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SUMMARY

This project focuses on the Sierra Nevada National Park, specifically in the Alpujarra
towns of Pampaneira, Capileira, and Bubión. The objective is to develop a dynamic pric-
ing algorithm for parking management in the Barranco de Poqueira area. The Barranco
de Poqueira annually attracts a significant number of tourists and nature enthusiasts.
While this influx benefits the local economy, it also poses potential threats to the park’s
ecological balance. For this reason, this project proposes an alternative approach that
combines machine learning techniques to develop a dynamic pricing algorithm based
on a dataset of tourist visitation data in the area while preserving social responsibility,
economic sustainability, and environmental preservation components. Additionally, we
incorporate a behavioral component, which is based on the likelihood of future visits if
a parking toll is implemented. This data is obtained through questionnaires.

First, due to the limited instances and subjective responses of survey questions, we intro-
duce an oversampling method called KM-SMOTE, which combines K-medoids clustering
with the SMOTE (Synthetic Minority Over-sampling Technique) algorithm. This method
is designed to enhance the performance of our data, which is affected by noise and high
dimensionality. We analyze and clean the data and compare the algorithm to other
clustering-based algorithms. With this model, we predict the likelihood of returning to
the Barranco de Poqueira after the implementation of a toll in a parking lot. Second, we
enrich our data with this new variable to create a dynamic pricing model. The objective
is to separate the variables into four categories (environmental, social, economic, and be-
havioral) and assign weights to the different features using a predefined strategy. Thus,
the weights assigned to each feature will be used to assign prices in a price assignment
function. Finally, we create a regression model to understand the impact of each feature
on the final price, allowing us to validate the pricing algorithm and adjust the weights of
the variables if needed.

The goal of this project is to implement our contributions in the Alpujarra region within
the Sierra Nevada National Park to dynamically assign toll prices to vehicles. This
approach, accompanied by data collection over several months, allows for dynamic price
assignments for new vehicles entering the area. This prepares stakeholders to manage
and prevent overcrowding in the Barranco de Poqueira, ensuring sustainable tourism
management and enhancing the visitor experience. The dynamic pricing algorithm aims
to minimize high traffic in sensitive areas, promote the use of eco-friendly transportation,
and distribute the economic benefits of tourism more evenly across the region.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

In recent years, machine learning has become increasingly important in various areas of
society, such as education [1, 2], health [3, 4], economics [5, 6], and tourism [7, 8]. This
paradigm allows the use of different algorithms to build useful models for data-driven
decision-making. The data collected provides valuable information on behavioral patterns
that can be important in predictive analytics [9]. This information has the potential to
develop service innovation, management practices, and the competitiveness of all parties
involved [10]. For example, deep learning models can be used to build dynamic toll
pricing schemes for smart transportation systems based on road behavior [11].

However, in many cases, the data collection process can pose difficulties for scientists
who need to train predictive models [12]. Two examples are: First, the proliferation of
data collection sensors that accompanies the rise of the Internet of Things (IoT). These
devices, while producing a great deal of valuable information in different fields, often
contain noise due to error rates and device failures [13]. Second, questionnaires are
conditioned by economic and temporal factors [14, 7], limiting the instances collected.
The scarcity of instances contrasts with the large number of variables typically collected,
resulting in higher-dimensional datasets that pose challenges during model training [15].
Additionally, when dealing with classification problems, class imbalance issues appear,
which are compounded by the two previous problems. Several studies have explored
solutions to these problems, such as synthetic data generation to increase sample sizes
[16, 17] and oversampling algorithms [18, 19], which have shown considerable perfor-
mance improvements in certain scenarios compared to generative algorithms [20, 21].
However, no research has delved into the application of a class balancing algorithm on
noisy and high-dimensional datasets.

In this project, we focus on two different contributions. First, we propose KM-SMOTE,
a novel data balancing model based on K-medoids combined with SMOTE algorithm.
Second, we develop a smart pricing model based on traffic flow, which assigns a price
to each vehicle according to its environmental footprint, socio-economic factors, and
behavioral patterns.

9
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Specifically, we test our approach in the area of smart villages. We collected data
from License Plate Recognition (LPR) sensors installed on the access road to the area
to monitor traffic. These data have been cross referenced with street questionnaires
obtained in January, March, and July 2023, which asked about the likelihood of future
visits if a parking fee is implemented, as parking is currently free of charge. We perform
a study of the proposed model using various oversampling methods and distance metrics.

Our work is useful for scientists working with high-dimensional and noisy data, mainly
derived from sensors and questionnaires. We provide a new balancing algorithm that
they can apply with a high probability of improvement to their own data. In addition,
our results allow us to build a smart pricing model based on traffic flow and classify
visitors according to their likelihood to visit in the future if they are charged for parking
in the area that is currently free.

1.2 Related work

The problem of unbalanced data is common in a variety of domains [22, 23, 24] and
raises issues of model performance and generalization [25]. Various solutions have been
proposed in the literature, ranging from synthetic data generation algorithms such as
Generative Adversarial Networks (GAN) [21, 26] or Variational AutoEncoders (VAE)
[27, 28] to the use of oversampling algorithms such as Adaptive Synthetic Sampling
(ADASYN) [29, 30] and SMOTE [19, 31], often in combination with other techniques.
However, it has been shown that the effectiveness of each method is highly dependent
on the specific problem and the characteristics of the data collected. For example, GAN
may show superior performance when dealing with datasets with very small minority
classes compared to VAE [32]. In some cases, the combination of VAE and GAN [33]
manages to optimize the individual shortcomings of each other [34]. The weakness
of GAN compared to SMOTE is the lack of control over the quality of minority class
samples [35], as GAN can introduce noise into the generated samples which affects
the classification [20]. GAN tends to generate samples in the same direction, making
it difficult for classifiers to create a clear decision boundary between major and minor
classes, unlike SMOTE [21].

