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A B S T R A C T

Global ecosystems and communities are significantly impacted by climate change and extreme 
events. The rapid desiccation of massive wetlands, which are essential for controlling water cy-
cles, and biodiversity, preventing floods, and supplying essential ecosystem services, is one of the 
most upsetting effects. The once-largest lake in the Middle East, Lake Urmia, had a significant 
impact on ecology, economy, and human life contributing to climate regulation, species preser-
vation, habitat conservation, tourism and recreation, and a wide range of other ecosystem ser-
vices. The Ramsar Convention classified the lake as a Wetland of International Importance, and 
UNESCO designated it as a Biosphere Reserve. The ecological, agricultural, and societal chal-
lenges caused by rising temperatures, improper water resource management and overuse, 
enhanced salinity, and declining water levels have made Lake Urmia an acute symbol of envi-
ronmental vulnerability. Using Landsat imagery, this study begins a thorough analysis of changes 
in the Lake Urmia basin from 1990 to 2020. The endeavor aims to develop effective conservation 
and restoration strategies by identifying the multiple reasons that led to its vulnerable situation. 
The study attempts to identify the role of precipitation, temperature trends, agricultural devel-
opment, population growth, water consumption, evapotranspiration, and atmospheric salt and 
aerosol concentrations in the desiccation of the lake. This study presents a comprehensive 
knowledge of the complex interplay between climate change, human activity, and water man-
agement and may have implications for the holistic recovery of the lake. The findings have the 
potential to improve prognostic models and inform targeted mitigation strategies for not only 
Lake Urmia but also for other globally threatened wetlands.

1. Introduction

Climate change and extreme events are global phenomena that have a significant impact on people and ecosystems all over the 
world, with the drying up of the planet’s large wetlands being one of the most concerning consequences (Abou, 2022; An et al., 2020; 
Hidalgo and Rezapouraghdam, 2023; Scott and Huff, 1996). These are aquatic ecosystems that play an important role in water cycle 
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regulation, biodiversity, and flood mitigation. Because of increased greenhouse gas emissions, global temperatures are rising, causing 
weather patterns to shift and wetlands to become endangered (Alizadeh et al., 2016; Barideh and Nasimi, 2022; Scott and Huff, 1996). 
They are also important carbon sinks because they store large amounts of carbon in soil and aquatic plants as organic matter. Climate 
change is causing a series of changes in these ecosystems that endanger their health and functionality, potentially affecting people’s 
quality of life. One of the most obvious impacts of climate change on wetlands is rising temperatures (Abou, 2022; Barideh and Nasimi, 
2022; Delju et al., 2013; Scott and Huff, 1996). Warmer temperatures cause water to evaporate faster, resulting in lower water levels. 
Thus, the study conducted on Toshka lakes (Egypt) between 2001 and 2019 reported that Land User/Land Cover (LULC) changes were 
a driver of the increase in Land Surface Temperatures (LST) and as a result decreased water surface by 1517 km2 (Abou, 2022). This has 
an adverse effect on the people who reside in these places as well as tourism because wetlands are frequently recognized as tourist 
attractions due to their high ecological and environmental importance. It also has an adverse effect on the fauna and flora that depend 
on these ecosystems for existence. Furthermore, climate change is changing precipitation patterns, which may lead to longer droughts 
in some areas. Reduced rainfall reduces water availability in wetlands and can cause desiccation of previously permanently flooded 
areas, such as the Aral Sea (Fathian et al., 2016; Karbalaee et al., 2022). This has an effect on the local residents’ way of life in addition 
to the biodiversity. The once-largest lake in the Middle East, Lake Urmia (Iran), is a crucial illustration of how climatic change and 
other human stresses are causing it to dry up. The lake significantly influenced nature, the economy, and human life, helping to 
regulate the climate, preserve species, conserve habitats, promote tourism and recreation, and provide a wide range of other ecosystem 
services. However, its water’s size and volume have drastically shrunk over the past few decades (Parsinejad et al., 2022). Rising 
temperatures caused by climate change have increased water evaporation, resulting in lower water levels and higher lake salinity, 
which has had a negative impact on aquatic life, agricultural areas, and neighboring populations (Barideh and Nasimi, 2022; Moj-
tahedi et al., 2022). Poor water resource management, as well as excessive water extraction for agriculture and population supply, 
have all contributed significantly to Lake Urmia’s drying up. Desiccation has had serious environmental, economic, and social ram-
ifications. It has caused salinization of nearby agricultural land, which has a negative impact on agriculture and the local economy. 
Furthermore, the loss of aquatic habitats has resulted in a decline in biodiversity. According to the United Nations Environment 
Programme (UNEP) (UNEP, 2012, in addition to supporting numerous species of reptiles, amphibians, and mammals, the lake itself is 
home to a rare species of brine shrimp called Artemia urmiana. The only link between the lake’s primary algal production and the 
variety of migratory bird populations that consume these shrimps is its population of brine shrimp. Many migratory bird species 
including pelicans and flamingos find a very important seasonal habitat at this lake. Due to the brine shrimp’s critical role in the 
ecosystem, their extinction would likely result in the dwindling of many migratory bird populations in Lake Urmia and have an impact 
on the sustainability of the entire ecosystem. On the other hand, the lake’s desiccation has forced tourism and recreation activities to 
stop in this unique destination too.

