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We study the random heat partial differential equation on a bounded domain assuming 
that the diffusion coefficient and the boundary conditions are random variables, and 
the initial condition is a stochastic process. Under general conditions, this stochastic 
system possesses a unique solution stochastic process in the almost sure and mean 
square senses. To quantify the uncertainty for this solution process, the computation of 
the probability density function is a major goal. By using a random finite difference 
scheme, we approximate the stochastic solution at each point by a sequence of random 
variables, whose probability density functions are computable, i.e., we construct a sequence 
of approximating density functions. We include numerical experiments to illustrate the 
applicability of our method.

© 2020 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction and motivation

Heat transfer modelling using partial differential equations has been extensively studied in the literature for many years, 
and it is currently an active field under research [1,19,22,24,32]. Information such as the diffusion coefficient, the initial 
distribution of temperature, etc., appears in the mathematical formulation of this class of problems. In practice, this key 
information needs to be established via measurements, which often involve uncertainties from measurement errors, material 
impurities, etc. These facts have motivated the mathematical modelling of heat transfer by using random partial differential 
equations. These differential equations are those in which the input data (initial and boundary conditions, forcing term 
and coefficients) are conveniently treated as random variables and stochastic processes. As a consequence, the solution to 
a random partial differential equation is not a classical function but a stochastic process. Apart from exact or approximate 
representations of the stochastic solution, say u(x, t), an important goal in dealing with random partial differential equations 
is to compute its main statistical properties, such as the mean function, μu(x, t) = E[u(x, t)], and the variance function, 
V [u(x, t)] =E[u(x, t)2] − μu(x, t)2. However, a major objective is to compute the probability density function, fu(x,t)(u), of 
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the stochastic solution for every (x, t) fixed, since from it one can calculate, not only the mean and the variance functions, 
but also higher one-dimensional statistical moments, E[u(x, t)k], k = 1, 2, . . ., provided they exist. Indeed, observe that

E[u(x, t)k] =
∫
R

uk fu(x,t)(u)du, k = 1,2, . . .

A powerful approach to deal with random partial differential equations is the so-called Lp -random calculus, and in 
particular, the mean square random calculus corresponding to p = 2, [37]. Convergence in L2-random calculus is usually 
referred to as mean square (hereafter m.s.) convergence, [37, Ch. 4]. This approach has two key properties. The first one 
is the formal representation of the solution stochastic process, which coincides with the one of the deterministic case, i.e., 
when the random inputs are deterministic quantities. This fact allows retaining both the physical interpretation and the 
deterministic results via the random solution. The second one is a distinctive property of m.s. convergence compared to 
other types of stochastic convergences (almost surely, hereafter a.s., in probability, and in distribution), which is crucial to 
compute reliable approximations of the mean and the variance of the solution u(x, t) (see [37, Th. 4.3.1]). If uM(x, t) is a 
sequence of random variables which is m.s. convergent to u(x, t) as M → ∞ for (x, t) fixed, i.e., uM(x, t) m.s.−−−−→

M→∞ u(x, t), then

E[uM(x, t)] −−−−→
M→∞ E[u(x, t)] and V [uM(x, t)] −−−−→

M→∞ V [u(x, t)].

In the context of heat transfer modelling via random partial differential equations, most of the contributions have focused 
on the construction of approximations of the solution stochastic process, and in the computation of its mean and variance 
as well, as we describe and reference in what follows. The calculation of the statistical moments is performed by taking 
advantage of the aforementioned key property of the m.s. convergence. Often, the methods and techniques that have been 
proposed to deal with random heat equations are analytic or numerical extensions of their deterministic counterparts. In 
the former case, we point out the following contributions [9,20,39,40], where some important analytical techniques, such 
as Fourier series, homogenization method, polynomial chaos and Chebyshev wavelets together with Galerkin methods are, 
respectively, extended to the random setting to solve different formulations of the heat equation with uncertainties. In the 
latter case, i.e., using a numerical approach, the random heat equation has been extensively studied via random convergent 
numerical schemes [10,11,13,28,31], by applying stochastic finite elements [18,21].

The computation of exact or approximate probability density function to random partial differential equations has been 
tackled only in few contributions [5,33,35], since the majority of the studies are addressed to construct approximations of 
the mean and the variance of the solution stochastic process.

A popular statistical technique to estimate the statistics of the stochastic solution is the Monte Carlo simulation [16]. It 
is easy to implement and robust. The mean square convergence rate of the sample mean towards the exact mean is propor-
tional to 1/m, where m is the number of realizations. This is a straightforward consequence of the central limit theorem. For 
nonparametric density estimations, a kernel density is constructed from a finite data sample. The method is closely related 
to histograms. The properties of the density estimation depend on the kernel and the bandwidth chosen. Under certain 
smoothness of the target density function and optimality of the bandwidth selected, the mean square convergence rate of 
the kernel density estimate is 1/mp , 0 < p < 1, [14,25,34]. This rate is slower than the typical 1/m convergence rate of 
parametric methods. For instance, according to [25], if the target density function is γ -Hölder continuous, γ ∈ (0, 1], then 
the pointwise convergence rate is O(1/mp), where p = γ /(2γ + 1) ≤ 1/3.