Particularly in the area of sensors or questionnaires data, noise arising from the distri-
bution of data is a major problem [13, 14]. In addition to the challenges posed by the
economic and temporal constraints associated with questionnaires [7], and the inherent
problem of data imbalance, another critical factor arises. When data is collected through
questionnaires, noise is introduced into the dataset. This noise arises because, within
the same class, data can exhibit specific behaviors not because they are mislabeled, but
due to individual differences in how participants respond. Although all responses are cor-
rectly classified, the differences in how questions are interpreted and answered generate
a type of noise characteristic of that class, potentially affecting analysis and modeling in
machine learning [36]. This is especially common in the healthcare field, where the re-
sponse to a drug of two patients with similar characteristics may be totally different [37].
This aspect remains relatively unexplored in the literature, some work has investigated
oversampling SMOTE methods for noisy datasets [38, 39], but none of those explain the
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noise in high-dimensional scenarios.

The literature review reveals examples of approaches such as K-means combined with
SMOTE [19, 40], which employ Euclidean distance followed by the calculation of the
mean to balance the data. Similarly, CURE-SMOTE [41] employs the Clustering Using
REpresentatives (CURE) algorithm to first cluster the minority class instances, followed
by SMOTE to generate synthetic samples within these clusters. In contrast, the use
of K-medoids, which employs the median and is more robust to outliers and noise, is
particularly well-suited to scenarios involving combined questionnaires and sensor data.
The combination of K-medoids and SMOTE has not been explored so far in the literature
in the field of oversampling of unbalanced noisy data. Another element that has also not
been explored is the impact of different distance metrics on SMOTE data generation.
K-medoids allows incorporating various distance metrics, which is advantageous in cases
with high dimensionality, where Euclidean distance may not be optimal [42].

In the field of dynamic pricing, the literature has evolved significantly from early static
pricing strategies to advanced, real-time algorithms. Initial approaches relied on fixed
pricing models, where prices remained constant over time [43]. With the development
of revenue management in the airline industry, dynamic pricing models began to ad-
just prices based on demand fluctuations, significantly improving profitability [44]. As
computational capabilities and data availability have increased, modern dynamic pricing
algorithms have integrated machine learning and big data analytics to optimize prices in
real-time. For example, Uber uses dynamic pricing algorithms to adjust fees based on
current demand and supply conditions [45]. Similarly, Amazon employs machine learning
models to dynamically set prices for their products, taking into account factors such as
competitor prices, customer behavior, and inventory levels [46]. These advancements
demonstrate the effectiveness of dynamic pricing algorithms compared to fixed ones.

1.3 Objectives

The objective of this work is to analyze methods for dynamic pricing in the context of
parking management within the Sierra Nevada National Park, specifically targeting the
Barranco de Poqueira area. The specific objectives are as follows:

• Review previous works on clustering applied to traffic behavior with License Plate
Recognition (LPR) data to understand the existing approaches and identify gaps
that our project can address.

• Create an oversampling algorithm to deal with noisy and high-dimensional data
based on K-medoids clustering with SMOTE (KM-SMOTE). Study oversampling
algorithms, particularly focusing on clustering-based variants.

• Examine, with our smart villages use case, the effectiveness of the proposed KM-
SMOTE algorithm in handling noisy and high-dimensional data derived from sensor
and survey inputs, and its impact on predicting the likelihood of tourists returning
if a parking toll is implemented.

• Evaluate the performance of the proposed algorithm through metrics such as F1-
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Score, G-Mean, and Recall, and compare its efficacy against other clustering-based
algorithms.

• Design a dynamic pricing algorithm that integrates environmental, socio-economic,
and behavioral features to manage parking and reduce congestion in environmen-
tally sensitive areas.

• Develop a regression model to understand the influence of various features on the
final assigned price, validating and refining the dynamic pricing algorithm.

By achieving these objectives, this work aims to provide a robust solution for sustainable
tourism management that balances environmental preservation, social responsibility, and
economic sustainability. The implementation of this model in the Alpujarra region will
help manage tourist inflow dynamically, ensuring a positive impact on the Sierra Nevada
National Park.

Data Availability

All code developed for this study is available at https://github.com/thealberteitor/
SmartTourism_TFM.

1.4 Thesis Outline

The remainder of the work is organized as follows. Chapter 2 describes the main math-
ematical fundamentals that we use in this work. Chapter 3 introduces the proposed
oversampling algorithm. Chapter 4 presents and describes the dynamic pricing algo-
rithm. Finally, Chapter 5 concludes with the findings from this project.

University of Granada 12



CHAPTER 2

FUNDAMENTALS

2.1 Machine Learning Methodologies

In machine learning, there are two key approaches focused on developing algorithms that
enable computers to learn from data: supervised and unsupervised learning.

2.1.1 Supervised Learning

In supervised learning, the goal is to generate a function that maps input features to
corresponding output labels. This is achieved by training a model on a labeled dataset,
where each data point consists of input features and its associated correct label. There
are 2 types classification and regresion.

