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Abstract. The dynamics of a dissipative and area contracting planar home-

omorphism were described in terms of the attractor. This was a subset of

the plane defined as the maximal compact invariant set. We proved that the
coexistence of two fixed points and an N -cycle produced some topological com-

plexity: the attractor cannot be arcwise connected. The proofs were based on

the theory of prime ends.

1. Introduction. In a remarkable paper [13], Levinson introduced the class of
planar homeomorphisms which are dissipative and area-contracting. His main mo-
tivation came from nonconservative mechanics, but this class of maps is also relevant
in other fields, such as population dynamics (see [23, 21] for more details).

A homeomorphism h : R2 −→ R2 is called dissipative if the point of infinity is
a repeller. The associated attractor A ⊂ R2 is an invariant continuum composed
of all the bounded orbits. The set A has zero measure if h is area-contracting.
Understanding the topology of A is a crucial step in the study of the dynamics of
h but this is not an easy task. Many examples have been constructed to show that
the set A, as well as the dynamics on it, can be very intricate (see [2, 27, 4, 9]).

In a recent paper [18] Nakajima used some clever and elementary arguments to
prove that the attractor is not arcwise connected when h has at least two fixed
points and one of them is an inverse saddle1. This result seems to be of a new
type, showing that some dynamical assumptions (existence of certain fixed points)
imply a certain complexity of the attractor (not arcwise connected). This line of
research has been continued in [7], where the result in [18] is translated from the
plane to the punctured sphere. In the present paper, we work in the plane and the
goal will be to reach Nakajima’s conclusion (A is not arcwise connected) without
assuming the existence of an inverse saddle. Instead, we will assume that there
exist at least two fixed points and one periodic point. The proofs are very different
from those in [18, 7]. Our arguments are based on the theory of prime ends. The
use of this theory in planar dynamics has a long tradition, starting with the work
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of Cartwright and Littlewood in [5]. Incidentally we notice that these authors were
motivated by the study of the attractor of the periodically forced Van der Pol
oscillator. Later, Alligood and Yorke analyzed in [1] the connections between the
rotation number of a local attractor and the existence of accessible periodic points
(see also [20, 22, 11]). All these papers consider the complement of the attractor
in the Riemann sphere S2 = R2 ∪ {∞}, denoted as Ω = S2\A. This set is open,
simply connected and invariant. The circle of prime ends is a fictitious boundary
attached to Ω and the map h induces a homeomorphism h∗ on this circle. We will
follow along this line and show that there are obstructions for the dynamics of h∗

when certain periodic points exist and A is arcwise connected. In consequence, A
will not enjoy this topological property. The possible novelty of our paper is in the
connection between Nakajima’s ideas and prime ends. At this point it may be worth
mentioning that this paper is an improvement on an unpublished manuscript. In our
previous version the conclusions were weaker and an anonymous referee suggested
applying Corollary 2 of [5]. The proof we present now is based on more elementary
ideas but those comments certainly encouraged us to improve the paper.

An important aspect of the main result is the simplicity of the assumptions (two
fixed points + one periodic orbit). This fact will allow us to obtain applications in
the theory of periodic differential equations. This was the original motivation for
the study of the attractors in [13].

The rest of the paper is organized in five sections. The class of maps under
study and the main result are presented in Section 2. The next section provides
a short introduction to the theory of prime ends. It follows Mather’s approach
and it is the main tool for the proof of the main result in Section 4. The last two
sections are devoted to illustrate the applicability of our theorem. We show that
some well-known results on bifurcation on subharmonic solutions can be combined
with our result to produce new information on attractors. Two concrete situations
are considered: a forced Duffing oscillator and the classical SIR model with periodic
contact rate (see [6, 25]).

2. A class of planar homeomorphisms and main result. A homeomorphism
of the plane is a continuous and bijective map h : R2 −→ R2. The class of all
homeomorphisms will be denoted byH(R2). A map h ∈ H(R2) is called dissipative
if there exists a closed ball B ⊂ R2 attracting all compact sets in a uniform sense.
In other words, for each p ∈ R2,

lim
n→+∞

dist(hn(p), B) = 0 (2.1)

and this limit is uniform in p ∈ K with K any compact subset of R2.
The attractor A ⊂ R2 is defined as the maximal invariant and compact set. It

satisfies the properties below,

• A is compact and h(A) = A,
• A contains any compact set K ⊂ R2 satisfying that h(K) = K.

With some work, it can be proved that A always exists and it is indeed a nonempty
continuum (compact and connected set). Sometimes, it is useful to interpret A as
the set of bounded orbits. More precisely,

A = {p ∈ R2 : lim sup
|n|−→+∞

|hn(p)| < ∞}.
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Notice that all orbits are bounded in the future (n −→ +∞) and, therefore, A can
be also described as the set of orbits bounded in the past (n −→ −∞). The reader
is referred to [13, 23, 8] for a detailed discussion on attractors and dissipative maps.

Levinson considered in Section 7 of [13] the class of dissipative homeomorphisms
contracting Lebesgue’s measure. In that case, the attractor has zero measure and, in
particular, the interior is empty. We will consider the larger class LH(R2) composed
of all dissipative homeomorphisms whose attractor has an empty interior in R2.
The class of Levinson appears very often in the theory of nonlinear oscillations, but
LH(R2) is more natural from a topological point of view. Notice that LH(R2) is
invariant under conjugacy.

The next result is an almost direct consequence of the definition of LH(R2) and
will be repeatedly applied throughout the paper.

Proposition 2.1. If h ∈ LH(R2), then A does not contain Jordan curves.

