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Abstract: Due to the escalating network throughput and security risks, the exploration of intrusion
detection systems (IDSs) has garnered significant attention within the computer science field. The
majority of modern IDSs are constructed using deep learning techniques. Nevertheless, these IDSs
still have shortcomings where most datasets used for IDS lies in their high imbalance, where the
volume of samples representing normal traffic significantly outweighs those representing attack
traffic. This imbalance issue restricts the performance of deep learning classifiers for minority classes,
as it can bias the classifier in favor of the majority class. To address this challenge, many solutions
are proposed in the literature. TDCGAN is an innovative Generative Adversarial Network (GAN)
based on a model-driven approach used to address imbalanced data in the IDS dataset. This paper
investigates the performance of TDCGAN by employing it to balance data across four benchmark IDS
datasets which are CIC-IDS2017, CSE-CIC-IDS2018, KDD-cup 99, and BOT-IOT. Next, four machine
learning methods are employed to classify the data, both on the imbalanced dataset and on the
balanced dataset. A comparison is then conducted between the results obtained from each to identify
the impact of having an imbalanced dataset on classification accuracy. The results demonstrated a
notable enhancement in the classification accuracy for each classifier after the implementation of the
TDCGAN model for data balancing.

Keywords: data balancing; deep learning; generative adversarial network; intrusion detection
systems; security; TDCGAN

1. Introduction

The rapid advancement of information technologies, such as smart devices, the Inter-
net of Things (IoT), cloud computing, and big data, has led to an unprecedented surge in
the number of devices connected to the Internet. Consequently, networks are expanding,
becoming larger and more complex. However, this expansion also amplifies the risk of
cyberattacks, as the sheer scale of networks makes them increasingly challenging to monitor
effectively. Developing effective Network Intrusion Detection Systems (IDS) is essential for
detecting cyberattacks. This requires the efficient and swift analysis of network traffic flow
data, referred to as cybersecurity data [1].

The challenge with much of the network traffic flow data or cybersecurity data lies
in its inherent imbalance. Usually, there is a substantial surplus of normal traffic data
compared to instances of attacks. This remains consistent even with well-established
benchmark datasets. Dealing with imbalanced data presents a significant hurdle for both
machine learning and deep learning algorithms as many of these datasets require multi-
class classification, which further complicates the task [2,3].
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Machine learning methods rely on historical data for training, and they can be signifi-
cantly impacted by imbalanced data proportions. In cases where training data are extremely
imbalanced, with one class greatly outnumbering the others, the majority data (the class
or classes with larger proportions) will exert a stronger influence on the machine learning
model compared to minority data (the class or classes with lesser proportions). Conse-
quently, the machine learning model tends to perform well in recognizing majority data,
but may struggle in accurately identifying minority data under such circumstances [4–6].

To address the challenge of imbalanced datasets, oversampling techniques are com-
monly utilized. Conventional techniques utilize interpolation to generate samples near
existing data points. Examples include the Synthetic Minority Oversampling Technique
(SMOTE) and the Adaptive Synthetic Sampling Approach (ADASYN) [7]. However, a re-
cent development known as the generative adversarial network (GAN) presents a novel
approach to sample generation. GANs, short for Generative Adversarial Networks, are
deep neural network models consisting of a generator and a discriminator. The generator
is responsible for producing realistic data, while the discriminator’s task is to distinguish
between generated data and real ones. GAN allows the generator to efficiently learn
data characteristics by participating in a competitive interaction with the discriminator,
mimicking data distributions. GANs have made substantial advancements in producing
diverse types of data, such as images, audio, and text [8–10]. Consequently, researchers
across different fields are increasingly integrating this technique into their research efforts.
As a result of the success and widespread adoption of adversarial networks, numerous
modifications to the original model have been proposed in the data balancing domain.

The Triple Discriminator Conditional Generative Adversarial Network (TDCGAN)
is an enhanced version of GANs, an unsupervised deep learning method. It consists
of a single generator and three discriminators, with an additional layer incorporated at
the end for decision making or selection [11]. In TDCGAN, the generator functions by
using random noise from a latent space as input to create synthetic data that closely
mimics real data, with the goal of fooling the discriminators. Each discriminator is a
distinct deep neural network with its own architecture and parameter configurations. Their
primary role is to extract features from the generator’s output and classify the data with
varying degrees of accuracy, which varies across the discriminators. In the TDCGAN
architecture, a new component called the election layer is added at the end. This layer
aggregates the outputs from the three discriminators and applies an election process to
select the optimal result, choosing the one with the highest classification accuracy. This
method is similar to an ensemble approach, where combining multiple inputs leads to a
more accurate outcome.. The ensemble method in TDCGAN combines different neural
network architectures and tuning strategies to achieve a superior result. Specifically,
TDCGAN integrates multiple network architectures with distinct roles (e.g., generator
and discriminator), each contributing to different aspects of the learning process. This
integration is akin to an ensemble approach where multiple models are combined to
improve overall performance.