• Classification: Consider a dataset with n samples and d features, represented as
a matrix X of size n× d, where each row represents a sample and each column a
feature:

X =


x11 x12 . . . x1d

x21 x22 . . . x2d
...

...
. . .

...
xn1 xn2 . . . xnd

 .

Each sample is associated with a label yi, forming the label vector y:

y =


y1
y2
...
yn

 ,

where yi ∈ {c1, c2, . . . , ck}, with c1, c2, . . . , ck representing the possible classes,
and k being the number of classes in the dataset.

The goal of a classification model is to generate a mapping function f : Rd →
{c1, c2, . . . , ck} from the feature space to the class labels, where the output space

13
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consists of discrete class labels. For a new input x, the function f(x) predicts the
corresponding class label.

2.1.1.1 Classification Metrics

To evaluate the performance of a classification model, various metrics can be
employed:

– Recall: It measures the proportion of actual positives that are correctly
identified by the model.

Recall =
TP

TP+ FN
.

– F1-Score: This metric is the harmonic mean of Precision and Recall. It is
particularly useful in balancing the trade-off between Precision and Recall,
providing a single measure of performance that considers both false positives
and false negatives. It is especially important for evaluating imbalanced data
to handle adjusted class proportions effectively. The F1-Score combines the
sensitivity of the model to both false positives and false negatives, and is
defined as:

F1-Score = 2× Precision× Recall

Precision+ Recall
,

where Precision = TP
TP+FP

and Recall = TP
TP+FN

.

– G-Mean: This metric measures the balance between performance on both
the positive and negative classes and is also useful in imbalanced datasets.
The G-Mean is the geometric mean of sensitivity (Recall) and specificity, thus
it provides insight into the accuracy of the classifier on both classes, and is
defined as:

G-Mean =
√

Recall× Specificity,

where Specificity = TN
TN+FP

.

• Regression: It aims to establish a relationship between a dependent variable y and
one or more independent variables x, with the goal of finding a function that maps
these input variables to a continuous output variable in R. This is particularly useful
for predicting continuous values. When the relationship between the dependent and
independent variables is linear, it is addressed using linear regression. In contrast,
nonlinear regression techniques are employed for nonlinear relationships.

The formula for a linear regression model, which includes multiple independent
variables, is expressed as:

y = β0 + β1x1 + β2x2 + · · ·+ βnxn + ε,

where y represents the continuous output variable, β0 is the intercept, β1, . . . , βn

are the coefficients of the features x1, . . . , xn, and ε is the error term, representing
the difference between the observed and predicted values.

University of Granada 14
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The coefficients β0, β1, . . . , βn are estimated using the method of least squares,
which minimizes the sum of the squared residuals (the differences between observed
and predicted values):

min
β

n∑
i=1

(yi − (β0 + β1xi1 + β2xi2 + · · ·+ βnxin))
2.

2.1.1.2 Regression Metrics

To evaluate the performance of a regression model, various metrics can be employed:

• Mean Squared Error (MSE): This metric measures the average squared differ-
ence between the actual and predicted values. It is useful for understanding the
variance of the errors. Lower values of MSE indicate a better fit of the model to
the data.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2,

where yi is the actual value, ŷi is the predicted value, and n is the number of
observations.

• Mean Absolute Error (MAE): This metric measures the average absolute dif-
ference between the actual and predicted values. It provides a measure of model
accuracy, without emphasizing large errors as MSE does. Lower MAE values indi-
cate a better fit of the model.

MAE =
1

n

n∑
i=1

|yi − ŷi|,

where yi is the actual value, ŷi is the predicted value, and n is the number of
observations.

• R-squared (R2) Coefficient: This metric indicates the proportion of the variance
in the dependent variable that is predictable from the independent variables. It
provides an indication of goodness-of-fit. An R2 value of 1 indicates that the
regression predictions perfectly fit the data.

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
,

where yi is the actual value, ŷi is the predicted value, ȳ is the mean of the actual
values, and n is the number of observations.

2.1.2 Unsupervised Learning

In unsupervised learning, the goal is to find hidden patterns or intrinsic structures within
input data. Clustering is one of the most common tasks in unsupervised learning. Con-
sider a dataset X = {x1,x2, . . . ,xn}, where each xi ∈ Rd. The objective of clustering
is to partition the dataset into k clusters {C1, C2, . . . , Ck}. The aim is to group objects
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in such a way that objects in the same cluster are more similar to each other than to
those in other clusters. Two clustering algorithms are K-means and K-medoids.

• K-means clustering partitions data into k clusters by minimizing the within-
cluster sum of squared Euclidean distances to cluster centroids, which are the
arithmetic means of the data points in each cluster. This means that the algorithm
is sensitive to outliers, as the mean can be easily skewed by extreme values. K-
means minimizes:

k∑
i=1

∑
x∈Ci

∥x− µi∥2,

where x represents a data point, µi is the centroid of cluster i, and Ci denotes
the set of data points in cluster i.

• K-medoids clustering, on the other hand, is more robust to outliers because
it uses medoids, which are actual data points within each cluster that minimize
the sum of distances (not squared distances) to other points in the cluster. This
means that K-medoids minimizes:

k∑
i=1

∑
x∈Ci

∥x−mi∥,

where k is the number of clusters, mi represents the medoid of cluster i. The
medoid can be considered a representative of the cluster, similar to how the median
is a representative value in a dataset.

2.2 The Problem of High Dimensionality

The high dimensionality presents significant challenges in data analysis. In these high-
dimensional spaces, data becomes sparse, which diminishes the effectiveness of traditional
distance measures and, by extension, the concept of nearest neighbors. This problem is
often known as Curse of dimensionality [42].