Proof. By contradiction, assume that Γ ⊂ R2 is a Jordan curve inside the attractor.
Let Ri(Γ) be the bounded component of R2\Γ. We will prove that Ri(Γ) is also
contained in A, but this is impossible if A has an empty interior.
Since A is invariant, every iterate of the curve is also contained in A, that is,⋃

n∈Z
hn(Γ) ⊂ A.

Let B be a large ball containing A. Then,⋃
n∈Z

hn(Ri(Γ)) =
⋃
n∈Z

Ri(h
n(Γ)) ⊂ B

and all the orbits starting at Ri(Γ) remain bounded. This implies that Ri(Γ) ⊂
A.

It is well-known that many continua in the plane have an intricate topology and they
can be realized as attractors. A very interesting discussion on possible attractors for
maps in LH(R2) can be found in Section 7 of [13]. The simplest possible attractor
is a singleton, corresponding to a globally asymptotically stable fixed point. After
this case, Levinson presented three figures of increasing complexity. In Figure 1 of
[13], the attractor is an arc and two dynamics are considered: three fixed points or
one fixed point and a 2-cycle. In Figure 2, the attractor is a triode with one fixed
point and two 3-cycles. Finally, in Figure 3, the three branches of the triode wrap
themselves infinitely many times around three arcs. The corresponding continuum
is not arc-wise connected. The dynamics is also more involved and a 6-cycle ap-
pears. Another possibility, also mentioned by Levinson, is the Cantorian Sun. This
continuum is obtained by drawing all the rays connecting the origin to the points
of a Cantor set lying in S1. See Figure 1 of this paper. It was proved in [9] (see also
[27]) that this set is the attractor of a map h in LH(R2). Moreover, the dynamics on
the Cantor set is recurrent (non-periodic) and the only periodic point is the origin,
Fix(h) = Fix(hn) = {(0, 0)}, for each n ≥ 1. In this case, A is arc-wise connected
but it is not locally connected.

After these examples, we are ready to present the main result.

Theorem 2.2. Assume that h ∈ LH(R2) is orientation preserving and there are
at least two fixed points and an M -cycle with M ≥ 2. Then, A is not arc-wise
connected.
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Figure 1. The third step in the construction of the Cantorian sun.
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Figure 2. Phase portrait of the flow {ϕt}t∈R

The proof of this result is postponed to Section 4.
Now we include some comments and examples:
Remarks:
1.- The theorem cannot be extended to orientation-reversing homeomorphisms
when M = 2. We will construct an orientation-reversing map h ∈ LH(R2) having
two fixed points, one 2-cycle, and the Y -set as attractor. We first construct a flow
{ϕt}t∈R with four equilibria at the points A = (−1, 0), B = (0, 0), C = (1, 1),
D = (1,−1) and the phase portrait illustrated in Figure 2. Also, we assume that
the flow is symmetric with respect to the horizontal axis,

ϕt ◦ S = S ◦ ϕt, t ∈ R,

where S(x, y) = (x,−y).
If we fix a time T > 0, the map h1 = ϕT belongs to LH(R2) and the attractor is

composed of the four equilibria and the heteroclinic orbits connecting them. This
map is orientation-preserving, but h = S ◦ h1 is orientation reversing and has the
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fixed points A, B and the 2-cycle {C,D}. The attractor of h1 and h coincide because
h1 and S commute.
2.- The theorem does not extend to higher dimensions. The class LH(R3) can be
defined in the obvious way. We consider h ∈ LH(R3) with

h(x, y, z) = (h1(x, y), h2(z)).

In addition, we assume that h1 ∈ LH(R2) is orientation reversing and it has the
attractor A1 = [−1, 1] × {0} and the three fixed points (−1, 0), (0, 0), and (1, 0).
The function h2 : R −→ R is a decreasing homeomorphism having the attractor
A2 = [−1, 1], one fixed point at z = 0, and a 2-cycle at z = ±1. The product map
h has three fixed points, a 2-cycle, it is orientation preserving, and the attractor

A = (A1 × {0}) ∪ ({(0, 0)} × A2)

is arc-wise connected.
3.- It would be nice to connect the theorem with Nakajima’s result, but this is

unclear. We do not know if there are maps h ∈ LH(R2) having an inverse saddle
and no periodic orbits.

Given a map h ∈ LH(R2), the iterate hn with n ≥ 2 will also belong to LH(R2).
Moreover, the attractor is the same. This observation allows us to apply the previous
theorem to any positive power of h. As a consequence, we obtain:

Corollary 2.3. The conclusion of Theorem 2.2 also holds under one of the as-
sumptions below,

i): h ∈ LH(R2) is orientation reversing and it has at least two fixed points and
one M -cycle with M ≥ 3.

ii): h ∈ LH(R2) is orientation preserving and it has at least two cycles with
minimal periods M > N ≥ 2.

In the first case, we apply the Theorem to h2 and in the second to hN . The third
example in [13] is in the conditions of ii) with M = 6 and N = 3.

3. Background on Prime Ends. Let Ω be an open and simply connected subset
of S2 such that ∞ ∈ Ω, Ω ̸= S2, and S2\Ω is not a singleton. It is well-known that
Ω is always homeomorphic to the open unit disk int(D), where

D = {z ∈ C : |z| ≤ 1}.
However, the boundary of Ω in S2, denoted by ∂S2Ω, is not necessarily homeomor-
phic to ∂D = S1. Caratheodory’s theory of prime ends allows us to construct an
abstract topological space Ω∗ containing Ω, and such that the pairs (Ω∗,Ω) and
(D, int(D)) are homeomorphic.

