”; “calendar association rules” (Ramaswamy et al., 1998), that are defined as ”rules

with the minimum confidence and support during every time unit contained in a calendar,

modulo a mismatch threshold, which allows for a certain amount of error in the matching”;

9



“periodical association rules” (D. Li & Deogun, 2005), that are defined as ”rules focused

on finding the periodic events occurring at regular time intervals”; “interval-based temporal

association rules” (Höppner & Klawonn, 2001), which are defined as ”rules that are mined

from temporal data in which events/items are better treated as intervals rather than time

points”; etc. Notice that some of these terms, such as “sequential rules”, “episode rules”,

and so on, are more general than TARs since the data can be sequentially ordered by a

criterion other than time.

This fact makes it difficult to find proposals and relevant studies in this research field. In

what follows, we will introduce a taxonomy in order to offer a well-defined framework that

allows researchers to easily locate the published proposals and to propose well-grounded

methods in the future.

TAXONOMIC SCHEME

In order to analyze the state-of-the-art, we have looked at a broad variety of proposals to

identify TARs from datasets with temporal information. To clear up and to classify them,

we propose a taxonomy with two levels in Figure 3.

The first level categorizes the proposals depending on whether the time variable is con-

sidered as an implied or integral component. The following two main categories are thus

obtained:

• Time as Implied Component. The time variable is considered to provide order to the

data collection and/or to locate some temporal constraints that determine the relevance

of an event/data/item with respect to another.

• Time as Integral Component. The time variable is considered as an attribute within

the learning process and may be an integral component of the rule model.

In the second level, the proposals of the first category (implied component) are classified

based on the type of temporal datasets from which the rules are extracted: sequential and

inter-transaction. The category sequential gathers proposals that mine episode or sequential

rules from a single sequence or multiple sequences in which the time is used to provide a linear
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Figure 3: Proposed taxonomy for temporal association rules.

ordering of the occurrence of data/events. The category inter-transactions makes reference

to groups of proposals that mine inter-transaction association rules from transaction datasets

in which temporal components are usually included in each transaction as the date and/or

time in which the data/events occurred.

The proposals of the second category (integral component) are organized depending on

how the temporal information is included in the learning process: periodical, time-interval,

lifespan, changes and incremental. The category periodical makes reference to groups of

proposals in which periodicity constraints are considered in the extraction process. This

category is divided into two subcategories (cyclic and calendar) depending on whether the

temporal partitions are expressed by regular temporal periods or by a calendar scheme. The

category time-interval includes proposals which represent temporal associations considering
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the duration of the events. The category lifespan gathers proposals that consider the tem-

poral interval in which the items exist in the datasets. The category changes is related to

proposals that mine temporal meta-rules to represent changes in association rules over time.

Finally, the category incremental includes proposals that solve the problem of mining TARs

from incremental datasets.

Moreover, we have considered other additional aspects such as whether the proposals are

designed for a single sequence or for multiple sequences, or whether the proposals make use

of particular techniques, such as the fuzzy logic, and so on, to sort the available proposals

in some categories of the taxonomy. This taxonomy allows us to classify the search space in

which we may find the existing proposals. A brief description of some related proposals for

each category will be provided in the following sections.

CONSIDERING TIME AS AN IMPLIED COMPONENT

IN THE MINING PROCESS

This section presents a brief introduction of the two subcategories in which the proposals

consider the time variable to provide order to the data collection and/or to locate some

temporal constraints that determine the relevance of an event/data/item with respect to

another. They are: sequential and inter-transaction.

Sequential category

Many data collections are values/event sequences ordered linearly according to the time in

which they occurred, such as sequences of alarms in a telecommunications network, human

activities, states in the evolution of a disease, time-series microarray, and so on. Users

may be interested in mining temporal rules from these data collections, in which antecedent

and consequent refer to sequential moments in time, representing some kind of ordered

dependence between data/events of the sequences with a given confidence that can be used

for prediction (Lo, Khoo, & Wong, 2009; Fournier-Viger, Faghihi, Nkambou, & Nguifo, 2012).

The sequential or episode rules are similar to the classical association rules but considering
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that the antecedent must occur before the consequent and that they are mined from sequence

databases (Teng et al., 1990). In addition, the required confidence avoids the limitation of

sequential patterns, which even while being frequent may have a low confidence, and which

are therefore unhelpful for decision making or prediction.

