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Abstract: During pregnancy, controlling nutrition is crucial for the health of both mother and
foetus. While polyphenols have positive health effects, some studies show harmful outcomes during
pregnancy. This study evaluated polyphenol intake in a cohort of mother–child pairs and examined
its effects on foetal anthropometric parameters. Polyphenol intake was assessed using food frequency
questionnaires (FFQs) and 24-h dietary recalls, and analysed with the Phenol-Explorer database.
Gestational age and birth measurements were retrieved from medical records. Statistical analyses
validated dietary records and assessed polyphenol impact using multivariate generalised linear
models. The study found that mean gestational age was 39.6 weeks, with a mean birth weight of
3.33 kg. Mean total polyphenol intake by FFQ was 2231 mg/day, slightly higher than 24-h recall
data. Flavonoids and phenolic acids constituted 52% and 37% of intake, respectively, with fruits and
legumes as primary sources. This study highlights the use of FFQs to estimate polyphenol intake.
Furthermore, the study found associations between polyphenol consumption and anthropometric
parameters at birth, with the effects varying depending on the type of polyphenol. However, a more
precise evaluation of individual polyphenol intake is necessary to determine whether the effects they
produce during pregnancy may be harmful or beneficial for foetal growth.

Keywords: foetal anthropometry; polyphenols; pregnant women; 24-h dietary recalls; food frequency
questionnaire

1. Introduction

Balanced maternal nutrition during pregnancy is a pivotal area of study, as it exerts
a significant influence on foetal growth and the overall well-being of both mother and
offspring [1,2]. Numerous epidemiological studies suggest that diets rich in plant-based
foods have long-term beneficial effects on both the foetus and maternal health [3,4]. Among
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the compounds contributing to these effects are polyphenols, with over 8000 molecules
so far [5]. These compounds are secondary metabolites derived from plants and play a
crucial role in their survival and adaptation. Phenolic compounds can be classified into
five broad categories: flavonoids, phenolic acids, lignans, stilbenes and other polyphe-
nols [6–8]. The primary dietary sources of polyphenols include vegetables, fruits, cereals,
nuts, legumes, chocolate and similar foods [9,10]. Due to their beneficial effects on health,
dietary polyphenols have received considerable attention. They are primarily recognised
for their antioxidant activity, which is associated with other beneficial properties such
as modulation of inflammatory responses, anti-obesogenic activity and reduction of the
risk of cardiovascular disease [3,10–14]. Additionally, polyphenols have been linked to
neuroprotective functions [15–17] and the inhibition of tumour growth in various types of
cancers, including those affecting the colon, prostate and breast [11–13]. Given their health
benefits, there is considerable public interest in increasing polyphenol intake through diet,
nutraceuticals, fortified foods, beverages and dietary supplements [18].

Although the beneficial effects of polyphenols are well documented, concerns have
been raised about the potential health risk of these compounds [9,14,19–23]. At present,
the toxicity of polyphenols remains uncertain, but the availability of polyphenol-rich
foods and supplements is growing. Amid increasing concern, a database named ToxDP2
has been created [21], providing comprehensive data on 415 dietary polyphenols that
may have toxicological effects. In addition, studies suggest that consumption of large
amounts of polyphenols may have pro-oxidant effects. They have also been associated
with hepatotoxicity or an increased risk of certain types of cancer [10,14,19,21,24,25]. One
of the major risks associated with polyphenol consumption is the constriction of the foetal
ductus arteriosus during the third trimester of pregnancy [9,19–21,23,26–35], which may
lead to potentially serious consequences, including perinatal pulmonary hypertension,
heart failure and foetal death [20,28]. Therefore, understanding the relationship between
polyphenol consumption and its effects on maternal and foetal health is essential.

Commonly, methods used to evaluate dietary polyphenol consumption during pregnancy
involve the use of dietary records such as food frequency questionnaires (FFQs) [30,36,37]. In
addition, accurate quantification requires a database containing polyphenol concentrations in
various foods. Phenol-Explorer is one of the most widely used databases for this purpose [8].
Considering the above, this study aimed to evaluate polyphenol consumption in a cohort of
pregnant women from South-eastern Spain and its potential effects on foetal health, focusing
on anthropometric measurements at birth.