The space of prime ends is defined as

P = Ω∗\Ω.
The space Ω∗ is not inside S2 but somehow describes the way in which Ω is embedded
in S2. The following property reflects this fact.

Let g : S2 −→ S2 be a homeomorphism with g(∞) = ∞ and such that Ω is
invariant under g, g(Ω) = Ω. Then, there exists another homeomorphism g∗ :
Ω∗ −→ Ω∗ such that g = g∗ on Ω. After conjugation, the restriction of g∗ to the
space of prime ends, g∗ : P −→ P, can be seen as a homeomorphism of S1.

An end-path is a continuous map γ : [0, 1] −→ S2 such that γ(t) ∈ Ω if t ∈ [0, 1[
and γ(1) ̸∈ Ω. End-paths can also be interpreted as paths in Ω∗. More precisely,
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it is possible to construct a continuous map γ∗ : [0, 1] −→ Ω∗ such that γ∗ = γ on
[0, 1) and γ∗(1) ∈ P (see Theorem 16 in [14]).

A prime end P is called to be accessible if P = γ∗(1) for some γ∗ and ξ = γ(1) ∈
∂S2Ω is the principal point of P. It can be proved that every accessible end has
a unique principal point (Theorem 17.1 in [14]).

Given two end-paths γ0, γ1 : [0, 1] −→ S2, we say that they are homotopic if
there is a continuous mapping Γ : [0, 1] × [0, 1] −→ S2 such that Γ(t, 0) = γ0(t),
Γ(t, 1) = γ1(t), Γ(1, s) = γ0(1) = γ1(1), Γ(t, s) ∈ Ω if t < 1. This notion is relevant
because two end-paths are homotopic if, and only if the corresponding accessible
prime ends coincide, γ∗

0 (1) = γ∗
1 (1) (Theorem 18 in [14]).

For a general domain Ω, not all prime ends are accessible. However, if the
boundary of Ω is locally connected, then all prime ends are accessible (Theorem
20 in [14]). From now on we assume that ∂S2Ω is locally connected. Under this
assumption, the previous discussions are sufficient to construct the space P and
the map g∗ in concrete cases. Prime ends with the same principal point ξ ∈ ∂S2Ω
correspond to different ways of approaching ξ from Ω. Given P ∈ P, we can have
an end-path γ such that γ(1) = ζ for a suitable point ζ ∈ ∂S2Ω. To construct the
topology of Ω∗, it is enough to define a sub-basis of neighborhoods for each P ∈ P.
Given an end-path γ defining P, we take an open ball B centered at the principal
point ζ = γ(1). Let Bγ be the connected component of B ∩ Ω such that γ(t) ∈ Bγ

if t < 1 and 1− t sufficiently small. We define the neighborhood

UB = Bγ ∪ {λ∗(1) : λ ∈ Λ}

where Λ is the family of end-paths λ : [0, 1] −→ S2 satisfying that λ(t) ∈ Bγ if
t ∈ [0, 1). After this definition, the following result is easily proved.

Lemma 3.1. In the previous notations, assume that the boundary ∂S2Ω is locally
connected and consider the map

Π : P −→ ∂S2Ω, P 7→ ζ,

assigning the corresponding principal point ζ to each prime end P. Then, Π is
continuous.

Finally, we discuss how to induce homeomorphisms on P. Let h : R2 −→ R2 be
a homeomorphism such that Ω is invariant. Then, also ∂S2Ω is invariant. Given an
end-path γ defining P, the composition h ◦ γ is another end-path inducing a prime
end. The homeomorphism h∗ : P −→ P satisfies

h∗(P) = (h ◦ γ)∗(1).

The useful property (h∗)n = (hn)∗ holds for each n ∈ Z.
As an example, we consider the domain Ω = S2\A where A = ([−1, 1] × {0}) ∪

({0}× [−1, 1]). In this set, we distinguish the four end points a, b, c, d and the origin
0. For each point ξ ∈ A\{a, b, c, d, 0}, there are two prime ends whose principal
point is ξ. Four prime ends have the origin as principal point. Finally, there is only
one prime end for a, b, c, and d. Figure 3 illustrates this description.

Consider now the symmetry h : S2 −→ S2, h(z) = z̄. Then, h(Ω) = Ω and
h∗ : P −→ P satisfies Fix(h∗) = {a, c}, Fix((h2)∗) = P. In particular, h(b) = d,
h∗(O1) = O4,...

4. Proof of Theorem 2.2. We start with three preliminary results which will be
used in the proof.



TOPOLOGY OF ATTRACTORS AND PERIODIC POINTS 7

ac

d

b

0

    

    

1O2O

3O 4O

b

d

ac












Figure 3. Description of the prime ends in A = ([−1, 1]×{0})∪
({0} × [−1, 1])

Lemma 4.1. Assume that K is a nonempty continuum in the plane and h ∈
LH(R2) is such that

K ⊂ A and h(K) = K.

Then, Ω = S2\K is a simply connected domain with ∂S2Ω = K.

Proof. Let {Ωi}i∈I be the family of connected components of Ω. Since h is a
homeomorphism and Ω is invariant, components must be mapped onto components.
This means that h(Ωi) = Ωσ(i), where σ is a permutation of I. Let Ω∞ denote the
component containing ∞. From h(∞) = ∞, we deduce that h(Ω∞) = Ω∞. Also,
the complement S2\Ω∞ must be invariant under h. Then, all orbits lying in S2\Ω∞
are bounded and this set is contained in the attractor. From S2\Ω∞ ⊂ A, we
deduce that intS2(S2\Ω∞) = ∅. This implies that Ω = Ω∞. Once we know that
Ω is connected, it is easy to prove that it is also simply connected. Indeed, it is
sufficient to observe that the complement S2\Ω = K is connected. Finally, we
observe that Ω is dense in S2, and, in consequence, ∂S2Ω = S2\Ω = K.