These rules are usually generated from sequential patterns or episodes (Febrer-Hernández

& Hernández-Palancar, 2012; Fournier-Viger, Lin, Kiran, Koh, & Thomas, 2017; Mooney &

Roddick, 2013; Zimmermann, 2014) that appear in a single sequence (Mannila et al., 1997;

Deogun & Jiang, 2005), across sequences (Lo, Ramalingam, Ranganath, & Vaswani, 2012;

G. Das, Lin, Mannila, Renganathan, & Smyth, 1998), or common to multiple sequences (Lo

et al., 2009; Fournier-Viger, Wu, Tseng, Cao, & Nkambou, 2015). Classical algorithms are

usually extended making use of a sliding-window in which they find the frequent itemsets

that will be used to generate the rules (Mannila et al., 1997; Fournier-Viger, Wu, Tseng, &

Nkambou, 2012). Some algorithms also include other temporal constraints such as a maxi-

mum or minimum amount of time in which the rules must occur (Harms & Deogun, 2004;

Nam, KiYoung, & Doheon, 2009) or a maximum elapsed time between any two consecutive

events (Nam et al., 2009; Ao et al., 2018). Some variants try to relax the order constraint

of the events for mining the rules (Fournier-Viger et al., 2015; Setiawan & Yahya, 2018) or

define a rule template to mine relationships in which the user is interested (Bettini, Wang,

& Jajodia, 1998; Sudkamp, 2005; Concaro, Sacchi, Cerra, Fratino, & Bellazzi, 2011). Most

algorithms for mining sequential rules focus on generating all the possible rules (containing a

high number of redundant rules), making mining inefficient. In order to solve this problem,

some methods have specifically been designed to mine non-redundant sequential rules directly

from sequence datasets (Tran, Le, Vo, & Hong, 2016). Other methods make use of specific

data structures to improve the efficiency and interpretability of the rule mining (L. Wang,

Meng, Xu, & Peng, 2018; Fournier-Viger, Gueniche, Zida, & Tseng, 2014).

The sequence or episode rules have been successfully applied to a wide variety of applica-

tions. For instance, they have been used to quickly identify unused spectrum bands that allow

opportunistic access by radios seeking spectrum, alleviating the problem of constantly in-

creasing demand for communication bandwidth (Heydari & Tajer, 2019), to improve system

security through the analysis of event logs with historical information of potential security
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breaches (Khan & Parkinson, 2018), to predict the traffic congestion level (Wen, Zhang, Sun,

Wang, & Xu, 2019), and so on.

Inter-Transaction Category

On the other hand, many real applications provide transaction datasets in which the tem-

poral component is included in each transaction as the date and/or time in which they

occurred. In such cases, users may be interested in mining dependences among items of

different transactions instead of dependences among items within the same transaction. Al-

though transactions occur in certain contexts, such as time, place, etc., such contexts have

been ignored in classical association rule mining. When the items in the transaction database

are organized by transaction time, the inter-transaction association rules enable the repre-

sentation of associations through the dimension of time (Lu et al., 2000). These kinds of rules

are usually generated making use of a sliding-window that allow a division of the dataset into

equal length intervals, mining the interesting rules that span a certain number of intervals.

To this end, some proposals present an extension of the classical method Apriori (Agrawal

et al., 1993) for mining inter-transaction association rules (Lu et al., 2000; Feng, Dillon, &

Liu, 2001; Q. Li et al., 2005; J.-W. Huang, Dai, & Chen, 2007). In order to improve the

efficiency of the extraction process, some methods have specifically been designed for mining

inter-transaction association rules, such as in Tung et al. (Tung et al., 2003) in which they

first mine frequent intertransaction itemsets and they then form intertransaction rules from

them, or in Wang C. S. (C.-S. Wang, 2015) in which the author characterizes non-redundant

inter-transaction rules and presents a method for mining non-redundant inter-transaction

rules efficiently. Some researchers have also presented proposals to select the size of the

time-window to optimize the frequency of the extracted dependencies (Y. Xiao, Tian, &

Zhao, 2014).

Fuzzy set theory has been used more and more frequently in intelligent systems because

of its simplicity and similarity to human reasoning (Ishibuchi, Nakashima, & Nii, 2004).

Some researchers have made use of fuzzy logic to propose new methods for mining these

kinds of rules. For instance, in (Y.-P. Huang & Kao, 2005; Y.-P. Huang, Kao, & Sandnes,

2007) the authors propose an extension of some classical algorithms (Apriori and PrefixSpan)
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which consider a user-defined sliding window to generate only the fuzzy rules whose span

is less than or equal to this window. Evolutionary algorithms have also been used to learn

membership function contexts for mining the fuzzy rules (Matthews, Gongora, & Hopgood,

2011, 2013).

These rules have been successfully applied in many real applications. For instance, among

other examples, they have been used to represent the dynamic characteristics of regional traf-

fic congestion (Xie, Wang, & Zhao, 2020), and to generate rules from transaction databases

in complex dynamical systems of financial markets making use of closed inter-transaction

itemsets (Hsieh, Yang, Wu, & Chen, 2016).

CONSIDERING TIME AS AN INTEGRAL COMPO-

NENT IN THE MINING PROCESS

In the following subsections, we present a brief description of different subcategories in which

the proposals include time as an attribute within the learning process and in which it may

be an integral component of the rule model. They are: periodical, time-interval, lifespan,

changes and incremental.