TDCGAN tackles the challenge of high-class imbalance through an analysis of the
UGR’16 dataset.

To assess the effectiveness of the proposed GAN model, TDCGAN, across various
datasets, this paper introduces an evaluation framework. This framework involves apply-
ing the TDCGAN model to different Intrusion Detection System (IDS) datasets for com-
prehensive performance evaluation. These datasets are CIC-IDS2017, CSE-CIC-IDS2018,
KDD-cup 99, and BOT-IOT datasets. Following that, four machine learning techniques
were employed to conduct a comparative analysis of intrusion detection classification
tasks on the four datasets. The methods are: Decision Tree, Random Forest, Multi-Layer
Perceptron (MLP), and Naive Bayes. This analysis was performed both before and after
applying data balancing techniques.

The results showed a substantial improvement in machine learning performance after
data balancing, which highlights the importance of addressing class imbalance in machine
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learning models, even when the initial performance appears satisfactory. By balancing the
dataset, the machine learning model’s ability to generalize and accurately classify instances
from both classes improved significantly. This is crucial in scenarios where correctly
identifying instances from the minority class is equally important as the majority class.

The key contributions of this paper are outlined as follows:

1. Utilize the TDCGAN model to address a data imbalance in four benchmark datasets
for an intrusion detection system.

2. Employ different machine learning techniques to test intrusion detection classification
across four benchmark datasets before and after data balancing.

3. Perform a comparative analysis of the models utilized.

The remainder of this paper is organized as follows. Section 2 gives an overview about
IDS datasets, machine learning methods, and TDCGAN. Section 3 presents the experiment
design and setup. The results are given in Section 4. Finally, Section 5 gives the conclusions.

2. Materials and Methods
2.1. Datasets

In this study, we utilize four distinct datasets to assess and compare the efficacy of
the TDCGAN model against other chosen models in the context of data balancing and
intrusion detection tasks. The datasets are CIC-IDS2017, CSE-CIC-IDS2018, KDD-cup 99,
and BOT-IOT.

CIC-IDS2017 dataset
The CIC-IDS2017 dataset is a well-known resource in cybersecurity, commonly used

for assessing the performance of intrusion detection systems. It contains network traffic
data gathered from a variety of scenarios, including both normal traffic and several attack
types, such as denial-of-service (DoS), distributed denial-of-service (DDoS), brute-force
attacks, and botnet attacks. The dataset provides a realistic representation of network
traffic in both benign and malicious environments, making it valuable for training and
testing intrusion detection models. Researchers often use the CIC-IDS2017 dataset to
benchmark the performance of their intrusion detection algorithms due to its diversity and
comprehensiveness [12].

CSE-CIC-IDS2018 dataset
The CSE-CIC-IDS2018 dataset offers labeled network traffic flows, providing detailed

information such as timestamps, source and destination IP addresses, ports, protocols,
and attack types. This facilitates in-depth analysis and model training. The dataset includes
seven distinct attack scenarios: Brute-force, Heartbleed, Botnet, DoS, DDoS, Web attacks,
and internal network infiltration [12].

KDD-cup 99 dataset
KDD-Cup 99 was developed for the KDD Cup 1999 competition, which focused

on creating effective techniques for detecting unauthorized network access. The dataset
features a substantial amount of network traffic data gathered from a simulated military
network environment. It encompasses a range of network attacks, including DoS attacks,
probing attacks, and user-to-root attacks, alongside normal traffic [13].

BOT-IOT dataset
The BOT-IoT dataset is a comprehensive dataset designed specifically for research in

the domain of Internet of Things (IoT) security. It comprises network traffic data collected
from a realistic IoT environment, including various types of IoT devices such as IP cameras,
smart thermostats, and wearable fitness trackers. The dataset covers both benign traffic
and malicious activities, including botnet attacks targeting IoT devices [14].

2.2. Machine Learning Methods

We opted for four methods in this study based on their demonstrated effectiveness,
as highlighted by several researchers [15–18]. To assess their performance in data balancing
and intrusion detection tasks, we compared them with our proposed model, TDCGAN,
as introduced in [11]. Here is a brief overview of each model.
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Decision Tree
Decision trees are a widely used supervised learning technique for both classification

and regression tasks. They work by recursively dividing the feature space into distinct
regions based on input feature values. Each node in the tree represents a decision criterion
based on a particular feature, while the branches illustrate the potential outcomes of these
decisions [19,20].