The previous result can be applied to the case K = A. In particular, we recover
Proposition 2.1, and A cannot contain Jordan curves. From this fact we deduce a
useful result.

Lemma 4.2. Assume that h ∈ LH(R2) and γ = x̂y is an arc contained in A such
that the end points are fixed, that is, x, y ∈ Fix(h). Then, h(γ) = γ.

Proof. The set γ∪h(γ) is a closed loop contained in A. This loop should contain a
Jordan curve unless both arcs γ and h(γ) coincide. To justify the previous reasoning,
the reader can find it convenient to invoke Lemma 2.6 in [7].

Oriented arcs have a natural ordering, and this fact will be crucial for the fol-
lowing result.
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Lemma 4.3. Assume that h∈LH(R2), A is arc-wise connected, and p ∈ A\Fix(h).
Then, there exist a fixed point x and an arc Γ = p̂x contained in A so that

Γ ∩ Fix(h) = {x}.

Proof. Since h is dissipative, we know that it has at least one fixed point ζ. Let

Γ = p̂ζ be an arc contained in A. The arc Γ can contain many fixed points besides
ζ, but we select the smallest fixed point x; that is, h(z) ̸= z if z ∈ p̂x, z ̸= x, and
h(x) = x. Then, Γ = p̂x is the required arc.

After these preliminary results, we are ready for the proof of the main result.

Proof of Theorem 2.2. By a contradiction argument we assume that h ∈ LH(R2)
is orientation preserving, A is arc-wise connected, {z0, ..., zN−1} is an N -cycle, and
Fix(h) contains at least two points.
Lemma 4.3 can be applied to find an arc Γ0 = ẑ0x contained in A and such that
Γ0 ∩ Fix(h) = {x}. Also, we select a second fixed point y ̸= x and find an arc
γ ⊂ A, γ = x̂y. We can apply Lemma 4.2 to deduce that h(γ) = γ. Define the set

K = γ ∪ Γ0 ∪ h(Γ0) ∪ ... ∪ hN−1(Γ0).

Then, K is invariant under h. Let us now recall that a Peano continuum is a locally
connected continuum. A finite union of Peano continua with a common point is also
a Peano continuum (see [19], page 88). In consequence, K is a Peano continuum.

In view of Lemma 4.1, the space of prime ends associated to Ω = S2\K can be
considered. The boundary is locally connected and we know that each point of K is
the principal point of some prime end. Let us take P0 ∈ P with Π(P0) = z0. The se-
quence {Π◦(h∗)n(P0)}n∈Z is periodic, namely, {..., z0, z1, ..., zN−1, z0, z1, ..., zN−1...}.
From the continuity of Π, we deduce that {(h∗)n(P0)}n≥0 cannot be a convergent
sequence.

Let us now analyze the prime end Py ∈ P with Π(Py) = y. Indeed, this prime
end is unique. To justify this assertion, observe that it is not restrictive to assume
that the arc γ is a segment. This is possible because all arcs in the plane are tame
(see [15]). Since x is the only fixed point lying in Γ0, we deduce that y ̸∈ Γ0. In
consequence,

y = hk(y) ̸∈ hk(Γ0), 0 ≤ k ≤ N − 1.

This property allows us to find a disk D centered at y and having a small radius
such that D ∩K = D ∩ γ. The uniqueness of Py together with the identity

Π(h∗(Py)) = h(Π(Py)) = h(y) = y

implies that Py is fixed under h∗.
At this point we have found the required contradiction on the dynamics of h∗. This
map can be seen as an orientation preserving homeomorphism of S1 having the fixed
point Py and the non-convergent orbit {(h∗)n(P0)}n≥0. It is well-known that such
a map cannot exist.

Remark 4.4. The above proof is a refined version of the proof we originally found.
In the preprint version of our paper, we included the property

γ ∩ hk(Γ0) = {x}, 0 ≤ k ≤ N − 1

as an intermediate step. Referee X has now observed that it is not necessary to
check this property in order to complete the proof.
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This referee has proposed other changes to make the proof more pictorial. We
know that two arcs in A that are not disjoint will intersect in a point or in a subarc.
This implies that K is a finite 1-D simplicial complex (a graph). In particular,
K is locally connected. Graphs in the plane are tame and so any terminal vertex
corresponds to a single prime end in S2\K. This implies that Py is unique.
We are in debt with Referee X for the clever remarks and the deep understanding
of our work.

5. The attractor of a forced oscillator. We consider the equation

ẍ+ µ1ẋ+ x3 = µ2F (t) (5.1)

where µ1 > 0 and µ2 ∈ R are real parameters and F : R −→ R is a continuous and
periodic function with period T = 1.

Given (x0, v0) ∈ R2, the solution satisfying x(0) = x0, ẋ(0) = v0 is denoted by
x(t;x0, v0). The dynamics of the equation (5.1) can be analyzed through the planar
map

P : (x0, v0) 7→ (x(T ;x0, v0), ẋ(T ;x0, v0)),

sometimes called the Poincaré map.
From now on, X will denote the Banach space of 1-periodic and continuous

functions F : R −→ R endowed with the uniform norm

∥F∥ = max
t∈R

|F (t)|.

As a first step, we are going to prove that the map P belongs to the class of maps
considered in the previous section.

Lemma 5.1. For each µ1 > 0, µ2 ∈ R, and F ∈ X, the map P belongs to LH(R2)
and it is orientation preserving.