Periodical Category

Sometimes users are interested in discovering recurring association rules that are found

in many domains. For instance, rules that represent cyclical behaviours of consumers in

E-Commerce in order to increase the sales of commercial organizations and make more

profit (Thuan, Toan, & Tuan, 2012), rules that allow us to represent cyclical behaviors

of people from the large amount of data available in the social networks (Tebourski, Ab-

dessalem Kar, & Ghezala, 2015), and so on. These cyclic rules exist only in certain time

intervals and they do not occur in the remainder. The cyclic association rules are simi-

lar to the classical association rules but represent dependences that occur periodically over

time (Ozden et al., 1998). To generate these rules, the classical Apriori method is used to

generate the association rules in each time unit (user-defined partitions of regular temporal
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periods). Then, a simple pattern matching algorithm is applied to detect the cycles (Ozden

et al., 1998). In order to improve the efficiency of the extraction process, some methods also

include user-specified constraints in the process (Tebourski et al., 2015) or are specifically

designed for mining non-redundant cyclic association rules (Tebourski & Karaa, 2012). A

more general approach is considered by Chen et al. (X. Chen & Petrounias, 1999) for finding

by rule the longest set of contiguous time intervals in which each of them is periodical.

However, different cyclic rules may be discovered depending on the time intervals consid-

ered. To address this issue, the temporal partition may be defined with multiple granulari-

ties making use of a calendar scheme (for instance, week, day, and hour), reducing the need

for prior knowledge to define the time intervals (Ramaswamy et al., 1998). The classical

method for mining calendar association rules extends the second step of the classical cyclic

TAR extraction method (Ozden et al., 1998), in order to consider a calendar scheme in the

process (Ramaswamy et al., 1998). Some proposals introduce different techniques to im-

prove the extraction process efficiency, such as new data structures to process each temporal

partition (Verma & Vyas, 2005; Verma, Vyas, & Vyas, 2005). However, periodicities in the

datasets are not usually very precise and have disturbances. In addition, users tend to define

temporal constraints in a vague and imprecise way. For this reason, some authors make use

of fuzzy logic to define the calendar schema in a way that replicates the natural language

more closely (Ishibuchi et al., 2004). For instance, Lee et al. proposed two algorithms (W.-

J. Lee & Lee, 2004; W.-J. Lee, Jiang, & Lee, 2008) that allow the calendar schema to be

defined by means of fuzzy sets, as these are more flexible with the restrictions of the user in

the rule mining process.

Many methods have been used to extract rules exhibiting periodic behavior, but the

concept of periodic behavior is defined very strictly and many rules may be removed in the

mining process. A periodic association rule always requires the same amount of time to have

elapsed between two occurrences. Thus, these methods are fairly rigid, failing to capture

a rule that would exhibit a pattern in most of the time intervals but not all the time. To

address this issue, different proposals have been presented to make the concept of periodicity

more flexible (Han, Gong, & Yin, 1998; Fournier-Viger et al., 2019). For instance, Li et al.

(D. Li & Deogun, 2005) extend the approach of Han et al. (Han, Dong, & Yin, 1999)
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incorporating the concept of the slide window to extract rules whose periodicity is defined

by the sliding window size.

Time-Interval Category

In many application domains, temporal datasets include not only time-stamped data, or

time points, but also time intervals that are part of the input data (for instance, the admin-

istration of a vitamin for 1 month) or are abstractions/interpretations derived from them as

part of the analysis process (for instance, a week of anaemia) (Bohlen, Busatto, & Jensen,

1998; Moskovitch, Elovici, & Rokach, 2008). This temporal information must be considered

in the extraction process in order to obtain consistent interval-based temporal association

rules. For instance, the duration of faults in an industrial process is essential information

when we try to find correlations among them. Because of this, Laxman et al. (Laxman, Un-

nikrishnan, & Sastry, 2002; Laxman, Sastry, & Unnikrishnan, 2007) extended the definition

of episode (Mannila et al., 1997) to incorporate event duration constraints.

Temporal rule discovery from these kinds of datasets is more complex and requires a

different approach than those used to mine patterns from point-based datasets (such as se-

quential patterns or episodes). An interval involves a duration and, therefore, the extracted

patterns may have a different semantic than simply before and after. Allen’s temporal in-

terval logic and its extensions (Allen, 1983; Roddick & Mooney, 2005) are typically used to

represent the relationships among intervals (Höppner & Klawonn, 2001; Moskovitch & Sha-

har, 2015). For instance, Winarko et al. presented ARMADA (Winarko & Roddick, 2007),

a method based on the algorithm for mining sequential patterns MEMISP (M.-Y. Lin &

Lee, 2002). ARMADA generates richer temporal association rules from interval-based data

considering a maximum gap time constraint to reduce the number of rules generated. Papa-

petrou et al. (Papapetrou et al., 2009) proposed three methods based on Apriori by including

constraints to discover temporal relations from interval-based event sequences, so generating

the top k rules that maximize a given interestingness measure. Lee et al. (Y. J. Lee, Lee, Chai,

Hwang, & Ryu, 2009) presented a pre-processing algorithm to generate the temporal interval

data and a method to extract temporal rules from them. Nazerfard et al. (Nazerfard, Rashidi,

& Cook, 2011) presented TEREDA (Nazerfard et al., 2011), a method for mining tempo-
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ral aspects (such as the usual start time and duration) of daily activities using TAR mining

techniques. A method based on the algorithm Progressive-Partition-Miner (PPM)(C.-H. Lee,

Chen, & Lin, 2003) is also proposed for mining academic relationships considering the du-

ration of the academic activities (F. Huang, Zou, Liu, & He, 2012). Finally, a proposal is

presented for mining TARs from point-like events and interval-like events considering user-

defined rule templates to capture relationships in which the user is interested (Concaro et

al., 2011).