The choice of the distance metric plays an important role in the performance of algo-
rithms that rely on distance calculations. The Lk norm, used to define such metrics, is
expressed for any vector x ∈ Rd as:

∥x∥k =

(
d∑

i=1

|xi|k
)1/k

.

The distance between two points x, y ∈ Rd using Lk norm is given by:

D(x, y) = ∥x− y∥k =

(
d∑

i=1

|xi − yi|k
)1/k

.

Here, k determines the type of distance. For k = 1, it defines the Manhattan distance:

D(x, y) =
d∑

i=1

|xi − yi|.
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For k = 2, the measure is known as the Euclidean distance:

D(x, y) =

√√√√ d∑
i=1

(xi − yi)2.

For k ≥ 3, the distance is known as the Minkowski distance, which generalizes the Man-
hattan and Euclidean distances. It is particularly noted that the Manhattan distance
may be more effective in high-dimensional settings due to its robustness against outliers
and its ability to maintain sparsity [47]. Distances for k ≥ 3 are known to magnify the
impact of large differences, potentially difficulting the challenges of high dimensional-
ity. That, combined with imbalanced class distributions introduces further complexity.
Conventional machine learning models trained on such datasets may not adequately rec-
ognize critical minority class samples, leading to significant consequences in areas such
as fraud detection, disaster management, or disease diagnosis. The predominance of the
majority class in distance-based metrics often limit classifier performance. Increasing the
volume of training data can sometimes mitigate this issue, as high-dimensional spaces
require larger sample sizes to capture the underlying structure of the data and develop
robust models [15]. However, this is not always possible.

2.3 Label noise

Noise in datasets manifests as irregularities or perturbations that complicate data analy-
sis, introducing uncertainty and complicating the modeling process. A dataset quality is
often measured by examining its attributes and class labels. Consequently, noise can be
broadly categorized into two types: attribute noise and label noise [48]. Attribute noise
pertains to inaccuracies in the data attributes that are used as independent variables
in classification algorithms. This type of noise can stem from various sources such as
data entry errors, measurement inaccuracies, the presence of outliers, or missing data.
Such errors in the attributes can lead to misclassifications, impacting the dependent
variables and adding additional complexity to machine learning algorithms [49]. Label
noise is a significant issue in machine learning, negatively impacting performance metrics
due to the potential decrease in model accuracy. Mislabeled instances can arise from
subjectivity or communication errors during data labeling [50]. Typically, a label should
correspond to the true class of a sample; however, it may be subjected to a noise process
before being presented to the learning algorithm. It is important to clarify that misla-
beled instances are not necessarily outliers or anomalies, which are themselves subjective
concepts and distinct from noise in labels. Label noise is commonly classified into two
primary types [48]:

• Random Label Noise: Each label has a fixed probability ρ of being incorrect,
regardless of its true class. This can be expressed as:

P (Ỹ = j | Y = i) = ρ, ∀ i ̸= j,

where Ỹ is the observed noisy label and Y is the actual label of the data point.
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• Class-dependent Label Noise: The probability of a label being incorrect depends
on the actual class of the data point. This type of noise can be described using
a noise transition matrix R where each entry Rij represents the probability of the
true class i being observed as class j:

P (Ỹ = j | Y = i) = Rij.

This model allows for different probabilities of label corruption depending on the
actual class, with i and j representing the indices of the true and observed classes,
respectively.

University of Granada 18



CHAPTER 3

KM-SMOTE ALGORITHM APPROACH

3.1 KM-SMOTE

We propose KM-SMOTE, a new algorithm that combines the K-medoids clustering
technique with SMOTE to generate synthetic data samples. As shown on the left-hand
side of Figure fig. 3.1, the algorithm starts with the original dataset. The initial step
involves identifying the minority class in binary classifications or all classes except the
majority class in multiclass settings. Subsequently, K-medoids clustering is applied to
each minority class, identifying the specified number of medoids based on the number
of clusters chosen during the algorithm’s execution, resulting in the step shown in the
middle of Figure fig. 3.1. K-medoids aims to minimize the total dissimilarity between the
points in a cluster and the cluster’s medoid. This objective function can be expressed as
follows:

S =
k∑

i=1

∑
x∈Ci

d(x,mi) (3.1)

where d(x,mi) measures the distance between a point x and the medoidmi of the cluster
Ci, and k is the number of clusters. The number of clusters used in K-medoids depends
on the distribution of the classes within the data. If samples follow a homogeneous
distribution, one cluster per class should be sufficient. Conversely, if the samples in the
data do not follow a convex distribution, further clusters per class may be necessary.
Finally, as seen on the right-hand side of Figure fig. 3.1, SMOTE is applied within each
cluster to generate new samples by linearly interpolating between the selected sample
and its k-nearest neighbors. The pseudocode detailing the steps of the KM-SMOTE
algorithm is provided in Algorithm 1.

The motivation for using K-medoids over other clustering algorithms is based on two
main reasons. First, it is more robust to outliers, as it operates with medoids, which are
real central points that are not affected by anomalous points [51]. Second, it allows the
use of alternative distance metrics to the squared L2 norm, which is useful in situations
of high dimensionality, as discussed in Section 2.2. The choice of the distance metric
is important as it influences the formation of clusters and the generation of synthetic
samples. An appropriate distance metric ensures that medoids accurately represent the
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Figure 3.1: KM-SMOTE method working scheme.

main characteristics of the data, enhancing the effectiveness of the subsequent SMOTE
[42].