2. Materials and Methods
2.1. Patient Selection and Study Design

This prospective, population-based, pregnant-women birth cohort study, known as the
GENEIDA Project, “Genetics, early life environmental exposures and infant development
in Andalusia” (https://www.easp.es/web/geneida/, accessed on 12 August 2024), started
in 2014 in a well-defined geographic area of South-eastern Spain (Almería). Inclusion
criteria for enrolment included pregnant women aged 17 years or older who intended to
give birth at the referral hospital. Additionally, participants were required to have singleton
pregnancies (not resulting from assisted reproductive technology) and no pre-existing
chronic diseases. Furthermore, they could not currently be receiving medical treatment,
and could not have any language barriers.

Women were enrolled in the study at their first antenatal visit at the hospital (around
12–13 weeks of gestation) and were followed throughout pregnancy, delivery and after
birth at different children’s development ages (1, 2, 4 and 7–8 years). A total of 800 women
were recruited, and the final analysis was based on 680 women (85%). Pregnant women
completed the same FFQ on two occasions, initially during the first trimester and subse-
quently during the third trimester. Simultaneously, 24-h dietary recalls were conducted in
a subsample of 40 women for this specific study.

https://www.easp.es/web/geneida/
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This study was approved by the Biomedical Research Ethics Committee of Andalusia,
and all participants provided written and informed consent. The study objectives were
clearly explained and participants had the right to withdraw from the study and request
withdrawal of their data at any time. Throughout the study, we adhered to the ethical
principles of the World Medical Association’s Declaration of Helsinki, as well as the ethical
and legal standards of Spanish legislation.

2.2. Dietary Assessment

A variety of dietary records were administered to study participants. A semi-quantitative
FFQ previously validated for assessing total nutrient intake was used for dietary recording [38].
The FFQ covered 141 items, which were further classified into 28 food subgroups. These items
included specific traditional dishes, spices and foods most frequently consumed in the study
area. Respondents had nine options to choose from, ranging from “never” or “almost never”
to “more than six times a day”. The 24-h dietary recall method was selected as the reference
system to validate the FFQ for the polyphenol intake [30]. This validation was performed in a
subsample of the study population. The data from this subsample were collected from those
participants who volunteered to take part. All foods and beverages consumed in the previous
24-h dietary recalls were compiled over three non-consecutive days, including two weekdays
and one weekend day.

Both dietary records were completed twice during pregnancy: the first covered the
time before the first trimester of pregnancy and the second during the third trimester. To
enhance response rates and data accuracy, trained interviewers assisted participants in
completing the questionnaires, thereby minimising bias.

2.3. Quantitative Estimation of Total Polyphenol Intake

The Phenol-Explorer 3.6 database was used to estimate polyphenol intake. This re-
source provided data on the total polyphenol content of foods using the Folin–Ciocalteu
method. Additionally, we determined the concentrations of individual polyphenol fam-
ilies and subfamilies [8]. The mean total polyphenol intake (MTPI) of each participant
was estimated from the mean of the Folin–Ciocalteu total polyphenol content and the
sum of the concentrations of each polyphenol subfamily. The subfamilies of phenolic
compounds were categorised into several main groups based on Phenol-Explorer criteria:
(a) flavonoids (including anthocyanins, chalcones, dihydrochalcones, dihydroflavonols,
flavanols, flavanones, flavones, flavonols and isoflavonoids); (b) phenolic acids (such as
hydroxybenzoic acids, hydroxycinnamic acids, hydroxyphenylacetic acids and hydrox-
yphenyl propanoic acids); (c) lignans (lignans); (d) stilbenes (stilbenes); and (e) other
polyphenols (alkylmethoxyphenols, alkylphenols, furanocoumarins, hydroxybenzaldehy-
des, hydroxybenzoketones, hydroxycinnamaldehydes, hydroxycoumarins, methoxyphe-
nols, naphtoquinones, tyrosols and other polyphenols). Some subfamilies were transformed
into dichotomous variables due to the large number of participants who did not consume
foods containing these polyphenols. The foods were classified into eleven groups: cereals
and derived products, vegetables, fruits, legumes, nuts, oils, fruit derivatives (e.g., fruit
juices), chocolate and coffee, spices and infusions, alcoholic beverages and processed foods
(such as pizzas, lasagnas, etc.). Processed foods were separated according to their main
ingredients following typical commercial recipes and were adjusted using cooking yield
factors to estimate the total phenols of that food in the diet [6–8]. Any food lacking polyphe-
nols was excluded from the study. For the estimation of polyphenols in 24-h dietary recalls,
a previously developed and validated tool was used [39].