Proof. To start, we show that P is a homeomorphism of R2. For this it is sufficient
to show that all the solutions of (5.1) are globally defined (see [21] for more details).
Assume that x(t) = x(t;x0, v0) is a maximal solution with energy

E(t) =
1

2
ẋ(t)2 +

1

4
x(t)4.

After differentiation,

|Ė| = | − µ1ẋ
2 + µ2Fẋ| ≤ µ1ẋ

2 +
|µ2|
2

(ẋ2 + F 2)

≤ (2µ1 + |µ2|)E +
|µ2|
2

∥F∥2.

We have found a linear differential inequality in E which can be solved. Then, it is
easy to show that the pair (x(t), ẋ(t)) cannot blow up in finite time. Therefore, the
maximal interval of this solution is (−∞,+∞).

Once we know that P ∈ H(R2), we are going to prove that it is dissipative. This
is equivalent to proving that there exists C > 0 such that for each solution x(t) of
(5.1), there exists a time τ > 0 such that

|x(t)|+ |ẋ(t)| ≤ C

if t ≥ τ . This is a consequence of general results on dissipative systems (see [23]),
but it is also possible to obtain a direct proof with the help of the modified energy

V (t) =
1

2
ẋ(t)2 + εx(t)ẋ(t) +

1

4
x(t)4,
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where ε > 0 is small enough.
To complete the proof of the lemma, it is sufficient to observe that P is area-

contracting and orientation preserving. In fact, a well-known computation based
on Liouville’s formula shows that

0 < detP ′(x0, v0) = e−µ1T < 1 (5.2)

for each (x0, v0) ∈ R2.

Throughout this section, AF will denote the attractor of the map P . Indeed,
AF will also depend upon the parameters µ1 and µ2, but we want to stress the
functional dependence.

A possible criticism to this definition of attractor is that the map P is linked to
the initial value problem at time t0 = 0, and this is a rather arbitrary choice. We
could instead select any other initial time t0 ∈ R. This leads to the family of maps

Pt0 : R2 −→ R2

(x(t0), ẋ(t0)) 7→ (x(t0 + T ), ẋ(t0 + T )).

Since they are conjugate, all of them belong to LH(R2) and the corresponing at-
tractors AF (t0) are homeomorphic subsets of the plane.

Another alternative to define the attractor is to interpret equation (5.1) as an au-
tonomous system on the 3-dimensional manifold M = (R/Z)×R2 with coordinates
(t, x, v) and t = t+ Z. The system

ṫ = 1, ẋ = v, v̇ = −µ1v − x3 + µ2F (t)

is dissipative and the attractor A∗ ⊂ M is precisely the union of all discrete attrac-
tors. Specifically,

A∗ = {(t, x0, v0) : 0 ≤ t < 1, (x0, v0) ∈ AF (t0)}.
The forward orbits {(t, x(t), ẋ(t)) : t ≥ 0} are attracted as t → +∞ by A∗. We
thank referee Y for a remark that has motivated this discussion.

We are going to present a result on the topology of AF that is valid for typical
forcings F . This will be understood in the sense of category. We will say that a
property holds for a generic F in X if it holds for every F ∈ G, where G is an open
and dense subset of X.

Theorem 5.2. For a generic F in X, there are numbers ε > 0 and η > 0 such that
the attractor AF is not arc-wise connected if

0 < µ1 < η|µ2|, |µ2| < ε.

The attractor in the red region is not arc-wise connected whereas it is a singleton
on the green line (see Figure 4). Indeed, when µ2 = 0, the equation is autonomous
and x = 0 is a globally asymptotically stable solution. When F is a constant
function, the equation is again autonomous and the unique equilibrium x = (µ2F )

1
3

attracts all solutions. Again, the attractor is a singleton. This shows that the
conclusion of the theorem cannot be valid for all F ∈ X. Later we will be more
precise on the nature of the set G where the conclusion of the theorem is valid.

To prove the theorem we will apply some well-known results on the existence of
subharmonic solutions of a forced oscillator. We will work with the framework of
page 372 in [6], which can be adapted to equation (5.1). It must be noticed that
in [6] it is assumed that the equation is smooth in all variables and (5.1) is only
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𝜇1

𝜇2

Figure 4.

continuous in t. This does not create essential differences because the Poincaré map
is real analytic as a function of (x0, v0, µ1, µ2).

The first step will be to find a periodic solution of the autonomous equation
(µ1 = µ2 = 0) with minimal period kT for each k = 2, 3, .... Let C(t) be the unique
solution of

ẍ+ x3 = 0 (5.3)

with minimal period T = 1 and C(0) > 0, Ċ(0) = 0. This solution exists because
x = 0 is a center and the minimal period of the closed orbits has the formula

τ(A) =
κ

A

where κ > 0 is a fixed constant and A > 0 is the amplitude of the oscillation. Actu-
ally, the nontrivial solutions of (5.3) are described by the family of two parameters

x(t) = λC(λt+ σ) (5.4)

with λ > 0 and σ ∈ R. We refer to [16] for an expression of C(t) in terms of

special functions. Let us define S(t) = Ċ(t) so that t 7→ (C(t), S(t)) is a clockwise
parameterization of a closed orbit of (5.3). For each k = 2, 3, ..., the solution

φk(t) =
1

k
C

(
t

k

)
has minimal period T = k.

Differentiating the formula (5.4) with respect to t and λ, we observe that the
variational equation

ÿ + 3φk(t)
2y = 0 (5.5)

has a fundamental system composed of the functions

y1(t) = φ̇k(t), y2(t) = φk(t) + tφ̇k(t).