In the present work, we will deal with the following heat partial differential equation on the spatial domain [0, 1]:⎧⎪⎨
⎪⎩

ut = αuxx, x ∈ (0,1), t ∈ (0, T ),

u(0, t) = A, u(1, t) = B, t ∈ [0, T ],
u(x,0) = φ(x), x ∈ [0,1].

(1)

This is a first step of our research on approximating the density function of the heat equation. Other interesting cases 
remain pending for the future, for example the infinite domain case. At this point, we must point out that to the best of 
our knowledge the analysis of the random heat equation on infinite/semi-infinite domains have been carried out by some 
of the co-authors in previous contributions using an analytic approach via random integral transforms [7,8]. However, it is 
very important to point out that in the above-mentioned contributions the goal has been to approximate the first statistical 
moments (mean and variance) of the solution rather than the first probability density function. In this new paper, we go 
further in two directions, first we provide reliable approximations for the first probability density function of the solution 
stochastic process, which is a more ambitious and desirable goal, and second, we construct random numerical schemes to 
compute the first probability density function rather than using an analytic approach. This latter point is completely new in 
dealing with the approximation of the first probability density function to the random heat equation.

For the sake of completeness, we recall that in a deterministic setting, the diffusion coefficient α > 0, and the boundary 
conditions A and B are constants, and the initial condition φ(x) is a deterministic function. Then, its solution is a bivariate 
function u(x, t). Sufficient conditions for the existence of a smooth classical solution u(x, t) are given in the following result.
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Proposition 1.1. ([6, Th. 3.1]) If φ is continuous on [0, 1], piecewise C1 on [0, 1], φ(0) = A and φ(1) = B, then u(x, t) is continuous 
on [0, 1] × [0, ∞), is of class C2,1 on (0, 1) × (0, ∞) and is a classical solution to (1).

Moreover, under the conditions of Proposition 1.1, the solution to (1) is given by

u(x, t) = v(x, t) + xB + (1 − x)A,

where

v(x, t) =
∞∑

k=1

Ake−k2π2αt sin(kπx),

Ak = 2

1∫
0

ψ(y) sin(kπ y)dy, ψ(y) = φ(y) − yB − (1 − y)A

(see [6, expressions (2.2) in p. 3, (2.3) in p. 4 and (3.2)–(3.4) in p. 9]). This solution results from applying the classical 
method of separation of variables to (1) with homogeneous boundary conditions (case A = B = 0), and then doing a change 
of variables to adapt to the case A �= 0 or B �= 0.

Motivated by the arguments exhibited at the beginning of this section, hereinafter we will consider the randomization 
of the above heat diffusion problem (1). We then assume that the values of the input data depend on an experiment ω. The 
set of all experiments, called sample space and denoted by �, is equipped with a σ -algebra of events F , and a probability 
measure P to form a complete probability space (�, F , P ). The diffusion coefficient α = α(ω) and the boundary conditions 
A = A(ω) and B = B(ω) are random variables, and the initial condition φ(x) = φ(x)(ω) is assumed to be a stochastic 
process, being all of them defined in the probability space (�, F , P ). The term u is a stochastic process u(x, t) = u(x, t)(ω)

that solves the random heat diffusion problem (1) in some probabilistic sense. Theorem 3.2 in ref. [6] proves that under 
square integrability of φ, A and B , there is a unique stochastic solution in the a.s. and m.s. senses [37]. Notice that, in this 
probabilistic scenario, we do not require φ(0) = A and φ(1) = B .

Proposition 1.2. ([6, Th. 3.2]) The following statements hold:

i) Almost sure (a.s.) solution: Suppose that φ ∈ L2([0, 1] × �) and A, B ∈ L2(�). Then

ut(x, t)(ω) = α(ω) uxx(x, t)(ω)

a.s. for x ∈ (0, 1) and t > 0, where the derivatives are understood in the classical sense; u(0, t)(ω) = A(ω) and u(1, t)(ω) = B(ω)

a.s. for t ≥ 0; and u(x, 0)(ω) = φ(x)(ω) a.s. for a.e. x ∈ [0, 1]. Moreover, the process u(x, t)(ω) satisfying these conditions is 
unique.

ii) Mean square (m.s.) solution: Suppose that φ ∈ L2([0, 1] × �), A, B ∈ L2(�) and 0 < a ≤ α(ω) ≤ b, a.e. ω ∈ �, for certain 
a, b ∈R. Then

ut(x, t)(ω) = α(ω) uxx(x, t)(ω)

a.s. for x ∈ (0, 1) and t > 0, where the derivatives are understood in the m.s. sense; u(0, t)(ω) = A(ω) and u(1, t)(ω) = B(ω) a.s. 
for t ≥ 0; and u(x, 0)(ω) = φ(x)(ω) a.s. for a.e. x ∈ [0, 1]. Moreover, the process u(x, t)(ω) satisfying these conditions is unique.