2.4. General Questionnaire, Medical Records and Anthropometric Measurements

Information from participants was collected using a structured questionnaire ad-
ministered by trained staff during their hospital appointment scheduled for the first and
third trimesters of pregnancy. The questionnaire covered sociodemographic characteris-
tics, working life and occupational exposure, exposure at home and living environment,
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obstetric history and prior illnesses. Pregnant women self-reported relevant data such
as pre-pregnancy weight and height during the first trimester of pregnancy. Weight at
32 weeks’ gestation was extracted from medical records. Body mass index (BMI) was
calculated from height and weight using the function (kg/m2). The gestational age of the
pregnancy, defined as the time elapsed between the first day of the last menstrual cycle
and the time of delivery, along with anthropometric measurements, including birth weight,
height and head circumference, was obtained from hospital records in accordance with
relevant guidelines and standardised protocols [40–42]. The ponderal index was calculated
using the following formula: weight (g) × 100/(length, cm)3. Specific z-scores for weight,
length and head circumference at birth were calculated. These adjustments are described
in more detail in previous studies [43].

2.5. Data Analysis

Statistical data were analysed using the SPSS statistical package version 26.0, R soft-
ware version 4.3.2 and Python version 3.7. Bivariate and multivariate generalised linear
models (GLMs) were used to evaluate the impact of polyphenol intake on height z-score,
weight z-score, head circumference (HC) z-score and ponderal index. The mother’s polyphe-
nol intake during the first and third trimesters of pregnancy was used as the independent
variable, and all models were adjusted for energy intake to ensure accurate estimation. The
following confounders and covariates were identified based on previous studies and con-
sidered for adjustment in the multivariate models: energy intake, family’s monthly income,
gestational weight gain, gestational age at the first prenatal visit, infant sex, marital status,
maternal education, maternal stress, mother’s age, physical exercise, pre-pregnancy BMI,
history of repeated abortions, rural/urban residence, supplement intake, type of delivery,
alcohol consumption, ethnicity, parity, season and smoking. Variables were mapped and
their relationships analysed using a directed acyclic diagram (DAG) generated by DAGitty
version 3.0 software (Figure 1).
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Figure 1. Direct acyclic graph (DAG) that displays the potential relationship between the variables
and covariates considered for this study. "Triangle" indicates the exposure variable and "I" is the
outcome. Red circles: confounding variables. Blue circles: covariates (causality associated with
health outcomes). Light grey circle: variable not available in our study. Dark grey circle: descendant
variable. Green arrows: causal path. Pink arrows: biasing path.

With this information, and using a stepwise method of variable selection, the following
confounding factors were finally selected for inclusion in multivariate models: height z-
score (smoking, alcohol intake and repeated abortions); weight z-score (smoking, repeated
abortions, maternal education and parity); head circumference z-score (smoking, mother’s
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age, maternal physical exercise, supplement intake, education and parity), and ponderal
index (smoking, mother’s age, maternal education and parity).

Means and standard deviations (SD) for all polyphenol intakes were obtained for
the 24-h dietary recalls and the two FFQs. Previously, the validity and reproducibility of
the polyphenol intake FFQ were assessed using statistical approaches, in line with the
methodology previously used for nutrients [38]. Briefly, the methodologies commonly
used for validation of nutritional parameters include the correlation coefficient, quintile
ranking and limits of agreement (LOA). In particular, Spearman’s correlation coefficient
was determined for MTPI according to the distribution in the different food groups. In
quintile ranking, polyphenol intake was divided into quintiles and the percentage of data
correctly classified in the same or adjacent quintiles was calculated. The LOA technique,
or Bland–Altman method, is a graphical technique where the limits of agreement are
established as ±1.96 SD of the mean difference between the polyphenol intakes obtained
from two questionnaires. In this technique, the percentage of data falling within these
graphical limits was counted. The significance level was set at p < 0.05.

3. Results
3.1. Characteristics of the Study Population

The characteristics of 680 pregnant women and their newborns from the GENEIDA
cohort are shown in Table 1.

Table 1. Demographic characteristic of the study population (n = 680).

