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Abstract

Cancer is a complex process that is influenced by a combination of genetic
and environmental factors. It stands as the second leading cause of death
globally and constitutes a major public health concern with far-reaching im-
plications for patient outcomes and healthcare costs. Despite the considerable
strides that have been made in the diagnosis and research of this disease, our
understanding of the mechanisms involved is still incomplete, leaving much
to be elucidated. Despite the recent improvement in survival rates, treating
cancer remains a challenging endeavor as cancer stem cells are resistant to
traditional therapies like chemotherapy or radiotherapy.

The role of mechanics has emerged as a critical component in the devel-
opment of tumors, alongside biochemical studies. Mechanical forces have
been identified as both active and passive players in the progression of the
disease, regulating a variety of cellular functions, including duplication, motil-
ity, growth, reorganization, and remodeling. Therefore, a comprehensive
understanding of the interplay between biochemical and mechanical cues in
tumor development is criticals for the development of effective strategies for
cancer treatment and management.

Mechanical therapy is a novel therapeutic approach for cancer treatment
that uses mechanotransduction to convert mechanical signals into cellular
responses. One of the emerging mechanical treatments is low-intensity ultra-
sound waves, which is being investigated as a potential target therapy that
can complement existing treatments. However, the various configurations
used for ultrasound waves result in diverse mechanical and biological effects,
which must be carefully considered and optimized to maximize their thera-
peutic potential.

In the current scientific landscape, mathematical oncology is proving to be
a promising tool for understanding mechanotransduction, cellular commu-
nication, and other complex events that underlie the oncogenic process. In
this context, this thesis aims to advance our understanding of cancer by
introducing three self-coded numerical models that facilitate the study of
tumor behavior through a mechanical perspective. By utilizing these models,
the mechanical forces that govern cell fate can be more accurately quantified
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and characterized, enabling the development of more effective intervention
strategies and treatments.

Firstly, we study how migration, a process controlled by specific speed,
competes with proliferation and possible mutations that give rise to non-
homogeneous volume changes, generating stresses that modify tumor evol-
ution. To unveil the competition, we develop mechanical-growth coupled
equations and we solve the system using the Weighted Essentially Non-
Oscillatory method in finite differences. Our findings suggest the need to use
non-linear flows to limit the propagation velocity. Additionally, if cells are
deprived of movement, non-homogeneous growth slows down proliferation
while causing instabilities in cell density in a phenomenon known as retro-
grade diffusion, which is mitigated by the possibility of movement.

After studying these phenomena, we investigate the effect of mechanotherapy
on tumor dynamics using finite-element models. We first study how ultra-
sound waves propagate through a spheroid embedded in a culture medium. A
Kelvin-Voigt viscoelastic model with different parameters is used to conduct
a parametric study of the frequency range (1-20MHz), acoustic pressure
(0.1-5kPa), and viscosities (0.05-10Pa · s). The sensitivity analysis suggests
that neglecting viscoelasticity can lead to an overestimation of the energy
that reaches the tissue, as it fails to account for the dissipation of ultrasound
waves caused by the viscosity of the tissue, while high acoustic pressure
can lead to irreversible damage or cell death, and low acoustic pressure
may not produce the desired therapeutic effects. Selecting the appropriate
frequency depends on various factors, such as target tissue geometry, me-
dium properties, and desired intensity. The study concludes that numerical
simulations of wave propagations can help determine the optimal mechanical
parameters for different cell types and disease states, which can guide the de-
velopment of safe and effective LIUS treatments for cancer and other diseases.

Finally, this thesis proposes a novel quantitative multiscale model that
integrates the effects of mechanical waves on tumor development through
mechanotransduction. The model is based on coupled stress-growth equations
and operates on two main timescales: fast-scale, where the wave propagates
and mechanotransduction occurs, and slow-scale, where the tumor grows and
adapts to the microenvironment as a poroelastic medium. The hypothesis
put forth is that dynamic pressure is more effective in generating a cellular
response than static stress, due to the complex mechanisms of stress redistri-
bution involving the cytoskeleton and interstitial fluid flow through pores.
Then, this model of mechanotransduction provides a quantitative explanation
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for the difference in the threshold of dynamic and static stimulation, without
the need for ad-hoc relationships.

To test the model, we have conducted preliminary experiments with in vitro
spheroids and performed a sensitivity analysis of the impact of ultrasound
on mechanotransduction. The outcomes demonstrate that the model can
accurately reproduce experimental data with a high degree of accuracy, and
predict both the growth of the spheroids, as well as the stress and deformation
states of the medium and the spheroids. Specifically, our findings suggest
that ultrasound generates stress fields that hinder and slow down both
the development and migration of the tumor cells. This leads to selective
treatment and patterns based on shadow areas of applied stress and cell
sensitivity ranges, which alter both gradients of stress and interstitial fluid
pressure.
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Resumen

El cáncer es un proceso complejo que está influenciado por una combinación
de factores genéticos y ambientales. Es la segunda causa de muerte a nivel
mundial y constituye una importante preocupación en la salud pública con
implicaciones significativas para los resultados del paciente y los costes de
atención médica. A pesar de los importantes avances que se han logrado en
el diagnóstico y la investigación de esta enfermedad, nuestra comprensión
de los mecanismos involucrados sigue siendo incompleta, y todavía queda
mucho por elucidar. Aunque en los últimos años se ha visto una mejora en
las tasas de supervivencia, el tratamiento del cáncer sigue siendo un desafío
debido a la insensibilidad de las células madre cancerosas a tratamientos
convencionales como la quimioterapia o la radioterapia.

Además de los estudios bioquímicos, la mecánica surge como un componente
decisivo en el desarrollo de tumores. Se ha identificado que las fuerzas mecán-
icas son parte activa y pasiva en la progresión de la enfermedad, regulando
una variedad de funciones celulares que incluyen la duplicación, la movilidad,
el crecimiento, la reorganización y la remodelación. Por lo tanto, es esencial
alcanzar una comprensión integral de la interacción entre señales bioquímicas
y mecánicas en el desarrollo de tumores para el desarrollo de estrategias
efectivas para el tratamiento del cáncer.

La mecanoterapia representa un enfoque terapéutico novedoso para el tratami-
ento del cáncer, y que se basa en la mecanotransducción para convertir señales
mecánicas en respuestas celulares. Entre los tratamientos mecánicos emer-
gentes, se está investigando el uso de ondas de ultrasonido de baja intensidad
como una potencial herramienta que puede mejorar el conjunto de tratami-
entos existentes. Sin embargo, las diversas configuraciones utilizadas para
las ondas mecánicas dan lugar a diversos efectos mecánicos y biológicos,
que deben considerarse y optimizarse cuidadosamente para maximizar su
potencial terapéutico.

En el actual panorama científico, la oncología matemática está demostrando
ser una herramienta prometedora para comprender la mecanotransducción,
la comunicación celular y otros fenómenos complejos que subyacen al proceso
oncogénico. En este contexto, la presente tesis se esfuerza por avanzar en
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nuestra comprensión del cáncer mediante la introducción de tres modelos
numéricos que facilitan el estudio del comportamiento del tumor desde una
perspectiva mecánica. Al emplear estos modelos, las fuerzas mecánicas que
gobiernan el desarrollo celular pueden cuantificarse y caracterizarse con mayor
precisión, lo que permite el desarrollo de intervenciones y tratamientos más
efectivos.