In addition, under the assumptions of Proposition 1.2, the solution to (1) is given by

u(x, t)(ω) = v(x, t)(ω) + xB(ω) + (1 − x)A(ω), (2)

where

v(x, t)(ω) =
∞∑

k=1

Ak(ω)e−k2π2α(ω)t sin(kπx), (3)

Ak(ω) = 2

1∫
0

ψ(y)(ω) sin(kπ y)dy, ψ(y)(ω) = φ(y)(ω) − yB(ω) − (1 − y)A(ω). (4)

The integral that defines Ak(ω) is understood in the sample path sense [37, Appendix A]. The convergence of the last 
series is considered a.s. or in L2(�), depending on whether we want u(x, t) to be an a.s. or a m.s. solution, respectively.

As we are interested in computational uncertainty quantification, the existence of a solution in a probabilistic sense 
will not be a major concern. In contrast, our main goal is to construct reliable approximations of the probability density 
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function of the solution, u(x, t), to the random heat diffusion problem (1). To achieve this goal, we take advantage of a 
random numerical scheme together with a key probabilistic result that will be introduced later, to construct a sequence 
of approximating density functions. Afterwards, the proposed method will be presented in an algorithm. We will present 
numerical experiments aimed to show the capability of the proposed approach to quantify uncertainty in the random heat 
diffusion problem (1) via the computation of approximations to its probability density function.

2. Method

Consider the backward Euler method to formally approximate the solution process u(x, t), [38]. We divide the spatial 
domain [0, 1] into equidistant points as {x0, . . . , xM+1}, where xi = ih and h = 1/(M + 1). We discretize the time domain 
[0, T ] as {t0, . . . , tN}, where tn = n
t and 
t = T /N . The finite difference scheme corresponding to the backward Euler 
method is expressed via the following difference equation:

uN,M
n+1,i = uN,M

n,i + η(uN,M
n+1,i+1 − 2uN,M

n+1,i + uN,M
n+1,i−1),

where η = α(
t)/h2 is a.s. positive. The term uN,M
n,i approximates u(xi, tn). In matrix form,

uN,M
n+1 = (IM − ηL)−1(uN,M

n + ηc), (5)

where uN,M
n = (uN,M

n,1 , . . . , uN,M
n,M )	 , c = (A, 0, . . . , 0, B)	 (	 denotes the transpose operator for vectors and matrices), IM is 

the M × M identity matrix and

L =

⎛
⎜⎜⎜⎜⎜⎝

−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2

⎞
⎟⎟⎟⎟⎟⎠

is also an M × M matrix.
This numerical method is stable for all η. The random difference equation (5) approximates the partial differential equa-

tion (1) with order O(
t) + O(h2). We will take N = NM = (M + 1)2, so that the local truncation error is given by O(h2). 
Therefore, we may drop the superscript N from the random difference equation (5):

uM
n+1 = (IM − ηL)−1(uM

n + ηc). (6)

This linear recurrence (6) has an explicit solution:

uM
n =AnφM +

(
n−1∑
k=0

Ak

)
b, (7)

where φM = (φ(x1), . . . , φ(xM))	 , A= (IM − ηL)−1 and b = η(IM − ηL)−1c, and from (7), we can compute explicitly each 
component uM

n,i :

uM
n,i = (AnφM)i +

(
n−1∑
k=0

Ak

)
(i, :)b

= (AnφM)i + η

(
n−1∑
k=0

Ak

)
(i, :)A(:,1)A + η

(
n−1∑
k=0

Ak

)
(i, :)A(:, M)B, (8)

where A(i, :) denotes the i-th row of A and A(:, j) refers to the j-th column of A.
From (8), we will derive the probability distribution of uM

n,i on account of the distributions of A, B , α and φM . We will 
distinguish two scenarios:

• Case 1: A is an absolutely continuous random variable (i.e. it has a density function) which is independent of the 
random vector (α, B, φM). In this case, α, B and φM may take any type of probability distribution (continuous, discrete, 
etc.).

• Case 2: B is absolutely continuous and is independent of (α, A, φM). In this case, α, A and φM may follow any kind of 
probability distribution (continuous, discrete, etc.).
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Since the analysis of Case 2 is analogous to the one of Case 1, we will detail the study corresponding to Case 1, and for 
the Case 2 we summarize the main conclusions.

The following lemma allows computing the probability density function of uM
n,i . The result is an extension of the Random 

Variable Transformation (RVT) technique (which has been extensively used [12,15,23]) when the transformation mapping 
consists of sums and products. Regarding notation, the probability density function of a random variable/vector X will be 
denoted as f X hereafter, and its probability law will be written as PX =P ◦ X−1.