Characteristics No. (%), Mean ± SD

Maternal characteristics

Maternal age 31.05 ± 4.86
Education:

Primary education 335 (49.3%)
Secondary education 162 (23.8%)
Higher education 183 (26.9%)

Parity:
0 (primiparous) 262 (38.5%)
≥1 (multiparous) 418 (61.5%)

Repeat abortions:
Yes 54 (7.9%)
No 626 (92.1%)

Smoking:
Never 569 (83.6%)
Only 1st trimester 29 (4.3%)
During all pregnancy 82 (12.1%)

Alcohol consumption:
Never 133 (19.5%)
Only 1st trimester 282 (41.5%)
During all pregnancy 265 (39.0%)

Vitamin supplement intake:
Never 538 (79.1%)
Sometime during pregnancy 129 (19.0%)
During all pregnancy 12 (1.8%)

Physical exercise:
Never 14 (2.1%)
Sometime during pregnancy 138 (20.3%)
During all pregnancy 528 (77.6%)

Energy intake (Kcal):
1st trimester 2404 ± 739
3rd trimester 2054 ± 670

Pre-pregnancy BMI (kg/m2) 24.23 ± 4.68
Gestational weight gain (kg) 11.23 ± 5.42
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Table 1. Cont.

Characteristics No. (%), Mean ± SD

Infant characteristics

Infant sex:
Male 349 (51.3%)
Female 331 (48.7%)

Length of gestation (weeks) 39.87 ± 1.25
Ponderal index 2.55 ± 0.25
Birth weight (g) 3329.30 ± 427.05
Birth length (cm) 50.70 ± 2.09
Head circumference (cm) 33.75 ± 1.52

The mean maternal age was 31 years with a standard deviation of 4.8 years old. The
mean height of the participants was 1.64 m and pre-pregnancy weight 64.7 kg. The pre-
pregnancy BMI was 24.2 ± 4.5 kg/m2. The mean gestational age was 39 weeks with a
standard deviation of 1.3 weeks and 48.7% of the newborns were girls. Regarding the
anthropometric characteristics of the newborns, the mean birth weight was 3.33 kg, the
mean birth length 50.7 cm, the head circumference 33.8 cm and the ponderal index 2.55.

3.2. Validity and Reproducibility of FFQ

The validation study used dietary information provided by 40 out of the 680 pregnant
women participating in the study. These women completed all the FFQ and 24-h dietary
recalls. The correlation coefficients for MTPI according to distribution in the different
food groups ranged from 0.42 (for fruit polyphenols) to 0.02 (for legume polyphenols). In
the case of mean total polyphenol intake, a statistically significant (but low) correlation
coefficient of 0.3 was found. According to quintile classification, polyphenol intakes for
each food group in the same (or adjacent) quintile ranged from 76.7% to 53.5% for the
groups “chocolate and coffee” and “oils”, respectively (Table 2). The limits of the agreement
varied from 95.4% to 90.7%.

Table 2. Validation of daily intake of total polyphenols based on food frequency questionnaire (FFQ)
and 24-h dietary recalls (n = 40).

FFQ 1 FFQ 2 Correlation
Coefficient

Agreement by
Quintiles (%) a

Agreement
by LOA (%) b

Mean ± SD Mean ± SD

Mean total polyphenol intake (mg) 2158 ± 1023 1875 ± 835 0.303 * 67.4 95.4
Vegetables (mg) † 476 ± 321 312 ± 296 0.369 * 62.8 93.1
Spices and infusions (mg) † 7.33 ± 5.02 139 ± 209 0.326 * 67.4 95.4
Cereals and derived products (mg) 230 ± 131 234 ± 126 0.314 * 69.8 90.7
Legumes (mg) † 676 ± 408 219 ± 395 0.015 60.5 93.1
Fruits (mg) 358 ± 185 407 ± 279 0.418 ** 69.8 90.7
Fruit derivatives (mg) 68.5 ± 30.9 49.3 ± 81.5 0.224 62.8 90.7
Oils (mg) † 29.5 ± 15.8 12.3 ± 9.57 −0.086 53.5 95.4
Nuts (mg) † 45.9 ± 10.4 33.4 ± 68.8 0.261 67.4 95.4
Processed foods (mg) † 66.8 ± 49.3 65.1 ± 81.1 −0.056 67.4 90.7
Chocolate and coffee (mg) 418 ± 345 564 ± 527 0.347 * 76.7 93.1
Alcoholic beverages (mg) 5.07 ± 2.73 4.87 ± 9.01 0.260 65.1 90.7

a Correctly classified if classified into same or adjacent (±1) quintiles. b Overall proportion of agreement limits
between both questionnaires, corresponding to Bland–Altman plots. * Correlation significant at p < 0.05 level;
** Correlation significant at p < 0.01 level. † Significant differences (p < 0.05), paired-sample sign test, observed
between total polyphenol intakes obtained by FFQ and 24-h dietary recalls.