Random Forest
Random Forest is an ensemble learning technique that constructs multiple decision

trees during training and merges their predictions using voting or averaging. Each tree is
trained on a random subset of the training data and a random subset of features, which
helps mitigate overfitting and enhances the model’s generalization performance [21,22].

Multi-Layer Perception (MLP)
MLP is a type of feedforward artificial neural network that consists of multiple layers

of nodes, including an input layer, one or more hidden layers, and an output layer. Each
node in the network is connected to every node in the adjacent layers, and each connection
has an associated weight. MLPs are trained using backpropagation and gradient descent to
learn the optimal weights that minimize a specified loss function [23,24].

Naive Bayes
Naive Bayes is a probabilistic classifier that relies on Bayes’ theorem and assumes that

features are independent of each other, which is the “naive” part of the method. Despite
this simplification, Naive Bayes often performs effectively, particularly in text classification
tasks. It computes the probability of each class based on the input features and predicts the
class with the highest probability [25,26].

TDCGAN
TDCGAN, i.e., triple discriminator conditional generative adversarial network, was ini-

tially introduced by [11], and subsequently applied for the data balancing and intrusion
detection tasks. This model effectively balanced the UGR’16 dataset [27] and detected
intrusions with an accuracy of 95%. The TDCGAN framework incorporates one generator
and three discriminators, along with an additional selection layer at the end. The generator
processes random noise from a latent space to create synthetic data that closely resembles
real data, with the goal of evading detection by the discriminators. Each discriminator
is a deep neural network with distinct architecture and parameter settings, tasked with
extracting features from the generator’s output and classifying the data with varying levels
of accuracy. At the end of the TDCGAN architecture, a novel component known as the
election layer is introduced. This layer aggregates the outputs from the three discriminators
and uses an election process to determine the optimal result, selecting the outcome with
the highest classification accuracy.

As proposed in [11], the generator utilizes points from the latent space to generate data
that matches the distribution of real data in the dataset. This process involves employing
fully connected layers comprising of an input layer, four hidden layers, and an output layer.
The generator produces the data, ŷ, by applying the function f (x, w) to the dataset features,
where w represents the optimized weights of the neural network. The output zL

j of the jth
neuron in the Lth layer is calculated as:

zL
j = σ

(
∑

i
wL

ji xi + bL
j

)
(1)

where the notation wL
ji represents the weight of connection between the computing neuron

and its ith input in the preceding layer and bL
j is a bias parameter. The symbol σ(.) is the

activation function in the hidden layer.
On the other hand, the discriminators aim to classify the data into their respective

classes, utilizing a fully connected MLP network. The generator model is trained to
generate new data resembling the minor class in each dataset, while the discriminators
work to differentiate between real data from the dataset and the synthesized data created
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by the generator. The loss is subsequently calculated by comparing the real data with
the generated data, and this loss is utilized exclusively to update the generator’s weights,
ensuring that only the generator’s parameters are adjusted. The discrepancy between the
real and generated data are measured using the cross-entropy loss function, as expressed
in the following equation:

[LOSS]CE = −1/N
N

∑
n=1

yi · log(p(yi)) + (1 − yi) · log[(1 − p(yi)] (2)

where yi is the real data, p(yi) is the predicted data calculated by the sigmoid activation
function, and N is the number of observations in the batch.

To ensure transparency and enable a fair comparison, this paper utilizes the same
architecture that was proposed previously in [11]. The model is trained for 1000 epochs
with a batch size of 128. The Adam optimizer is used, with a learning rate of 0.0001.
The TDCGAN model allows the generator to train until it produces synthetic data samples
that closely match the distribution of the original dataset.

These models were selected based on their established performance in similar tasks
and are being compared with our proposed model, TDCGAN, which introduces a novel
architecture specifically designed for data balancing and intrusion detection tasks.

3. Experiments Setup

A simplified workflow for the work is outlined in Figure 1. The flowchart of our study
illustrates the iterative process applied to four different datasets to evaluate the impact of
data augmentation using the TDCGAN model on classification performance.

The process is described below.
Data Iteration: The model undergoes four iterations, each time processing a different

dataset. In each iteration, a sample from the dataset is selected and subjected to a series of
preprocessing steps to ensure data consistency.

Data Preprocessing: This step includes a series of preprocessing operations such as:
Error Elimination and Gap Filling: The selected dataset undergoes preprocessing to

eliminate errors, fill gaps, remove outliers, and discard irrelevant data types. Simple linear
interpolation is employed to fill in any missing values.

Feature Encoding: To prepare the dataset for machine learning algorithms, categorical
features are encoded using one-hot encoding.

