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a b s t r a c t

We present a random multiplicative model with additive noise of human reaction/
response times based on the power-law function, Piéron’s law. We study the role of
weak additive noise in two different scenarios: in the first case, the multiplicative model
describes the differences between simple, and two-choice reaction times in Piéron’s law.
In the second case, we investigate how choice reaction times depend on the transfer of
information in neurons. A transition is found at 0.5 bits due to weak additive noise.
Reaction times follow an U-shaped function that lead to both anti-Hick’s and Hick’s
effects. We discuss the implications of random multiplicative processes, and minimum
transfer of information in decision making, and neural control.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Advances in modern mental chronometry has attracted attention into the potential benefits of fluctuation phenomena,
nd delayed decision making in the mammalian brain [1–3]. A reference paradigm concerns the human reaction/response
ime (RT), and is usually defined as the time elapses from stimulus onset until a response is made (e.g., vocal, manual,
accadic, etc.) [1,2,4–6]. RTs are intrinsically stochastic, and involve fast decision making in a wide variety of everyday
asks (e.g., driving safety, sports and board games, etc.). In a simple RT paradigm, only one stimulus, and one response are
ossible whereas choice RTs involve selection from among alternatives by using multiple stimuli and responses [1,5,6].
t least two psychophysical laws have been investigated extensively in RTs: Piéron’s law, and Hick’s law. Piéron’s law
escribes the hyperbolic decay of the mean RT, µ, as a function of the stimulus strength, S, (e.g., luminance, loudness
ntensity, odorant concentration, etc.) by a power-law function [1,7–9]:

µ = µ0 + αS−p, (1)

eing µ0, and α, the asymptotic limit or plateau reached at high S values, and a normalizing factor, respectively. The
caling exponent p is a non-integer value that indicates the steepness of the hyperbolic decay [1,9]. Piéron’s law is a
lassical example of psychophysical scaling in perception and action, and holds true in all sensory modalities [1,7–12], in
oth simple and choice RTs [13,14], and in certain animal models [15–17].Deviations from Piéron’s law can be found at
ery high S values and the mean RT could increase from the plateau by following an open U-shaped function [18–20].
In choice RT tasks, Hick’s law describes the increase of µ with the logarithmic of the number of stimulus–response

alternatives, or equivalently, the number of bits involved on a task [1,21,22]:

µ = φ + γH, (2)
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eing φ, and γ the intercept, and the slope, respectively, and H is a logarithmic function which denotes an information-
theoretic metric measured in bits (e.g., Shannon information) [21,22].

Hick’s law is considered a benchmark effect in human–computer interactions, and has been verified over a large
class of experiments [21,22], including in certain animal models [17,22,23]. The slope of Hick’s law depends on the
stimulus–response configuration as well as on individual practice [22]. Departures from Hick’s law have been reported
for more than 10 alternatives or 3 bits of information, and the mean RT increases exponentially [17,22,24]. Further, a
reverse or anti-Hick’s effect have found in saccadic eye movements, and RTs decrease as the number of alternatives
increases [22,25–28]

A long standing issue concerns the unification of both psychophysical laws, and their functional relevance in decision
making as well as in sensory-motor control. A few sequential-sampling models have derived the functional form of both
Piéron’s law and Hick’s law simultaneously [17,29]. Caballero et al. have introduced a Bayesian approach with multiple
channels for sequential sampling and decision making [29]. A different approach was presented by Reina et al. by using
a nest-site selection model. The model was applied to a colony of honey bees for collective decision making [17]. In
that stochastic accumulator models the RT is divided in at least two different stages: a decision, and a non-decision
time [1,3,6,9]. The decision stage plays a central role, and is modeled by accumulating noisy evidence or response
preparation from stimulus until a threshold criterion or boundary is reached [3,22]. The non-decision stage is considered
a residual fixed additive time offset. The plateau µ0 in Piéron’s law is often identified with that non-decision time, and
as been treated as a free parameter or simplified to zero [17,29–31].
However, that models have ignored the range of empirical values spanned by µ0 in each sensory modality and in

ifferent experimental conditions [1,7–11,14,22,32,33]. An implicit assumption is that the non-decision time in µ0 includes
he rest of components such as the encoding time, and the motor latency [3,17,22,29,34], but this is without preserving
ny chronological order. Further, sequential-sampling models often link neural activity with RTs by associating spike rates
ith noisy stimulus information during stochastic accumulation [3,17,29,30,34,35].
In previous studies, Pins and Bonnet [14] have found that the scaling exponent p remains unchanged, and the plateau