For reproducibility, FFQs during the first and third trimesters of pregnancy were
compared. The correlations between the two FFQs regarding the contribution of MTPI and
the polyphenol families are shown in Table 3. Comparisons were also made between the
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different food groups. Correlation coefficients ranged from 0.52 to 0.32 for the vegetable
and cereal groups, respectively. In relation to the polyphenol intake, the ranges varied
from 0.141 for stilbenes to 0.406 for phenolic acids. For MTPI, the polyphenol families
and all food groups had significant correlations with p < 0.01. The percentage of food
groups classified in the same quintile by the two FFQs ranged from 74.5% for the group of
vegetables to 65% for the fruit group. In the case of polyphenol families, the mean values
classified in the same quintile were 66.2%. The limits of agreement for all values were
distributed over 94.7% (Table 3).

Table 3. Reproducibility analysis of polyphenol intakes (mg) based on two food frequency question-
naires (FFQ), during first and third trimesters of pregnancy (n = 680).

FFQ 1 FFQ 2 Correlation
Coefficient

Agreement by
Quintiles (%) a

Agreement
by LOA (%) b

Mean ± SD Mean ± SD

Mean total polyphenol intakes 2388 ± 905 2075 ± 932 0.355 ** 65.2 94.1
Flavonoids 624 ± 364 518 ± 353 0.336 ** 69.8 93.5
Phenolic acids 461 ± 225 350 ± 200 0.406 ** 65.6 95.7
Lignans 68.3 ± 45.4 57.8 ± 45.7 0.376 ** 68.9 94.4
Stilbenes 0.47 ± 0.53 0.2 ± 0.24 0.141 ** 60.1 96.6
Other polyphenols 60.5 ± 46.9 50.6 ± 40.9 0.321 ** 67.5 94.1

a Correctly classified if placed into the same or adjacent (±1) quintiles. b Overall proportion of agreement limits
between both questionnaires, corresponding to Bland–Altman plots. ** Correlation significant at p < 0.01 level.

3.3. Total Polyphenol Intake

The MTPI for the 680 women during pregnancy was 2231 ± 757 mg/day calculated
on the basis of information provided by the FFQs, and 1875 ± 835 mg/day from the
24-h dietary recalls (40 pregnant women). The total polyphenol consumption estimated
from the FFQs was slightly higher when compared with the average of the 24-h dietary
recalls. Total polyphenol content of food calculated by the Folin–Ciocalteu method was
3367 ± 1167 mg/day, while 1069 ± 421 mg/day was obtained with the sum of the con-
centrations of the individual polyphenol subfamilies. The flavonoid group was the most
abundant polyphenol family, accounting for about 52% of the total intake. Phenolic acids
accounted for 37% of the total, making them the second-most abundant group. Lignans
and other polyphenols each represented about 5%, while stilbenes were the minority group.
If we focus on subfamilies, flavanols (33%), hydroxycinnamic acids (21%), flavanones and
anthocyanins are the most representative, accounting for 73% of the total intake. The
results by subfamily of phenolic compounds are shown in the Supplementary Material
(Supplementary File S1).

Of the 11 food groups, legumes (28.5%), fruits (25.3%), vegetables (15.2%) and choco-
late and coffee (14.1%) were the major dietary sources of total polyphenols in the diet of the
GENEIDA cohort. Within each food group, the main contributors were identified and were
consistent with the 24-h dietary recalls. Lentils, cocoa powder, apples, chocolate, oranges,
tomatoes, gazpacho and capsicum were the foods with the highest contribution to dietary
polyphenols in relation to total polyphenol intake and regular food consumption.

3.4. Relationship between Polyphenol Intake and Anthropometric Measures at Birth

Bivariate and multivariate GLMs were used to evaluate the potential effects of polyphe-
nol intake (total, by families or subfamilies) on different birth anthropometric measures
(height z-score, weight z-score, head circumference z-score and ponderal index) at different
trimesters of pregnancy and the average of the two calculated (Supplementary File S2).