Some researchers have made use of fuzzy logic to propose new methods for mining rules

from interval-based data. Sudkamp (Sudkamp, 2005) proposes a method based on Apriori

for mining fuzzy temporal relationships from multiple sources making use of fuzzy logic

to consider temporal durations (for instance, a short period) and temporal constraints (for

instance, shortly after). Wu (Wu, 2010) presents a method for mining fuzzy association rules

from web user access patterns in web logs using fuzzy logic to represent the time duration

that the users spent on the web pages.

These methods have been applied to a wide variety of applications. Further examples

of application include but are not limited to: the recognition of complex activities of daily

life in the area of mobile computing because the sensors included in such devices provide

a large amount of interesting information for mobile applications (L. Liu et al., 2016); the

prediction of medical diagnoses from hospital data stored during the different hospital stays

of individual patients, considering as simultaneous the events that occur during the time

that the patients are hospitalized in the same medical unit (Vandromme et al., 2017); the

prediction of cardiorespiratory instability in step-down unit patients from continuous mon-

itoring data of physiologic vital sign measurement, providing the predicted event’s time of

occurrence (Guillame-Bert et al., 2017).

Lifespan Category

An important aspect in the mining process is to consider temporal information about the

existence of an item in transaction datasets. The lifespan of an item is defined as the time

period between the first and the last time it appears in a transaction dataset. If the lifespan

of the items is considered in order to calculate the support of the rules, a greater number

18



of rules may achieve a support equal to or greater than minSup. For instance, let us take a

simple dataset with 1000 transactions of an e-commerce store (such as Amazon, etc), which

has been recorded during the last 10 years at 100 transactions per month, and a minSup of

0.5% (50 transactions). In this dataset, a product that has been bought 5 times per year

is considered a frequent item while a new product included in the dataset in the last year

that has been bought 40 times is an infrequent item. Although the new product has been

very popular since its appearance (eight times more popular than the first), it appears in a

small fraction of transactions with respect to the total number of transactions and will not

be considered to generate rules. This temporary information (lifespan) is also used to prune

datasets, removing those items that are not interesting for the user at present (Ale & Rossi,

2000).

Some researchers have made use of fuzzy logic to transform quantitative values in the

transactions to fuzzy sets in order to generate fuzzy temporal association rules making use of

the fuzzy count and lifespan of each item (C.-H. Chen, Lan, Hong, & Lin, 2016). However, the

given membership functions may have a critical influence on the final mining results. For this

reason, some proposals have also incorporated a learning or tuning of the functions (Chamazi

& Motameni, 2019).

These methods have been mostly used on the transaction databases of different types

of companies in order to detect consumer preferences (C.-H. Chen et al., 2016; Chamazi

& Motameni, 2019), however they can be used in many other application domains. For

instance, these methods could be used in Internet of Things applications to detect faults

within a sensor network or to detect sensors whose activity has been considerably reduced,

and they can be relocated or removed from the network.

Changes Category

The world is changing faster than ever due to technological development. This makes it

essential to obtain useful knowledge which allows us to detect, evaluate and respond to

changing conditions in a timely and intelligent manner (Boettcher, 2011). For this reason,

a number of methods have been proposed to detect changes in rules or patterns extracted

from data collected in different time periods. The main idea consist of introducing a level
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of abstraction that allows knowledge to be identified from the extracted elements by means

of meta-rules. For instance, Huang et al. (T.-K. Huang, Huang, & Chuang, 2016) propose a

method for mining association rules representing changes in students’ learning performance

and characteristics. Song et al. (Song, Kim, & Kim, 2001) present a method to detect

changes in customer behavior by association rules generated from datasets at different time-

periods. Au et al. (Au & Chan, 2002) generate fuzzy meta-rules to represent changes in the

support and/or confidence of the association rules over time, which is useful to predict how

association rules will be updated in the near future.

Incremental Category

Currently, temporal datasets are continuously updated and increased. Because of this, the

rules that have previously been generated need to be updated, removing those rules that are

no longer relevant and adding valid new rules. Re-running the temporal mining algorithm

every time is ineffective since it neglects the previously discovered rules, and repeats the

work done previously. Therefore, several methods have been proposed to solve the problem

of mining incremental TARs. Gharib et al. (Gharib, Nassar, Taha, & Abraham, 2010) present

an incremental algorithm based on the Sliding-Window Filtering algorithm (C.-H. Lee, Lin,

& Chen, 2001), which maintains temporal frequent itemsets after the temporal transaction

database has been updated in order to reduce the time needed for generating new candidates.