En primer lugar, estudiamos cómo la migración, un proceso controlado por
una velocidad específica, compite con la proliferación y las posibles mutaciones
que dan lugar a cambios de volumen no homogéneos, generando tensiones
que modifican la evolución del tumor. Para examinar esta competencia,
planteamos ecuaciones biacopladas de crecimiento y mecánico y las resolve-
mos utilizando el método de diferencias finitas ponderadas esencialmente no
oscilatorias (método WENO). Nuestros hallazgos sugieren la necesidad de
utilizar flujos no lineales para limitar la velocidad de propagación. Además,
si las células se ven privadas de movimiento, el crecimiento no homogéneo
ralentiza la proliferación al tiempo que provoca inestabilidades en la densidad
celular en un fenómeno conocido como difusión retrógrada, que se mitiga
mediante la posibilidad de movimiento.

Después de estudiar estos fenómenos, investigamos el efecto de la mecan-
oterapia en la dinámica del tumor utilizando modelos de elementos finitos.
Primero, se observa cómo las ondas de ultrasonido se propagan a través de un
esferoide embebido en un medio de cultivo. Se utiliza un modelo viscoelástico
de Kelvin-Voigt con diferentes parámetros para realizar un estudio de sens-
ibilidad del rango de frecuencia (1-20MHz), presión acústica (0.1-5kPa) y
viscosidades (0.05-10Pa · s). El estudio paramétrico sugiere que no contem-
plar la viscoelasticidad puede conducir a una sobreestimación de la energía
que llega al tejido, ya que no se tendría en cuenta la disipación de las ondas
de ultrasonido causada por la viscosidad del tejido. Por otra parte, una alta
presión acústica puede provocar daños irreversibles y citodisrupción, mientras
que una presión acústica baja podría no producir los efectos terapéuticos
deseados. La selección de la frecuencia adecuada depende de diversos factores,
como la geometría del tejido a tratar, las propiedades mecánicas del medio y
la intensidad deseada. El estudio concluye que las simulaciones numéricas de
propagaciones de onda pueden ayudar a determinar los parámetros mecánicos
óptimos para diferentes tipos celulares y estados de enfermedad, lo que puede
guiar el desarrollo de tratamientos de LIUS seguros y efectivos para el cáncer
y otras enfermedades.

Finalmente, esta tesis propone un nuevo modelo cuantitativo multiescala
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que integra los efectos de las ondas mecánicas en el desarrollo de tumores
a través de la mecanotransducción. El modelo se basa en ecuaciones de
crecimiento y tensión acopladas, y opera en dos escalas de tiempo principales:
la escala rápida, donde la onda se propaga y ocurre la mecanotransducción,
y la escala lenta, donde el tumor crece y se adapta al microambiente como
un medio poroelástico. La hipótesis planteada en mecanotransducción es
que la tensión dinámica es más efectiva en generar una respuesta celular
que la tensión estática, debido a los complejos mecanismos de redistribución
de esfuerzos que involucran al citoesqueleto y al flujo de fluido intersticial
a través de los poros. Por lo tanto, este modelo de mecanotransducción
proporciona una explicación cuantitativa para la diferencia en el umbral de
estimulación dinámica y estática, sin necesidad de introducir relaciones ad hoc.

El modelo predice la evolución de experimentos preliminares con esferoides
in vitro y permite realizar un análisis de sensibilidad del impacto del ul-
trasonido en la mecanotransducción. Los resultados indican que el modelo
puede reproducir con precisión los datos experimentales y predecir tanto el
crecimiento de los esferoides como los estados de tensión y deformación del
medio y los esferoides. Específicamente, nuestros hallazgos sugieren que el
ultrasonido genera campos de tensión que ralentizan tanto el desarrollo como
la migración de las células tumorales selectivamente. Además, se demuestran
patrones de crecimiento y migración basados en áreas de sombra de tensión
y rangos de sensibilidad celular, que alteran tanto los gradientes de tensión
lenta como la presión de fluido intersticial.
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Chapter 1

Introduction

1.1 Context and Motivation
Cancer is the second leading cause of death worldwide. According to data
published in reference [1], 19.3 million new cases were detected and 10.0
million deaths occurred in 2020 worldwide, accumulating almost a quarter of
them in Europe (4.3 million cases), and it is projected to continue to rise in
the coming years. In Spain, data estimates 282 thousand new cases and 113
thousand deaths in 2020, being prostate, breast, colorectum, and lung cancer
the most incident [2, 3].

Cancer is a major public health concern with a significant impact on both
patient outcomes and healthcare costs. In fact, cancer is one of the leading
causes of economic and health burden among chronic diseases in the European
Union [4, 5, 6, 7]. The cost of cancer care is expected to continue to rise
in the future, making it a significant concern for healthcare systems and
policymakers [6, 8, 9, 10].

The comprehension of the molecular processes involved in cancer cell trans-
formation has significantly advanced in recent years [11, 12, 13, 14, 15].
However, despite the notable progress that has been made, our understanding
of these mechanisms is still far from comprehensive and there is much yet to
be discovered.

The multifactorial cause of cancer is related to genome alterations and
mutations that result in the abnormal growth of cells. Overall, the origin
of cancer is a complex process that can be influenced by a combination of
genetic and environmental factors. Mutations are irreversible modifications
of DNA that can be inherited while alterations refer to epigenetic changes
that modify the expression of the genome without modifying DNA [16, 17,
18, 19, 20, 21, 22, 23, 24]. There are several risk factors that can contribute
to the development of these mutations, including inherited genetic mutations,
environmental factors, infections, radiation, obesity, sedentary lifestyle, aging,
diet, alcohol, and tobacco consumption [25, 26, 27, 28, 29, 30, 31].

The existing treatments for cancer, including conventional chemotherapy and
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radiotherapy, can have significant side effects and may not effectively eliminate
cancer precursor cells known as cancer stem cells (CSCs) [32, 33, 34, 34], which
are widely considered to have a significant impact on cancer metastasis and
are frequently blamed for relapse due to their self-renewal and differentiation
capabilities [35, 36, 37, 38, 39].

New therapies are on the horizon, such as immunotherapy, but patient
stratification is challenging, and costs are high [40, 41, 42, 43, 44]. Therefore,
new ways to interact with cells are needed to develop novel therapies to
improve patient outcomes.

Among chemical processes, mechanical forces have a critical role in carcinogen-
esis. Recent literature provides ample evidence that cells are both passive and
active players in the mechanical homeostasis of the body and that alterations
in mechanical forces can derail cell function [45, 46, 47, 48, 49, 50].

Then, cells require a specific balance of mechanical forces to develop, and any
abrupt or smooth alteration in the cell stress state could affect changes in
volume –growth–, reorganization and shape –morphogenesis–, and in material
properties –remodeling– [51, 52, 53, 54]. In this context, uniform growth is
not a default state but a result of active regulation and competition of cell
proliferation, motility, chemical agents, and mechanical feedback, in which
growth modify stress – stress-driven growth– and stress regulates growth and
patterns [55, 56, 57, 58].

Thus, cancer cells mechanics is recently highlighted as a critical controller of
their progression and fate, and mechanobiology studies how cells biologically
respond to mechanical stimuli. In particular, the potential of mechanotrans-
duction principles is emerging [59, 60, 61] to support other therapies.