In consequence, the only periodic solutions of (5.5) are of the type cφ̇k(t) with
c ∈ R. This is the starting assumption in [6]. The other assumption is connected
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with the function

Gk(α) =
1

k

∫ k

0

φ̇k(t)F (t− α)dt =
1

k

∫ k

0

φ̇k(t+ α)F (t)dt.

This function is real analytic and we will impose the condition

G′
k(α)

2 +G′′
k(α)

2 > 0 (5.6)

for each α ∈ R. This means that Gk is a Morse function because all critical points
(G′

k(α) = 0) are nondegenerate (G′′
k(α) ̸= 0). Under the assumption (5.6), the

results in [6] imply the existence of εk > 0 and ηk > 0 such that the equation (5.1)
has a solution with period kT if 0 < µ1 < ηk|µ2|, |µ2| < εk. This solution is C1-close
to φk(t), and so it has no period of the type rT with 1 ≤ r < k if εk is small enough.

Let us define Gk ⊂ X as the set of functions F in X such that the corresponding
function Gk satisfies the condition (5.6). We claim that the conclusion of the theo-
rem holds if F ∈ Gk1 ∩ Gk2 with k1 < k2. To prove this, we will apply Corollary 2.3
ii).

Let us expand the function C(t) as a Fourier series

C(t) =
∑
n∈Z

Cne
2πnit

with Cn = C−n. We claim that the following result holds:

Lemma 5.3. Assume that k ≥ 2 is such that Ck ̸= 0. Then, Gk is open and dense
in X.

Assuming by now that this result holds, we can easily complete the proof of the
theorem. By direct substitution in (5.3), we observe that this equation does not
admit solutions of the type x(t) =

∑
|n|≤N Cne

2πnit (trigonometric polynomials).

In consequence, there exist infinitely many Fourier coefficients Cn ̸= 0. Let us take
1 < k1 < k2 such that Ck1

̸= 0 and Ck2
̸= 0. Then, according to Lemma 5.3,

Gk1 ∩ Gk2 is open and dense. We can take G = Gk1 ∩ Gk2 to complete the proof of
Theorem 5.2.

Proof of Lemma 5.3. Let X2
k be the class of functions G : R −→ R of class

C2 and period k. It becomes a Banach space when it is endowed with the norm

∥G∥2 = max
α∈R

[|G(α)|+ |G′(α)|+ |G′′(α)|].

The linear operator
L : X −→ X2

k

F 7→ Gk

is continuous. The class of Morse functions is open in X2
k. In consequence, Gk is

open in X.
Next, we are going to compute LP for the choice P (t) = ε sin[2π(t − τ)]. From

the definition,

LP (α) =
ε

k

∫ k

0

φ̇k(t) sin[2π(t− τ − α)]dt

=
ε

2ik3

∫ k

0

Ċ

(
t

k

)
(e2πi(t−τ−α) − e−2πi(t−τ−α))dt

= −2πε

k
Re(Cke

2πi(τ+α)).

(5.7)
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If Ck = |Ck|eiω,

LP (α) = −2πε

k
|Ck| cos(2π(τ + α+ ω)).

Note that for simplicity in the notation, we do not include the dependence of ω
with respect to k.

To prove that Gk is dense in X, we take an arbitrary function F ∈ X withG = LF .
We will distinguish three cases which will cover all possibilities because G is a real
analytic periodic function.
Case 1: (G′)2 + 1

4π2 (G
′′)2 is not a constant function.

We consider the perturbation F̃ (t) = F (t) + ε sin[2π(t− τ)]. We are going to prove

that if Ck ̸= 0 and ε ̸= 0, then for all τ excepting a finite number, the function LF̃
is a Morse function.

The equations for a degenerate critical point of LF̃ are

G′(α) +
4π2

k
ε|Ck| sin[2π(τ + α+ ω)] = 0

1

2π
G′′(α) +

4π2

k
ε|Ck| cos[2π(τ + α+ ω)] = 0.

(5.8)

Equivalently,

R[2π(α+ τ + ω)]

(
G′(α)
1
2πG

′′(α)

)
=

(
0

−4π2ε
k |Ck|

)
, (5.9)

where

R[θ] =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

The previous system implies that

G′(α)2 +
1

4π2
G′′(α)2 =

16π4ε2

k2
|Ck|2.

From the analyticity of G and the assumption of case 1, we deduce that α ∈ [0, 1)
must belong to a finite set {α1, ..., αr}. For each i = 1, ..., r and α = αi, it is clear
that (5.9) has a unique solution in τ ∈ [0, 1), say, τi. After selecting some τ ̸= τi,

i = 1, ..., r, and 0 ≤ τ < 1, we observe that F̃ converges to F as ε −→ 0 and LF̃ is
a Morse function.
Case 2: G is constant.
Taking F̃ as in the previous case, we observe that LF̃ is a Morse function if ε ̸= 0.
Case 3: G′(α) = c1 cos(2πα) + c2 sin(2πα), c

2
1 + c22 > 0.

In this case, G is a Morse function.