Algorithm 1: KM-SMOTE Algorithm

Data: Features X, Labels y, Distance Metric distance, Number of Clusters
n clusters

Result: X resampled, y resampled

Resampling Process:
Initialize X resampled← X, y resampled← y
classes ← All classes but majority class
foreach class in classes do

K −medoids ← K-medoids(n clusters, distance)
Train K −medoids on X[class]
clusters← Assign data points in X[class] to clusters
foreach cluster in clusters do

N ← samples in the majority class−samples in current class
number of clusters

Initialize and train NearestNeighbors with distance on cluster’s
samples
foreach i← 1 to N do

s1 ← Select random sample from cluster
neighbors ← Get nearest neighbors of s1 using NearestNeighbors
s2 ← Select random sample from neighbors
synthetic sample ← s1 + rand(0,1) · (s2 − s1)
X resampled← X resampled ∪ synthetic sample
y resampled← y resampled ∪ class

return X resampled, y resampled
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3.2 Experiments

3.2.1 Methodology

We follow the pipeline shown in Figure 3.2. Data is collected from various sources:
License Plate Recognition (LPR), the General Directorate of Traffic (DGT), the National
Institute of Statistics (INE), and survey questionnaires. Initially, these data are analyzed
and preprocessed, which includes cleaning, handling missing values, and normalization.
This allows us to build a dataset focused on our smart village area. Once this step is
completed, we extract relevant features to build a model. We then conduct an evaluation
process that involves using different classification models, oversampling methods, and
distance metrics on the models. We use the models K-Nearest Neighbors (KNN), Logistic
Regression (LR), Support Vector Machine (SVM), and Multilayer Perceptron (MLP). The
oversampling methods we use are SMOTE, K-means-SMOTE, and CURE-SMOTE. The
distances we use are Euclidean (associated with the L2 norm) and Manhattan (associated
with the L1 norm). We use these results to build a model in which the new predicted
variable, “likelihood”, is used to enrich the dataset for the dynamic pricing algorithm.

In the second phase, with that predicted likelihood, we build a dynamic pricing algorithm,
in which the previous model will contribute with that behavioral component to the price
assignment. Finally, to measure the impact of the different features in that dynamic
pricing algorithm, we build a regression model.

Figure 3.2: Pipeline schema
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3.2.2 Data overview

To test the different algorithms in our smart village area, we build a dataset from various
sources including LPR, DGT, INE, and questionnaires, where instances are joined with
the vehicle’s license plate number. The dataset is available in [52] and it comprises:

1. Visitation data collected from a sensor network consisting of four Hikvision LPR
IP cameras equipped with Deep Learning-based License Plate Recognition (LPR)
technology.

2. Geographic data sourced from the Spanish Directorate-General for Traffic (DGT1),
providing variables related to vehicle origin.

3. Demographic data sourced from the National Statistics Institute (Spanish: In-
stituto Nacional de Estad́ıstica, INE2), offering further insights into vehicle origins.

4. Questionnaire responses gathered in January, March, and July 2023, excluding
local residents to maintain proportional representation similar to the LPR data.
Questionnaires, which were conducted in a parking lot, included questions such
as license plate number, residential postcode, total visits to the area, overnight
stays, etc. One question assessed respondents’ inclination to revisit the area if a
parking toll is implemented, with response options: “visit more”, “visit less”, or
“no affect”. This variable serves as the prediction class for this dataset.

All this information has been preprocessed and analyzed, including normalization of vari-
ables, imputation of missing values, and elimination of outliers, so that the information is
ready for the proposed algorithm. A summary of the main characteristics of the dataset
can be seen in the table 3.1.

Data Category Variable Data Type Description

Vehicle Behavior
(LPR Cameras)

visit time Time Total duration of stay.
distance Float Total distance covered in kilometers within the area.
nights Integer Count of nights stayed.

visits dif weeks Integer Number of different weeks with at least one visit.
visits dif months Integer Number of different months with at least one visit.

fidelity Float Visits after maintaining a fidelity of at least five days.
cumulative entries Integer Total count of entries.

Holiday Context

num holiday Integer Total number of holidays.
num workday Integer Total number of workdays.

num high season Integer Number of days spent during high season.
num low season Integer Number of days spent during low season.
entry in holiday Boolean Entry during holidays.

entry in high season Boolean Entry during high season.
Demographic and
Economic Data

(INE)

avg gross income Float Average gross income of the origin area of the vehicle.
population Integer Population size of the orithin of the vehicle city/town.
is resident Boolean Tourist is resident from Pampaneira, Capileira or Bubión.

Geographic Data
(DGT)

km to dest Float Distance in kilometers between the origin of the vehicle and destination.
num seats Integer Number of seats in the vehicle.

environmental distinctive String Blue - ECO - C Green - B Yellow (scraped).
co2 emissions Float CO2 emissions in g/km (imputed).

Questionnaires likelihood Integer Predicted class label indicating the likelihood to repeat the visit.

Table 3.1: Selected Dataset Variables

1https://sede.dgt.gob.es/es/vehiculos/
2https://www.ine.es/index.htm

University of Granada 22



Final Master Degree Master in Mathematics

3.2.3 Model Training

We use a 5-fold cross-validation method to validate our models. This method divides
the dataset into five equal parts. Each model is trained and tested five times, with each
part used once as the test set and four times as part of the training set. This method
helps us evaluate the model’s performance and stability across different conditions. We
divide the data in three sets, training, validation and test, with a 70-10-20 proportion,
respectively.