Lemma 2.1. Let U be an absolutely continuous random variable, independent of the random vector (Z1, Z2), where Z1 �= 0 a.s. Then 
Z1U + Z2 is absolutely continuous, with density function f Z1U+Z2 (z) =E[ fU ((z − Z2)/Z1)/|Z1|].

Proof. Let C be a Borel set in R. Then, using conditional probabilities,

P (Z1U + Z2 ∈ C) =
∫
R2

P (Z1U + Z2 ∈ C|Z1 = z1, Z2 = z2)P(Z1,Z2)(dz1,dz2)

=
∫
R2

P (z1U + z2 ∈ C)P(Z1,Z2)(dz1,dz2) =
∫
R2

∫
(C−z2)/z1

fU (u)duP(Z1,Z2)(dz1,dz2)

=
∫
R2

∫
C

fU

(
u − z2

z1

)
1

|z1| duP(Z1,Z2)(dz1,dz2)

=
∫
C

∫
R2

fU

(
u − z2

z1

)
1

|z1|P(Z1,Z2)(dz1,dz2)du =
∫
C

E

[
fU

(
u − z2

z1

)
1

|z1|
]

du.

By using this key lemma, we are able to compute, for the Case 1, the probability density function of uM
n,i by taking into 

account the representation given in (8). Take

U =A,

Z1 =η

(
n−1∑
k=0

Ak

)
(i, :)A(:,1),

Z2 =(AnφM)i + η

(
n−1∑
k=0

Ak

)
(i, :)A(:, M)B.

Let us justify that Z1 �= 0 a.s. The matrix IM −ηL is an M-matrix, in the sense of ref. [30, p. 10]: IM −ηL has its offdiagonal 
entries nonpositive and, for the vector r = (sin(π j/(M + 1))M

j=1 with positive components, the image (IM − ηL)r is written 
as λr, where λ > 0, so that (IM − ηL)r has positive components. Moreover, IM − ηL is an irreducible matrix, because its 
entries on the superdiagonal and on the subdiagonal are nonzero. By Theorem 2.7 in ref. [2], the entries of A= (IM −ηL)−1

are positive. Thus, Z1 > 0.
The assumption of independence between A and (α, B, φM) implies the independence between U and (Z1, Z2), by [17, 

p. 93]. By applying Lemma 2.1, we obtain

fuM
n,i

(u) = E

⎡
⎢⎢⎢⎢⎣ f A

⎛
⎜⎜⎜⎜⎝

u − (AnφM)i − η

(
n−1∑
k=0
Ak

)
(i, :)A(:, M)B

η

(
n−1∑
k=0
Ak

)
(i, :)A(:,1)

⎞
⎟⎟⎟⎟⎠

1

η

(
n−1∑
k=0
Ak

)
(i, :)A(:,1)

⎤
⎥⎥⎥⎥⎦ . (9)

For the Case 2, that is, if B is absolutely continuous and is independent of (α, A, φM), proceeding analogously we derive 
an alternative density function for uM

n,i :

fuM
n,i

(u) = E

⎡
⎢⎢⎢⎢⎣ f B

⎛
⎜⎜⎜⎜⎝

u − (AnφM)i − η

(
n−1∑
k=0
Ak

)
(i, :)A(:,1)A

η

(
n−1∑
k=0
Ak

)
(i, :)A(:, M)

⎞
⎟⎟⎟⎟⎠

1

η

(
n−1∑
k=0
Ak

)
(i, :)A(:, M)

⎤
⎥⎥⎥⎥⎦ .

We approximate the density function of u(x, t) as follows. Let x∗ ∈ (0, 1) and t∗ ∈ (0, T ). Consider a sequence of points 
in both partitions, {iM/(M + 1)}∞ and {nM T /NM}∞ , where iM ∈ {1, . . . , M}, nM ∈ {0, . . . , NM} and NM = (M + 1)2, such 
M=1 M=1
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that iM/(M + 1) → x∗ and nM T /NM → t∗ as M → ∞. For example, take iM = �x∗(M + 1)� and nM = �t∗NM/T �, where �·�
stands for the integer part. Then, the density function of u(x∗, t∗) is

fu(x∗,t∗)(u) = lim
M→∞ fuM

nM ,iM
(u). (10)

At this point, we would like to remark that other finite difference schemes could be possible: forward Euler method, 
Crank-Nicholson method, etc. Our choice for the backward Euler method is due to its simplicity and being von Neumann 
stable for all η (stability means that all the eigenvalues of the matrix (IM − ηL)−1 have modulus less than or equal to 1; 
this is a necessary condition to assure the a.s. convergence of the discretizations to the true solution).