Figure 1. Flowchart of the study.
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Scaling: The dataset is scaled using the MinMaxScaler from Scikit-learn, normalizing
the values to the range [0,1].

Feature Selection (PCA): Principal Component Analysis (PCA) is applied to the dataset.
PCA reduces the dimensionality of the data while retaining the most significant features,
thereby enhancing computational efficiency and potentially improving model performance.

Data Splitting: The dataset is split into two parts: 70% of the data are allocated to the
training set, while the remaining 30% is used as the testing set. We divided the dataset
into 70% for training and 30% for testing to ensure the reliability of our model’s evaluation.
This division allows us to train the model on a sufficient portion of the data while reserving
a separate, unseen portion for testing. This approach helps prevent overfitting and ensures
that the model’s performance is assessed on data it has not encountered before, providing
a more accurate measure of its generalization ability. The 70 and 30 split is a standard
practice in machine learning, ensuring a robust and unbiased comparison of different
models or techniques.

TDCGAN Model Application: The TDCGAN model is trained using the training data
of each dataset to generate synthetic samples. These samples are used to improve data
balance within the training set.

Classifier Training and Evaluation: First, the classifier is trained using only the original
training data, without any TDCGAN-generated samples, and its performance is evaluated
on the testing data. Then, the classifier is then trained using the original training data
augmented with TDCGAN-generated samples, and its performance is again evaluated on
the same testing dataset.

Performance Comparison: The performance metrics (accuracy, precision, recall, and F1-
score) from both scenarios—training without and with TDCGAN-generated samples—are
compared. This comparison assesses the impact of TDCGAN-generated data augmentation
on the classification performance for each dataset.

Final Evaluation: The final step involves comparing the evaluation metrics across
all classifiers and datasets. This comparison allows us to identify the best-performing
classifier and evaluate the overall effectiveness of the TDCGAN model in enhancing
classification performance.

The pseudo code for the overall proposed approach is offered in Figure 2.

Figure 2. The pseudo code of the proposed appraoch.
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The selection of the data sample and the data preparation process are described in
Section 3.1. The feature selection for each dataset and the details about the experiment’s
setup are elaborated in the following sections, respectively.

3.1. Data Selection and Preparation

In this paper, the authors conducted various experiments using four distinct datasets.
Prior to initiating each experiment, the initial step involves selecting a sample from each
dataset. As deep learning algorithms demand significant hardware resources, such as
CPU, memory, and GPU, for data processing and training. To handle this, a subset of data
points encompassing all categories of normal and anomalous traffic from each dataset was
meticulously selected.

To maintain uniform distribution of instances (both attacks and non-attacks) within
the dataset samples, the authors repeat this selection process ten times for each dataset.
The subset selection process, inclusive of all attack types, was executed with specific
measures to counter imbalanced distributions and biases. The following measures were
implemented:

• Stratified sampling: The subset selection utilized stratified sampling techniques to
preserve a proportional representation of each attack type, ensuring a balanced distri-
bution of attacks within the subset.

• Class balancing: Additional measures were implemented to balance the representation
of different attack types in the subset. These actions might include oversampling the
minority classes or undersampling the majority classes to address issues related to
imbalanced distributions.

• Randomization: Randomization techniques were used during the subset selection
process to reduce potential biases. This approach ensured that the selection was not
influenced by any specific order or predetermined biases.

After each selection iteration, the authors plot the data distributions for each sample
and compare them to ensure equality. This step guarantees that the random selection
encompasses all potential observations present in the dataset.

Following the data selection, each sample undergoes a series of preprocessing steps to
ensure consistency, eliminating errors, gap filling, outliers’ removal, and irrelevant data
types. We utilized simple linear interpolation to fill in any gaps present in the dataset.

To facilitate processing by machine learning algorithms, certain features in the dataset
require encoding. One-hot encoding is employed for this purpose. Subsequently, the dataset
undergoes scaling using the MinMaxScaler from the Scikit-learn library, which scales the
values to the interval [0,1].

3.2. Feature Selection

In our feature selection process, Principal Component Analysis (PCA) plays a crucial
role. PCA helps identify and retain the most important features by transforming the original
variables into a new set of uncorrelated variables, called principal components. By reducing
the dimensionality of the data while preserving as much variance as possible, PCA enables
us to streamline the computational load and enhance model performance [28]. Through
PCA, we extract the key patterns and structures inherent in the data, empowering our
subsequent analysis and modeling efforts with a focused and optimized feature set. Table 1
illustrates the top numerical features of each dataset based on their PCA values.
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Table 1. Selected features for each dataset based on the PCA method.