We avoid using accuracy as a metric in those imbalanced datasets because it tends to
favor the majority class and might give a high score while overlooking the minority class.
Instead, we use Recall, F1-Score, G-Mean to evaluate our classifiers across the dataset
[47, 53]. These metrics ensure that our models are effective across all categories, not
just the dominant class.

3.2.4 Results

We use four different classifiers to evaluate the proposed algorithm and compared it
across various algorithms: KNN, MLP, LR, and SVM. The Table table 3.2 shows the
results of the differents metrics with the diffents algorithms we used: the base case
(None), SMOTE, K-means-SMOTE, CURE-SMOTE and KM-SMOTE with L1 and L2

norm.

Table 3.2: Performance comparison of oversampling techniques across classifiers

Method KNN MLP LR SVM
Recall F1-Score G-Mean Recall F1-Score G-Mean Recall F1-Score G-Mean Recall F1-Score G-Mean

None 0.6408 0.6315 0.6972 0.6311 0.6326 0.6815 0.7212 0.6103 0.6728 0.5701 0.4497 0.5712
SMOTE 0.6117 0.6121 0.6830 0.7087 0.7046 0.7374 0.7401 0.6041 0.6842 0.5437 0.4236 0.5780
k-means-SMOTE 0.6311 0.6315 0.6901 0.6893 0.6895 0.7346 0.6214 0.6142 0.6748 0.5534 0.4447 0.5840
CURE-SMOTE 0.6408 0.6413 0.6981 0.6311 0.6324 0.6822 0.6214 0.6103 0.6728 0.5437 0.4236 0.5737
KM-SMOTE+L1 0.6712 0.6592 0.7133 0.7206 0.7064 0.7586 0.7622 0.6436 0.7139 0.6112 0.6001 0.6761
KM-SMOTE+L2 0.6563 0.6413 0.6981 0.7114 0.6908 0.7492 0.7412 0.6319 0.6987 0.6128 0.5962 0.6761

3.2.5 Discussion

There is noticeable variability in the results of the different classification algorithms used.
KM-SMOTE achieves the best results in all metrics across all methods. As observed in
Table 3.2 and Figures 3.3, 3.4, and 3.5, KM-SMOTE in its both versions on SVM
shows a significant improvement in the results compared to the other methods. In KNN,
MLP, and LR, KM-SMOTE also improves performance, but the improvement is not
as pronounced. The other clustering-based algorithms, K-means-SMOTE and CURE-
SMOTE, do not perform as well. In fact, in the recall score shown in Figure 3.3, the
base case, SMOTE, without any previous clustering even yields better results.

KM-SMOTE with the L1 norm, which utilizes the Manhattan distance, generally yields
the highest scores across all classifiers. This significantly improves performance com-
pared to the baseline and SMOTE, effectively balancing sensitivity and specificity across
different classes, and managing noise and class imbalance more efficiently.
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Figure 3.3: Recall comparison

Figure 3.4: F1-Score comparison across datasets

Figure 3.5: G-Mean comparison across datasets
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CHAPTER 4

DYNAMIC PRICING ALGORITHM

4.1 Pricing Strategies

We propose two pricing strategies to utilize on our data, which consists of various visit
instances. Each instance in the dataset is represented by a vector of features. Table 4.1
shows the data representation.

Feature 1 Feature 2 Feature 3 . . . Feature m
Visit 1 Value 1 Value 2 Value 3 . . . Value m
Visit 2 Value 1 Value 2 Value 3 . . . Value m

...
...

...
...

. . .
...

Visit n Value 1 Value 2 Value 3 . . . Value m

Table 4.1: Data Representation

To determine the price of a tourist visit, the algorithm uses a rule-based method, where
each feature contributes partially to the final price. The significance of variables varies,
so the weights assigned to the features are not the same. To address this, we sort the
features according to two different criteria.

1. Strategy 1: We assign each variable an importance, and prices are determined
accordingly. We order the variables in a descending sequence using a common
ratio r, with r ∈ (0, 1). This implies that if the first variable has an importance I,
the subsequent variable will have an importance of r · I, and so on until the least
important variable will have an assigned value of rm−1 · I, where m is the total
number of features.
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Feature Importance

X1 I
X2 r · I
...

...
Xm rm−1 · I

Table 4.2: Strategy 1

This is done by employing a geometric progression of weights. The weight for the
k-th feature is wk = rk−1, indicating the relative importance between consecutive
features. We normalize the weights to ensure

∑m
k=1wk = 1. The normalization is

as follows:

Normalized Importancek =
rk−1 · I

I
∑m−1

j=0 rj
=

rk−1∑m−1
j=0 rj

.

This ensures that the sum of the normalized importances is 1, making them suitable
for use as weights in the pricing algorithm.

2. Strategy 2: We consider the existence of different categories within the set of
all features, so the variables do not have a uniform descending order across the
entire set. Instead, we assign different weights within each category, ordering
the features within each category using Strategy 1. This strategy ensures that
features are prioritized appropriately within their respective categories. We present
this strategy as follows:

Category Feature Importance

Category 1
Feature1,1 I1,1

...
...

Feature1,t1 rt1−1
1 · I1,1

Category 2
Feature2,1 I2,1

...
...

Feature2,t2 rt2−1
2 · I2,1

...

Category T
FeatureT,1 IT,1

...
...