Fouad et al. (Fouad & Mostafa, 2017) present a method for the efficient mining of incremental

temporal association rules, making use of a new data structure and of previously discovered

frequent temporal itemsets.

These methods have been applied successfully in a wide variety of applications. Teng et

al. (Teng et al., 1990) present a method for mining sequential rules to detect anomalies

in user behavior, which are adapted by means of a time-based inductive engine. Zhou et

al. (Zhou & Hirasawa, 2017) propose a genetic algorithm for mining sequential rules to detect

customer preferences, which are adapted on-line by making use of an ant colony optimization

algorithm because customer preferences change over time.
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REAL-WORLD APPLICATIONS AND AVAILABLE

SOFTWARE TOOLS

The amount of data collected from different application areas in which temporal information

is implicitly or explicitly included has led to a situation in which the extraction of interesting

knowledge from temporal datasets is a very attractive and challenging task. TARs allow us

to generate models with a greater predictive and descriptive power and an additional degree

of interestingness, which can be successfully applied in a wide variety of applications. Table 2

shows a short list of recent application contributions that have been addressed making use

of TARs. At a glance, we can see a large amount of quite different applications which

are evidently related to very diverse general areas. Specifically, we can find applications

in industry, security, medicine and healthcare, among many others, with the number of

application proposals in the areas of medicine and healthcare particularly noteworthy. This

demonstrates the great potentiality of TARs to be applied successfully to a wide variety of

problems. In addition, the number of application contributions has increased in recent years,

providing further evidence of the necessity of and growing interest in TARs for the resolution

of real-world problems.

Although a high number of proposals on TARs have been published over the years, only

a few researchers share the source codes associated with their proposals and the codes or

descriptions available in books and journals often present inconsistencies (Thimbleby, 2003).

This issue, along with the high complexity of some proposals, prevents the widespread use of

TARs in real-world applications. Moreover, researchers need to reimplement methods to be

able to compare their proposals, spending a great amount of time reimplementing methods

that in many cases are not as efficient as the original versions. To address this issue, some

free and open source software tools have been released with the aim of supporting the use of

TARs to address real-world applications. Notice that the open source model facilitates the

application and adaptation of TARs to new problems and is essential to spreading TARs to

new subjects and industry (Open Source Initative. 1998 , n.d.).

SPMF (Fournier-Viger, Gomariz, Gueniche, et al., 2014) is an open-source data mining

library released under the GPL v3 license and developed in Java, so that, it can be run on all
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Application Domain Description (References) Category

Industry Signal processing (Heydari & Tajer, 2019)•

Economy Dynamical systems of financial markets (Hsieh et al., 2016) e

Security Security event log analysis (Khan & Parkinson, 2018)•

Traffic Management Intelligent transportation management (Wen et al., 2019)•, Traffic congestion

(Xie et al., 2020) e

Human behaviors Daily living activity recognition (L. Liu et al., 2016)◦, Changes in

students’ learning performance and characteristics (T.-K. Huang et al., 2016)ö,

Detection of consumer preferences in supermarkets (Zhou & Hirasawa, 2017)�

(Panchal & Prajapati, 2018) 2 (Chamazi & Motameni, 2019) ˛, Prediction of

human behaviors in manufacturing companies (Setiawan & Yahya, 2018)•, Travel

diaries analysis (Vu, Li, Law, & Zhang, 2018)•

Medicine and Screening potential drug interactions (Ji et al., 2016)•, Application to hospital

Healthcare data (Vandromme et al., 2017)◦, Drug safety signal detection (Arnaud et al., 2017),

Forecast cardiorespiratory instability (Guillame-Bert et al., 2017)◦, Cancer

treatment (Nguyen et al., 2018)•, Coronary heart disease diagnosis

(Orphanou et al., 2018)◦, Prediction of developmental stages in drug

abuse (Kilgore, Korneeva, Arnold, Trutschl, & Cvek, 2019)•, Health knowledge

system (Giannoulis, Kondylakis, & Marakakis, 2019)◦, Heart diseases

(Bou Rjeily, Badr, Hajjarm El Hassani, & Andres, 2019)•
• Sequential Category, e Inter-Transaction Category, 2 Periodical Category, ◦ Time-Interval Category,

˛ Lifespan Category, ö Changes Category, � Incremental Category.

Table 2: Recent application contributions on TARs by application domain.

major platforms. This library provides more than 110 algorithms for sequential rule mining,

sequence prediction, association rule mining, sequential pattern mining, periodic pattern

mining, episode mining, and so on, and several temporal datasets. In addition, SPMF can

be embedded in other Java codes easily and can be run as a standalone software or by a

graphical user interface. Several R packages can also be found in the CRAN repository for

mining sequential rules, sequential pattern, and so on, and for handling temporal datasets 3.