Dataset Original Features Selected Features

CIC-IDS2017

Benign 2,273,097 Benign 2,273,097
DOS Hulk 231,073 DOS Hulk 231,073
PortScan 158,930 PortScan 158,930
DDoS 128,027 DDoS 128,027
DOS GoldenEye 10,293 DOS GoldenEye 10,293
FTP-Patator 7938 FTP-Patator 7938
SSH-Patator 5879 SSH-Patator 5879
DoS- slowloris 5796 DoS- slowloris 5796
DoS slowhttptest 5499 DoS slowhttptest 5499
Bot 1966 Bot 1966
Web Attack Brute Force 1507 Other Attack 2227
Web Attack XSS 652
Infiltration 367
Web Attack Sql Injection 21
Heartbleed 11

CSE-CIC-IDS2018

Benign 1,222,612 Benign 1,222,612
DDOS attack-HOIC 137,157 DDOS attack-HOIC 137,157
DOS attack-Hulk 92,325 DOS attack-Hulk 92,325
Bot 57,067 Bot 57,067
FTP-Burteforce 38,881 FTP-Burteforce 38,881
SSH-Burteforce 37,403 SSH-Burteforce 37,403
Infilteration 32,470 Infilteration 32,470
DOS attacks-SlowHTTPTest 27,902 DOS attacks-SlowHTTPTest 27,902
DOS attacks-GoldenEye 8284 DOS attacks-GoldenEye 8284
DDOS attack-LOIC-UDP 343 DOS attacks-Slowloris 2216
Burte Force-Web 113 Other Attacks 533
Burte Force-XSS 49
SQL Injection 16
Label 12

KDD-cup 99

Smrf 2,807,886 Smrf 2,807,886
Neptune 1,072,017 Neptune 1,072,017
Normal 972,780 Normal 972,780
Satan 15,892 Satan 15,892
Ipsweep 12,481 Ipsweep 12,481
Portsweep 10,413 Portsweep 10,413
Nmap 2316 Nmap 2316
back 2203 back 2203
Warezclient 1020 Other attack 1422
Teardrop 979 warezclient 1020
Pod 264
Guess_passwd 53
Buffer_overflow 30
Land 21
Warezmaster 20
imap 12
Rootkit 10
Loadmodule 9
ftp_write 8
Multihop 7
Phf 4
Perl 3
spy 2

BOT-IOT

UDP 3,170,060 UPD 3,170,060
TCP 2,549,206 TCP 2,549,206
Service_Scan 117,170 Service_Scan 117,170
OS_Fingerprint 28,479 OS_Fingerprint 28,479
HTTP 3902 HTTP 3902
Normal 707 Normal 707
Keylogging 100 Other Attack 111
Data_Exfiltration 11

To enhance the reliability of our comparison, we divided each sample of dataset into
two parts: the first 70% served as the training set, while the remaining 30% constituted the
testing set.
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3.3. The Experimental Setup

The class distribution for each dataset is described in Table 1. In the experiment,
initially, the TDCGAN model is applied on the training data for each dataset to generate
samples and improve data balancing. The output of this training is then preserved for
the data balancing evaluation issue. With visual Inspection, we examine the generated
samples to ensure they resemble real data and capture important features. To assess the
classification performance of the TDCGAN model, we employed it on the testing data for
each dataset and conducted evaluation metrics.

After that, for the classifier evaluation and comparison, each machine learning method
will be applied twice for each dataset: (1) Training without TDCGAN-generated samples:
Train the classifier using only the original training data, without adding any TDCGAN-
generated samples, then evaluate its performance on the testing data. (2) Training with
TDCGAN-generated samples: Train the classifier using the original training data aug-
mented with TDCGAN-generated samples, then evaluate its performance on the same test-
ing dataset. By comparing the performance metrics (accuracy, precision, recall, and F1-score)
for each classifier, we assess the impact of data augmentation with TDCGAN-generated
samples on the classification performance.

Suppose the result of classifier training with TDCGAN-generated samples outperforms
the results trained without TDCGAN. In that case, it suggests that the TDCGAN-generated
samples have effectively improved the classifier’s ability to generalize to unseen data or
to capture the underlying data distribution better. Conversely, if there is no significant
improvement or if performance deteriorates, it may indicate that the TDCGAN-generated
samples are not beneficial for the task or that they introduce noise or bias.

The final step involves comparing the evaluation metrics of each classifier with the
TDCGAN model for the classification task applied to the testing data of each dataset. This
comparison allows us to evaluate the classification performance of each model and identify
the best-performing one.

3.4. Evaluation Metrics

To assess the effectiveness of each model, we use performance metrics such as classifi-
cation accuracy, precision, recall, and the F1 score.