0 was higher when comparing two-choice versus simple RTs regardless of the complexity of the task [14]. Although
equential-sampling models can mimic the shape of Piéron’s law and Hick’s law [17,29,30], it is not clear whether they
an describe the effects found by Pins and Bonnet in two-choice RTs [14], and whether they are also able, on one hand, to
nify both Hick’s and anti-Hick’s effects and, in the other hand, to predict testable changes in the asymptotic plateau µ0.
In the present study, we address the question whether both Piéron’s power-law function and, Hick’s and anti-Hick’s

ffects can be derived from a common generative mechanism by treating the RT as a random multiplicative process
ith additive noise. Multiplicative growth processes are one common way to generate power-law functions with a wide
umber of applications in physics, biology, finance, etc. [36–39]. In our approach, we focus on an information-theoretic
ramework that derives Piéron’s law from an optimal decision process within sensory systems [40]. We pose that the
ransfer of information in neurons leads to an internal threshold criterion by power-law scaling and modulates a form of
ignal-dependent neural noise. Contrary to sequential-sampling models [17,29–31], we show that the asymptotic term µ0
epends on both sensory and decisional factors. In previous works, we have demonstrated the functional role of random
ultiplicative processes to derive the shape of RT distributions and Zipf’s law, the effect of Weber’s law in RTs, deviations

rom Piéron’s law at high S values and deviations from fluctuation scaling in human color vision [41–47].
Here, we report that differences between simple and two-choice reaction times in Piéron’s law [14], arise from an

ncrease in the transfer of information at the threshold leading to weak additive noise. We found a transition around
.5 bits [44], and Piéron’s law diverges under the presence of weak additive noise as well. This noise-induced transition
eads to both Hick’s and anti-Hick’s effects. In comparison to sequential-sampling models, we also discuss that power-law
ehavior in Piéron’s law is intimately linked with neural activity by a form of symmetry or scale invariance [39,48–50].
e also discuss a plausible basis for optimal decision making based on the minimum transfer of information in sensory

ystems [44,50,51].

. Theory

.1. A derivation of Piéron’s law

For generic RT task, we define the growth of RT in the time axis as an irreversible process that arises from a cascade
f local stages. This implies a hierarchical organization or chronological order in the RT that must be compatible with the
rinciple of causality (i.e., every effect or event has a possible cause) [52]. For instance, a response selection cannot be
efore in time than the stimulus encoding because the act of encoding contributes to produce that response selection, etc.
e will introduce below that irreversibility results from the formation of a noisy internal threshold, and thus, generating

tochastic or random phenomena. Our approach should be understood as an asymptotic result providing a coarse-grained
ime description of behavioral activity.

We derive Piéron’s law from first principles by using the information-entropy function proposed by Norwich [40,53]:

H =
1

2 ln 2
ln

(
1 +

βSp

t

)
, (3)

begin β a coefficient.
2
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The value of H in Eq. (3) has dimensions of bits, and its derivation can be found elsewhere [40,53–55]. The H-function
is a Boltzmann-type entropy function that evolves continuously over time. It is related with the internal uncertainty
state of post-receptoral neurons about how sensory receptors process an external input signal of strength S. A high value
of the H-function means a high uncertainty within the sensory system, and vice versa [40]. In this framework, sensory
perception is not instantaneous but occurs during a finite period of time. The initial stage divides the H-function in two
separate regimes or phases [40]. In the first phase the sensory system is in an internal stage of maximum uncertainty,
and the H-function reaches a maximum value. In the second phase the sensory system removes that uncertainty, and the
H-function decreases monotonically over time to complete certainty (i.e., a gain of information) [40,53]. The RT can be
defined as the time needed to gather ∆H bits of information [40,53]:

∆H = H(S, t0) − H(S, t) ≥ 0, (4)

being t0 and t the encoding time, and the time to react, respectively, with 0 < t0 < t [40,53]. Eq. (4) denotes an irreversible
process, and defines an information threshold in decision making. Initially, the sensory system does not accumulate
information over time. The time t0 is the delay produced by an efficient encoder at maximum entropy, and sets the
origin of information [40–42,53].

Introducing Eq. (3) into Eq. (4):

∆H =
1

2 ln 2

[
ln

(
1 +

βSp

t0

)
− ln

(
1 +

βSp

t

)]
, (5)

and solving Eq. (5) for the time t [40,53]:

t =

[
1

t0 exp(2 ln 2∆H)
−

1 − exp(−2 ln 2∆H)
βSp

]−1

. (6)

There are two different limits in Eq. (6) to be evaluated. Firstly, there is a lack of response in the sensory system, and
t diverges when the stimulus strength S approaches to S0, being S0 a just-threshold internal reference value that depends
on ∆H [40,41,53]:

lim
t→∞

βSp ≡ βS0p = t0 [exp(2 ln 2∆H) − 1] . (7)

Secondly, the asymptotic term or plateau in Eq. (6) is reached at large S values [40,53]:

lim
S→∞

t ≡ µ0 = t0 exp(2 ln 2∆H). (8)