The case in which A and B are not absolutely continuous remains pending. One could think of performing the same 
analysis as before but isolating φ(x j) in (8), instead of A or B . In such a case, one would assume that φ(x j) is abso-
lutely continuous and independent of (α, A, B, φ(x1), . . . , φ(x j−1), φ(x j+1), . . . , φ(xM)). To achieve this independence, one 
may require φ(y1), . . . φ(ym) to be independent, for every y1, . . . , ym ∈ [0, 1], m ≥ 1. A process φ of this type exists by 
Kolmogorov’s Extension Theorem [3, Th. 36.2, p. 486]. However, by [27, Example 1.2.5, p. 10], this process φ is not jointly 
measurable on [0, 1] ×�, so that φ cannot belong to L2([0, 1] ×�). Hence, Proposition 1.2 on the existence of solution does 
not apply.

3. Computational aspects and algorithm

In this section we comment on computational aspects regarding the implementation of the probability density func-
tion (9).

The computation of the powers Ak is especially demanding. Thus, it is better to consider the spectral decomposition 
of A. The set of eigenvalues, μl , and eigenvectors, sl , of A is well-known [36]:

μl = 1

2η(1 − cos(lπh)) + 1
, sl = (sin(lπ jh))M

j=1, (11)

for l = 1, . . . , M . Let D be the diagonal matrix with Dll = μl , and let P = [s1 . . . sM ] be the matrix whose column vectors 
are s1, . . . , sM . Define R = √

2/(M + 1) P. Then R is an orthogonal M × M matrix, and the decomposition A= RDR	 holds. 
Hence, the powers of A can be computed as Ak = RDkR	 , which reduces notably the computational load.

On the other hand, the theoretical expression of the expectation from (9) is the following:

fuM
n,i

(u) =
∫

RM+2

f A

⎛
⎜⎜⎜⎜⎝

u − (AnφM)i − η

(
n−1∑
k=0
Ak

)
(i, :)A(:, M)B

η

(
n−1∑
k=0
Ak

)
(i, :)A(:,1)

⎞
⎟⎟⎟⎟⎠

× 1

η

(
n−1∑
k=0
Ak

)
(i, :)A(:,1)

P(α,B,φM )(dα,dB,dφM).

However, from a practical point of view, it is better to turn to Monte Carlo simulation to address the computation of (9), [16], 
as the integration is high-dimensional. Let α( j) , B( j) and φM

( j) , j = 1, . . . , m, be m realizations of the random variables/vectors 
α, B and φM . Then we approximate (9) as

fuM
n,i

(u) ≈ 1

m

m∑
j=1

f A

⎛
⎜⎜⎜⎜⎝

u − (An
( j)φ

M
( j))i − η( j)

(
n−1∑
k=0
Ak

( j)

)
(i, :)A( j)(:, M)B( j)

η( j)

(
n−1∑
k=0
Ak

( j)

)
(i, :)A( j)(:,1)

⎞
⎟⎟⎟⎟⎠

× 1

η( j)

(
n−1∑
k=0
Ak

( j)

)
(i, :)A( j)(:,1)

. (12)

When m → ∞, this approximation becomes an a.s. limit by the law of large numbers.
Based on this proposed computational method, we provide Algorithm 1 for uncertainty quantification for the solution 

stochastic process u(x, t) to the random heat partial differential equation (1).
Once we obtain F (u) in Algorithm 1, we can perform uncertainty quantification with the density function F (u), because 

F (u) ≈ fu(x∗,t∗)(u). For example, the expectation and the variance of u(x∗, t∗) may be approximated as
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Algorithm 1 Approximation for the density function of the solution u(x∗, t∗).
1: procedure F(u(x∗, t∗))
2: x∗
3: t∗
4: T
5: A � probability distribution
6: B � probability distribution
7: α � probability distribution
8: φ(x) � stochastic process
9: M

10: NM = (M + 1)2

11: i = �x∗(M + 1)�
12: n = �t∗NM/T �
13: D = diag(μ1, . . . , μM ), � where the entry μl is defined by (11)
14: R = √

2/(M + 1) [s1 . . . sM ] � where the vector sl is defined by (11)
15: A= RDR	
16: An = RDnR	

17:
n−1∑
k=0
Ak = R(

n−1∑
k=0

Dk)R	

18:

F (α, B,φM ) = f A

⎛
⎜⎜⎜⎜⎝

u − (AnφM )i − η

(
n−1∑
k=0
Ak

)
(i, :)A(:, M)B

η

(
n−1∑
k=0
Ak

)
(i, :)A(:,1)

⎞
⎟⎟⎟⎟⎠

1

η

(
n−1∑
k=0
Ak

)
(i, :)A(:,1)

19: for j = 1 to m do � obtain m realizations for α, B, φM

20: α( j)

21: B( j)

22: φM
( j)

23: end for
24: F (u) = 1

m

∑m
j=1 F (α( j), B( j),φ

M
( j)) � compute the sample mean

25: end procedure

E[u(x∗, t∗)] ≈
∫
R

uF (u)du, V [u(x∗, t∗)] ≈
∫
R

u2 F (u)du −
⎛
⎝∫
R

uF (u)du

⎞
⎠

2

. (13)