Accuracy (Acc) serves as our primary metric for evaluating the correct classification of
data samples, taking into account all predictions made by the model, as described by the
following equation:

Acc = (TP + TN)/(TP + TN + FP + FN), (3)

where TP represents true positives, indicating the number of correctly predicted anomalies,
TN represents true negatives, indicating the number of correctly predicted normal instances,
FP represents false positives, indicating the number of normal instances incorrectly classi-
fied as anomalies, and FN represents false negatives, indicating the number of anomalies
misclassified as normal.

Precision is used to measure the accuracy of correct predictions, calculated as the ratio
of correctly predicted samples to the total number of predicted samples for a particular
class, as illustrated by the following equation:

Precision = TP/(TP + FP) (4)

Recall, also known as the true positive rate (TPR), is used to determine the ratio of
correctly predicted samples for a specific class to the total number of instances of that class,
as shown by the following equation:

TPR(Recall) = TP/(TP + FN) (5)
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Finally, the F1 score calculates the balance between precision and recall, evaluating
the trade-off between these two metrics, as given by the following equation:

F1 = 2 ∗ ((Precision ∗ Recall)/(Precision + Recall)) (6)

4. Results and Discussion
4.1. Experimental Results

To asses data balancing for each dataset after using TDCGAN model, we compared
the class distribution before and after data balancing; the results are shown in Table 2.

Table 2. The class distribution before and after data balancing using the TDCGAN model.

Dataset Class Distribution before Data Balancing Class Distribution after Data Balancing

CIC-
IDS2017

CSE-CIC-
IDS2018

KDD-cup
99

BOT-IOT

After that, TDCGAN is utilized on the testing data for each dataset to evaluate its
performance in classification tasks. This crucial step allows us to assess how effectively
the model can categorize data instances following the balancing process. After applying
the TDCGAN model, we perform thorough evaluations to assess its accuracy, precision,
recall, and F1-score metrics. These results provide valuable insights into the effectiveness
of the model in handling the testing data, offering a clear understanding of its classification
capabilities in real-world scenarios. The results are presented in Table 3.
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Table 3. The performance metrics for the TDCGAN model on testing data after data balancing.

Dataset Accuracy Precision Recall F1-Score

CIC-IDS2017 0.96 0.97 0.99 0.98

CSE-CIC-IDS2018 0.95 0.95 0.97 0.98

KDD-cup 99 0.95 0.96 0.95 0.96

BOT-IOT 0.96 0.95 0.95 0.96

To scrutinize the efficacy of data balancing techniques applied to TDCGAN across four
distinct datasets, our experimental methodology involves conducting thorough assessments
on both the training data prior to and following the data balancing process for each machine
learning classifier. By doing so, we can elucidate the impact of data balancing on the
classifiers’ performance. Additionally, we employ the testing data to directly compare
the performance of each classifier before and after the data balancing procedure. This
comprehensive approach enables us to gauge the effectiveness of TDCGAN in improving
classification accuracy and the robustness of various classifiers across diverse datasets.
The results are presented in the Tables 4–11 below.

Table 4. The performance metrics for decision tree before data balancing.

Dataset Accuracy Precision Recall F1-Score

CIC-IDS2017 0.70 0.92 0.86 0.89

CSE-CIC-IDS2018 0.69 0.89 0.82 0.86

KDD-cup 99 0.75 0.85 0.63 0.73

BOT-IOT 0.72 0.83 0.79 0.80

Table 5. The performance metrics for decision tree after data balancing.

Dataset Accuracy Precision Recall F1-Score

CIC-IDS2017 0.85 0.92 0.90 0.90

CSE-CIC-IDS2018 0.77 0.91 0.89 0.86

KDD-cup 99 0.88 0.89 0.78 0.82

BOT-IOT 0.88 0.92 0.91 0.90

Table 6. The performance metrics for random forest before data balancing.

Dataset Accuracy Precision Recall F1-Score

CIC-IDS2017 0.68 0.83 0.77 0.72

CSE-CIC-IDS2018 0.61 0.79 0.78 0.80

KDD-cup 99 0.70 0.82 0.75 0.82

BOT-IOT 0.81 0.87 0.88 0.90
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Table 7. The performance metrics for random forest after data balancing.

Dataset Accuracy Precision Recall F1-Score

CIC-IDS2017 0.78 0.80 0.83 0.79

CSE-CIC-IDS2018 0.82 0.84 0.86 0.87

KDD-cup 99 0.88 0.90 0.89 0.89

BOT-IOT 0.90 0.89 0.91 0.91

Table 8. The performance metrics for MLP before data balancing.