Substituting Eq. (7), and (8) into Eq. (6) [40,41,43,47,53]:

µ ≡ t = µ0

[
1 −

(
S0
S

)p]−1

, (9)

Eq. (9) is only valid when the mean RT, µ, takes finite values (∀S > S0). Then, Piéron’s law Eq. (1) is obtained by taking
he first two terms of a geometric series expansion in Eq. (9) [43,52]:

µ = µ0 + µ0

[(
S0
S

)p

+

(
S0
S

)2p

+ · · ·

]
, (10)

ith α ≡ µ0S0p [43,47].
The information-theoretic model of Piéron’s law in Eqs. (7)–(10) implies a chronological order that cannot be violated:

0 must precede µ0, and both must precede µ, (0 < t0 < µ0 < µ) [41–45,47]. Further, the asymptotic term µ0 is not
ixed but stochastic, and contains those initial stages related with the encoding time t0 and the formation of the sensory
hreshold S0 as show in Eqs. (7)–(8) [41]:

.2. A random multiplicative approach to reaction times

A random multiplicative process can be defined by using a discrete time Langevin-type dynamics [56,57] as follows [41,
3–45]:

xn+1 = anxn + bn, (11)

eing xn+1 and xn the RT at the stages n+1 and n, respectively. The subscript n refers to the time step and xn precedes
n+1. The coefficients an and bn denote the multiplicative and the additive noise terms, respectively [47]. The additive
erm bn is usually considered as a repelling barrier or repulsion from the origin and avoids that xn+1 drifts to zero when
he multiplicative factor an shrinks to zero [39,56,58,59].

It is assumed that both multiplicative and additive noise are delta correlated with variance, ⟨ai, aj⟩ ∝ Daδij and
bi, bj⟩ ∝ Dbδij, where Da and Db are the diffusion coefficients, indicating the average strength of interactions, and the
bracket ⟨· · ·⟩ means time averaging over many trials or repetitions of the same experiment [47].
3
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In our approach, we set ⟨anxn⟩ ∼= ⟨an⟩x0, being x0 a reference time that will be clarified later [47]. The diffusion
coefficients Da and Db are not fixed but stimulus-dependent [47]. The time average of both multiplicative and additive
noise is set proportional to the variance by fluctuation scaling [60], and ⟨an⟩ ∝ Da ̸= 0, ⟨bn⟩ ∝ Db ̸= 0 [41–43,47], and
thus:

µ ≡ t ≡ ⟨xn+1⟩ ∼= Dax0 + Db, (12)

We associate Piéron’s law as a special case of the generic stochastic Eq. (12) by rewriting the diffusion coefficients
Da, Db, and the reference time x0, in terms of the plateau µ0, the coefficient α, and the scaling exponent p [47]. Here
we consider the full approach of Piéron’s law in Eq. (9) because it describes better the curvature effects of RTs at near-
threshold conditions [41,42,44,45,47]. The diffusion coefficient of the multiplicative noise term Da, and the reference time
x0 in Eq. (12) are related with the stimulus strength S, and the encoding time t0, respectively in Eq. (9) [43,44]:

x0 = t0 > 0, (13)

Da =

[
1 −

(
S0
S

)p]−1

. (14)

By using the plateau µ0 in Eq. (8), Eq. (12) becomes:

µ = exp(2 ln 2∆H)Dat0 (15)

To examine the additive noise term in Db, we use Eq. (7) to replace ∆H as a function of the sensory threshold βS0p.
q. (15) can be written as follows:

µ =

(
1 +

βS0p

t0

)
Dat0 = Dat0 + δS0p, (16)

being β = δ/Da, and δ a normalizing coefficient. The additive noise term in Eq. (12) is related to the formation of the
sensory threshold, Db = δS0p. Here δS0p acts as a repelling barrier from the origin located at the encoding time t0.
herefore, the mean RT, µ, in Piéron’s law drifts to that barrier at marked supra-threshold conditions, ∀S ≫ S0 ⇒ Da →1,

and from Eq. (16), µ → t0 + δS0p.
To investigate the effects of the additive noise in Eq. (16) we define the following ratio [47,57]:

ρ =

√
Db

Da
=

√
βS0p =

√
δS0p

√
1 −

(
S0
S

)p

. (17)

Eq. (17) cannot be examined without further assumptions about the nature of the coefficient δ or the encoding time t0
in Eq. (7). We have introduced in [47] an approach that consists in varying the stimulus strength S in the multiplicative
diffusion coefficient from near- to supra-threshold conditions. Here we use a similar procedure by setting the contribution
of the additive noise term as a fixed reference value, ρ0 =

√
δS0p. Eq. (17) can be renormalized as follows:

ρ

ρ0
=

√
1 −

(
S0
S

)p

. (18)

At marked supra-threshold conditions, Eq. (18) tends to unity, i.e., the additive noise prevails in Piéron’s law
(∀S ≫ S0 ⇒ ρ → ρ0). However, at near-threshold conditions Eq. (18) tends to zero, i.e., the effects of the additive noise
are diluted, and the multiplicative noise mainly modulates Piéron’s law (∀S ∼ S0 ⇒ ρ → 0).