Numerous investigations have been conducted in recent decades and within the scientific community regarding the lake’s drying 
process and its causes. Many studies (Hamzekhani et al., 2016; Shadkam et al., 2016) confirmed decreases in water surface of 40–86% 
between 1966 and 2011, while a recent study by Barideh and Nasimi (2022) reported an 80% decrease. Climate change and 
anthropogenic or human interference are two of the reasons attributed to this desiccation process. The former includes rainfall and 
temperatures, while the latter consists of agricultural expansion, increased evapotranspiration, growing populations, urban areas, and 
higher salinity and aerosol concentrations in the air (Alizadeh et al., 2016; Barideh and Nasimi, 2022; Chaudhari et al., 2018; Delju 
et al., 2013; Farokhnia et al., 2018; Fathian et al., 2016; Foroumandi et al., 2022; Janalipour et al., 2022; Karbalaye Ghorbanpour et al., 
2021 Mojtahedi et al., 2022; Parsinejad et al., 2022). Previous studies reported that rainfall had remained constant in recent decades 
and thus it was not a motivating factor for the lake’s drying up (Foroumandi et al., 2022; Karbalaye Ghorbanpour et al., 2021). In terms 
of temperature increase, the studies (Alizadeh et al., 2016; Barideh and Nasimi, 2022; Farokhnia et al., 2018) report an increase of 
0.05 ◦C per year, which represents an increase of 0.50 ◦C per decade. In contrast, and with regard to the increase in agricultural areas, 
Barideh and Nasimi (2022) reported a 174% increase between 2000 and 2020, and Farokhnia et al. (2018) found an increase of 200%– 
400% between 1988 and 2007. This growth in agricultural areas has resulted in an increase in areas destined for urban areas and in the 
population to house the immigrant population in search of work. In this regard, Chaudhari et al. (2018) reported a 180% increase 
between 1980 and 2010, while Kanani et al. (2020) reported an 88.9% increase between 1970 and 2014. Between 1980 and 2010, the 
increase in agricultural areas and population resulted in an estimated 300% increase in water demand (Chaudhari et al., 2018). The 
increase in temperatures together with the decrease in the level of the lake and the rise in the areas destined for agriculture has 
generated an increase in evapotranspiration of 38% between the years 1990 and 2011 (Mojtahedi et al., 2022). This has further 
reduced the volume of reservoir water and has led to an increase in salinity and aerosol concentrations in the environment (Janalipour 
et al., 2022; Mojtahedi et al., 2022; Nadizadeh et al., 2018). The drawback of all these works is that they analyze the possible causes 
that have caused the decrease in the water level in the lake individually, relating the effect produced either with the increase in 
temperatures, with changes in land use, the increase in population, or evapotranspiration. On the contrary, and here is where the 
novelty or the GAP of this research is found, a global analysis of the basin is proposed, analysing not only each cause individually but 
also jointly in order to know the relationship between the different causes and which ones indirectly cause others. In this way, the study 
will allow in an exhaustive way not only the causes but also the relationships between them, allowing us to obtain an accurate 
diagnosis of the drying process and to be able to implement more effective protection measures not only for the lake but also for the 
population.

In recent years, and among the different methodologies used to determine changes on the planet’s surface that present excellent 
results, there is Remote Sensing. Thus, there are numerous studies that use high-resolution satellite images that allow the analysis and 
identification of changes in different land covers (Abou, 2018, 2021; Hidalgo and Arco, 2022; Otukei and Blaschke, 2010), the study of 
vegetation and buildability indices in urban areas and studies (Du, 2020; Fang and Tian, 2020) on LST and the Urban Surface Heat 

H. Rezapouraghdam et al.                                                                                                                                                                                           Environmental Development 52 (2024) 101084 

2 



Island (SUHI) phenomenon (Abou, 2023; Fathian et al., 2016; Hidalgo and Arco, 2021). Its use in this type of study such as the one 
presented here is widely justified.

The ecological, economic, and societal significance of Lake Urmia’s drying is of utmost importance on a local as well as a global 
scale. It bridges significant knowledge gaps, guides management and policy decisions, and advances knowledge of environmental 
issues in the face of climate change. International discussions on coping with climate change, managing water resources, and pre-
serving wetlands are insights that can be gained from studying Lake Urmia’s drying process. This study aims to analyze and investigate 
the changes that the Lake Urmia basin experienced between 1990 and 2020 using Landsat images. Identifying the causes of the lake’s 
desiccation can provide us with important implications for developing effective restoration and preservation strategies that will lead to 
the area’s sustainable development. Due to its significance on the local and global ecological, economic, and social scales, the study of 
Lake Urmia’s drying is essential. It closes significant knowledge gaps, supports management and policy choices, and advances 
awareness of the environmental problems brought on by climate change. The following issues are raised by this study: 1) How have 
rainfall, temperatures, agricultural development, population growth, water supply demand, evapotranspiration, and salt and aerosol 
concentrations in the atmosphere changed between 1990 and 2020? 2) Is there a correlation between these factors, and if so, which 
one affects the lake’s drying process more or less? 3) Will the results of this study be helpful in creating a thorough lake recovery plan?

The results obtained in this study are of great importance not only at a local level (Lake Urmia) but also at an international level 
since the causes and effects of the drying reported here can be extrapolated to other wetlands around the world. The causes reported 
here will help us understand the exact reasons for the drying of the lake, including the impact of climate change, anthropogenic and 
human factors, water management and the relationship between these variables. A better understanding of the causes and their in-
terrelations could lead to more effective mitigation strategies in the short and long term, as well as to the development of more precise 
models in future research that allow for a more accurate and adequate prediction of the future evolution of the lake, its environment 
and the degree of impact on population and tourism. The results of this study could have broader implications since our results can be 
applied to other wetlands around the world in order to avoid the mistakes made in Lake Urmia. On the other hand, it is of great 
importance to national government administrations and provides useful information for formulating policies that can slow down the 
rate at which land use and land cover, water use, and lake desiccation are changing in the region. Government administrations should 
give top priority to land use management strategies that reduce urbanization, and water use and improve environmental conservation. 
In addition, local decision makers should promote sustainable tourism planning and management, especially for travelers staying 
abroad.

2. Materials and methods

2.1. Study area

The area under study is the Lake Urmia basin located in northwestern Iran (Fig. 1). Lake Urmia used to be a popular tourist 
destination that supported the livelihood of countless people. Bathers would submerge themselves in the salty water and cover their 
bodies in the lake’s mythical black mud when it was a popular destination for tourism several years ago. The recreation facilities are all 
now in ruins. The port towns are now sparsely populated settlements that young people left for neighboring cities. According to the 
UNEP (UNEP, 2012) in its prime, this lake was both a vital resting place for migrating birds like flamingos and pelicans as well as the 
largest natural habitat for the saline-adapted Artemia brine shrimp. More than just an environmental disaster and the loss of a vital 
economic source, the lake was a social identity and cultural icon for individuals who can still picture what this place once was 

Fig. 1. Study area, lake Urmia, Iran.
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(Daryani, 2020). Environmental and human health are impacted by Lake Urmia’s decline. The lake, its islands, and the nearby 
wetlands are recognized as a national park, a Ramsar site, and the United Nations Educational, Scientific and Cultural Organization 
(UNESCO) Biosphere Reserve because they include vital habitats (UNESCO, 1976). The region serves as a stopover for migratory 
species as well as a breeding destination for waterbirds. There were 200 recognized species of migratory birds that used Lake Urmia as 
a critical seasonal habitat, including pelicans, egrets, ducks, and flamingos. Millions of people reside within a 500 km radius of the lake, 
which is an important agricultural zone for the majority (UNEP, 2012). Low lake levels, however, stress brine shrimp populations and 
other sources of food for larger animals because the remaining water becomes more salinized. A diminishing lake also raises the chance 
that winds will pick up dust from the exposed lakebed, lowering the quality of the air. Recent research has connected the local 
population’s respiratory health issues with Lake Urmia’s low water levels (Feizizadeh et al., 2023). It is debatable how much of the 
effect that climate, water use, and dams have on Lake Urmia’s water level (Schulz et al., 2020). The importance of Lake Urmia in 
maintaining livelihoods and regional economies is highlighted by the substantial human presence, which emphasizes the need to 
comprehend and reduce its desiccation.