Dataset Accuracy Precision Recall F1-Score

CIC-IDS2017 0.82 0.84 0.85 0.87

CSE-CIC-IDS2018 0.84 0.88 0.82 0.84

KDD-cup 99 0.83 0.82 0.84 0.82

BOT-IOT 0.85 0.83 0.81 0.82

Table 9. The performance metrics for MLP after data balancing.

Dataset Accuracy Precision Recall F1-Score

CIC-IDS2017 0.92 0.90 0.93 0.91

CSE-CIC-IDS2018 0.93 0.92 0.94 0.91

KDD-cup 99 0.92 0.91 0.92 0.92

BOT-IOT 0.92 0.93 0.94 0.94

Table 10. The performance metrics for Naive Bayes before data balancing.

Dataset Accuracy Precision Recall F1-Score

CIC-IDS2017 0.60 0.71 0.72 0.69

CSE-CIC-IDS2018 0.65 0.67 0.70 0.68

KDD-cup 99 0.70 0.75 0.80 0.82

BOT-IOT 0.72 0.74 0.78 0.77

Table 11. The performance metrics for Naive Bayes after data balancing.

Dataset Accuracy Precision Recall F1-Score

CIC-IDS2017 0.80 0.85 0.82 0.81

CSE-CIC-IDS2018 0.73 0.81 0.73 0.76

KDD-cup 99 0.85 0.87 0.85 0.87

BOT-IOT 0.80 0.82 0.81 0.83

To assess the performance of the TDCGAN model relative to other machine learning
models in terms of classification accuracy across four datasets, a comparative analysis of
these models is conducted. The results are shown in the Figures 3–6.
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Figure 3. CIC-IDS2017.

Figure 4. CSE-CIC-IDS2018.

Figure 5. KDD-cup 99.
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Figure 6. BOT-IOT.

4.2. Discussion

Before data balancing, the decision tree model yielded respectable performance across
the datasets, with accuracies ranging from 0.69 to 0.75. However, there were noticeable
disparities in performance metrics such as recall and F1-score, particularly for the KDD-cup
99 dataset, where the recall was relatively low at 0.63, indicating that the model struggled
to correctly identify instances of the positive class.

After data balancing, there is a clear improvement in the performance of the decision
tree model across all datasets. The accuracy has generally increased, with significant
enhancements in metrics like precision, recall, and F1-score. For instance, in the CIC-
IDS2017 dataset, the recall increased from 0.86 to 0.90, indicating that the model became
more adept at correctly identifying instances of the positive class. Similar improvements
are observed in other datasets as well.

The random forest model exhibited varying degrees of performance across the datasets.
While it achieved relatively high accuracies, there were notable differences in precision,
recall, and F1-score among the datasets. For instance, in the CSE-CIC-IDS2018 dataset,
the precision was 0.79, indicating that the model correctly identified only 79% of the positive
class instances, which might not be desirable depending on the application.

After data balancing, there is a substantial improvement in the performance of the
random forest model across all datasets. The accuracy has notably increased, and there are
significant enhancements in precision, recall, and F1-score as well. For example, in the CIC-
IDS2017 dataset, the recall increased from 0.78 to 0.83, indicating a significant improvement
in correctly identifying instances of the positive class.

The multilayer perceptron (MLP) model demonstrated strong performance across
all datasets, with accuracies ranging from 0.82 to 0.85. Additionally, the model exhibited
a good precision, recall, and F1-score values, indicating its ability to accurately classify
instances from both classes. For instance, in the CIC-IDS2017 dataset, the model achieved a
precision of 0.84, suggesting that 84% of the instances classified as positive were indeed true
positives. Likewise, the recall and F1-score values were also high, demonstrating a strong
balance between accurately identifying positive instances and reducing false negatives.

Even with its already strong performance, data balancing further improved the MLP
model’s effectiveness. Following data balancing, there was a noticeable enhancement
in accuracy, precision, recall, and F1-score across all datasets. For instance, in the CIC-
IDS2017 dataset, accuracy rose from 0.82 to 0.92, reflecting a significant boost in the model’s
capability to correctly classify instances from both classes. Likewise, precision, recall,
and F1-score also saw improvements, indicating a more balanced and accurate classification,
particularly for the minority class.

Lastly, before data balancing, the Naive Bayes model exhibited moderate performance
across all datasets, with accuracies ranging from 0.60 to 0.72. While the model achieved
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relatively high recall values, indicating its ability to correctly identify instances of the
positive class, precision and F1-score values were comparatively lower, suggesting a higher
rate of false positives and a suboptimal balance between precision and recall.