2.3. An interpretation of the scaling exponent p of Piéron’s law

From Eq. (7), we set β ′S0p = exp(2 ln 2∆H) − 1, being β ′
= β/t0, and for the transfer of information ∆H:

∆H =
1

2 ln 2
ln

(
1 + β ′S0p

)
. (19)

Eq. (19) maps the transfer of information, ∆H , into threshold-based units by using a logarithmic transformation of a
power-law function. For low values of the normalized sensory threshold

(
β ′S0p ≪ 1

)
, Eq. (19) just indicates a power-law

dependency, ∆H/∆H0 ∼= β ′S0p, being ∆H0 = 1 / 2ln2, a reference value. The scaling exponent p is the slope of that
power-law relationship as expressed in log–log units; ln (∆H/∆H0) ∼= p ln

(
β ′S0

)
, and can be interpreted as an efficiency

index related to the number of bits transmitted per sensory threshold.

3. Simulation results

3.1. The asymptotic term of Piéron’s law

Fig. 1(a) represents ∆H as a function of the sensory threshold β ′S0 (in normalized units) for different values of the
scaling exponent p of Piéron’s law. There are two different regimes in Eq. (19). For a fixed threshold value lower than unity,
4
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a

Fig. 1. Panels (a–b) double logarithmic plot of the transfer of information ∆H , and the plateau µ0 (in normalized or t0 units) of Piéron’s law as a
function of the sensory threshold β ′S0 (in dimensionless units). Solid, dashed and dash-dotted lines indicate different values of scaling exponent p.

(
β ′S0 < 1

)
, the lower the value of p, (0 < p < 1), the higher the transfer of information ∆H in neurons (e.g., simulated

by p < 1, dashed and dash-dotted lines in Fig. 1(a)). However, an inverse tendency is found for threshold values higher
than unity

(
β ′S0 > 1

)
, and ∆H is attenuated as the magnitude of the exponent p decreases. A transition is found at ∆H =

0.5 bits
(
β ′S0p = 1

)
. This issue will be further discussed below.

The minimum RT in decision making is giving by the plateau µ0 of Piéron’s law, and depends on the information
transfer ∆H or equivalently, on the sensory threshold S0. Introducing Eq. (19) into Eq. (8), µ0 = t0

(
1 + β ′S0

p). Fig. 1(b)
represents the asymptotic term µ0, normalized by the encoding time t0, as a function of the normalized sensory threshold
under the same simulation conditions as in Fig. 1(a). The plateau µ0 increases as β ′S0 increases by means of a truncated
power law function. Low values of the scaling exponent p enhances the rise of µ0 for low values of the sensory threshold(
β ′S0 < 1

)
(e.g., simulated by p < 1, dashed and dash-dotted lines in Fig. 1(b)). After the transition at β ′S0p > 1, that

effect of the exponent p is reversed. The lower of value of p < 1, the smaller the plateau µ0.
In general, ∆H in Eqs. (7), and (19), affects both S0, and p, simultaneously. In the following sections, we have simplified

the analysis of the additive noise in Piéron’s law in two different scenarios. In the first case, ∆H mainly modulates S0 and
the scaling exponent p does not undergo abrupt changes over time [41,42,44,45]. In the second case, ∆H has a direct
impact in p, and S0, is approximately constant over time.

3.2. Piéron’s law in simple and two-choice reaction times

In Eq. (9), we set the ratio (S0/S) =
(
β ′S0/β ′S

)
, being β ′S the relative stimulus strength, β ′Sϵ [0, ∞]. By using Eq. (7),

the full approach to Piéron’s law in Eq. (9) can be rewritten as follows:

µ

t0
= exp(2 ln 2∆H)

{
1 −

[
exp(2 ln 2∆H) − 1

β ′Sp

]}−1

, (20)

nd for the ratio ρ in Eq. (18):

ρ

ρ0
=

√
1 −

exp(2 ln 2∆H) − 1
β ′Sp

. (21)

Fig. 2(a) represents the hyperbolic decay of the normalized RT µ as a function of the relative stimulus strength β ′S,
for different values of the transfer of information ∆H . The scaling exponent p was kept to a fixed value. The simulations
capture the effects found by Pins and Bonnet in two-choice RTs [14].