Figure 2 presents the resulting regression coefficients of polyphenols (total and fam-
ilies) in the multivariate models, including their confidence intervals. Beta coefficients
indicate that polyphenols significantly increased birth anthropometric measures for some
of the polyphenol families at some gestational periods. The intake of phenolic acids during
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the third trimester, which accounted for over 30% of the total intake, was significantly
associated with increased head circumference at birth. Also, phenolic acids showed a
near-significant positive relationship with weight during the first trimester and on average.
Lastly, stilbenes exhibited a significant positive association with both height and weight at
birth in the third trimester.
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Figure 2. Associations between sum of total polyphenol intake and by family groups and anthropo-
metric measures at birth. GLM adjusted for height z-score (smoking, alcohol and repeat abortions);
weight z-score (smoking, repeat abortions, maternal education and parity); head circumference
(HC) z-score (smoking, mother’s age, maternal, physical exercise, supplement intake, education and
parity); and ponderal index (smoking, mother’s age, maternal education and parity). Regression
coefficients and 95% confidence intervals are presented. TP: total polyphenols.

An in-depth analysis, taking into account the subfamilies of polyphenols, revealed
significant associations (Figure 3). Statistically significant inverse associations were found,
particularly during the first trimester of pregnancy, between the ponderal index and
intake of hydroxyphenyl acetic acids, as well as between hydroxyphenyl propanoic acids
and tyrosols. However, significant direct associations were observed between different
subfamilies of polyphenols and anthropometry at birth measures, with the exception of
dihydroflavonols. Only some of the positive direct associations remained when considering
average pregnancy intake and anthropometric measures at birth.
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mother’s age, maternal education and parity). Regression coefficients and 95% confidence intervals
are presented. Figure presents the results of the models that had statistically significant effects.

4. Discussion
4.1. Validation and Reproducibility

In the current study, carried out in a population of healthy pregnant women in the
south of Spain, the intake of total polyphenols was evaluated using various dietary as-
sessment tools. Although the FFQ used is a valid and reproducible tool for assessing
nutrients [38], it is essential to demonstrate its validity and reproducibility specifically
for polyphenol intake. Although FFQs are widely used to estimate total polyphenol in-
take, only a few have been adequately validated [36,44]. Furthermore, finding validated
tools specifically for estimating polyphenol intake in pregnant women poses additional
challenges [30]. Our study included correlation coefficients, percentages of LOA, and the
percentage of agreement by quintiles (as shown in Tables 2 and 3). The results obtained
were comparable to the values observed for the validation of other nutrients [38]. Similarly
to the validation of different macro and micronutrients, the correlation coefficients for
validation analysis of polyphenol intake were low, while the rest of the statistical tests
yielded optimal results. These correlation coefficients were comparable to those reported
by other studies that validated different FFQ in pregnant women [45]. Interestingly, the
reproducibility analysis revealed higher correlation coefficients than those obtained from
the validation (Tables 2 and 3). This is consistent with the findings of other FFQ validation
and reproducibility studies. Overall, the results indicate an acceptable level of validity and
high reproducibility for all food groups and polyphenol intakes during pregnancy. This was
evidenced by a percentage of agreement by quintiles higher than 60% and LOA exceeding
90% in both cases that was consistent with other studies [17,29]. Therefore, the use of this
FFQ represents a valuable tool for the estimation of polyphenol intake during pregnancy.
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4.2. Polyphenol Intake

The total consumption of polyphenols, around 2 g/day, is consistent with findings
from other studies [12,44,46,47]. In the present study, statistically significant differences
were observed between total polyphenol intakes obtained by the FFQ and 24-h dietary re-
calls for vegetables, spices and infusions, legumes, nuts, processed foods and oils (Table 2).
The FFQ revealed higher contributions from legumes, while the 24-h diet recall indicated
greater contributions from spices and infusions. These discrepancies underscore the impor-
tance of detailed recording to accurately assess the true contribution of polyphenols from
certain foods such as spices and infusions [48], which gives consistency to the results found.
Given that FFQs often inadequately cover spice and infusion food groups, the current trend
involves incorporating them into new FFQs that are undergoing validation [49].

Looking closely at the data from our study, foods with the highest dietary polyphenol
content were also identified as sources of polyphenols in other studies [50,51]. Among
populations with the highest polyphenol intake, legumes were the primary food group
contributing to daily polyphenol intake. Recent studies have emphasised the significant
role of legumes, accounting for up to 32% of total dietary polyphenol intake [52]. Cocoa
and chocolate were additional sources of polyphenol intake in women of the GENEIDA
cohort, aligning with findings from previous studies [53].

When comparing the average intake of food groups during the first and third trimesters
of pregnancy, a general decrease in consumption across various foods was observed.
Specifically, there was a lower intake of processed foods, chocolate, coffee and alcoholic
beverages. Such a decrease may be attributed to heightened awareness of maintaining a
healthy diet during pregnancy [54].