Until 2010, it was considered one of the world’s largest saline lakes, with a maximum area of 4995 km2. The lake basin’s Universal 
Transverse Mercator (UTM) coordinates are 37.5o North and 45.5o East, and it covers an area of 52700 Km2 with average elevations 
ranging from 1280 to 4880 m above sea level. This lake is connected by 13 rivers, including the two largest, the Zarrineh and the 
Simineh, which originate in the mountains and provide nearly half of the lake’s flow (Parsinejad et al., 2022). The basin is home to 6.4 
million people, the majority of whom live in the cities of Tabriz and Urmia. The basin has a humid-hot continental climate (Dsa), 
according to the Köppen-Geiger which translates into very cold winters and dry summers. The average rainfall in the basin is between 
350 and 400 mm/year, and previous studies have calculated evapotranspiration to be between 580 and 2000 mm/year (Parsinejad 
et al., 2022). The transformation of different land uses for agriculture, as well as the construction of more than 40 small reservoirs and 
locks for irrigation, has caused the lake level to drop from 1278 to 1270 m in the last 40 years, resulting in an 80% increase in the dry 
surface and a high salinity of both water and land in the basin. Fig. 2 shows the significant decline in the evolution of the surface area 
occupied by water between 1990 and 2020.

Fig. 2. Evolution of Lake Urmia between 1990 (a), 2000 (b), 2010 (c) y 2020 (d). True color satellite images, bands 4-3-2. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.)
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2.2. Methodology

Fig. 3 depicts the steps taken in the methodology. The following indices were determined using images from Landsat 5 (1990), 
Landsat 7 (2000 and 2010), and Landsat 8 (2020): Normalized Difference Vegetation Index (NDVI), Proportion Vegetation (PV), 
Normalized Difference Built Index (NDBI), Bare Soil Index (BSI), Normalized Difference Water Index (NDWI), Normalized Difference 
Moisture Index (NDMI), and soil salinity. The LULC drawings were created using the Support Vector Machine (SVM) methodology 
from Landsat imagery. A precision matrix was used to determine the accuracy of land cover (Campbell, 1996; Hidalgo and Arco, 2022; 
Yoo et al., 2019). The LST for the indicated years has been calculated using the Landsat thermal band. The provisional Landsat 
Evapotranspiration (Eta) science product from collection 2 (C2) level 3 (L3), which represents the combined level of daily evaporation 
and transpiration for each pixel in a Landsat scene, was used to calculate the actual Eta for the Landsat satellites. The aerosol con-
centrations were then obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite using the MOD04_L2 
product. Finally, the basin’s average annual rainfall has been calculated using the Tropical Rainfall Measuring Mission (TRMM) model. 
Following that, all data was statistically analyzed using the Data Panel and the Mann-Kendall test. This methodology allows for the 
analysis of the evolution and trends of various variables in time studies (Foroumandi et al., 2022; Shamloo et al., 2022). All of the 
graphic documentation was created with the open-source software QGIS, and the various statistical analyses were completed with the 
specialized software STATA.

2.3. Landsat imagery

Landsat images 5 (year 1990), 7 (years 2000 and 2010), and 8 (year 2020) were obtained The National Aeronautics and Space 
Administration (NASA). The Landsat imagery used in this study is shown in Table 1. With Landsat 8, only band 10 was used to calculate 
LST. The Dark Object Subtraction (DOS) algorithm was used through the Semi-Automatic Classification Plugin (SCP) in the QGIS to 
proceed with the atmospheric correction of all bands (Chavez, 1988; Congedo, 2016; García and Díaz, 2021). The dataset was collected 
for the month of June of each indicated year because the climate in Iran is typically sunny and cloudy (<5%). As a result, it allows for 

Fig. 3. Methodology.
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better differentiation of soil uses and typologies.

2.4. MODIS images

The MODIS is a satellite instrument that monitors the Earth’s surface and is installed on the Terra (EOS AM-1) and Aqua (EOS PM-1) 
satellites. It has a strip width of 2330 km and orbits the planet once every 1, or 2 days. MODIS has 36 spectral bands that collect data at 
250, 500, and 1000 m spatial resolutions. The MODIS products used in this study were obtained from the United States Geological 
Survey (USGS) and, like the Landsat images, were corrected using the DOS algorithm. They were later georeferenced with the ETRS89/ 
UTM Zone 38N projection system. The MODIS images used in this study are shown in Table 1.

2.5. TRMM

The TRMM mission was launched as a result of a collaboration between the NASA and the Japanese Aerospace Exploration Agency 
(JAXA) with the goal of monitoring precipitation in various parts of the world. It generates precipitation time series using a variety of 
methodologies. Data with 0.25o x 0.25o latitudinal and longitudinal resolution are available. There have been numerous studies that 
have used this methodology to analyze and study rainfall in various parts of the world (Foroumandi et al., 2022; Keikhosravi-Kiany 
et al., 2022). For our research, multisatellite precipitation data with average monthly values (3B43, hereinafter TRMM 3B43) were 
used.

2.6. Landsat spectral indices

Table 2 lists the various spectral indices calculated with Landsat.

Table 1 
Landsat and MODIS imagery used in the study.

Name product Date (yyyymmdd) UTC Time (hhmm) Cloudiness (%) Spatial Resoluction (m)

LT05_L2SP_168034_19900625_19900625_02_T1 19900625 08:37 1.37 30
LE07_L2SP_168034_20000628_20000628_02_T1 20000628 08:35 2.45 30
LE07_L2SP_168034_20100624_20100624_02_T1 20100624 08:45 1.28 30
LC08_L2SP_168034_20200627_20200627_02_T1 20200627 08:29 0.86 30

MOD04_L2.061 19900626 08:45 2.10 10000
MOD04_L2.061 20000627 08:43 1.39 10000
MOD04_L2.061 20100625 08:39 1.01 10000
MOD04_L2.061 20200627 08:49 0.86 10000

Table 2 
Landsat spectral indices.