Any statistical moment of u(x∗, t∗) may be approximated using the general formula

E[g(u(x∗, t∗))] ≈
∫
R

g(u)F (u)du,

where g :R →R is any deterministic function.
In the next section, we will illustrate the use of the proposed Algorithm 1 with three examples.
We conclude this section by comparing our algorithm with kernel-based density estimations. Our algorithm applies plain 

Monte Carlo simulation to estimate the expectation (9). Therefore we obtain pointwise estimates of the density function at 
mean square error rate O(m−1), where m is the number of realizations. The algorithm has a parametric nature (i.e. from 
known distributions and samples, compute the parameter mean). By contrast, a kernel density construction estimates the 
unknown density function at mean square error rate O(m−p), for certain 0 < p < 1 (see Section 1 and the references 
therein). It is of nonparametric nature (i.e. from samples only, infer an unknown probability distribution), thus slower 
than parametric methods. In addition, each realization of the kernel density estimate requires the computation of the heat 
equation solution. Hence, overall, our method is proved to be faster.

On the other hand, our algorithm is more robust than a kernel-based density estimate. Indeed, as we only require the 
estimation of a mean, see (9), we do not need to impose any regularity condition on the densities (the Law of Large 
Numbers assures convergence in any situation); any discontinuity point or peak will be correctly captured by our method. 
On the contrary, kernel density estimates are highly influenced by smoothness; without prior knowledge on the features 
of the target density function, the optimal kernel may not be known. The kernel distribution estimate may consider wrong 
tails, for instance.

Methods based on finite-dimensional representations of the stochastic solution (discretizations, finite-term expansions, 
etc.) and on considering the density functions of such representations, correctly capture the density features (discontinuities, 
differentiability points, support, etc.), see [4,26] for example.
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4. Numerical examples

Here, we show three numerical examples for (1) by considering a variety of probability distributions for each random 
input. Take T = 3, so that the domain of the partial differential equation becomes (0, 1) × (0, 3), and let u(x, t) be the 
solution stochastic process to (1), whose existence is guaranteed by [6, Th. 3.2]. We will approximate its probability density 
function at a point (x∗, t∗) by utilizing (10). Consider iM = �x∗(M + 1)�, nM = �t∗NM/T �. These points satisfy iM/(M + 1) →
x∗ in the partitions, and nM T /NM → t∗ as M → ∞.

We will set particular distributions for α, A, B and φ. It will be assumed that A is absolutely continuous and independent 
of (α, B, φ), so that Lemma 2.1 is applicable. The expectation (9) will be approximated via Monte Carlo simulation, with 
m = 20, 000 realizations of each random variable. This m value has been checked to be enough in order to ensure good 
approximations of (9). The algorithm has been implemented in the software Mathematica®, version 11.2 (Wolfram Research, 
Inc.: Champaign, IL, USA, 2017).

We will choose different stochastic processes φ. In Example 4.1, its sample paths will be exactly computable. In Ex-
ample 4.2, by contrast, the process will be decomposed via an infinite Karhunen-Loève-type expansion. In this case, a 
dimensionality reduction of the random space must be carried out to simulate φ, by truncating the series. These two situa-
tions cover the range of possibilities for a given initial condition φ(x): finite or infinite-dimensional randomness. The latter 
case always requires parametrizing the random space by a set of a finite number of random variables. This methodology 
was used in our recent contribution [4]. Finally, the purpose of the last example, Example 4.3, will only be to illustrate how 
our method is able to capture non-differentiability points, in contrast to kernel density estimates.

In the examples, we will observe fast convergence of (9) as M increases, although the error may not be monotonically 
decreasing.

For the sole purpose of validating our density approximations, we will compare our computations for the expectation 
and the variance (13) with the method proposed in the reference [9]. In [9], the authors proposed a novel methodology to 
estimate the expectation and the variance of the solution to the heat equation, by considering explicit series expressions. 
Their use of the mean square calculus restricted their analysis to these two statistics. Suppose that α, A, B and φ are 
independent. The idea in ref. [9] is as follows: from (2)–(4), the expectation of u(x, t) may be approximated as

E[u(x, t)] = E[v(x, t)] + xE[B] + (1 − x)E[A], (14)

being

E[v(x, t)] ≈
K∑

k=1

E[Ak]E[e−k2π2αt] sin(kπx) (15)

and

E[Ak] = 2

1∫
0

E[ψ(y)] sin(kπ y)dy, E[ψ(y)] = E[φ(y)] − yE[B] − (1 − y)E[A], (16)

where the order of truncation K must be sufficiently large to achieve the desired accuracy. Notice that the independence 
hypothesis between α and φ has been used in (15). Concerning the variance of u(x, t), we compute