Flavonoids, phenolic acids and lignans were the families that contributed most to
daily polyphenol intake, as also reported by previous studies [11,55]. Similar results were
found for the subfamilies of phenolic compounds [11,56].

The limited data available on polyphenol consumption in pregnant women make
comparisons difficult. In a comprehensive cohort study involving 120 pregnant Brazilian
women, the average polyphenol intake was 1048 ± 362 mg/day [30]. This amount is similar
to the sum of the concentrations of individual polyphenol subfamilies found in our study,
although both exceeded the levels reported for pregnant women in China [57]. Additionally,
a study validating an FFQ in the general population (aged 20–60 years) revealed polyphenol
intake similar to that observed in the GENEIDA cohort (2111 mg/day) [58].

Polyphenol intakes among European women vary between 653 and 1552 mg per
day [25]. For example, the cohort of women in the HAPIEE (Health, Alcohol and Psychoso-
cial factors In Eastern Europe) had an average polyphenol intake of 1726 ± 662 mg/day [59].
In the GENEIDA cohort, fruits, vegetables and cocoa products were major contributors to
daily polyphenol intake. There are notable differences in the consumption of polyphenols
between different parts of the world. These variations may stem from differences in popu-
lation characteristics, dietary behaviours, or the tools and databases employed to assess
food intake [59].

Most academic sources evaluate polyphenol intake based on individual polyphenols
or families, but few combine the results to estimate total intake, which may provide a less
realistic estimate [56]. Furthermore, it is important to consider the databases used because
although some researchers prefer to use their individual databases, Phenol-Explorer tends
to be one of the most commonly used options [60,61]. Despite Phenol-Explorer being one of
the most widely used approaches, polyphenol content databases have limitations and may
underestimate intake. The MTPI was devised for this reason, aiming to supplement overall
values rather than merely summing up individual polyphenols. A clear example of daily
polyphenol intake in the Spanish population illustrates this variation. Records show values
ranging from 671 mg/day [25] to as high as 2590–3016 mg/day [37]. The difference lies
in whether the approximations include extractable or non-extractable polyphenols, which
depends on the dietary records and databases used.
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4.3. Relationship between Prenatal Polyphenol Intake and Birth Anthropometry and Foetal
Development

Some studies suggest that a high intake of polyphenols may impair foetal development
and contribute to different problems such as low birth weight [19–21,23,26–29,31–35]. These
studies are based on the properties of polyphenols similar to anti-inflammatory drugs,
which may be harmful during foetal development by interacting with the foetal ductus
arteriosus [32].

The ductus arteriosus is an essential structure in foetal circulation, connecting the
pulmonary artery with the aortic arch during foetal life. It begins to close within the first
hours after birth, becoming part of the adult circulation pattern by 72 h [28]. Foetal duc-
tus arteriosus constriction is a clinical disorder caused by inhibition of the prostaglandin
synthesis pathway, and has long been associated with maternal intake of nonsteroidal
anti-inflammatory drugs in late pregnancy [32]. Over the years, researchers have studied
the potential association between polyphenol intake and constriction of the foetal ductus
arteriosus, which, although rare, is a condition often considered idiopathic [32]. The effects
of polyphenols on ductal dynamics have been well documented in animal studies [35], and
include reduced litter size, foetal head circumference and foetal abdominal circumference
in mice [27]. Evidence from several studies supports a cause–effect relationship between
maternal consumption of polyphenol-rich substances (such as herbal teas, orange and grape
juice, chocolate and cocoa) and constriction of the foetal ductus arteriosus [23,28,31,33–35].
Recommendations to prevent foetal ductal constriction during the third trimester of preg-
nancy have been subject to debate, and include possible dietary modifications to reduce
tea, chocolate or cocoa consumption [28]. As part of these guidelines, a low-polyphenol
diet has been proposed for women with foetal ductal constriction. Notably, the majority of
foetuses receiving this dietary intervention showed reversal after a three-week period of
low-polyphenol intake, suggesting the effectiveness of this intervention [23,31,33].

Similar ductal problems have been identified [19]. For example, cases of premature
closure of the ductus arteriosus have been associated with maternal consumption of func-
tional foods with high anthocyanin content [29], or excessive tea consumption [26]. After
identifying possible causes, pregnant women were advised to reduce the consumption
of these foods and, at the end of the dietary intervention, a progressive improvement of
ductal constriction was observed [26]. Furthermore, other harmful consequences have
been documented, including an increased likelihood of neural tube defects in a Chinese
population that regularly consumed tea [62].