6. The attractor of the SIR model with periodic contact rate. The classical
SIR model with periodic contact rate [24, 25, 12] is given by the system of differential
equations 

Ṡ = λ− µS − β(t)SI

İ = β(t)SI − (γ + µ)I

Ṙ = γI − µR

(6.1)

with all parameters strictly positive and β : R −→ [0,+∞) a continuous and T -

periodic function. Since Ṡ + İ + Ṙ = λ− µ(S + I +R), the planar system{
Ṡ = λ− µS − β(t)SI

İ = β(t)SI − (γ + µ)I
(6.2)
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completely determines the dynamical behavior of (6.1). We emphasize that this
system is meaningful only in R2

+ = {(S, I) : S ≥ 0, I ≥ 0}. Since the system
(6.2) is defined on a proper subset of the plane, the dissipative structure has some
subtleties. To describe them, we first observe that every solution of (6.2) is defined
on a maximal interval of the type [α,+∞) with −∞ ≤ α < +∞. In fact, the vector
field defined on (6.2) points inward or is tangent to the boundary of R2

+. More
precisely,

X1(t, 0, I) > 0 and X2(t, S, 0) = 0

if X(t, S, I) = (λ − µS − β(t)SI, β(t)SI − (γ + µ)I). In addition, as long as the
solutions stay in R2

+, they satisfy

λ− (µ+ γ)(S(t) + I(t)) ≤ d

dt
(S(t) + I(t)) ≤ λ− µ(S(t) + I(t)). (6.3)

This differential inequality implies that the solutions cannot blow up in finite time.
Once we have analyzed the initial value problem, we can use (6.3) again to prove

that

lim sup
t−→+∞

[S(t) + I(t)] ≤ λ

µ

for each solution.
Let B be the family of the bounded solutions. This means that α = −∞ and

sup
t∈R

[S(t) + I(t)] < ∞.

The corresponding section at time t is denoted by

At = {(S(t), I(t)) : (S, I) ∈ B}.

Standard arguments in the theory of dissipative systems can be employed to prove
that At is a continuum contained in R2

+ with the properties

At1
∼= At2 , At+T = At,At ∩ ∂R2

+ = {E},

where E =
(

λ
µ , 0

)
is the semi-trivial equilibrium.

The periodic family {At}t∈R has the attracting property:

dist[(S(t), I(t)),At] −→ 0 as t −→ +∞

for every solution (S(t), I(t)) of (6.2).
In view of these facts, we can say that A0 is the attractor of the embedding

P∗ : R2
+ −→ R2

+, (S(0), I(0)) 7→ (S(T ), I(T )).

The main result of the section is concerned with the topology of A0.

Theorem 6.1. Assume that

R0 :=
λ

µ(γ + µ)T

∫ T

0

β(t)dt > 1. (6.4)

If (6.2) admits a kT -periodic solution that is not T -periodic with k ∈ N, then A0 is
not arc-wise-connected.

Remark 6.2. The reader can consult [25, 12, 24] for sufficient conditions on the
existence of subharmonics in (6.2). We emphasize that if (6.4) is not satisfied, then
(λµ , 0) is globally asymptotically stable in (6.2); see Proposition 1 in [3].
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The map P∗ is not defined in the whole plane and so the results of Section 2 are
not directly applicable. Our strategy will be to construct a map P : R2 −→ R2

with the properties

P = P∗ on R2
+, P ∈ LH(R2), A = A0,

where A is the attractor of P as defined in Section 2.
To this end we consider the auxiliary system{

Ṡ = λ− µS − β(t)S+I+

İ = β(t)S+I+ − (γ + µ)I
(6.5)

defined on the whole plane R2. We employ the notion S+ = sup{S, 0} and I+ =
sup{I, 0}.

This system is linear outside the first quadrant and all solutions are defined on
the whole line. The associated Poincaré map is an orientation preserving homeo-
morphism of R2 extending P∗. The region {I ≤ 0} is invariant and all solutions lying
there converge to the equilibrium E. The solutions starting at the second quadrant
are unbounded in the past and eventually enter into the first quadrant. Therefore,
the map P is dissipative and all bounded orbits lie in R2

+, and, in consequence,
A = A0.

At this moment it is not obvious that P belongs to LH(R2) because we do not
know if A has an empty interior. It could seem reasonable to transform the system
under the change of variable L = ln I. In the variables (S,L), the system has
negative divergence on [0,+∞) × R and the corresponding Poincaré map is area
contracting. However, since A is a set touching the equilibrium E, the measure of
A\{E} could be infinite in the new coordinates.

Since the previous attempt does not work, we will need several preliminary results
before concluding that A ⊂ R2

+ has zero measure.

Lemma 6.3. Assume that (6.4) holds. Then, there exists a compact set B ⊂
[0,+∞) × (0,+∞) so that P (B) ⊂ B, and for each p ∈ [0,+∞) × (0,+∞) there
exist an integer np ≥ 1 and a neighborhood Up of p with

Pn(Up) ⊂ B

if n ≥ np.

Proof. All topological notions will be understood with respect to the relative
topology of R2

+. Using (6.3), the set

C = {(S, I) ∈ R2
+ : S + I ≤ λ

µ
+ 1}

is positively invariant under P . In fact,

P (C) ⊂ intR2
+
(C) (6.6)

where intR2
+
(C) = {(S, I) ∈ R2

+ : S + I < λ
µ +1} is the interior of C relative to R2

+.

Moreover, for each p ∈ R2
+, there exists n1 ∈ N so that

Pn(p) ∈ intR2
+
(C)

for all n ≥ n1.
On the other hand, condition (6.4) guarantees that the disease persists uniformly

strongly (see Theorem 3.1 in [26]). Hence, there is a constant ε > 0 so that, for all
p = (S, I) ∈ R2

+ with I > 0,
lim inf In > ε (6.7)
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with {(Sn, In)} = {Pn(p)}. Define the set

G = C ∩ {(S, I) ∈ R2
+ : I ≥ ε}.

From the previous properties we deduce that every forward orbit lying in[0,+∞)×
(0,+∞) will enter the set intR2G. In particular, due to the continuity of P , given
q ∈ G, it is possible to find an open neighborhood Wq and an integer nq ≥ 1 such
that

Pnq (Wq) ⊂ G.