V [u(x, t)] = V [v(x, t)] + x2V [B] + (1 − x)2V [A], (17)

V [v(x, t)] ≈
K∑

k1,k2=1

Cov[Ak1 , Ak2 ]E[e−(k2
1+k2

2)π2αt] sin(k1πx) sin(k2πx)

+
K∑

k1,k2=1

E[Ak1 ]E[Ak2 ]Cov[e−k2
1π

2αt,e−k2
2π

2αt] sin(k1πx) sin(k2πx), (18)

Cov[Ak1 , Ak2 ] = 4

1∫
0

1∫
0

Cov[ψ(y1),ψ(y2)] sin(k1π y1) sin(k2π y2)dy1 dy2, (19)

Cov[ψ(y1),ψ(y2)] = Cov[φ(y1),φ(y2)] + y1 y2V [B] + (1 − y1)(1 − y2)V [A], (20)

for a large level of truncation K . The independence assumptions have been used in (17), (18) and (20). The approximations 
derived with these expressions from [9] must be similar to those calculated with our density functions.

Example 4.1. Let A ∼ Gamma(3, 1), B = −1 (constant), α ∼ Triangular(1, 2) and φ(x) = D cos x + esin(Ex2) , where D ∼
Binomial(20, 0.2) and E ∼ Uniform(−1, 0). By Proposition 1.2, there exists a unique solution stochastic process u(x, t), 
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Fig. 1. Example 4.1: plot of fuM
nM ,iM

(u) given by (9) for M = 9,11,13,15,17,19,21, and the asymptotic density (21).

Table 1
Example 4.1: approximations for E[u(x∗, t∗)] and V [u(x∗, t∗)] obtained with (13).

M 9 11 13 15 17 19 21

E[uM
nM ,iM

] 2.199 2 2.142 2 2.110 2 2.090

V [uM
nM ,iM

] 1.912 1.688 1.845 1.688 1.809 1.688 1.786

Table 2
Example 4.1: approximations for E[u(x∗, t∗)] and V [u(x∗, t∗)] as in 
ref. [9] (see (14)–(20)).

K 1 2 3 4 5

E[u(x∗, t∗)] 2 2 2 2 2

V [u(x∗, t∗)] 1.688 1.688 1.688 1.688 1.688

both in the a.s. and m.s. senses, which is given by (2)–(4). It is assumed that A, α, D and E are independent random 
variables. We are under the conditions of Case 1. Let (x∗, t∗) = (0.25, 2.4). In Fig. 1, we plot the approximations (9) for 
M = 9, 11, 13, 15, 17, 19, 21. We observe non-monotone convergence. Moreover, the density function obtained for M = 19
coincides visually with the density function of limt→∞ u(x, t) = xB + (1 − x)A = −0.25 + 0.75A, which is given by

f A

(
x + 0.25

0.75

)
1

0.75
(21)

(apply the RVT method to the transformation −0.25 +0.75A, [37, pp. 24–25]). This is because limt→∞ u(x, t) = xB + (1 −x)A
holds exponentially in t , so for t = 2.4 we have u(0.25, 2.4) ≈ u(0.25, ∞) = −0.25 + 0.75A.

Table 1 shows the approximations for E[u(x∗, t∗)] and V [u(x∗, t∗)]. Table 2 presents these computations by means of 
the procedure in ref. [9] (see (14)–(20)). We clarify the fact that the results reported in Table 2 are not cited; they are 
calculated here based on the methodology from the reference. The agreement of the results demonstrates the validity of 
the probability density functions plotted in Fig. 1. Moreover, notice that the results coincide with the asymptotic limit 
E[u(0.25, ∞)] =E[−0.25 + 0.75A] = 2 and V [u(0.25, ∞)] =V [−0.25 + 0.75A] = 1.6875.

Thus, the best choice for uncertainty quantification for u(0.25, 2.4) is M = 19, or even the density function of u(0.25, ∞)

given by (21).

Example 4.2. Let us consider A ∼ Normal(−1, 1), B = −1 (constant), α ∼ Triangular(1, 2) and

φ(x) =
∞∑
j=1

√
2

j3/2
√

1 + log j
sin( jπx)ξ j, (22)

where ξ1, ξ2, . . . are independent and identically distributed random variables, with density function

fξ1(ξ) =
√

2

π(1 + ξ4)
, ξ ∈R.

Since ξ1, ξ2, . . . have zero expectation and unit variance, and {√2 sin( jπx)}∞j=1 is an orthonormal basis of L2([0, 1]), the 
series in (22) corresponds to a Karhunen-Loève expansion [29, Th. 5.28]. Karhunen-Loève expansions are Fourier-type series 
that decompose square integrable processes in terms of the eigenvalues and eigenfunctions of the covariance integral oper-
ator. Here we give a test series explicitly, where the set of eigenvalues is {1/( j3(1 + log j))}∞j=1 and the set of eigenfunctions 
is {√2 sin( jπx)}∞ . The covariance of the process φ is given by [29, p. 203]
j=1
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Fig. 2. Example 4.2: plot of fuM
nM ,iM

(u) given by (9) for M = 9,11,13,15,17,19,21,23.