However, there is certain discordance, as other studies found no significant harm-
ful effects after conducting similar research. Despite high levels of hydroxytyrosol sup-
plementation in pigs, no effect on ductus arteriosus constriction was observed during
pregnancy [15,63]. On the other hand, certain studies have shown beneficial effects for
pregnant women, including improvements in blood pressure and reductions in gestational
diabetes [3,57].

In this study, the intake of polyphenols in the GENEIDA cohort was estimated to
evaluate whether the intake of these chemical species is associated with anthropometric
measures at birth. Results indicate that foetal growth can be influenced by certain types
of polyphenols in varying ways, and the observed trends underscore the importance of
considering not only the total intake of polyphenols but also the specific types consumed.
This approach is consistent with the fact that polyphenols can function as both antioxidants
and pro-oxidants, depending on their structure and concentration [24].

The findings of our study indicate that the effect of polyphenols on pregnancy varies
not only with the specific type of polyphenol, but also with the trimester of pregnancy
during which exposure occurs (Supplementary File S2). This suggests that the physiological
changes occurring in the mother throughout pregnancy may influence how different
polyphenol structures affect the course of pregnancy and foetal development.

Despite the results obtained, further research is needed to explore the effect of polyphe-
nols on foetal development, as suggested by other studies [22], especially by studying
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specific subfamilies [21,24]. In light of the results obtained, it is possible to see how families
of polyphenols such as tyrosol or other polyphenols can have certain negative associations
with anthropometric parameters at birth. Similarly, this phenomenon can be observed
within certain subfamilies, such as certain phenolic acids. On the other hand, our study in-
dicates that lignans can significantly affect anthropometric parameters in a positive manner.
Our results are also consistent with previous studies that have found beneficial effects of
lignans intake in pregnant women [64]. However, other studies have examined the oestro-
genic effects of these compounds and their potential impact on pregnancy, highlighting the
need for further studies to ensure their safety [65]. For these reasons, precaution should be
taken during the latter stages of pregnancy, when it is advisable to limit the consumption
of foods rich in polyphenols. For instance, in Brazil, guidelines for foetal cardiovascular
health recommend limiting the intake of foods with a high polyphenol content during the
last three months of pregnancy [28].

The significance of this issue lies in the fact that numerous dietary supplements and
nutraceuticals currently consumed contain high levels of polyphenols. For instance, indi-
viduals who take supplements may consume up to 100 times more polyphenols daily [18].
While this heightened intake could be beneficial for health, some harmful effects may occur
during specific life stages, such as pregnancy. Hence, careful control of polyphenol intake
during gestation is necessary.

4.4. Strengths and Limitations of the Present Study

While the FFQ may overestimate dietary polyphenol intake, it is important to note
that our results were estimated from a large population-based cohort of pregnant women.
Additionally, the validity and reproducibility of the tools used for assessing polyphenol
intake are important aspects to consider. Limitations of using databases should also be
considered; although Phenol-Explorer is widely used at present, perhaps the inclusion of
additional information could complete the results. Despite the remarkable results obtained,
the associations found, although significant, remain somewhat inconclusive. This study
is one of the few to date that highlight the importance of distinguishing between the
various types of polyphenols when making recommendations of dietary restrictions during
pregnancy, as some of them may be beneficial for foetal development while others may
have adverse effects.

5. Conclusions

This study highlights the importance of comprehensively evaluating polyphenol
intake during pregnancy, due to its impact on anthropometric measurements at birth. The
results indicate that a validated FFQ can be an effective and reliable tool for estimating
polyphenol consumption in pregnant women. In the GENEIDA cohort, legumes, fruits,
vegetables, chocolate and coffee were the primary dietary sources of total polyphenols.
The findings suggest that the intake of different polyphenol families and subfamilies may
have diverse effects on foetal development. Some polyphenols may have beneficial effects,
while others could be harmful. This underscores the importance of considering not only
the overall quantity of polyphenols consumed, but also the specific classes of polyphenols
ingested. Further research is required to elucidate the impact of individual polyphenol
intake on maternal and foetal health during pregnancy.

These findings are crucial for the formulation of more precise dietary guidelines and
recommendations during pregnancy to ensure optimal neonatal development.
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