Simple RTs imply the simplest task and are shorter. In our model, they correspond to those values that promote a lower
transfer of information in decision making (e.g., simulated by ∆H = 0.35 bits, solid line in Fig. 2(a)) or equivalently, a
lower sensory threshold β ′S0 in accordance with Eqs. (7) and (19). However, Piéron’s law in two alternative choice tasks
are a direct consequence of higher ∆H values due to the problem difficulty (e.g., simulated by ∆H > 0.35 bits, dashed,
and dash-dotted lines in Fig. 2(a)), and the RT curves run in parallel to higher values to the right-up part. At marked
supra-threshold conditions (S ≫ S0), the asymptotic plateau is reached, and µ0 increases as ∆H or β ′S0 increases, and
thus, replicating the effect found by Pins and Bonnet [14].
5
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Fig. 2. Panels (a–b) show the semi-logarithmic plot of the mean RT µ (in normalized or t0 units), and the ratio ρ/ρ0 of the additive to multiplicative
oise strength as a function of the relative stimulus strength β ′S (in normalized units), respectively. Solid, dashed, and dash-dotted lines indicate
ifferent values of the transfer of information ∆H . In all the examples, the scaling exponent of Piéron’s law has a fixed value of p = 0.6. In both
anels horizontal black solid lines indicate a ratio equal to unity.

Fig. 2(b) represents the ratio ρ/ρ0 in Eq. (21) by using the same simulation parameters as in Fig. 2(a). In all cases,
increases as a function of the stimulus strength S, being the additive noise weaker near the threshold (ρ ≪ 1). In

two-choice RTs, additive noise is less persistent (ρ → 0), and shifts to higher stimulus strength values up to β ′S = 10
∆H > 0.35 bits, dashed, and dash-dotted lines in Fig. 2(b)). After that regime, the multiplicative noise is no longer
ominant at supra-threshold conditions, and the effect of the additive noise emerges by converging into a common value
ndependently of ∆H (ρ → ρ0).

.3. Piéron’s law and the Hick’s effect

From Eq. (8), at very high S values, µ tends to the asymptotic plateau µ0, and the RT shows an exponential increase
as a function of ∆H [17,44]:

lim
S→∞

µ = t0 exp(2 ln 2∆H). (22)

The Hick’s effect in Eq. (2) is obtained by taking the first two terms of a Taylor’s series expansion in Eq. (22):

µ = t0 + (2 ln 2t0) ∆H + O
(
∆H2)

+ · · · , (23)

eing the intercept and the slope in Eq. (2), φ = t0 and γ = 2 ln 2t0, and for the entropy function, H = ∆H .
It is important to bear in mind that the temporal evolution of the H-function in Eq. (4) is neither examined by

sing a probabilistic description of the number of stimulus–response alternatives nor treated as Shannon information
ntropy [17,21,22,29]. Thus, it cannot be compared directly with previous information-theoretic approaches to Hick’s
aw [40]. Here, the higher the number of alternatives, the higher the transfer of information, ∆H , and the sensory system
pends more time gathering information. Equivalently, by using Eq. (19), the sensory threshold

(
β ′S0

)
increases and is

ore difficult to produce a voluntary RT due to the problem difficulty.
Fig. 3(a) represents the growth of Piéron’s law in Eq. (20) as a function of ∆H , for different values of the relative

timulus strength β ′S. The scaling exponent p remains fixed. At marked supra-threshold conditions, the effect of
xponential growth in Eq. (22) shifts to the right to higher values of ∆H , and thus, extending the validity of the linear
pproximation given by the Hick’s effect (e.g., simulated by β ′S > 500, dashed and dash-dotted lines in Fig. 3(a)).
The effects of additive noise are shown in Fig. 3(b) for the same simulation conditions as in Fig. 3(a). The ratio ρ/ρ0

ecreases as ∆H increases and the effect of additive noise are diluted (ρ ≪ 1) for ∆H > 2 bits. However, that additive
oise becomes more sustained at marked supra-threshold conditions (ρ → 1) (e.g., simulated by β ′S > 500, dashed and
ash-dotted lines in Fig. 3(b)).
6
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Fig. 3. Panels (a–b) show the mean RT µ (in normalized units), and the ratio ρ/ρ0 of the additive to multiplicative noise strength as a function of
he transfer of information ∆H . Solid, dashed, and dash-dotted lines indicate different values of the relative stimulus strength β ′S. In all cases, the
caling exponent of Piéron’s law has a fixed value of p = 0.6. In panel (b) the horizontal black solid line indicates a ratio equal to unity.