For instance, the package arulesSequences provides interfaces to the C++ implementation of

cSPADE, the package timetools provides several tools to manipulate sequential and seasonal

time series, and the package eventInterval provides functions for the analysis of rate changes

3 https://cran.r-project.org/web/packages/
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in sequential events. The GitHub repository also provides several packages 4, such as the

package CRFSuite, which is an implementation of Conditional Random Fields for sequential

prediction problems, the package “Emotion Classification in Microblog Texts Using Class

Sequential Rules”, which allows a classifier to be generated based on class sequential rules

for emotion classification, and the package “Hierarchical Association Rules”, which allows

association rules to be mined from sequential events. Several python packages can also be

found in the Pypi repository 5. For instance, the package “Maximal Sequential Patterns Min-

ing” is a python wrapper between SPMF and Python, and the package prefixspan provides

several methods for mining sequential patterns. We can also find some methods for mining

sequential patterns as part of some open-source data mining suites, such as Weka (Witten,

Frank, & Hall, 2016), Knime (Berthold et al., 2009) or Mahout (Lyubimov & Palumbo,

2016).

Several data collections are also available as open-source datasets to evaluate and com-

pare the performance of algorithms. For instance, the webpage of SPMF provides a large

number of datasets in the SPMF format, the Phyton package SecAlertSeqMining enables

the generation of sequential databases in formats required by SPMF, and “IBM Generator”

allows synthetic sequence databases to be generated.

Finally, notice that some of the most used algorithms are ARMADA (Winarko & Roddick,

2007), CMRules (Fournier-Viger, Faghihi, et al., 2012) and TRuleGrowth (Fournier-Viger et

al., 2015). In addition, the algorithms CM-SPADE (Fournier-Viger, Gomariz, Campos, &

Thomas, 2014) and SPAM (Ayres, Flannick, Gehrke, & Yiu, 2002) are also widely used to

extract sequential patterns and then to generate temporal rules from them.

4 https://github.com
5 https://pypi.org
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TEMPORAL ASSOCIATION RULES BIBLIOGRAPHI-

CAL ANALYSIS

This section shows a bibliographical analysis of the research field in accordance with publi-

cations indexed at WoS 6. This platform includes several large bibliographic databases with

references to the main scientific publications of any science field and it is frequently used to

track research for monitoring current developments (trends detection) and analyzing classi-

cal contributions (assessing the state-of-the-art). In this sense, we perform a bibliographical

query as follows:

TS=((“temporal association rule*” OR “temporal rule*”) OR ((“sequential rule*” OR “episode

rule*” OR “periodic rule*” OR “meta-rule*”) AND (“temporal” OR “time”)) OR ((“predic-

tion rule*” OR “change rule*”) AND “temporal”) OR (“cyclic association rule*” OR “cyclic

rule*”) OR (“calendar association rule*” OR “calendar rule*” OR (“association rule*” AND

“calendar”)) OR (“interval-based temporal association rule*” OR “interval-based temporal

rule*” OR (“association rule*” AND (“time interval*” OR “temporal interval*”))))

where TS means that these terms are searched in the fields Keywords PlusR○, Author Key-

words, Abstract, and Title, * means 0 or more characters, and $ means 0 or 1. The time

stamp was fixed from 1998 to 2018 (the last complete year recorded at WoS). Note that the

query has been made quite general in order to consider all terms that are usually included

in published contributions, allowing for an overview of the research field.

Figures 4a and 4b show the number of published proposals and citations per year ac-

cording to the WoS, respectively. We can see how the number of citations increases quite

linearly and the number of publications shows a growing trend over the years. These data

allow us to say that this research field is currently a mature area with an active community

working on challenging related issues and increasing the interest in this research field each

year according to the number of citations.

In order to analyze the current research trends, a study has been carried out focusing

on the distribution of the published proposals among the WoS categories from 2013 to 2018

(the last 6 years at the time of writing). Table 3 shows the top-ten WoS categories according

6https://www.webofknowledge.com/
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(a) Publications.

(b) Citations.

Figure 4: Number of publications and citations from 1998 to 2018 according to the WoS.

Report produced in September 2, 2019; Total publications: 573; Total times cited: 6,482;

Average citations per item: 11.31; h-index: 41.

to the percentage of publications that are associated with each of them. Notice that a pub-

lication can be associated with more than one category, so that the sum of the percentage

column can be over 100%. This study presents a wide variety of categories in which TARs

publications are associated, showing a wide applicability to different areas. Even though

more than 80% of publications are associated with three subcategories of Computer Science

(Artificial Intelligence, Theory Methods and Information Systems), notice that more than

50% of publications are also associated with categories for specific applications (such as En-

gineering Electrical Electronic, Software Engineering, Telecommunications, Neurosciences,
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and so on).