Index Equation Number Reference

NDVI NDVI =
NIR − Red
NIR + Red

(1)
García and Díaz (2023)

PV
PV =

[
NDVI − NDVImin

NDVImax − NDVImin

]2 (2)
Yu et al. (2014)

BSI
BSI =

(SWIR1 + Red2) − (NIR + Blue)
(SWIR1 + Red2) + (NIR + Blue)

(3)
Sultana and Satyanarayana (2020)

NDBI NDBI =
SWIR1 − NIR
SWIR1 + NIR

(4)
Zha et al. (2003)

NDWI NDWI =
Green − NIR
Green + NIR

(5)
Zha et al. (2003)

NDMI NDMI =
NIR − SWIR1

NIR + SWIR1

(6)
Ghosh et al. (2020)

Soil Salinity IndSal =
NIR − SWIR2

NIR + SWIR2

(7)
Lamz and González (2013)

Spectral radiance Lλ = ML × QCal + AL (8)
Kafer et al. (2019)

Brightness temperature (◦C) T =
K2

log
(

K1

Lλ
+ 1

) − 273.15 (9)
Weng et al. (2004)

Land Surface Emissivity ε = 0.004× Pv+ 0.986 (10)
Sharma et al. (2021)

LST (◦C) LST =
T

(

1 +

(

λ
T
C2

)

x log(ε)
)

(11)
Weng et al. (2004)

C2 =
h x c

s
,

(12)
Weng et al. (2004)
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Fig. 4. Evolution of the NDVI, PV, BSI, NDBI, NDWI and soil salinity index between 1990 (a), 2000 (b), 2020 (c) and 2020 (d) obtained by remote 
sensing according to bands and equations (1)–(7).
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2.7. LULC

LULC maps were created using Landsat images and a red, green, and blue band (RGB) plane. After that, the LULC drawings were 
obtained using the SVM and QGIS software. In numerous studies, this system has been used and reported with excellent results (Otukei 
and Blaschke, 2010; Shafri and Ramle, 2009) because it enables precise classification of various land uses (Amindin et al., 2021). Four 
types of soil or cover have been identified for this work: bodies of water, urbanized, agriculture, and bare soil. Following that, the 
accuracy of the coverage was determined using a precision matrix in order to know the degree of precision obtained and by down-
loading Sentinel 2 images from the year 2022.

2.8. Digital Elevation Model (DEM)

The Shuttle Radar Survey Mission (SRTM) operated by the NASA provides Digital Elevation Model (DEM) maps in high spatial 
resolution (Karbalaye Ghorbanpour et al., 2021; Schneider et al., 2010) from anywhere on the planet. DEM data for the Lake Urmia 
basin with a spatial resolution of 90 m were downloaded from https://srtm.csi.cgiar.org/. According to the findings, the basin has an 
altitude range of 3862 to 1 m, with an average altitude of 1740 m.

2.9. Lake level

Lake Urmia had depths ranging from 6 to 16 m, with the deepest point located at an altitude of 1267.1 m above sea level. The water 
level in the years studied was as follows: 1990: 1276 m; 2000: 1273 m; 2010: 1271 m; and 2020: 1271.8 m. The highest water level was 
reported in 1995 at 1278 m, while the lowest level was reported in 2014 at 1270.8 m. Beginning this year, the water level has been 
gradually rising as a result of the Iranian government’s policies to preserve the lake as an element of the area’s ecological, tourism, and 
supply sustenance (Parsinejad et al., 2022).

2.10. Strategy of analysis

For our statistical analysis, we used two complementary methods: the Mann-Kendall Trend Test and the Data Panel. Both methods 
are appropriate for studying cross-sectional data in time series in order to confirm the existence of a trend and the factors that influence 
it. The MK test is commonly used in hydrological and climate change research (Foroumandi et al., 2022; Shamloo et al., 2022). High 
positive and low negative values indicate statistically significant increasing and decreasing trends, respectively. The trend’s signifi-
cance is determined by the p value. Equation (13) is used to calculate it: 

Table 3 
Statistics of spectral indices calculated with Landsat.

Indices Variable 1990 2000 2010 2020

NDVI Max 0.986 0.917 0.917 0.999
Min − 0.857 − 0.997 − 0.707 − 0.969

Mean 0.181 0.149 0.178 0.268
SD 0.178 0.145 0.170 0.206

PV Max 1.000 1.000 0.981 1.000
Min 0.001 0.001 0.011 0.001

Mean 0.280 0.288 0.311 0.369
SD 0.110 0.101 0.091 0.139

BSI Max 0.655 0.582 0.667 0.574
Min − 0.753 − 0.647 − 0.579 − 0.687

Mean 0.121 0.115 0.086 0.065
SD 0.133 0.122 0.082 0.110

NDBI Max 0.849 0.998 0.637 0.858
Min − 0.919 − 0.928 − 0.889 − 0.966

Mean 0.048 0.051 0.083 0.108
SD 0.105 0.095 0.132 0.141

NDWI Max 0.927 0.998 0.665 0.969
Min − 0.993 − 0.978 − 0.968 − 0.999

Mean 0.292 0.218 0.134 0.182
SD 0.271 0.237 0.178 0.292

NDMI Max 0.929 0.928 0.889 0.966
Min − 0.849 − 0.997 − 0.636 − 0.858

Mean 0.048 0.054 0.073 0.096
SD 0.105 0.095 0.133 0.141

Soil salinity Max 0.948 0.599 0.964 0.987
Min − 0.925 − 0.785 − 0.834 − 0.918

Mean 0.074 0.094 0.114 0.126
SD 0.078 0.057 0.056 0.061

Max: Maximun; Min: Minimun; Mean: Mean; SD: Standard deviation.
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S=
∑n− 1

K=1

∑n

j=K+1
sgn

(
Xj − Xk

)
, (13) 

where sgn (x) is: 1 if X > 0; 0 if X = 0 y − 1 if X > 0.
The Data Panel is frequently cited in the literature because it employs multiple regression models (Fang and Tian, 2020; Hidalgo 

García and Arco Díaz, 2021) that allow for the inclusion of more data than traditional methods. According to equation (14), the 
following phases are followed (Chen et al., 2011): 

Yit = β Xit + (αi + μit) (14) 

where μit is the model error, t = time, i = individual, αi represents the individual effects, β is an independent variable and Xit are 
explanatory variables.

3. Results

3.1. Landsat spectral indices

The spatiotemporal analysis of the spectral indices obtained with Landsat: NDVI, PV, BSI, NDBI, NDWI, NDMI and soil salinity of 
the area under study can be visualized in Fig. 4. Table 3 shows the basic values for each of the analyzed indices.