The importance of translating mechanotransduction into therapy has become
increasingly clear, and some mechanical technologies emerged to battle cancer.
Different laboratories are developing a variety of principles to actively impact
cell behavior by modifying the mechanical microenvironment. They range
mainly from ultrasound (US) to drugs that alter the elasticity of the remodeled
microenvironment and cell stiffness [62, 63]. These principles are both
translatable to the patient, since the US can be applied using transducers or
patches, and the second one is based on drug delivery.

Regarding the US and leaving aside thermal therapies such as high-intensity
focused ultrasound (HIFU) and sonoporation [64, 65, 66, 67, 68, 69], since they
rely on different mechanisms that require carefully targeting confined tumors
since they aimless destroy tissue, low-intensity ultrasound (LIUS) and its
pulsed version (LIPUS), has been proposed to impact cancer cells by two main
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mechanisms: i) selectively resonating the right diameter cells under the name
of oncotripsy, what lies on destroying the cytoskeleton [70, 71, 72, 73, 74],
and ii) triggered response produced in mechanotransduction via signaling
pathways [73, 74, 75, 76, 77, 78, 79, 80].

Although these studies have repeatedly evidenced significant potential effects,
the lack of understanding of the mechanism, and the even opposing responses
triggered by diverse frequencies, energies, and configurations, make the
concept still useless at its current state.

Hence, the understanding of the mechanical wave configuration is rising atten-
tion, although the mechanisms of how LIUS affects cancer cell behavior have
been significantly restricted. The main reason lies in the high experimental
cost, the stochastic effects associated with biological experiments, and the
technical complexity of obtaining data from in-vivo.

In this context, mathematical oncology and predictive medicine appear to
be valuable tools to complement experiments. Although predictions of a
mathematical model for a biological system can not be, unfortunately, fully
trusted [51], developing multiphysics models of the mechanical-biological
interactions are key to unveiling tumor behavior [81, 82, 83, 45, 63, 84, 85].

Then, computational mechanobiology models could be a leading point for
understanding the progression of the disease [86, 87, 52]. Indeed, a model
can accurately describe and represent a biological system if it follows the
qualitative trends of experimental tests [51]. In the last approximation,
tailored models (realistic morphology and inherent properties of the tumor)
could help clinicians in diagnostic and decision-making [88, 89, 90, 91, 92].
Thus, models could be used as complement medical strategy in pre-diagnostic.
For instance, a combination of drugs [93, 94] and different mechanical waves
could be tested and even combined for treatment optimization. Ensuring
the appropriate proportions, the effectiveness of the treatment could be
maximized, and health care costs would be minimised [63].

The key reason to investigate cancer from computational mechanics lies in
the need to understand the fundamental behavior of growth and mechanics
interaction regarding motility and proliferation in normal and changing
situations and identify new targets for treatments to fight CSCs considering
the signaling cascade of mechanotransduction pathways from mechanical
signals generation at tissue scale to cell and molecular level.

Notwithstanding, modeling is challenging. The tumor morphology, the co-
existence of different cell types, the bio-chemo-mechanical interactions, and
the nonlinearity of tissues involve multi couple high-order partial differen-
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tial equations which demand efficient methods of resolution in terms of
computational cost and memory. The numerical procedures for obtaining
approximated solutions to the system of equations are mainly based on the
Finite Differences Method (FDM), which can help in more simplified models
by directly approximating the unknown solution by finite difference approx-
imation in nodes, and Finite Element Method (FEM), which is a useful tool
to handle more computational challenges by using standard polynomials
to interpolate functions to approximate the unknown solution within an
element [95, 96, 97, 98, 99].

Therefore, the Mechanotherapy project pursued by our research group at
the University of Granada represents a novel strategy in the fight against
carcinogenesis. This approach seeks to comprehend and manipulate cellular
mechanics through the integration of experiments and modeling, utilizing
the latest advancements in mechanics, genomics, transcriptomics, proteomics,
and metabolomics.

This interdisciplinary dissertation is a crucial component of the Mechano-
therapy project. Specifically, it represents the initial effort to establish a
theoretical framework that comprehends mechanically induced signaling path-
ways and stress states in the progression of tumors and to develop multiscale
computational models that incorporate phenomena such as proliferation,
controlled migration, stress-driven growth, and mechanical wave interactions
to better understand tumor dynamics.

1.2 Research Objectives
The main scope of this thesis is to develop computational tools for under-
standing and tackling carcinogenesis from mechanics. To succeed, specific
objectives must be accomplished. These are as follows:

1. Set the framework of tumor mechanobiology and its theoretical
models. Describe the main characteristics of avascular tumors and
review the current knowledge of tumor mechanobiology, providing a
common framework for the different theoretical approaches that have
emerged in the literature from the Continuum perspective and giving
insight into emerging mechanotherapies and in particular LIUS.

2. Unveil the competition between mechanics and migration in
response to an abrupt change in cell density. Compare the
impacts of linear, non-linear, and non-linear saturated flux effects
on migration. We aim to develop a model that accounts for non-
homogeneous growth resulting from sudden changes and investigate
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how these variations compete with proliferation and migration.

3. Model the ultrasound interaction at spheroid level. Model the
wave propagation in tumor spheroids, taking into account the inherent
attenuation of the waves. To accomplish this objective, we conduct a
sensitivity analysis of wave propagation with regard to acoustic pressure,
viscosity, and frequency.

4. Develop a multiscale model of mechanotherapy where low-
intensity ultrasound impacts tumor dynamics via mechano-
transduction. Propose a multiscale computational model that simu-
lates the therapeutic effect that LIUS causes on a growing poroelastic
tumor spheroid through mechanotransduction that accounts for both
static and dynamic stress. Validate the model through comparison with
experimental data, and use numerical simulations to explore patterns
formation and selective proliferation, and migration inhibition.

1.3 Thesis overview
Following this introduction, Chapter 2 reviews the current knowledge of solid
tumor growth from the biological mechanisms to the latest advances in the
mathematical modeling of cancer, including the basics of Classical Continuum
Mechanics, the leading works of theoretical models of tumor growth, and the
low-intensity ultrasound application to tumors.

Depending on the specific purpose of the study and focusing on each objective,
different theoretical models have been contributed in a hierarchal way, from
simple to complex.

Then, in Chapter 3, we present a mathematical model to evaluate the com-
petition between migration, proliferation, and non-homogeneous growth in
regulating the reorganization of tumor cell density in its evolution. In partic-
ular, this Chapter firstly studies the differences between linear, non-linear,
and non-linear saturated flux. Then, we assume migration as a controlled
process in which the speed of the front propagation can be regulated through
a saturated flux to compete with proliferation and non-homogeneous growth.
To develop an accurate and efficient method to solve the set of equations in
one dimension, we develop the Weighted Essentially Non-Oscillatory (WENO)
method in finite differences in one dimension.

Once we highlight the role of controlled propagation in stress-driven non-
homogeneous growth, we improve and modify the forward model developing
a multiscale model in which LIUS affects tumor growth.
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In particular, Chapter 4 aims at modeling the mechanical wave propagation
through a tumor spheroid, considering the Kelvin-Voigt properties, that
try to emulate the rheological behavior of spheroids seeded in a culture
medium. We perform a parametric study, evaluating frequencies, amplitudes,
and viscosities to finally obtain the hydrostatic stress state of the tumor
after LIUS treatment. We use the Finite Element Method (FEM) in two
dimensions considering plane strain.