.4. Piéron’s law and the anti-Hick’s effect

In this scenario, ∆H mainly modules the scaling exponent p and the sensory threshold β ′S0p remains fixed. From
q. (19):

p =
ln [exp (2 ln 2∆H) − 1]

ln (β ′S0)
. (24)

Introducing Eq. (24) into Eq. (20):

µ

t0
= exp(2 ln 2∆H)

{
1 −

⎡⎣exp(2 ln 2∆H) − 1

β ′S
ln[exp(2 ln 2∆H)−1]

ln(β′S0)

⎤⎦}−1

, (25)

nd for the normalized ratio ρ in Eq. (18):

ρ

ρ0
=

√1 −
exp(2 ln 2∆H) − 1

β ′S
ln[exp(2 ln 2∆H)−1]

ln(β′S0)

. (26)

There is a singularity at ∆H = 0.5 bits and the scaling exponent p in Eq. (24) equals to zero. In that situation, Piéron’s
law in Eq. (25) diverges and the ratio ρ in Eq. (26) equals to zero (i.e., a pure multiplicative process). That transition at
∆H = 0.5 bits leads to two separate regimes: the first one includes those values below ∆H < 0.5 bits and the second
one, ∆H > 0.5 bits.

Fig. 4(a) represents Piéron’s law restricted to ∆H < 0.5 bits for different values of the relative stimulus strength
β ′S. In this regime, the mean RT, µ, increases exponentially, and corroborates the Hick’s effect at ∆H ≪0.5 bits, similar
o Fig. 3(a). Higher values of β ′S enhance the multiplicative growth of RTs (e.g., simulated by β ′S > 1.5, dashed and
dash-dotted lines in Fig. 4(a)). The analysis of the normalized ratio ρ shows that the effects of the additive noise are
eaker (ρ → 0) near the transition zone, 0.45 ≤ ∆H ≤ 0.49 bits. Contrary to the tendency found in Fig. 3(b), here, the

additive noise effects is more sustained for low values of the stimulus strength (e.g., simulated by β ′S = 1.5, solid line in
Fig. 4(b)).

Fig. 4(c) represents Piéron’s law in the second regime after the transition, ∆H > 0.5 bits. For high values of the relative
stimulus strength β ′S, the mean RT µ increases monotonically as in the previous Hick’s effect. This is mainly due to the
numerator at the right-hand side of Eq. (25), exp 2 ln 2∆H , and the denominator does not contribute and approaches to
unity (e.g., simulated by β ′S = 10, dash-dotted line in Fig. 4(c)). However, at low values of the normalized stimulus
strength β ′S, an U-shaped function is clearly manifested. Within the interval, 0.51 ≤ ∆H ≤1.2 bits, the RT decreases
as ∆H increases and thus, confirming the existence of an anti-Hick’s effect in Piéron’s law (e.g., simulated by β ′S < 10,
dashed and solid lines in Fig. 4(c)). Fig. 4(d) represents the normalized ratio ρ in the same simulation conditions as in
Fig. 4(c). In comparison with Fig. 4(b), the ratio ρ shows an inverted trend and increases as ∆H increases up to the unity.
7
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Fig. 4. Panels (a–b) show the linear plot of the normalized mean RT µ/t0 and the semi-logarithmic plot of the normalized ratio ρ/ρ0 as a function
f the transfer of information for values lower than ∆H < 0.5 bits, respectively. Panels (c–d) are the same as panels (a–b) but for ∆H > 0.5 bits.
n all cases, solid, dashed and dash-dotted lines indicate different values of the relative stimulus strength β ′S. In panels (b) and (d) horizontal black
olid lines indicate a ratio equal to unity. The normalized sensory threshold has a fixed value of ln

(
β ′S0

)
= 1.

eak additive noise, or equivalently, strong multiplicative noise can be found near the transition, 0.51 ≤ ∆H ≤1.2, where
he anti-Hick’s effect prevails. Low values of β ′S < 10 enhance that weak additive noise effect.

. Discussion

RTs are a standard tool in human performance such as in skilled chess and soccer players, etc. We have extended
revious works and proposed that a signal-dependent multiplicative process with weak additive noise rules Piéron’s
ower-law function and provides a common basis for both Hick’s and anti-Hick’s effects.
A key point is the time delay produced by the asymptotic term or plateau, µ0, in Piéron’s law. The plateau µ0 is the

rreducible RT, and contains not only those time delays associated to stimulus encoding, but the formation of an internal
hreshold too, in that chronological order [41]. The dependency of µ0 with the sensory threshold, β ′S0, is compatible
ith those experimental studies that have revealed the existence of a variable threshold mechanism in RTs and Piéron’s

aw [32,33,61,62]. Further, β ′S0 modulates the effects of the additive over the multiplicative noise at supra-threshold
conditions, and explains the differences between simple, and choice RTs (Fig. 2), and between Hick’s, and anti-Hick’s
effects (Fig. 4).
8
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The information-theoretic model of Piéron’s law belongs to a class of sigmoidal functions and the reciprocal of Eq. (1)
can be written as follows:

R = Rref

[
1 +

(
S0
S

)p
]−1

, (27)

eing R = 1/µ, and Rref = 1/µ0 [32,33,41–45,47]. Sigmoidal functions as Eq. (27) has been used in the aggregation of
xygen to hemoglobin molecules (also called the Hill equation) [63], in enzyme kinetics, and pharmacology (also called
he Michaelis–Menten equation) [64,65], in the development of sand seas in granular media [66], etc. In our case, Eq. (27)
s formally equivalent to the Naka–Rushton equation in neurophysiology [41,48,65]. This describes a canonical form of
ain control of the spike rate in single neurons [67–70]. The RT model links the sigmoidal growth of spikes with the
eciprocal of the mean RTs by scale invariance, a form of symmetry usually found in biology and elsewhere [37,48,49].