Since G is compact, we can take a family of points q1, ..., qm ∈ G so that

G ⊂
m⋃
i=1

Wqi .

Define N = max{nqi : i = 1, ...,m}+ 1 and

B = G ∪ P (G) ∪ ... ∪ PN−1(G).

We claim that B is positively invariant. In view of the definition of B, this will
follow from the inclusion PN (G) ⊂ B. To prove it, we pick any point q ∈ G, then
q ∈ Wqi for some i ∈ {1, ...,m}. In consequence,

PN (q) = PN−nqi (Pnqi (q)) ∈ PN−nqi (Pnqi (Wqi)) ⊂ PN−nqi (G).

Once we know that B is positively invariant, we must prove that it also enjoys
the attraction property. For each point p ∈ [0,+∞) × (0,+∞), we know that the
forward orbit will enter into intR2

+
(G). Then, there exist an integer np ≥ 1 and a

neighborhood Up with

Pnp(Up) ⊂ G ⊂ B.

The positive invariance of B implies that Pn(Up) ⊂ B for each n ≥ np.

Our next step will be to construct a curve emanating from E and contained in
A. We want to construct it as one of the branches of the unstable manifold in E.
There is an apparent obstruction because the system we have defined on the whole
plane is not C1 and it is not possible to linearize around E. For this reason we go
back to the original system (6.2) but now we assume that the phase space is the

whole plane. The Poincaré map of this system is denoted by P̂ : D ⊂ R2 −→ R2,

where D is an open set containing R2
+ and P = P̂ on R2

+. At the equilibrium E,
the periodic linearized system is

ζ̇ = −µζ − λ

µ
β(t)η, η̇ =

λ

µ
β(t)η − (γ + µ)η

with Floquet multipliers µ1 = e−µT , µ2 = e(R0−1)(γ+µ)T . These numbers are the

eigenvalues of the Jacobian matrix P̂ ′(E). When (6.4) holds, 0 < µ1 < 1 < µ2 and

E is a hyperbolic fixed point of P̂ . The stable manifold is W s(E) = R × {0} and
the unstable manifold can be split as

Wu(E) = W+ ∪W−

with W+ ⊂ R2
+, W− ⊂ {(S, I) : I ≤ 0}, and W+∩W− = {E}. For our purposes, the

branch W− has no significance, but W+ plays an important role in the dynamics of
P . We list some useful properties:

P (W+) = W+, W+ ⊂ A0, W+ = {p ∈ R2
+ : P−n(p) −→ E as n −→ +∞}.
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The set W+ has zero measure. This is a consequence of the stable manifold theorem
because W+ can be described as W+ = {φ(s) : s ∈ [0,+∞)} where φ : [0,+∞) −→
R2 is a C1 map. Next, we consider the invariant splitting

A = W+ ∪ (A\W+)

and we are going to prove that also A\W+ has zero measure. To prove this, we
first observe that this set is contained in the compact set B given by Lemma 6.3.
To prove A\W+ ⊂ B, we take a point q ∈ A\W+ and select a sequence of integers
τ(n) −→ +∞ such that P−τ(n)(q) −→ p with p ̸= E. This is possible because
q ̸∈ W+ and {P−n(q)}n≥0 is bounded. The point p belongs to the attractor and
we know that A ∩ {(S, I) : I = 0} = {E}. Therefore, p ∈ [0,+∞) × (0,+∞), and
Lemma 6.3 implies the existence of np and Up with Pn(Up) ⊂ B if n ≥ np. Let

us select an integer n large enough so that P−τ(n)(q) ∈ Up and τ(n) > np. Then,

Pnp−τ(n)(q) ∈ B. Since B is positively invariant and np− τ(n) < 0, we deduce that
q ∈ B.

Once we know that A\W+ ⊂ B, we can guarantee the existence of some δ > 0
such that I ≥ δ for each (S, I) ∈ A\W+. Note that B is compact and B ∩ {(S, I) :
I = 0} = ∅.

It is time to go back to the change of variable L = ln I we mentioned before. In
the variables (S,L) ∈ [0,+∞)× R, the system (6.1) becomes{

Ṡ = Y1(t, S, L) = λ− µS − β(t)SeL

L̇ = Y2(t, S, L) = β(t)S − (γ + µ).
(6.8)

The divergence of the vector field Y (t, ·) is given by

divY (t, S, L) =
∂Y1

∂S
+

∂Y2

∂L
= −µ− β(t)eL < 0.

The Poincaré map in the new variables, denoted by P̃ : [0,+∞)×R −→ [0,+∞)×R,
is area contracting. This means that

µ(P̃ (A)) < µ(A)

if A ⊂ [0,+∞)×R is a measurable set with 0 < µ(A) < +∞ and µ is the Lebesgue
measure in R2. Define

L = {(S, ln I) : (S, I) ∈ A\W+}.

This set is bounded and measurable, in particular, µ(L) < +∞. Since P̃ (L) = L,
we must conclude that L has zero measure. Going back to the original variables,
we conclude that A\W+ has zero measure.

Once we know that µ(A) = 0, we can say that P is in the class LH(R2) and
we are ready for the proof of Theorem 6.1. The disease-free equilibrium (λµ , 0) is

always a fixed point of P . By assumptions, P has a k-cycle in (0,+∞)2 that is not
a fixed point of P . On the other hand, the condition (6.4) guarantees the existence
of a fixed point in {(S, I) : S > 0, I > 0}; see Theorem 1 in [10]. The conclusion
now follows from Corollary 2.1 i).
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