In Chapter 5, we combine the wave propagation model developed in the
previous Chapter with tumor dynamics. In particular, we generate a the-
oretical framework to understand mechanically induced proliferation and
migration in tumor progression and treatment. We develop a multiscale
temporal model in which LIUS hinders tumor proliferation and migration via
mechanotransduction, accounting for slow and fast hydrostatic stress. We
fit mechanotransduction parameters with experimental data and we then
perform numerical simulations to explore patterns formation and selective
proliferation and migration inhibition. We use FEM to implement the system
of equations in two dimensions.

Finally, Chapter 6 presents a discussion of the results and main conclusions of
this dissertation. Furthermore, some future lines are outlined and the limita-
tions of the present study, such as dynamic Biot’s poroelasticity propagation,
are also pointed out.

At the end of the document, there is a list of publications and contributions
that emerged from this thesis. Furthermore, the appendices and the references
are also included.
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Chapter 2

Background

2.1 Cancer dynamics
The cell cycle is a precisely regulated sequence of events that result in
the replication and division of a single cell into two genetically identical
daughter cells. Under normal circumstances, a delicate balance is maintained
between cell division and programmed cell death (apoptosis), ensuring that
only healthy cells are allowed to proliferate. However, in the case of tumor
cells, this balance is disrupted as they express anti-apoptotic proteins or
inactivate pro-apoptotic proteins, thereby evading programmed cell death
and proliferating uncontrollably [100, 101, 102, 103].

Benign tumors are characterized by a lack of invasive properties and the
absence of metastasis. In contrast, malignant tumors possess the ability to
invade surrounding tissue and disseminate to distant sites in the body and
are overcalled cancer.

The stages of cancer describe the extent to which a tumor has grown and
spread in the body. The TNM system is the most extensively utilized method
for categorizing the extent of cancer, in which T stands for the primary size
of tumor and how far it has invaded nearby tissue, N refers to the lymph
node involvement, and M to whether cancer has metastasized, or spread, to
distant sites in the body [104]. The stages are also usually represented by
Roman numerals, with stage I being the earliest, localized and least advanced
stage and stage IV being the most advanced and widespread stage [104]. It
is important to note that each type of cancer has different TNM staging
systems and that other specific grading systems can also coexist, such as the
Gleason score for prostate cancer [105].

The process of metastasis typically occurs in several stages [106, 107]: firstly,
cancer cells begin to invade surrounding tissue and break away from the
primary tumor (invasion) to later enter the blood and lymphatic vessels
(intravasation). The circulatory system transports cancer cells passively
throughout the organism in a process known as dissemination. Although
cancer cells may stay dormant in the bloodstream for a long time without
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producing any harm, if extravasation occurs, cancer cells escape from the
vessels into other distant tissues through transendothelial migration [107].
Once outside the vessels, cancer cells form small nodules (micro-metastasis),
and finally colonize the new tissue, multiplying, and forming a new macro-
scopic tumor at the secondary site if they are able to survive and proliferate
in their new emplacement. In fact, not all cancer cells that break away from
the primary tumor will successfully complete the process of metastasis and
form new tumors. Also, different types of cancer may have different pathways
for metastasis and some stages of metastasis can be more difficult to detect
and treat than others, especially the early stages, being one of the reasons
why cancer can be so challenging to treat [108].

In light of our discussion on metastasis, it is crucial to also comprehend
the significance of the presence of vessels in tumors. Avascular tumors are
tumors that do not contain blood vessels. They tend to grow slowly and are
often relatively small, but as it progresses, they may begin to secrete tumor
angiogenesis factors (TAF) which can promote the formation of new blood
vessels [109]. This transition from an avascular to a vascular growth phase
can enable the tumor to invade and spread to other parts of the body. In
fact, vascularized tumors are capable of rapidly growing and spreading. They
lead to the formation of new blood vessels from existing blood vessels in a
process known as angiogenesis [110, 111, 112].

This thesis focuses on the primary stages of tumors, where they remain
avascular without angiogenesis or angiogenic factors. Furthermore, we account
for tumors without distinguishing between the histological features, location
of the tumor, and cell origin, i.e. carcinomas (epithelial), melanoma (skin),
sarcomas (connective), glioblastoma (nervous system), etc.

Regarding physiology, avascular tumors are mainly composed of interstitial
fluid, which fills the spaces between cells, and solid components which are
mainly different cells, extracellular matrix (ECM), filaments, and proteins.

ECM is a complex network of molecules, including structural proteins, that
surrounds and supports cells. In tumors, the ECM is often disrupted and
remodeled to create a microenvironment that is favorable to cancer cell
growth [113, 114, 48]. This can include the overproduction of ECM compon-
ents such as collagen, which can provide structural support for the tumor
and make it more resistant to therapy [115, 116]. Additionally, cancer cells
can secrete enzymes that degrade the ECM, allowing them to migrate and
invade surrounding tissue [117, 113].

Cells attach to ECM to anchor themselves in place and regulate their behavior.
However, in cancer, these cell-ECM interactions can be disrupted and contrib-
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ute to the abnormal behavior of cancer cells. One of the main proteins involved
in cell-ECM adhesion is a transmembrane protein called integrin, which helps
in transmitting signals from the ECM to the cell, regulating cell behavior.
In cancer, this expression can be altered, leading to changes in cell-ECM
adhesion and increased invasive behavior [118, 119, 120]. Another relevant
protein that plays a role in cell-ECM adhesion is matrix metalloproteinases
(MMPs), which are key enzymes that promote ECM degradation allowing
cancer cells to migrate and invade surrounding tissue [121, 122, 123, 124].

Furthermore, cells adhere to each other creating links that help to hold them
together and maintain the integrity of tissues. In normal tissue, cell-cell
adhesion is tightly regulated and helps to prevent the uncontrolled growth
of cells. This regulation is often disrupted in cancer and cells can lose their
normal cell-cell adhesion properties. One of the main proteins involved in
cancer cell-cell adhesion is a transmembrane protein called E-cadherin, whose
expression is often reduced or lost, allowing cancer cells to detach from each
other and migrate away from the primary tumor [125, 126].

This process is related to epithelial-mesenchymal transition (EMT), in which
cancer cells lose their epithelial characteristics and cell-cell adhesion and
acquire mesenchymal properties, such as increased motility and invasive-
ness [127, 128, 129]. Another protein called N-cadherin is often upregulated
in cancer cells, which can promote cell-cell adhesion and contribute to the
formation of more aggressive tumors. Overall, the regulation of cell-cell
adhesion is critical in cancer and the loss of E-cadherin and the increased
expression of N-cadherin are key events in the development and progression
of cancer [130, 131].

Cancer cells can form three-dimensional spheroids (MCTS), which mimic
the microenvironment and interactions of solid tumors, and are extensively
utilized in vitro for investigating cancer development, drug resistance, and
the effectiveness of new therapeutic agents.