WoS Categories % Percentage

Computer Science Artificial Intelligence 39.96

Computer Science Theory Methods 23.04

Computer Science Information Systems 21.12

Engineering Electrical Electronic 18.15

Computer Science Software Engineering 7.50

Computer Science Interdisciplinary Applications 7.33

Telecommunications 5.58

Neurosciences 4.19

Automation Control Systems 3.49

Computer Science Hardware Architecture 3.14

Table 3: The top-ten WoS Categories with the most associated publications.

For a deeper analysis, we have studied the evolution of the publications focusing on their

co-concurrence in the main WoS categories from 2013 to 2015 and from 2016 to 2018. To

that end, we have created visual science maps (Batagelj & Cerinšek, 2013; M. Cobo, López-

Herrera, Herrera-Viedma, & Herrera, 2011; Moya-Anegón et al., 2004) (see Figure 5) in which

each sphere represents a WoS category (the volume and darkness depend on the number of

publications) and the link between two spheres represents the level of co-concurrence among

them (the thickness and darkness depend on the level of co-concurrence). The level of co-

concurrence between two categories (A and B) is calculated using the measure equivalence

index (eAB) (Callon, Courtial, & Laville, 1991), which is defined as eAB “ c2AB{pcA ¨ cBq

where cAB is the number of publications simultaneously indexed in the categories A and B,

cA is the number of publications indexed in category A, and cB is the number of publications

indexed in category B. When the publications are always indexed in the two categories, the

equivalence index is unity, when they are never indexed simultaneously in both categories, it

is zero. These visual science maps have been created by means of the free software Science

Mapping Analysis Tool (SciMAT) (M. J. Cobo et al., 2012) and the Open Graph Viz Platform

(Gephi) 7.

7https://gephi.org/
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(a) Period 2013-2015.

(b) Period 2016-2018.

Figure 5: Visual science maps on TAR publications
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Figures 5a and 5b show the map for each period, presenting the categories on which

the researchers have mainly focussed their research over the last 6 years. For the period

2013-2015, we can see how three subcategories of Computer Science (Artificial Intelligence,

Theory Methods and Information Systems) and the category Engineering Electrical Elec-

tronic are the 4 WoS categories with the most associated publications, with the subcategory

Artificial Intelligence presenting a higher number of publications than the remaining cate-

gories and sharing a strong link to the category Theory Methods. These main categories

are also connected to 5 other WoS categories for specific applications such as Telecommu-

nications, and so on. For the second period (2016-2018) we can appreciate how the main

categories are the same, but the categories Theory Methods, Information Systems and En-

gineering Electrical Electronic have increased their number of publications with respect to

the category Artificial Intelligence. Now, the category Theory Methods shares a strong link

to Engineering Electrical Electronic and Information Systems, and the category Engineer-

ing Electrical Electronic also shares a strong link to the category Telecommunications. In

addition, the subcategory Interdisciplinary-Applications of Computer Science increases its

number of publications in relation to the period 2013-2015 and several new categories arise

as emergent categories, showing a growing interest in fields such as Medical-Informatics and

Remote-Sensing. This demonstrates the great capacity of TARs to be applied successfully to

a wide variety of problems and the interest that TARs have generated with regard to solving

real-world problems.

CRITICAL CONSIDERATIONS AND FURTHER DI-

RECTIONS

In recent years, a lot of proposals have been published relating to TARs. Each new pub-

lication has aroused great interest in the novelties presented with respect to the existing

proposals in the literature. But, which are the critical aspects of the current publications?

In what follows, we provide some recommendations that should be taken into account in

further publications:
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• Many of the published proposals on TARs make use or extend some of the well-known

classical methods for mining classical association rules. However, these methods usually

present problems of complexity (due to the large number of rules generated and the

number of items included in each rule) and scalability (in terms of memory and time

consumed). In the literature, we can find a number of recent proposals that perform an

efficient mining process and optimize several interesting measures to obtain more useful

and concise knowledge (Radhakrishna et al., 2015, 2019). The use of these proposals

would allow more interesting TARs to be obtained, avoiding some of the problems of

scalability and complexity.

• The publication of new proposals requires an experimental analysis comparing the

performance of new algorithms to the previous best ones from the specialized literature.

This analysis would allow researchers to provide good criteria to show the effectiveness

of their proposal. We would recommend an experimental study comparing the obtained

results to the widely and well-known classical proposals and to the most recent ones

in the topic, making use of several benchmark datasets and statistical tests where

possible. However, researchers in this field do not always include this analysis in their

proposals or only compare them to classical proposals which were surpassed many years

ago. This fact makes it more difficult for researchers to determine the needs in the

area and to properly focus their work on significant further proposals.

• A few free and open source software tools are available for mining sequential rules,

sequential patterns, and so on, and for the handling of temporal datasets, but few

researchers share the source codes associated with their proposals. This issue, along

with the high complexity of some proposals, prevents the widespread use of TARs in

real applications and makes it difficult for researchers to compare their proposals with

other algorithms. We recommend that authors make the source code of their proposals

public since this would have a very positive impact both on the development of better

algorithms and their applicability to very diverse areas.