It can be seen how the NDVI and PV indices related to vegetation have presented an increase in the average values between 1990 
and 2020 of 32.46% and 24.12%, respectively. Thus, the lowest average value of both indices (0.181 and 0.280) is reported in 1990 
while the highest value (0.268 and 0.369) is reported in 2020. The values of the NDVI and PV indices indicate that vegetation and areas 
destined for agriculture have experienced significant growth between 1990 and 2020. This claim is supported by the changes observed 
in the BSI and NDMI indices. The first index allows to determine the variations that may have occurred in the soil while the second 
allows to obtain the levels of humidity in the vegetation. Thus, the BSI index has shown an average increase of 86.15% between 1990 
and 2000. The highest average value (0.121) occurs in 1990 while the lowest average value is reported in 2020 (0.065) representing a 
reduction of 86.15%. The NDMI index has experienced an average growth of 50% and presents the highest value (0.096) in the year 
2020 while the lowest average value is reported in the year 1990 (0.048). Therefore, a significant increase in the areas destined for 
agriculture is corroborated by the evolution experienced in the NDVI and PV indices that is compatible with the evolution denoted in 
the BSI index that corroborates changes in the soil surface together with an increase in vegetation moisture reported by the increase in 
the NDMI index.

Between 1990 and 2020, the average value of the NDBI index for building and construction increased by 125%. Thus, the lowest 
average value of the index (0.048) is reported in 1990 while the highest value (0.108) is reported in 2020. This variation in the index 
indicates that urban areas have grown significantly as a result of population growth. With respect to the NDWI index that allows us to 
determine the amount of water in an area, indicate that it has experienced an average decrease of 62.34%. The highest mean value 
(0.292) is reported in the year 1990 while the lowest mean value (0.182) is reported in the year 2020. This index variation indicates a 
significant decrease in the amount of water in the basin under consideration between 1990 and 2020.

Finally, the salinity index, which determines the amount of salts in a soil, shows an average increase of 170.21%. The lowest mean 
value (0.074) is reported in the year 1990 while the highest mean value (0.126) is reported in the year 2020. This variation of the index 
indicates a significant increase in the number of salts that the analyzed surface has compatible with the significant decrease in the 
amount of water reported by the NDWI index.

3.2. LULC analysis

The spatiotemporal analysis of the evolution of the LULC between 1990 and 2020 can be seen in Fig. 5 while the variability between 
the different years is located in Table 4.

Fig. 5. Evolution of LULC between 1990 (a), 2000 (b), 2010 (c) and 2020 (d) obtained by remote sensing using QGIS software and SVM 
classification.
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The coverage identified as water presents the highest average value with 4847 Ha (Hectares) in 1990 while the lowest average 
value of 1734 Ha occurs in 2020. These values establish an average decrease between 1990 and 2020 of − 64.22%. On the contrary, the 
hedges of Built up and farmland present a lower average value in 1990 with values of 209 Ha and 3336 Ha, respectively, while the 
highest average value has been obtained in 2020 with values of 1214 Ha and 4956 Ha, respectively. These values represent an average 
increase of 481.65 and 148.55%, for Built up and farmland coverages, respectively. With respect to bare soil cover, it has remained 
constant between the different years analyzed with an average increase of 1.10%. These results are consistent with those obtained in 
the previous point for the various indices studied.

The results of the precision matrices, obtained using Landsat 8 images to verify the LULC maps for the years 1990, 2000, 2010, and 
2020, are reflected in Tables 5–8. The precision values of the matrices for each of the years described are 78.8%, 83.8%, 86.3%, and 
85%, respectively. The Kappa values for each of the years described are 0.768, 0.823, 0.853, and 0.835, respectively. However, for the 
purposes of the investigation, after the automatic classification, a subsequent manual correction was made of the points that did not 
coincide with the LULC maps obtained in order to increase the precision obtained.

3.3. Spatiotemporal evaluation of LST

Fig. 6 and Table 9 show the evolution of LST values between the years 1990 and 2020 in the Lake Urmia basin. In general, it can be 
observed how the highest values of LST are located in the Bare soil and Built-up coverage areas of the LULC planes in contrast to the 
wetter and farmland coverage areas that present lower LST values. Therefore, the lowest temperatures occur in areas with higher 
values in the NDVI, PV, and NDMI indices and lower NDBI values. On the contrary, the highest temperatures are found in areas with 
lower NDVI, PV, and NDMI index values and higher NDBI index values.

The lowest mean LST value was 34.85 ◦C in 1990 while the highest value was 36.95 ◦C in 2020. LST spatial statistics for the Lake 
Urmia basin show a continuous increase of 2.10 ◦C (0.53 oC/decade) from 1990 to 2020, representing a 106.30% increase. The 
maximum values, on the other hand, show greater increases in the trend, with values of 6.85oC (1.71oC/decade). On the contrary, 
minimum temperatures are rising at a rate of 2.12 ◦C (0.53oC/decade).

3.4. Spatiotemporal evaluation of aerosols

Fig. 7 shows the spatiotemporal analysis of aerosols between 1990 and 2020 in the studied area obtained with MODIS. Table 10
presents the basic statistical measures of each variable.

The lowest mean aerosol value was 0.170 μm in the year 1990 while the highest value was 0.265 μm in the year 2020. Aerosol 
spatial statistics from the Lake Urmia basin show a continuous increase of 0.095 μm (0.024 μm/decade) from 1990 to 2020, repre-
senting a 173.52% increase. As a result, a significant increase in aerosol levels has been reported in the Lake Urmia basin. This 
circumstance could be influenced by two factors: 1) As the lake’s water level drops, the wind has an easier time moving the salt 
particles and depositing them in the adjacent territories. 2) The expansion of cropland implies a greater use of pesticides for pest 
control. Both circumstances are revealed by the results obtained in the previous points where the evolution of the indices and LULC was 
examined.

3.5. Spatiotemporal evaluation of Eta

Fig. 8 depicts the spatiotemporal analysis of Eta in the studied area using the Landsat satellite between 1990 and 2020. Table 11
shows the central tendency and dispersion measures for this variable.

The lowest mean Eta value was 61 mm/m2 in 1990 while the highest mean value was 102 mm/m2 in 2020. Spatial Eta statistics 

Table 4 
Change in land use by year.

LULC (Ha) 1990 2000 2010 2020 Variability (%) 
(1990–2020)

Water bodies 4847 4509 1890 1734 − 64.22
Built up 209 223 1089 1214 481.65

Farmland 3336 3800 5234 4956 148.55
Bare soil 45627 45428 45486 46115 1.10

Table 5 
LULC Precision Matrix year 1990.

1 2 3 4 UA (%)

1 16 3 1 0 20
2 1 16 2 1 20
3 0 2 15 3 20
4 0 0 4 16 20

PA (%) 17 20 22 20 80
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from the Lake Urmia basin show a continuous increase during the period 1990–2020 of 0.095 μm (0.024 μm/decade) representing an 
increase of 173.52%. These results are compatible with those reported by the LST and the various indices, so that, the higher the 
temperature, the greater the evaporation and the greater the vegetation, the greater the Eta. In this way, and as a result of the increase 
in LST and vegetation area, Eta has increased significantly.