FeatureT,tT rtT−1
T · IT,1

Table 4.3: Strategy 2

If there are T categories, denoted as c1, . . . , cT , with associated weights w1, . . . , wT ,
it holds that w1+w2+. . .+wT = 1. Additionally, within a category ci, its assigned
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price wi satisfies:

wi =

ti−1∑
j=0

rji · Ii, i = 1, . . . , T.

Thus, it also holds that:
T∑
i=1

wi =
T∑
i=1

ti−1∑
j=0

rji · Ii = 1.

4.1.1 Price Assignation

The pricing function P : Xi → R assigns a price to each instance i based on the weighted
sum of its features. Here, Xi represents the feature vector for the i-th instance, and the
function integrates weighted factors from different categories c1, . . . , cT . The formula
for the pricing function is:

P (Xi) = α + (β − α) ·
m∑
k=1

wk · f(xik, xmin k, xmax k),

where:

• α and β are the predefined lower and upper bounds of the price, respectively.

• wk, k = 1, . . . ,m, are the weights derived from Strategy 1 or Strategy 2, with∑m
k=1wk = 1.

• f(xik, xmin k, xmax k) is the Min-Max normalization function. To scale each feature
xik to the range [0, 1], we apply a modified version of the Min-Max normalization
function:

f(xik, xmin k, xmax k) =

{
xik−xmin k

xmax k−xmin k
, if lower value of the feature is better,

1− xik−xmin k

xmax k−xmin k
, if higher value of the feature is better.

• xik represents the value of the k-th feature for instance i, xmin k is the minimum
value, and xmax k is the maximum value of the k-th feature across all instances.

In the price assignment process, we use the normalized and encoded feature values to
compute the weighted average. The computed weighted average is then scaled between
the predefined bounds α and β to produce the final price. This systematic approach
ensures that each feature’s contribution is properly accounted for, resulting in a fair and
accurate pricing mechanism based on the tourist’s characteristics.

4.2 Experiments

We consider the same dataset from Section 3.2.2, which is derived from the study by
[52]. In this section, we conclude with the final part of the pipeline shown in Figure 3.2.
Here, we use the likelihood output feature obtained after applying different classification
comparisons to our data as input. This behavioral variable contributes to the dynamic
pricing algorithm for price assignment, along with the features listed in Table 4.4.

University of Granada 27



Final Master Degree Master in Mathematics

4.2.1 Data Preparation

We create a new dataset containing only environmental, socio-economic, and behavioral
variables to assign prices to each vehicle. The objective is that vehicles scoring better in
these variables will have a lower price, while those scoring worse will have a higher price.
Table 4.4 shows the variables we use in this study, along with the category to which they
belong. The table also indicates whether a higher value of the feature is better.

Category Variable Type Better High

Environmental
co2 emissions Numeric False

distance Numeric False
num seats Numeric True

Socio-economic

entry in holiday Categorical False
entry in high season Categorical False

is resident Categorical True
num nights Numeric True
visit hours Numeric True

Behavioral
cumulative entries Numeric True
likelihood to come Categorical True

Table 4.4: Description of variables with Better High column

For this analysis, we separate the variables into categorical and numeric types. We
encode categorical variables as binary values (0 or 1) based on their specific conditions.
For instance, “is resident” is 1 if the individual is a resident of Alpujarra and 0 otherwise.
For numeric variables, we determine the lower and upper bounds using the Interquartile
Range (IQR). The IQR is defined as IQR = Q3 − Q1. Using the IQR, we calculate
the minimum and maximum values (xmin and xmax) for each variable based on their
respective first quartile (Q1) and third quartile (Q3) from historical data. The formula
is as follows:

[xmin, xmax] = [Q1− 1.5 · IQR,Q3 + 1.5 · IQR].

The “Better High” column from Table 4.4 indicates whether higher values are preferable.
If this parameter is false, the normalized value is inverted to reflect that lower values
are better [54]. This inversion is applied to both numerical and categorical variables
to ensure they are appropriately scaled and encoded. This method ensures that values
near the maximum incur the maximum cost, and values near the minimum incur the
minimum cost for each variable, thus accurately reflecting their influence on the final
price calculation.

4.2.2 Regression Model

We create a regression model to understand the impact of each feature on the final price.
By analyzing the coefficients obtained from the regression model, we can determine how
much each variable contribute to the final assigned price. This analysis allows us to
assess the relative importance of different features with respect to the original assigned
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weights. Additionally, it helps to verify the effectiveness of our pricing algorithm by
comparing the assigned weights in the price assignation with the learned coefficients
from the regression model.

Given a new vehicle, we can test the predictive performance of our model using new data.
Historical data was used to train the model, enabling us to identify any discrepancies or
biases in the initial price assignment. The performance of the model is evaluated using
the metrics MSE, MAE and R2.

4.2.3 Results

We used Strategy 2 with the categories from Table 4.4. The weights for the environmen-
tal, socio-economic, and behavioral categories were assigned equally w1 = w2 = w3 =

1
3
.

Within each category, we applied a common ratio of r = 0.9. Additionally, we set the
bounds [α, β] = [0.5, 1] to ensure that the prices fall within this range.

Table 4.5 shows the weights and the regression coefficients after applying Strategy 2.
Table 4.6 presents the results of the evaluation metrics. Figures 4.1 and 4.2 display the
plots of the regression model with 100 and 500 samples, respectively.