After data balancing, there is a noticeable improvement in the performance of the
Naive Bayes model across all datasets. The accuracy has generally increased, and there
are significant enhancements in precision, recall, and F1-score as well. For example, in the
CIC-IDS2017 dataset, the accuracy increased from 0.60 to 0.80, indicating a substantial
improvement in the model’s overall classification performance. Moreover, precision, recall,
and F1-score also improved, suggesting a more balanced and accurate classification across
both classes.

The significant improvements in the performance of all machine learning mod-
els—decision tree, random forest, multilayer perceptron (MLP), and Naive Bayes—after
data balancing strongly indicate that the use of the TDCGAN model for data balancing
has substantially contributed to enhancing classification accuracy, as well as metrics
like precision, recall, and F1-score. The TDCGAN model effectively tackles class im-
balance by generating synthetic instances of the minority class while maintaining the
underlying data distribution. This augmentation of the dataset ensures a more balanced
representation of both classes, thereby enabling the machine learning models to learn
more effectively from the data and make fairer and more accurate predictions. The con-
sistent improvements across all models and datasets further highlight the efficacy of
the TDCGAN approach in mitigating class imbalance issues and enhancing the overall
performance of the machine learning classifiers.

When comparing the classification performance of each model across the four datasets,
the results indicate overall improvement in performance for all models, with slightly
superior results observed for the TDCGAN model. Conversely, the Naive Bayes model
exhibited comparatively lower performance, particularly evident in the BOT-IOT dataset.
The Naive Bayes model assumes conditional independence among features. However,
the BOT-IOT dataset likely contains complex correlations between features that violate this
assumption, leading to suboptimal performance of the Naive Bayes model. Specifically,
in network intrusion detection tasks, certain features such as packet size, protocol type,
and connection duration are often interdependent, and these correlations are critical for
accurately distinguishing between normal and malicious traffic. The limitations of the
Naive Bayes model in capturing these correlations may explain its lower performance
on the BOT-IOT dataset. Furthermore, while TDCGAN is designed to handle high-class
imbalance and generate synthetic samples, its effectiveness in preserving complex feature
correlations during generation could also influence the overall performance when used in
conjunction with models like Naive Bayes.

5. Conclusions

To demonstrate the impact of data balancing on enhancing classification accuracy
and improving machine learning performance, this research conducted a comparative
analysis of four machine learning models: Decision Tree, Random Forest, Multi-Layer
Perceptron (MLP), and Naive Bayes, across various datasets. The primary objective of the
study was to assess the efficacy of integrating the TDCGAN model for data balancing task.
Utilizing diverse benchmark IDS datasets, the study implemented the TDCGAN model
to address class imbalance. Subsequently, the machine learning models were utilized to
classify the data both before and after applying data balancing techniques, aiming to assess
the resulting effects on classification performance.

Before data balancing, the performance of various machine learning models, including
decision tree, random forest, multilayer perceptron (MLP), and Naive Bayes, exhibited
inconsistencies across datasets. Notably, metrics such as recall and F1-score displayed
discrepancies, indicating challenges in accurately identifying positive class instances. How-
ever, after employing the TDCGAN model for data balancing, substantial improvements
were observed across all models and datasets. The augmentation of the dataset with
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synthetic instances generated by TDCGAN led to notable enhancements in accuracy, pre-
cision, recall, and F1-score. For instance, in the CIC-IDS2017 dataset, recall surged from
0.86 to 0.90 for the decision tree model, showcasing a significant improvement in positive
class identification. Similar enhancements were observed across other models, highlight-
ing the effectiveness of TDCGAN in mitigating class imbalance and enhancing overall
classification performance.

The consistent improvements seen in the performance of machine learning models
post-data balancing strongly indicate the efficacy of the TDCGAN approach. By generating
synthetic instances of the minority class while preserving the underlying data distribution,
TDCGAN effectively addressed class imbalance issues present in the datasets. This facili-
tated a more balanced representation of both classes, enabling the models to learn more
effectively and make fairer and more accurate predictions. The substantial enhancements
across metrics such as precision, recall, and F1-score underscore the significant role played
by TDCGAN in refining the classification capabilities of the machine learning models. Thus,
the study highlights the importance of employing advanced data balancing techniques
like TDCGAN to improve the performance of machine learning models in scenarios with
imbalanced datasets.

In summary, while the integration of TDCGAN has demonstrated significant improve-
ments in addressing class imbalance and enhancing classification performance, it also
introduces certain challenges. The addition of TDCGAN increases the complexity of the
model development process, requiring careful tuning of additional hyperparameters, which
demands extensive experimentation and expertise. Furthermore, the implementation of
TDCGAN adds computational overhead, increasing the time and resources needed for
generating synthetic instances and integrating them into the training data. These factors
highlight the need for a balanced approach, where the benefits of using TDCGAN are
carefully weighed against the added complexity and resource requirements
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