Table 6 
LULC Precision Matrix year 2000.

1 2 3 4 UA (%)

1 17 2 1 0 20
2 1 17 1 1 20
3 0 2 16 2 20
4 0 0 3 17 20

PA (%) 18 21 21 20 80

Table 7 
LULC Precision Matrix year 2010.

1 2 3 4 UA (%)

1 17 1 1 1 20
2 0 17 2 1 20
3 0 0 17 3 20
4 0 1 1 18 20

PA (%) 17 19 21 23 80

Table 8 
LULC Precision Matrix year 2000.

1 2 3 4 UA (%)

1 18 2 0 0 20
2 0 18 1 1 20
3 0 2 15 3 20
4 0 0 3 17 20

PA (%) 18 22 19 21 80

Note: 1: Water bodies. 2: Built up. 3: Farmland. 4: Bares soil. PA: Exactitud productor. UA: Exactitud usuario.

Fig. 6. Evolution of the LST between 1990 (a), 2000 (b), 2020 (c) and 2020 (d) obtained with Landsat.

Table 9 
LST dispersion measures.

Year Max Min Mean SD

1990 56.97 − 6.85 34.85 5.97
2000 59.95 − 4.34 35.50 5.79
2010 61.98 − 5.72 36.52 5.24
2020 63.82 − 4.73 36.95 5.66

Min: Minimum; Mean: Mean; Max: Maximum; SD: Standard deviation.
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Fig. 7. Evolution of aerosols between 1990 (a), 2000 (b), 2020 (c) and 2020 (d) obtained with MODIS.

Table 10 
Aerosol dispersion measurements.

Year Max Min Mean SD

1990 0.204 0.142 0.170 0.025
2000 0.235 0.163 0.195 0.028
2010 0.375 0.160 0.258 0.077
2020 0.393 0.126 0.265 0.081

Min: Minimum; Mean: Mean; Max: Maximum; SD: Standard deviation.

Fig. 8. Evolution of Eta between 1990 (a), 2000 (b), 2020 (c) and 2020 (d) obtained with Landsat.

Table 11 
Eta dispersion measures.

Year Max Min Mean SD

1990 406 9 61 124
2000 478 11 71 146
2010 655 15 98 200
2020 685 20 102 199

Min: Minimum; Mean: Mean; Max: Maximum; SD: Standard deviation.

Fig. 9. Evolution of rainfall between 1990 (a), 2000 (b), 2020 (c) and 2020 (d) obtained with TRMM.
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3.6. Spatiotemporal evaluation of precipitation

Fig. 9 shows the spatiotemporal analysis of rainfall between 1990 and 2020 of the studied area obtained using the TRMM 3B43 
model. Table 12 presents the measures of central tendency and dispersion of this variable.

The lowest mean value of aerosol precipitation was 360 mm/m2 in 2000, while the highest mean value was 390 mm/m2 in 2020. 
Spatial precipitation statistics for the Urmia Lake basin show a slight increase between the years 1990 and 2020.

3.7. Statistical analysis

3.7.1. Mann-Kendall trend test
Between 1990 and 2020, the possible growth or decrease trends of the various variables studied in the Lake Urmia basin were 

investigated.
The Mann-Kendall test was used for this, and the results are shown in Table 13. The test results showed that the variables PV, NDBI, 

NDWI, NDMI, Salinity, Aerosols, ET, and precipitation increased or showed a positive trend (above 99%) between 1990 and 2020. The 
variables LST and NDVI have also increased, but with statistical relationships of 99% and 95%, respectively. The BSI variable, on the 
other hand, has shown a negative or decreasing trend with a statistical relationship of 99%. These findings support the analytical data 
presented in the preceding sections.

3.7.2. Data panel
Firstly, Pearson correlation coefficients have been calculated to determine the relationship between the investigated variables 

(Table 14). It can be seen how the lake level variable has a strong negative correlation with the NDWI variable (− 0.927), as well as a 
negative correlation with PV (− 0.332), salinity (− 0.283) and aerosols (− 0.279). Finally, it has a weak and negative correlation with 
the variables LST (− 0.155) and NDBI (− 0.199), but positive with the BSI (0.126). The Table shows how these correlations have a 
significance of less than 5% (statistically significant above 99%), so we reject the null hypothesis and confirm the correlation between 
the variables outlined.

The results of the statistical analysis using the Data Panel technique (Table 15) report a statistically significant and negative 
relationship above 99% between the lake level and the NDVI, PV, NDWI, Salinity, LULC, and aerosols variables. The results also present 
a negative link of 99% between the lake level with the variables ET, NDBI, and LST and a positive association with the variable 
precipitation. Finally, it shows a negative relationship of 95% with the NDMI variable and a positive link with the BSI variable. The 
obtained values of R2, F, and Prob > chi2 provide a good agreement between the dependent and the independent variables used with a 
level of adjustment greater than 99% of significance (Prob > chi2 = 0.000). For all this, it is statistically confirmed that the lake level is 
influenced by the investigated variables with a significance of at least 99%. In this way, the control or mitigation actions in the lake 
drying process must be focused on the control of these variables.

4. Discussion

In order to implement effective conservation strategies that can be extrapolated to other wetlands around the world, it is necessary 
to know the reasons behind the decrease in the water level of lakes such as Urmia. In this way, other wetlands facing similar challenges 
could benefit from the results of this research. This study reports how various factors (human activities and climate change) have had 
significant effects on the variation in the water level of the lake. In general, there has been a significant increase in built-up coverage 
between 1990 and 2020. This could be motivated by the region’s significant urbanization as a result of population growth or 
immigration. To accommodate this population, new urban areas had to be developed. As evidenced by the reported rise in the NDBI 
index related to construction. These findings are consistent with those reported by other similar studies, which reported an increase in 
urban areas of 180% between 1980 and 2010 or 88.9% between 1970 and 2014 in the same basin using simulations (Chaudhari et al., 
2018; Kanani et al., 2020). However, there has been a large increase in the covering designated for farmland, indicating a significant 
expansion of the area set aside for farming and growing crops. The BSI, NDMI, and PV indices, which measure vegetation and its state 
of conservation, have all increased significantly, as have the NDVI and NDMI as well. Our research demonstrates that as a result, the 
vegetation and crops in the area have grown in area, vigor, and health. These results are in line with those of other researchers who 
found large increases in farmland of 200–400% between 1988 and 2007 (Alizadeh et al., 2016; Farokhnia et al., 2018; Safarrad et al., 
2021). We could refer to the authors’ studies from more recent times (Roushangar et al., 2023), which showed a 48% growth between 
1987 and 2013, and Barideh and Nasimi (2022), which showed a 174% increase between 2000 and 2020, to get more up-to-date data.