Our approach to RTs is based on two fundamental features: the existence of a threshold-based mechanism [61,62],
nd power-law scaling at the threshold [41,44]. The information entropy H-function plays a key role by associating
oth concepts in Eqs. (4), (7) and (8). Therefore, power-law scaling leads to long-range dependencies and self-affinity,
.e., Piéron’s law resembles the Naka–Rushton equation at smaller time scales in a statistical manner [41,48], in the same
ay as random fractals [37]. In comparison with sequential-sampling models [3,34,35], the information-theoretic model
sserts that there is not an accumulation of information at the beginning, and sensory systems are constrained to a
aximum uncertainty state giving by Eq. (4). There is a bona fide chronological order that is preserved. Here, decision
aking comes up after efficient stimulus encoding t0, and evolves irreversibly in time by the formation of the information

hreshold, ∆H ≥ 0 in the RT plateau µ0. Maximum entropy or uncertainty as modeled by the H-function is compatible
ith those theories that seek to unify common emergent patterns in nature from distinct generative mechanisms [71–75].
We propose an analogy between the gain of information in RTs, and a phase transition dealing with different states

f connectivity between neurons. The entropy change ∆H resembles an order parameter by providing a measure of the
nternal uncertainty in the sensory system, and controlling the entire RT dynamics. The formation of the sensory threshold
n Eq. (19) plays the role of a temperature-like function; ∆H/∆H0 ∼= β ′S0p, ∀β ′S0p ≪1 (see also Fig. 1(a)). The critical
alue of ∆H = 0.5 bits separates the growth of the plateau µ0 into two different regimes at near-threshold conditions
see Fig. 1(b)). That critical value is also responsible of both Hick’s and anti-Hick’s effects by promoting weak additive
oise in Piéron’s power-law function at supra-threshold conditions (see Fig. 4).
The scaling exponent, p, describes non-linear effects and different interpretations have been proposed [9,11,40,41,

0,69,76,77]. In Hill-type equations, p > 1 often reflects some form of cooperativity between single units [63–65].
lternatively, p has been derived as the critical exponent of a phase transition in neural networks [78]. In RTs, the higher
he scaling exponent, p ≫1, the more abrupt is the increase of the plateau µ0 at near-threshold conditions (see Fig. 1(b)),
nd the more abrupt is the hyperbolic decay of Piéron’s law at supra-threshold conditions.
Similar results are found at the microscopic level, and the scaling exponent of the Naka–Rushton equation usually spans

wider range of values [69,74,79,80]. It has been argued that marked non-linear effects in this function produces more
elective neural responses to external stimuli. Consequently, cortical neurons become biological switches in the sensory
athway [74,80,81]. However, strong non-linear effects represents a limitation at a macroscopic scale, and prevents
daptive sensory-motor control in everyday tasks. Thus, Piéron’s law cannot allocate correct responses with accuracy
or uncontrolled external stimuli. The sensory-motor system cannot use its own dynamical range, and the RT becomes a
i-stable transition between a maximum value near the threshold and the plateau µ0, and thus, producing more errors.
Bi-stability in RTs can be circumvented by multiplicative interactions in cascade showing some form of interdepen-

ence [50,59]. In our RT framework, each stage is neither complete independent nor a slave of the previous one, but
xhibits some form of coordination or self-tuning effects [50]. It is important to note that the information threshold
H ≥0 can be an unstable process in decision making [43–45]. As shown in Figs. 1 and 2, the more complex the task,

he higher the transfer of information ∆H and from Eq. (8), the plateau µ0 of Piéron’s law escapes to infinity:

lim
∆H→∞

µ0 ≡ t0 exp(2 ln 2∆H) → ∞. (28)