Category Feature [Min, Max] Weights Regression coefficients

Environmental
co2 emissions [104.5, 140.5] 0.1230 0.0146

distance [0, 20.25] 0.1107 0.0148
num seats [2, 5] 0.0996 -1.4242e-06

Socio-economic

entry in holiday N/A 0.0814 0.0418
entry in high season N/A 0.0733 0.0393

is resident N/A 0.0659 -0.0478
num nights [0, 7] 0.0593 -0.0192
visit hours [0, 166.95] 0.0534 -0.0006

Behavioral
likelihood to come N/A 0.1754 -0.0240
cumulative entries [0, 61] 0.1579 -0.0207

Table 4.5: Results: Weights and regression coefficients

Metric MSE MAE R2
Values 0.00064 0.0182 0.7933

Table 4.6: Model Performance Metrics
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Figure 4.1: Regression model plot with 100 samples

Figure 4.2: Regression model plot with 500 samples

4.2.4 Discussion

The weights from Table 4.5 align with the selected strategy, where the weights from
each category ci sum to wi, and the sum of all weights w1, . . . , wT equals 1. In this
case, the features with the highest weights are the behavioral features likelihood to come
and cumulative entries, which makes sense because there are only two features in their
category.

According to the regression coefficients, positive values indicate that those features
increase the price by that amount. Similarly, negative values indicate a decrease in
the price. For example, for co2 emissions, if a vehicle produces 104.5 g/km or lower
(minimum bound), it will contribute 0 to the final price. Conversely, for 140.5 g/km
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or higher (maximum bound), it will contribute 0.0146 to the final price. Intermediate
values will be assigned a contribution between 0 and 0.0146.

The MSE value of 0.00064 indicates a small average squared difference between the
observed actual outcomes and the outcomes predicted by the model, suggesting high
accuracy. The MAE value of 0.0182 further supports this, showing that the average
magnitude of the errors in our predictions is low. The R2 value of 0.7933 suggests
that approximately 79.33% of the variability in the price can be explained by the model,
which is a good indication of the model’s explanatory power. These results show that
the pricing model is effective and reliable, with a strong predictive performance.
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CHAPTER 5

CONCLUSIONS

This project is divided into two main parts. First, we introduced a novel oversampling
method, KM-SMOTE, that combines K-medoids clustering with the SMOTE algorithm.
It is specifically designed to enhance the performance of models on unbalanced datasets
affected by noise and high dimensionality. We validated this method through a practical
use case focused on smart villages, where we applied this algorithm to noisy sensor and
survey data.

The proposed algorithm showed improvement in all metrics compared to other clustering-
based algorithms and the original SMOTE. This improvement is due to the presence of
outliers and noisy samples in this dataset, where the use of medoids contributes additional
benefits. The class balancing proved effective in all cases, as indicated by the F1-Score, G-
Mean, and Recall metrics. We also demonstrated that the problem of high dimensionality
is reduced by using the Manhattan distance metric instead of the Euclidean metric. The
results highlight the potential of this proposed algorithm, enabling data scientists and
researchers to achieve more reliable and interpretable results, especially in scenarios with
data imperfections.

Second, using the predictive power of our model, we predicted the willingness to return to
the area after the implementation of a toll in a parking lot. Using that behavioral feature
along with other environmental and socio-economic factors, we created a dynamic pricing
algorithm to categorize vehicles based on these three dimensions: social, economic, and
environmental, with a behavioral component. Each vehicle contributes according to
these features. We used historical data to adjust variables in the model and created a
dynamic price model using two strategies. Additionally, we developed a regression model
to study how coefficients affect price weights, providing deeper insights into the pricing
mechanism.

This contribution can be implemented in the Alpujarra region, assigning toll prices to
vehicles. Accompanied by continuous data collection over several months, this dynamic
pricing algorithm will allow dynamic price assignments to new vehicles entering the area.
It will also prepare stakeholders to manage and prevent overcrowding in the Barranco de
Poqueira, which was the main objective of this project.
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5.1 Limitations

This study presents some limitations that open up opportunities for future research.
Firstly, the amount of data collected is limited to specific periods and locations within
the Sierra Nevada National Park, which may not be representative of all possible seasonal
conditions or traffic variations. Additionally, the use of survey data may introduce biases
due to subjective responses that the KM-SMOTE algorithm cannot fully learn. It may be
beneficial to include other non-clustering-based and novel oversampling methods based
on neural networks and compare them to assess KM-SMOTE’s performance. Another
limitation is that the data is collected from cameras, which sometimes suffer from out-
ages, resulting in data loss. Finally, incorporating external factors beyond the specific
set of features (environmental, socio-economic, and behavioral), such as public trans-
portation policies or changes in road infrastructure, could provide a more comprehensive
analysis. Although the KM-SMOTE algorithm has been shown to improve performance
on our imbalanced and noisy dataset, future research should explore the integration of
these additional factors to create a more comprehensive and adaptable pricing model.

5.2 Future Work

The practical implementation of this model in the Alpujarra region will require contin-
uous monitoring and adjustments based on real-time data to adapt to changing visitor
dynamics and traffic patterns. Future work could focus on developing a real-time man-
agement platform that allows park managers to quickly and effectively adjust dynamic
pricing policies, ensuring a sustainable balance between environmental preservation and
tourism.

Additionally, future studies could investigate tourist patterns based on the routes they
take within the national park. This could provide insights into the most visited areas and
help in better managing foot traffic and preserving sensitive areas. Predicting tourism
peaks using Google Trends is another avenue for future research, as it could help in
anticipating high visitor periods and implementing proactive measures to manage the
influx effectively.
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