The formation of spheroids is influenced by surface tension, which is related
to the cadherin expression level of the cells. The relative surface tensions
determine the spreading of the cells, resulting in the rearrangement of the
spheroid such that the cell line with lower cadherin expression spreads over
the other [132, 133]. Thus, the accumulation of surface stress can contribute
to the spheroid formation by altering cell adhesion properties, leading to
cell detachment and self-aggregation [134]. For instance, the Hanging Drop
technique uses surface tension and gravitational force to produce spheroids
in vitro [135, 136].

The composition and proportion of the cells can vary depending on the type
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and stage of the tumor, and the microenvironment in which it is growing.
The different types of cells include differentiated cancer cells, immune cells,
endothelial cells, and fibroblasts. Furthermore, there are cancer-associated
fibroblasts, macrophages, adipocytes, endothelial and pericytes (CAFs, CAMs,
CAAs, CAECs, CAPs), which are cells that have undergone changes in
response to the tumor and can contribute to the growth and progression of
the tumor [137, 138].

The subpopulation of cancer stem cells (CSCs) are considered to be the most
crucial player cells within tumors, as they possess properties that promote
the progression of the tumor [139, 140, 35, 36, 37]. CSCs are capable of
self-renewal, differentiation into other cancer cell types, forming new tumors,
evading the host immune system, migration, pumping out cytotoxic drugs,
and resisting conventional therapy, making them a major contributor to
cancer recurrence [44, 33, 38, 39]

When it comes to cancer treatment, the options available are varied and
complex. Each therapy carries its own set of advantages and disadvantages,
making it crucial to carefully evaluate the specific needs and circumstances of
each individual patient. The type and stage of cancer, as well as the patient’s
overall health, all play a vital role in determining the most appropriate
treatment plan. That being said, the most widely utilized and proven cancer
therapies currently available are:

• Surgery is often the first line of defense. The goal of surgery is to excise
as much of the malignant tissue as possible. Resection offers the benefit
of potentially achieving complete removal of the tumor in a localized
manner, although surgical intervention carries certain risks, including
the potential for complications and the possibility of incomplete tumor
removal due to indistinct tumor boundaries.

• Chemotherapy is a treatment modality that employs drugs to destroy
cancer cells by disrupting the cell cycle. It is commonly employed in
cancers that have metastasized to various locations in the body, such
as leukemia and lymphoma. Chemotherapy offers the benefit of being
able to target cancer cells that have spread to distant locations in the
body. Notwithstanding, it also has certain drawbacks, such as the
non-localized nature of the treatment, which can result in significant
side effects and the possibility of cancer cells developing resistance to
the drugs used.

• Radiation therapy is a treatment that uses high-energy rays to kill
cancer cells. It is often used for cancers that are difficult to remove
with surgery. Radiation therapy has the advantage of being able to
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reach cancer cells that are hard to reach with surgery while localized,
but it also has some disadvantages, such as the risk of side effects, like
fatigue and skin irritation.

• Hormonal therapy is a treatment option for specific types of cancer such
as breast and prostate cancer, which are sensitive to hormones. It aims
to inhibit the production or action of hormones that promote cancer
growth. Hormonal therapy can be administered orally, via injection,
or as an implant and can be used alone or in conjunction with other
treatments. It offers the advantage of targeting cancer cells specifically
and lowers the risk of recurrence in certain types of cancer. However, it
is only effective for tumors that have hormone receptors, and have the
risk of side effects such as hot flashes and bone loss, and the possibility
of cancer becoming resistant to the therapy over time.

• Immunotherapy leverages the immune system of the body to combat
the disease. It is often used for cancers that are difficult to treat,
such as melanoma and lung cancer. The use of immunotherapy has
been a topic of intense research and development, due to its numerous
advantages, including the specificity of target cancer cells, reducing
the risk of harming healthy cells, and the durability of response, as
the immune system can continue to attack cancer cells even after the
treatment has ended. Despite its potential benefits, immunotherapy
can also result in certain side effects, including fatigue, skin irritation,
and allergic reactions.

• Cryoablation and thermal ablation are two types of minimally invasive
procedures that use extreme temperatures to destroy cancer cells and
they are typically used as secondary treatments or for patients who are
not suitable for surgery or radiation therapy. Cryoablation uses cold
to freeze and kill cancer cells, for instance in uterus cancer. Thermal
ablation uses heat to destroy cancer cells, and can also be used to treat a
variety of cancers, such as prostate cancer. In particular, high-intensity
focused ultrasound (HIFU) has widespread use. Both procedures have
the advantage of being able to reach cancer cells that are difficult to
reach with surgery and have a relatively low risk of complications.
However, both also carry some risks of side effects such as pain and
swelling, and there is a possibility that not all cancer cells may be killed
during the procedure.

In short, the main features of cancer have been made clear, including its
components and current treatments. Specifically, the issues of CSCs are
highlighted, as they are not eliminated by traditional treatment methods.
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As such, there is a need to research new forms of treatment that can better
target CSCs, and mechanotherapy is a potential solution in this regard. The
next section explores how mechanics can be used then to improve prognosis
disease, through an examination of recent experimental research in the field.

2.1.1 Role of mechanics

In addition to well-studied chemobiological factors [141, 142, 143, 144, 145,
146], mechanical stress is key in tumor development. Growing tumors can be
considered as a poroelastic medium that deforms according to the stresses
they are subjected to, depending not only on the duration and direction
of the forces but also on the mechanical properties of the tumor and its
environment [147, 148, 149]. The literature has used the term pressure in
different contexts [150, 82, 151, 152, 153, 55, 58].

Some refer to the internal tumor stresses that keep the homeostatic state of
the tissue, to the possible external stress applied to tumors, to the interstitial
fluid pressure, to the mutual pressure exerted by two dynamic cell populations
across their interface, and even to the fluxes of cells. Here, we refer to pressure
as compression stress. We denote by stresses the internal and external forces
applied to different tumor surfaces, regardless of their solid or fluid nature.
Finally, the flow of cells is called flux.

Growing tumor behavior depends on both solid and fluid stress regarding its
poroelastic nature. Solid stress increases as a function of tumor gain volume
and internal interaction between cells, ECM, and cell components that cause
elastic rearrangements. In particular, external forces also affect tumor beha-
vior. Externally imposed static or dynamic compressive stresses on tumors
cause proliferation inhibition and induce cell apoptosis. The first evidence
of mechanical stress induction was confirmed in 1997 when Helmlinger et al.
reported measurements of adenocarcinoma spheroids embedded in agarose
gel matrices with different concentrations [154]. The results suggested that
spheroid growth was completely inhibited at 1% of gel concentration. How-
ever, [154] also demonstrated the reversible behavior of the inhibitory effect,
which implies that cells remain in a quiescent state as long as stress does not
stop. Further experiments carried out in successive years for different cancer
cell lines supported the results of [154]. Roose et al. performed experiments
for spheroids of the human melanoma (MU89) cancer cell line at concen-
trations of 0.5% and 1% of type VII agarose [151]; Cheng et al. embedded
monolayer cells of metastatic murine breast carcinoma (EMT6) and not
metastatic murine mammary carcinoma (67NR) in agarose gel [155]; Montel
et al. experimented with carcinoma cell spheroids (CT26) [156] and [157]
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used multicellular spheroids of HT29, CT26, and BC52 cells. All analyses
reached the same conclusion: the growth reduction resulted from compressive
stress. To quantify the relationship between the concentration of the agarose
gel (% w/w of Dextran) and the pressure (Pascals) exerted by the gel, the
studies of [156, 157, 158] adapted the empirical formula proposed by [159].
From stress quantification, it is inferred that the compression applied in
the above experiments reached values between 5-10kPa, achieving at least
a 50% reduction in proliferation compared to stress-free growth and a 30%
increase in apoptotic cell activity. Numerous techniques are available for
quantifying cell proliferation, including cell counting, PCNA (proliferating
cell nuclear antigen), Blue Alamar assay, and many others, while there are
multiple methods for measuring apoptosis, such as TUNEL assay (Terminal
deoxynucleotidyl transferase dUTP nick end labeling) or Caspase activity
assays.