Table 12 
Rainfall dispersion measures.

Year Max Min Mean SD

1990 441 378 380 6.12
2000 412 312 360 10.65
2010 432 363 370 6.68
2020 443 367 390 7.43

Min: Minimum; Mean: Mean; Max: Maximum; SD: Standard deviation.
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Large amounts of water are now required to ensure irrigation and supply within the basin due to the expansion in arable land and 
vegetation in the Lake Urmia region, as well as the increase in population. In keeping with this, Chaudhari et al. (2018) revealed in 
their study a 300% rise in water usage. The area occupied by the lake is therefore thought to have decreased between 1990 and 2020 by 
3113 Km2, or 64.22 percent, as a result of the rise in water demand, according to our findings. This is corroborated by a sharp decline 
in the water content-measuring NDWI index as well as a decline in the LULC coverage of water bodies. These findings are consistent 
with the previous studies (Chaudhari et al., 2018; Shadkam et al., 2016), which reported lake surface decreases ranging from 40 to 86% 
between 1966 and 2011, as well as the most recent remote sensing studies, which reported reductions of between 39 and 45% (Kanani 
et al., 2020) and 80% (Barideh and Nasimi, 2022), validating our findings.

The reduction of the lake’s surface has resulted in a 173.52% increase in the expansion of salinized lands around it. This is sig-
nificant because the wind easily moves the salt particles found in salinized lands and quickly distributes them in the adjacent lands 
(urban and rural). This finding was corroborated in our study by images of aerosols obtained by MODIS between the studied years. 
However, this should not be the only situation that allows for an increase in aerosol concentrations in an area, as an increase in arable 
land implies a greater use of pesticides for pest control (Janalipour et al., 2022; Mojtahedi et al., 2022). Numerous recent studies have 
found that both salinity and agricultural pesticides reduce people’s quality of life (Lamz Piedra and González Cepero, 2013). These 
findings are consistent with previous research (Nadizadeh et al., 2018; Shadkam et al., 2016), which found a 34-fold increase in saline 
lands around the lake between 1976 and 2015. Salinity causes significant soil degradation and is primarily caused by overexploitation 
of water resources for agricultural purposes in arid and semi-arid areas (Lamz Piedra and González Cepero, 2013). Aerosol concen-
tration is a major concern because it affects not only vegetation but also public health, regional climate, and visibility. According to the 
MODIS study (Effati et al., 2019), dust emissions increase as wind speed increases and soil moisture decreases. The study of bio-
monitoring to examine metal and sodium levels around the lake (Hemmati et al., 2021), on the other hand, reported arsenic and 
sodium hotspots related to aerosol emissions and nearby wastewater as a result of population growth. In the coming years, this sit-
uation will pose a significant problem for agriculture because it causes an effect known as anthropic salinity, which significantly 
reduces plant production and increases water consumption for irrigation (Lamz Piedra and González Cepero, 2013).

Trends in average temperatures between 1990 and 2020 have reported a continuous increase of 0.53 ◦C per decade, representing an 
average increase of 106.30%. However, these increases in LST have been greater in bare soil and built up hedges than in hedges 
identified as toilet bodies or farmland. These results are in line with the growth values justified by climate change and reported in 
previous studies on Lake Urmia (Alizadeh et al., 2016; Barideh and Nasimi, 2022; Delju et al., 2013; Farokhnia et al., 2018) where they 
establish an average growth rate of 0.05 ◦C per year. It has been demonstrated that the average LST in rural areas is higher than in 
urban areas. This is due to the fact that solar radiation is higher in rural areas than in urban areas during the early hours of the morning. 
This is because of the shadows raised by buildings and trees, the heterogeneous system of impermeable walls and high thermal ab-
sorption, as well as the cooling rates experienced by areas with vegetation and the warming rates experienced by areas with scarce 
vegetation and bare soils. The shadows cast by the city’s buildings and trees prevent solar radiation from heating the impermeable 
walls of urban areas, causing high doses of heat to be released and altering the LST of the area (García and Díaz, 2023; Li and Meng, 
2018). In turn, numerous studies using satellite imagery have demonstrated that vegetation has a cooling effect in urban areas (Du 
et al., 2020; Hidalgo García, 2023) ranging between 1 and 3 ◦C and warming in areas with a shortage of vegetation and/or bare soils. 
These effects occur not only by influencing the processes of shade and evapotranspiration but also on the rates of cooling and heating 
by convection and transpiration that would alter the LST of the areas. On the other hand, our study has reported that rainfall has 
increased slightly between 1990 and 2020. These results are in line with those reported previously (Fathian et al., 2016; Karbalaee 
et al., 2022; Pooralihossein and Delavar, 2020) but differ from those obtained by others (Alizadeh et al., 2016) who report a slight 
decrease. The reason for these differences could be justified by the method of determining precipitation and is that the latter have used 
computer simulations while the former have used satellite data through observations. However, it is important to indicate that the 
reported reduction is − 0.9 mm/year not being an important or noteworthy value globally within the extensive Lake Urmia basin. In 
contrast, (Shamloo et al. (2022) reported a significant precipitation deficit between 2001 and 2005, which resulted in a significant 
decrease in lake level. However, because our study covers ten-year intervals from 1990 to 2020, this drought was not included in the 
results. A significant increase in evapotranspiration has been reported with an average growth between 1990 and 2020 of 173.52%. 

Table 13 
Mann-Kendall trend test.

Kendall Score Prob > [Z]

NDVI 6233 0.016*
PV 30261 0.000***
BSI − 8908 0.001**

NDBI 9335 0.000***
NDWI 12249 0.000***
NDMI 9335 0.000***

Salinity 16196 0.000***
Aerosoles 8890 0.000***

ET 35139 0.000***
Precipitation 20000 0.000***

LST 8947 0.001**

***p < 0.001 **p < 0.01 and *p < 0.05.
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Table 14 
Pearson correlation coefficient and its significance between the lake level and the rest of the investigated variables.