The same effect is translated at supra-threshold conditions by the exponential growth of RTs in the Hick’s effect [17]
Fig. 3(a)). However, Piéron’s law as modeled by a random multiplicative model always drifts to the repulsion barrier or
he plateau µ0 at supra-threshold conditions ∀S ≫ S0. Therefore, the sensory system can balance in part those detrimental
ffects caused by an excess of ∆H mapped into the scaling exponent p. This implies a first form of multiplicative
nterdependent coordination between stages to minimize errors derived from very large RTs or misses at supra-threshold
onditions. In general, sensory-motor systems often exhibit a band-limited range due to a trade-off between accuracy and
peed [1,3]. This leads to minimize a second type of errors or false alarms, defined by those anticipatory responses or fast
rrors before stimulus presentation [1].
Contrary to a maximization of the information transfer in neurons or an Infomax procedure [51,82–86], the random

ultiplicative model indicates that optimal decision making, and thus, shorter RTs are produced by promoting a minimum
n ∆H after efficient stimulus encoding or an Infomin procedure [42–44,75]. This implies a second mechanism of inter-

ependent coordination at near-threshold conditions that affects the minimum RT at µ0, i.e., from Eq. (8) [39,47,58,59],

9
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t follows (∆H → ∞) ⇒ (t0 → 0), and vice versa. The asymptotic term µ0 of Piéron’s law expands a limited range of
alues between a minimum and a maximum producing a quasi-stable plateau in most practical situations [47]:

µ0MIN = t0MAX exp(2 ln 2∆HMIN), (29)

µ0MAX = t0MIN exp(2 ln 2∆HMAX). (30)

Marked non-linear effects with p ≫1 in Piéron’s law are rare in most sensory and cognitive tasks. Our results show that
the interplay between multiplicative and weak additive noise in Piéron’s law favors the enhancement of the hyperbolic
decay over a wide range of experimental conditions and promote optimal RTs to be near the encoding time t0 in the
plateau µ0. This is compatible with theoretical models of neural control operating at the edge of a stability [87,88].

The RT model can be extended to different scenarios. For instance, redundant target effects often lead to shorter RTs
when using multiple target detectors within (e.g., binocular summation) and between sensory modalities (e.g., visual–
auditory interactions) in a wide variety of conditions [45]. A decrease in the mean RT due to a summation effect from
multiple signals is compatible with a lower transfer of information, ∆H ≥0, in the same way as in Fig. 2 [42].

In a different approach, the RT model can be applied to examine the functional role of stochastic resonance (SR) in
decision making. In its classical form, SR is a counter-intuitive nonlinear phenomenon where the optimal amount of
external noise can improve the detection of near-threshold signals. SR in the brain has been demonstrated from single
neurons to human behavior with different medical applications [89–92]. This raise a fundamental question about the
simultaneous interplay between internal noise, from the sensory system in itself, and the addition of external noise or
masking effects [90,93]. Previous works have proposed that differences on SR between human subjects are due in part
to their own level of internal noise. Large levels of internal noise may prevent SR [93], and internal noise can also be
signal-dependent [94]. In sequential-sampling models of RTs, a SR-like phenomenon can occur by increasing the rate
of stochastic accumulation. In vision research, an inverted U-shape function between subjects’ performance (e.g., the
percentage of correct choices) and the noise level was inferred in random-dot motion tasks [95,96].

Information theoretic measures of SR often exhibit a maximization procedure for different entropy functions (e.g., Shan-
non, Fisher information, etc.), showing an inverted U-shaped function at intermediate noise levels [89,90]. Our RT model
predicts an Infomin approach for SR and decision making. We suggest that a possible hallmark of SR in RTs could exhibit
an U-shaped function of ∆H versus the ratio ρ/ρ0 of the additive to multiplicative noise strength in Eq. (18). This issue
is beyond the scope of the present paper and merits further analysis.

5. Conclusion

Human RTs are a fundamental approach to elucidate the stochastic latency mechanisms in decision making [1,4–6].
Here we have shown that a random multiplicative process with weak additive noise provides a unifying description of
Piéron’s power-law function in simple and two-choice RTs, and both Hick’s and anti-Hick’s effects.

In our approach, we have used an information entropy or the H-function that describes the internal uncertainty state
f neurons as a function of time [40,53]. This entropy function defines an irreversible process over time, ∆H ≥0, and
rovides a threshold mechanism in RTs by power-law scaling. Optimal decision making is achieved when RTs are shorter
y promoting the principle of minimum transfer of information in neurons after efficient stimulus encoding [43,44,47].
he H-function also provides a unified framework to describe many empirical laws of sensory psychophysics [40,54,55].
The methods applied to choice RTs could be extended to investigate random multiplicative processes and decision

aking in brain disorders such as autism, alzheimer, attention-deficit disorders, etc. The wide applicability of sigmoidal
unctions in many fields could inspire novel approaches based on multiplicative processes and power-law scaling. For
nstance, the logistic curve is often used as the squashing function of neural outputs in artificial neural networks and
achine learning. The reciprocal of Piéron’s law as modeled in Eqs. (7)–(10) could bio-inspire a different strategy by
sing a limited range of values in the scaling exponent p.
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