These findings reveal that not only the surrounding medium can exert pres-
sure on the tumor but that any external or internal stress could affect the
dynamics of the tumor. In particular, it has been shown that if compression
is exerted externally by a piston with adjustable weights, the direction of
stress affects the final shape of the tumor, as proliferation is inhibited in
areas of high pressure, resulting in different patterns [155]. Furthermore,
monolayer peripheral cells can undergo a phenotypic transformation that
causes cells to become leader cells and initiate collective migration [160],
although other studies show that compressive stresses through low ultrasound
slow migration [77]. Another method of compressing tumors relies on seeding
spheroids in permeable microcapsules. Indeed, reference [161] found that not
only the difference in stiffness affects growth, but also the thicknesses of the
matrix.

Some of these studies are reviewed in [162], where their findings are summar-
ized according to the source of the stresses. The relevance of these findings
lies in their potential to design new cancer therapies. How could we modify
the tumor microenvironment and alter the tumor fate? In the following
section, we will delve deeper into these questions, providing a comprehens-
ive and detailed examination of mechanotherapy and contributing to the
understanding of this area in Part II of this dissertation.

In addition to external stresses, growth and reorganization, as well as cell-
cell and cell-ECM interactions, cause internal stresses within the tumor.
Stresses generated during growth alter tumor patterning [46, 155] as well as
biochemical components and drug delivery [163, 87, 164, 165]. Compressive
radial and circumferential stresses can be distinguished in the core of the
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tumor, while at the interface the stress is compressive in the radial direction
and tensile in the circumferential direction [147, 45, 166]. Forces generated
can be quantified by traction microscopy, micropillars, cantilevers, and other
force sensors based on unknown material properties [58].

The interaction of the cell components and their environment also causes
different levels of stress within the tumor. Existing forces between cell
bounds keep the tumor stable in a homeostatic state. However, if adjacent
groups of cells have significantly different mechanical parameters, e-cadherins
could sense the stiffness of the cells and activate pathways that regulate cell
adhesion [125, 152, 167]. Thus, the stiffest cluster of cells will compress the
softest, generating forces that may allow the progression of pulled fronts and
displacement of the softest tissue [147, 152, 168]. Furthermore, a patch of cells
with identical mechanical properties could mutate and grow faster or slower
than its environment, i.e., not uniformly compared to the rest of the tissue [55,
169]. As cells adhere to each other, cell patches transmit and accumulate
stresses in a feedback mechanism: nonuniform growth generates pressure,
which self-regulates growth [55, 58]. The underlying biological theory of
these local mechanical interactions is based on cytonemes (a structure similar
to a filopodia) that mediate the mechanosensing of cellular communication
between the closest cells [170, 171].

The strength and contractility of adhesions have been shown to regulate
durotaxis [172, 173], explaining why adhesion forces are considerably more
robust in metastatic cells compared to non-metastatic cells [174, 175]. In
fact, the mechanical state of cells depends on the stiffness and the amount of
elastic energy stored [176, 177, 92, 63].

Studies have shown that cells grown on a stretched substrate exhibit a stiffer
cytoskeleton compared to cells grown on unstretched gels. Furthermore,
these cells display a reciprocal elongation with the substrate [176, 173] With
respect to the primary tumor tension state, cells rearrange and modify their
microenvironment, generating internal forces that interact with the external
ones. These solid stresses that accumulate in the tumor during growth
conform to the residual stress. Computational and experimental methods,
such as tumor excision and opening, have been employed to quantify the
residual stress in tumors. [178, 45, 179, 163, 180, 181].

From a fluid perspective, the primary fluid stresses that affect tumor dynamics
are the interstitial fluid pressure of the tumor (IFP or TIF) and the capillary
pressure (blood vessels and lymphatic system) [165], which interact with the
extracellular medium by perfusion. These movements of perfusion and flow
generate mainly fluid shear stresses (FSS) within the tumor and prevent fluid



2.1. CANCER DYNAMICS 17

accumulation in interstitial spaces under normal conditions [147].

Fluid shear stress is an essential regulator of tumor cell adhesion and ex-
travasation [182], which affects fluid mechanics and metastatic potential
since tumor cells are primarily exposed to interstitial and blood shear stress
during metastasis to target secondary organs [183]. FSS levels are variable
in the fluid microenvironment related to tumor metastasis [182]. Invading
tumor cells can take advantage of interstitial flow to generate autologous
chemokine gradients, guiding their migration to draining lymphatic vessels.
At the same time, cells in the microenvironment also respond to elevated
interstitial flow caused by tumors, precipitating a cascade of changes in cell
phenotype, secretion of pro-invasive cytokines, and matrix remodeling, all of
which improve tumor invasion [184]. However, there are other critical factors
in extravasation and metastasis, such as the necessary cooperation of EMT
cells that alter the surrounding matrix through MMP and non-EMT cells
that establish colonies at secondary sites [185].

Hyperpermeability of blood vessels and loss of lymphatic drainage within
the tumor [186] represent barriers to drug delivery and transport [63]. As
a result of this high vascular permeability, the interstitial shear stress can
reach approximately 0.01Pa [182, 187]. Blood shear stress levels are higher
than those produced by interstitial and lymphatic flow, obtaining pressure
values in veins, capillaries, and arteries of 0.1-0.4 Pa, 1-2 Pa, and 0.4-3 Pa,
respectively [182, 188]. The lymphatic system drains and allows reentry
of body fluid into the circulatory system, reaching an average pressure of
0.1Pa [182], less than the other FSS.

The interstitial fluid pressure within tumors is raised and isotropic due to the
overall tumor stress, and this increase is a result of the hyperpermeability of
blood vessels in the tumor [45]. The IFP is heterogeneous, with higher values
in the core and lower values at the borders [189, 45]. The raised IFP has been
established as a modulatory factor for tumor proliferation, as it results in
hypoxia and nutrient deprivation, thereby promoting tumor growth [190]. In
fact, interstitial fluid drainage in a tumor xenograft model reversibly decreases
tumor cell proliferation by improving drug uptake, modifying patterning, and
increasing the relaxation of the cortex [191].