Table 3
Example 4.2: approximations for E[u(x∗, t∗)] and V [u(x∗, t∗)] obtained with (13).

M 9 11 13 15 17 19 21 23

E[uM
nM ,iM

] −0.979 −0.977 −0.981 −0.981 −0.984 −0.984 −0.986 −0.985

V [uM
nM ,iM

] 0.624 0.546 0.603 0.549 0.599 0.551 0.586 0.552

Table 4
Example 4.2: approximations for E[u(x∗, t∗)] and V [u(x∗, t∗)] as in 
ref. [9] (see (14)–(20)).

K 1 2 3 4 5

E[u(x∗, t∗)] −0.987 −0.987 −0.987 −0.987 −0.987
V [u(x∗, t∗)] 0.563 0.563 0.563 0.563 0.563

Cov[φ(x),φ(y)] =
∞∑
j=1

2

j3(1 + log j)
sin( jπx) sin( jπ y),

and its covariance integral operator is Cϕ(x) = ∫ 1
0 Cov[φ(x), φ(y)]ϕ(y)dy, x ∈ [0, 1], ϕ ∈ L2([0, 1]). The convergence of the 

series is understood in L2([0, 1] × �). Proposition 1.2 tells us that there is a unique solution stochastic process u(x, t), both 
in the a.s. and m.s. senses, which is given by (2)–(4).

In order to sample from φ(x), we need to truncate the series in (22). Truncating up to order N = 5, we are accounting 
for more than 99.5% of the total variance of φ(x), 

∫ 1
0 V [φ(x)] dx = ∑∞

j=1 1/( j3(1 + log j)), [29, p. 204]. Thus, we will use

φ(x) =
5∑

j=1

√
2

j3/2
√

1 + log j
sin( jπx)ξ j.

It is assumed that A, α, ξ1, . . . , ξ5 are independent random variables. We are under the conditions required by Case 1. 
Let (x∗, t∗) = (0.25, 0.3). Fig. 2 shows the approximations (9) for values of M = 9, 11, 13, 15, 17, 19, 21, 23. Convergence is 
achieved, so that the density function of u(x∗, t∗) has been accurately approximated.

Table 3 shows the approximations for E[u(x∗, t∗)] and V [u(x∗, t∗)] obtained with (13). Notice that the convergence 
is non-monotone. We compare these estimates to the procedure in ref. [9] (see (14)–(20)), whose values are tabulated in 
Table 4. The results reported in Table 4 are not cited; they are calculated here based on the methodology from the reference. 
Again, the agreement of the results demonstrates the validity of the probability density functions plotted in Fig. 2.

Thereby, the best truncation order for uncertainty quantification for u(0.25, 0.3) is M = 23.

Example 4.3. Consider A ∼ Triangular(−1, 1), B ∼ Uniform(1, 1.1), α = 1 (constant) and φ(x) = esin(Ex2) , where E ∼
Uniform(−1, 0). By Proposition 1.2, there is a unique solution u(x, t), given by (2)–(4). The random quantities are assumed 
to be independent. Let (x∗, t∗) = (0.25, 0.05). In Fig. 3, we depict the approximations (9) for M = 17, 21, 25, 29. We also 
plot a kernel density estimate, using Silverman’s rule to determine the bandwidth and Gaussian kernel. We observe that 
the shape of the density f A influences the densities of the discretizations a lot. There are three peaked points which are 
captured by our algorithm. In contrast, the kernel density estimate smooths out the approximation by drawing tails and is 
not capable of capturing the density features. Obviously, other choices of kernel and bandwidth would give different and 
maybe more suitable approximations, but a priori we do not have information about the pointwise properties of the target 
density.
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Fig. 3. Example 4.3: plot of fuM
nM ,iM

(u) given by (9) for M = 17,21,25,29.

5. Conclusions

In this paper, we have proposed a computational method to quantify the uncertainty of the random heat partial differ-
ential equation on a bounded domain via the approximation of its probability density function. The method is based on 
constructing a sequence of approximating density functions via a finite difference scheme. The numerical examples show 
that the convergence is achieved quickly, albeit with non-monotone decreasing error. Our approach improves the published 
contributions on heat transfer stochastic modelling, in which the approximation of the expectation and the variance was 
the main goal. Moreover, our method could be applied to other relevant random differential equations, in which the com-
putation of the probability density function is a major goal. In general, the idea is always similar: use a discretization 
numerical scheme (Euler, Runge-Kutta, etc.) and determine the density function of the discretized solution, which is em-
ployed as an approximation to the true density function. In order to derive the density of the discretized solution, it seems 
that the governing differential equation must be linear, to express the recursive equations of the finite difference scheme in 
closed-form.
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