From our point of view, there are still many thing to do. We present some possible

further directions:
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• The technological revolution of the last few years has allowed a huge amount of data

to be stored in databases. For instance, one of the main sources of these temporal data

collections is the Internet of Things (IoT), which gathers information from collections

of sensors, smartphones, among many others, which are capable of operating within

the existing Internet infrastructure (Aljawarneh et al., 2017). These temporal data

collections, in some cases known as Big Data, present a challenge to the mining process

since the processing power of most of the existing techniques is not enought to handle

them. Analytics solutions based on MapReduce paradigm (Hadook-based and Spark-

based), Deep Learning and Fog Computing, among others, allow researchers to deal

with this huge amount of data and to harness their temporal dimension, though the

use of these solutions also introduces new challenges such as maintaining data security

and privacy. Some proposals for mining TARs from Big Data scenarios have appeared

recently, but further developments for big data mining are still expected.

• Some recent proposals also incorporate the spatial information into the mining process

to obtain Spatio-Temporal Association Rules (STARs) since the occurrence of some

events is often associated with a particular temporal period and location (C. Liu et

al., 2019). However, several authors have noticed problematic issues arising from this

spatial association rule mining. Firstly, these data collections also consist of spatial

attributes that determine the scope of objects and their spatial location, and the de-

pendencies among them are not explicitly represented in the database. Because of this,

a pre-processing stage is needed to transform the spatial data into spatial predicates

and connectors (such as close to, etc.) which allows us to represent topological rela-

tionships, etc. This may exceed the memory capacity of traditional techniques when

the database consists of a large amount of spatial data, whereby it is necessary to

find a good trade-off between the pre-processing and mining process. Secondly, some

authors also find several problems of interpretation when STARs are generated since

the interpretation of some spatial predicates like close to() usually depend on the user

or the information stored in the dataset. For this reason, further developments for

STARs mining are still expected.
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• Discovery of High-Utility TARs seems another prolific area (Zida, Fournier-Viger, Wu,

Lin, & Tseng, 2015). Most of the published methods assume that all items in a dataset

have the same relevance, however in many real applications each item has an associated

unit profit that determines its relevance (for instance, the price of each item). The aim

is to extract high-utility rules that consider items with a high profit value and with

high confidence. Another recent approach is to consider that each event in a sequence

has a cost associated. The aim is to extract low-cost rules with high values for different

quality measures (confidence, length, etc.) (Dalmas, Fournier-Viger, & Norre, 2017).
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CONCLUSIONS

In real-life applications, data usually change over time and this temporal information is

generally included in the data collected. As a result, the discovery of TARs allows us to

obtain models with a greater predictive and descriptive power providing an additional degree

of interestingness, which may be successfully applied in a wide variety of applications. One

of the main problems in this research field is the lack of visibility most works suffer from,

since there is no standard terminology to refer to it, making it difficult to find and compare

proposals and studies in the field. In this review work, we have attempted to offer a well-

defined framework that allows researchers to easily find existing proposals and to present

well-grounded future proposals.

To that end, we have presented a two-level taxonomy to organize the proposals depending

on whether the time variable is considered to provide order to the data collection and to locate

some temporal constraints (category implied component), or whether time is considered as an

attribute within the learning process (category integral component). In the second level, the
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proposals of the category implied component are also classified based on the type of temporal

datasets, and the proposals of the category integral component are organized depending on

how the temporal information is included in the learning process.

Some recent applications with TARs and available software tools have also been shown.

Further, a bibliographical analysis of the research field has been carried out in accordance

with publications indexed at WoS. From this analysis, we can conclude that this field seems to

be mature with a high number of published proposals and an increasing number of citations

per year. Nevertheless, many of these proposals are extensions of classical algorithms (such

as Apriori, etc.) and they do not include an experimental analysis regarding the existing

proposals in the field. In view of the proposals studied, we recommend the use of more

advanced algorithms from the specialized literature and the carrying out of experimental

studies comparing the results obtained to the classical algorithms and the most recent ones

in the field by making use of several benchmark databases and statistical tests whenever

possible. Moreover, we recommend the authors to share the source code of their proposals

since this would have a very positive impact, both on the development of better algorithms

and on their applicability to new subjects and the industry.

Aside from the classical WoS categories Computer Science Artificial Intelligence, Com-

puter Science Theory Methods, Computer Science Information Systems and the category

Engineering Electrical Electronic, we can also observe a recent increase in the number of

publications associated with several categories for specific applications, such as Telecommu-

nications, Medical-Informatics, Remote-Sensing, etc. This evidences the great capacity of

TARs to be applied successfully to a wide variety of problems and the interest that TARs

has awakened in recent years with regard to their capacity to solve real-world problems.

Finally, we have identified some interesting further directions, such as the development of

new proposals for solving temporal big data problems making use of different approaches,

the use of other dimensions in the process of knowledge extraction (such as space) and the

extraction of High-Utility TARs that maximize some unit profit.
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