Fluid forces can be measured by microfluidic traction force microscopy,
confocal microscopy, and flow magnetic resonance imaging [182]. Furthermore,
the classical Wick-in-needle (WN) and pressure catheter (PC) are the two
most commonly used methods to measure fluid pressure directly [192], and
magnetic resonance imaging (MRI) has been used to measure wall shear
stress [193, 194].
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Figure 2.1: Stresses in a poroelastic tumorStresses in a poroelastic tumorStresses in a poroelastic tumor. a) Total stress is the sum of
solid and fluid stresses generated during growth. b) Solid stress accounts
for growth and elastic stresses. In particular, b1) shows the tensional
growth state, which decomposes into radial compression and tension
on the rims, while b2) accounts for the elastic rearrangement produced
during growth: compression, shear, and tension forces that maintain
equilibrium. Note that homeostasis is maintained if the cell-cell and
cell-ECM adhesion forces are equilibrated. Finally, the fluid stresses c1)
are mainly shear and account for the FSS in the interstitial medium
and the shear stress of the blood and lymphatic vessels. IFP arises with
growth compressing the vessels (see the cross section of vessels in Figure

c2).

The interplay between microscale changes, such as cell-cell and cell-extracellular
matrix interactions, and macroscale changes through mechanotransduction
pathways results in a dynamic reciprocity [195]. Solid stresses in the tumor
can cause compression of the vessels, leading to a decrease in vascular per-
fusion and hindering the flow of nutrients and lymphatic drainage. This
results in an increase in interstitial fluid pressure, posing a barrier to drug
delivery and enhancing the release of proangiogenic factors, contributing to
the malignancy of tumor cells [196].

In summary, the dynamics of the tumor is involved in the accumulation
of stress and the mechanical properties of the tumor and its environment,
which in turn induces feedback into the biochemical pathways. Although the
described solid and fluid effects are not mutually exclusive and a combined
effect between stiffness and viscosity may coexist, in this review we propose
to classify tumor dynamics into two major groups according to the leading
nature of their progression: solid and fluid behavior of tumors.

The first scenario to be considered is when the matrix, surrounding tissue, or
external forces inhibit tumor growth or migration by applying compressive
stress on tumor tissue, as depicted in Figure 2.2a. This phenomenon has been
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observed in experiments with agarose gels, where tumor growth is slowed if
the tumor is embedded in a rigid medium. This relationship has also been
demonstrated in vivo for prostate cancers, where benign prostatic hyperplasia
applies compressive stress to the tumor, slowing its progression [92, 197, 198].

In the opposite case, the more rigid tumor causes compressions in the sur-
rounding environment, thus displacing the surrounding tissue in a process
called the mass effect, in which it gains volume and grows (Figure 2.2b).
This phenomenon could explain why stiffer tumors can progress over sur-
rounding tissue, creating joint forces that will depend on the relative stiffness
of both tissues and accumulate throughout the growth process. Although
tumor stiffness is characteristic of each cell line, the average stiffness of
tumors ranges from 0.5-3kPa for spheroids [199] to 10-60kPa for consolidated
tumors [200, 201, 202]. A suitable explanation of the difference between
spheroids and consolidated tumors may be based on their function: cells and
spheroids tend to adhere more slowly to each other, promoting motility, while
consolidated tumors behave as solid masses with strong links and fibers. To
characterize the mechanical properties of tumors, some techniques such as
static and dynamic nanoindentation, micropipette aspiration, and optical
tweezers are used in vitro [203, 204, 199]. The latter technology combines the
mechanical characterization of cells with incubation and imaging to provide
conditions similar to those in vivo (Pavone by ©Optic11). At the macroscale
level, elastography is used [205, 206, 207].

However, the hypothesis regarding the displacement of the surrounding tissue
by the growing tumor or vice versa remains controversial when the medium
and tumor exhibit similar stiffness. Why can the tumor then migrate and
proliferate? Recent studies propose a possible explanation based on the fluid
dynamics of tumors, specifically, viscosity differences between the medium
and the tumor [208, 209]. The phenomenon has been investigated in fluid
systems, where a fluid with lower viscosity is introduced into a fluid with
higher viscosity. This experiment has resulted in the formation of Saffman-
Taylor instabilities, commonly referred to as viscous fingering, due to its
characteristic pattern. Conversely, instabilities do not occur when viscosities
are reversed [208, 210, 211].

Finally, these processes show a new perspective on tumor dynamics: growth
and migration may be caused by differences in viscosities rather than differ-
ences in stiffness. Therefore, the tumor grows homogeneously if the viscosity
of the medium is higher than that of the tumor (see Figure 2.2c) analogously
to the case of the mass effect and heterogeneously if the tumor is less viscous
than the medium, forming a patterning characteristic of viscous fingering and
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more aggressive tumors, as shown in Figure 2.2d. Across these lines, recent
reports show that glioblastoma (aggressive and metastatic tumor) has less
viscosity compared to healthy brain parenchyma [208, 212]. On the contrary,
viscosity differences do not appear to be helpful in breast tissue, almost twice
as stiff as surrounding healthy tissue [205, 213].

Figure 2.2: Difference in the patterning of tumor growthDifference in the patterning of tumor growthDifference in the patterning of tumor growth. a) and b)
for solid growth behavior, and c) and d) for fluid growth behavior. In
particular, a) shows the inhibition of growth due to compressive solid
stress, b) growth as a solid mass effect, c) homogeneous tumor growth due
to similar fluid properties, and d) the viscous fingering effect. The symbol
E refers to the Young modulus, while η indicates viscosity. Subscripts T

and H refer to the tumor and healthy medium, respectively.

2.1.2 Mechanotransduction as target therapy

The quest to unveil the molecular mechanisms by which mechanical forces
modulate signal transduction and gene expression has been raised in the
21st century to understand the mechanisms of cellular responses to the
physiological environment [214, 147, 215, 216, 217, 47]. Although the exact
mechanisms of responses remain unclear and are inherent to each type of
cell line, in this section, we try to elucidate the main premises that have
regulated the state of tumor stress to date, outlining an example of the
leading hypotheses underlying mechanotherapy.

Mechanotransduction begins with the transmission of forces to tissue or
cellular elements and ends with the integrated response of the cell cluster [215,
218]. The initial mechanical signal, mechanotransmission, occurs locally and
is channeled to other mechanosensors along the linked cytoskeleton network
extremely quickly, on the order of hundreds of milliseconds [218, 219]. If the
forces are significant and are transmitted for a long enough time, mechanical
stimuli cause deformation of cellular structures, which increase and strengthen
in response to tension [220]. Conformational changes are followed by the
selective mechanosensing or activation of intracellular biochemical signaling
events [61, 221]. Then, cytoskeletal components are one of the leading
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mechanisms in helping to transmit a complete array of chemical and physical
signals that turn into a controlled mechanoresponse that regulates the cell
prognosis [222, 223].

Mechanoresponsive pathways integrate the cellular response to force over
space and time. The mechanism of response develops on slower time scales
than other signals: transmission signaling pathways occur in minutes, and
gene expression pathways can occur in hours to days [224, 218]. The leading
network of cellular mechanotransduction comprises mainly transmembrane
receptor proteins and the cytoskeleton, as well as extracellular matrix (ECM)
protein complexes [47, 225]. Several hypotheses aim to explain outside-in
mechanotransduction activation and how forces could enhance apoptosis,
decrease proliferation, and prevent migration. Numerous studies detail the
extensive biological pathways of mechanotransduction [223, 226, 215, 227],
so in this thesis, we only focus on the core components – shown in Figure 2.3–
that can be used as a targeted mechanical therapy to subsequently understand
and propose mathematical frameworks that attempt to model them.