Lake Level NDVI PV BSI NDBI NDWI NDMI Salinity LULC Aerosol ET Precipitation LST

Lake Level 1.000            
NDVI − 0.048 1.000           
PV − 0.332 

***
0.923 
***

1.000          

BSI 0.126 0.148 0.015 1.000         
NDBI − 0.199 

***
0.084 − 0.088 0.737 

***
1.000        

NDWI − 0.927 
***

− 0.694 − 0.593 − 0.483 
***

− 0.285 1.000       

NDMI − 0.199 
***

− 0.084 0.088 − 0.737 − 1.000 0.285 
***

1.000      

Salinity − 0.283 
***

0.566 
***

0.657 
***

0.054 
***

− 0.229 
***

− 0.388 
***

0.229 
***

1.000     

LULC − 0.040 0.483 
***

0.364 
***

0.509 
***

0.366 
***

− 0.733 
***

− 0.366 0.274 1.000    

Aerosol − 0.279 
***

− 0.255 
***

− 0.163 
***

− 0.228 
***

− 0.195 
***

0.279 
***

0.195 
***

0.025 
***

− 0.064 
***

1.000   

ET − 0.097 − 0.605 0.474 
***

− 0.509 
***

− 0.456 
***

0.179 
***

0.456 
***

− 0.260 
***

− 0.636 
***

0.191 
***

1.000  

Precipitation 0.095 
***

0.189 
***

0.267 
***

0.100 
***

0.026 
***

0.129 
***

− 0.026 
***

0.241 
**

− 0.079 
***

− 0.306 
***

0.034 
***

1.000 

LST − 0.155 
***

0.304 
***

0.229 
***

0.609 
***

0.458 
***

− 0.392 
***

− 0.458 
***

0.226 
***

0.566 
***

0.130 
**

− 0.484 
***

0.110 
***

1.000

Significance level: **p < 0.01, ***p < 0.001.
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This increase implies an increase of between 61 and 102 mm/m2 that would be compatible with the reported increase in temperatures. 
Plants dissipate much of the heat generated by solar radiation as temperatures rise, which increases evapotranspiration. Therefore, the 
higher the temperature, the higher the % of evapotranspiration. Our findings outperform those of the authors (Mojtahedi et al., 2022), 
who reported a 38% increase in evapotranspiration between 2008 and 2015. This circumstance could be explained by the fact that that 
investigation examined the period of drought experienced between 2001 and 2005, during which the basin had less water, reducing 
evapotranspiration significantly. Our results are in line with those reported by the authors (Barideh and Nasimi, 2022) with an increase 
in evapotranspiration reported between 2009 and 2020 of 4.88 * 109 m3 throughout the basin. In this way, as the lake level drops, 
cultivated areas expand, and thus salinity and aerosol concentrations rise, affecting a larger proportion of the population.

Therefore, the fluctuations and generalized decrease in water level that Lake Urmia has experienced throughout the years analyzed 
are related to the variables investigated in this study. These have played a crucial role in the lowering of the lake level and in its drying 
process. Therefore, proper management of water levels should be essential for ecological restoration and sustainable development for 
future generations. For all this, and in order to recover the lake, strict control by public administrations of agricultural, urban, and 
tourist areas that require high quantities of water for irrigation and supply is established. In this line of control are the studies carried 
out on Lake Baiyangan (Lei and Wu, 2009) or the study carried out on the Three Gorges Dam (China) (Zhang et al., 2012). On the other 
hand, it is not enough to just control the zones but it is necessary to establish control policies on the current water consumption 
required by those zones. To do this, it is necessary to establish a control plan that allows consumption to be reduced. More efficient 
facilities and population awareness programs. Along these lines are the studies carried out and already cited on Lake Baiyangan (Lei 
and Wu, 2009) or the one carried out by the authors Gardner and Finlayson (2018) on the rational use of global consumption.

5. Conclusions

The study of the drying process of the world’s large wetlands has become an important field of research in recent decades. All of this 
is motivated by the need to understand what factors influence these areas of critical importance to life and to develop mitigation and 
restitution measures for the coming decades that will allow their preservation for future generations. Based on the findings, it is 
possible to conclude that Lake Urmia’s environmental deterioration in recent decades has been caused by an increase in temperature in 
the area caused by global warming and anthropogenic factors. Among the latter is the rapid expansion of agricultural activities, as well 
as the increase in population and tourism in the area, which has put significant strain on the area’s limited water resources. Given that 
rainfall has remained stable, the high demand for water has resulted in a process of desiccation of the lake, which has resulted in an 
increase in the concentration of aerosols and salinity of the exposed bed, potentially affecting not only the health of the population but 
also agricultural production and tourism activities.

Consequently, and as specific mitigation strategies, it is necessary for the public administrations of the region or country to 
establish measures that allow controlling the uncontrolled growth of areas intended for agricultural activities, urban areas, and tourist 
areas. These are responsible for the increase in temperatures due to the changes produced in the LULC and the drying process of the 
lake due to the high demand for water for irrigation and supply. Therefore, better management of water resources by public ad-
ministrations would restore the ecological level of the lake and establish a sustainable balance between nature and the quality of life of 
the inhabitants of the area.

Limitations to the study

As limitations to the present study, the following issues must be taken into account. 1. Although the Landsat images used have a 
moderate resolution of 30 m, it may not be sufficient to capture small details that may occur mainly on the lake’s shoreline. 2. Although 
Landsat offers regular temporal coverage, there may be key events that affect the lake’s drying that are not captured by Landsat. 3. 
Finally, although the 1990–2022 period covers a wide range, it may not capture long-term trends or cyclical fluctuations that could 

Table 15 
Results Data Panel between lake level and the rest of the investigated variables.

β ρ sd

NDVI − 19.358 0.000*** 1.1350
PV − 9.1487 0.000*** 0.4856
BSI 2.3344 0.017* 0.9743

NDBI − 0.7783 0.006** 0.2806
NDWI − 4.8464 0.000*** 0.4856
NDMI − 1.4841 0.033* 0.6951

Salinity − 7.9724 0.000*** 1.5920
LULC − 0.5034 0.000*** 0.1041

Aerosol − 10.232 0.000*** 1.3894
ET − 0.0001 0.007** 0.0004

Precipitation 0.0193 0.005** 0.0069
LST − 0.0559 0.002** 0.0182

R2 = 0.42 F = 1476 Prob > chi2 = 0.000

β: Coefficient; Robust standard errors: *p < 0.05, **p < 0.01 and ***p < 0.001; sd, Standard deviation; F: Statistical; R2: Linear 
regression coefficient.
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have occurred before 1990 and that have not been taken into account in this research. 4. Finally, it is necessary to note that the use of 1 
image per year may not be enough to consider possible intra-annual fluctuations due to rain and drought conditions, not obtaining 
completely accurate results due to these conditions. For all these reasons, it is recommended to carry out new studies that increase the 
time scale of the study by using several images per year in different periods, expanding the interval of years studied and using higher 
resolution satellite images.
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