In this thesis, the focus is on the key components of outside-in mechano-
transduction1 activation and how forces can impact apoptosis, proliferation,
and migration. While there is a wealth of research on the various biological
pathways of mechanotransduction [223, 226, 215, 227], this study endeavors
to isolate and analyze the critical elements involved in the process under
investigations, as represented in Figure 2.3. These core components could be
used as targeted mechanical therapy, and to subsequently understand and
propose mathematical frameworks that attempt to model them.

• Transforming Growth Factor βββ: Transforming Growth Factor TGF-
β is a family of cytokines that display a dual role in the tumor: at the
early stages of the disease, acting as a tumor suppressor inhibiting cell
cycle progression, and in advanced stages, promoting the Epithelial
to Mesenchymal Transition (EMT), inducing the pro-tumorigenic re-
sponse [228, 229, 230, 231]. Molecular events triggered by TGF-β
drive the activation of canonical cascade signaling using SMADs [232],
although noncanonical pathways, such as mitogen-activated protein
kinase/extracellular signal-regulated (MAPK/ERK), have also been
shown to influence tumor progression [233, 234, 235]. At later stages,
tumor cells avoid the antitumor properties of TGF-β by inactivating
TGF-β receptors, SMAD genes, or selectively silencing the properties of

1Note that only outside-in and isolation mechanisms are considered here. We assume
neither the cell-cell interactions nor the existing links, which frequently act as hubs for
other signaling regulations.
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apoptotic TGF-β properties [234]. Furthermore, the feedback between
ECM remodeling and the TGF-β signaling cascade [236] is critical in
tumor control [237]. Experiments proved that soft ECM and increased
TGF-β induced apoptosis, while increasing stiffness resulted in EMT
employing non-canonical signaling pathways [237, 238, 239, 240]. Con-
sidering that in advanced disease, increasing the stiffness of the ECM of
the microenvironment promotes tumor invasion and metastasis through
the EMT, it clearly states that it is crucial to be aware of the stage at
which action is required to regulate TGF-β action.

• Integrin-focal adhesions: Integrins are transmembrane receptors that
regulate mainly cell-ECM adhesion. Integrins are activated by respond-
ing to the forces exerted by the alignment and stiffness of fibronectin in
the ECM [120]. Once the stimulus is transmitted, the talin and kindlin
proteins connect the tail of the integrin to the actin fibers. Focal adhe-
sion is complete with binding of Focal Adhesion Kinase (FAK) [119, 241].
This activation promotes the linkage of vinculin [242, 243, 244], which
adheres to actin in the cytoskeleton. The regulators of the actin cyto-
skeleton act downstream of Rho GTPase, triggering the activation of
cascade signaling pathways: RHO–associated protein kinase (RHO–
ROCK) and phosphatinositide—-3–kinase–protein kinase B (P1K3-
AKT), which act as pro-oncogenes that induce lamellipodia protrusions,
migration, motility, and decreased apoptosis [245, 246, 223, 118, 247].
Therefore, it is clear that blocking FAK overexpression, P13K-AKT,
and RHO / ROCK pathways is a therapeutic target to investigate [248].

• Wnt – Frizzled: Wnt glycoprotein ligands adhere to Frizzled re-
ceptor proteins and trigger modulation of the β-catenin protein and
co-receptors [249] through the canonical pathway [250]. This activation
involves its translocation to the nucleus, where cell growth, motility,
and differentiation are regulated [251, 252, 249]. Furthermore, there
are non-canonical pathways independent of β -catenin: One of the most
relevant in tumor development is the Wnt-Capathway 2+ [253, 250],
where binding of Wnt to receptors causes a temporary increase in
Ca concentration2+. In particular, it is remarkable to point to the
rise of cytoplasmatic Ca2+ via Piezo1 Ion Channel as a promoter of
Wnt and P13K-AKT vias [254, 255, 256, 80, 257]. Wnt inactivation
reduces migration by down-regulating matrix metalloproteinase (MMP)
expression [258, 259, 260] and reduces EMT expression [260, 261, 262].
Furthermore, Wnt inhibitory factors (WIF-1) have also been shown to
significantly reduce tumor growth [260, 263, 264]. Therefore, it could
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be hypothesized that the mechanical stimulus could knock down the
Wnt pathway, regulating tumorigenesis and cell invasion.

• Hippo: The Hippo pathway is a highly conserved kinase pathway that
regulates cell proliferation, size, migration, and angiogenesis [265, 266,
267, 268]. Downstream regulation begins with the NF2 kinase protein
and the serine / threonine protein kinases MST1 / 2 and the large tu-
mor suppressor (LATS1 / 2), which activate the adapter proteins SAV1
and MOB1 [267, 269]. The Hippo pathway suppresses downstream
transcriptional coactivators: the Yes-associated protein and transcrip-
tion regulator protein 1 (YAP / TAZ) [270, 271], phosphorylating
and sequestering them in the cytoplasm and inhibiting their nuclear
transcription [272, 273, 274]. The localization of YAP-TAZ in the
nucleus is identified as an oncogene that promotes EMT, malignancy,
and secondary tumors [266, 267]. Nuclear activation of YAP-TAZ is
also related to other vias (e.g., PI3K-AKT and Wnt) through high
ECM stiffness, heterogeneous cell shape, loss of cell adhesions, and
disturbed flow [275, 276, 272]. Therefore, blocking YAP-TAZ nuclear
transcription and regulating the Hippo pathway is critical in mechano-
therapy [269, 277, 278].

• Hedgehog-Gli (Hh-Gli): Hedgehog proteins (in particular Sonic
Hedgehog -SHh-) silence the Patched1 transmembrane protein (PTCH1),
release Smoothened protein (SMO), and regulate the transcriptional
activity of the glioma-associated oncogene (GLI)[279]. Hh-Gli pathway
has been shown to be critical in tumorogenesis [280, 281, 282, 279],
affect cytoneme stabilization and guidance [170], and negatively reg-
ulate EMT [283, 284, 285] in crosstalk with Wnt [286], TGF-β [287],
and P13K-AKT [288, 289]. Furthermore, the orientation and guidance
mechanisms followed by the Hh-Gli pathway have recently been studied
[290], as well as the role of the Hh co-receptor interference hedgehog
(Ihog) in contributing to integrin-mediated focal adhesions [291].

To conclude, we summarized and unified examples of biological pathways
currently being studied to open a perspective that connects mechanotransduc-
tion mechanisms with biomechanical and mathematical models. Although we
give short insights into possible mechanotransduction pathways, a complete
proteomics analyses should test the therapeutic hypotheses in different tumor
cells, stages, and stress states. Targeting these proteins and the pathways
that regulate their expression is an active area of research for the devel-
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Figure 2.3: Examples of the therapeutical targets to impact cancerExamples of the therapeutical targets to impact cancerExamples of the therapeutical targets to impact cancer
cells via mechanotransductioncells via mechanotransductioncells via mechanotransduction. From left to right, the mechanisms pro-
posed are H1) Inhibition of TGF-β in advanced stages of the disease,
H2) Deregulation of Integrins-focal adhesions to prevent the activation of
P13K-AKT and RHO-ROCK pathways and its associated malignancy
behavior, H3) Knockdown of Wnt-Frizzled to hinder poor prognosis,
H4) Keep Hippo-pathway regulation to inhibit the YAP-TAZ nuclear
localization and H5) Block overexpression of Hedgehog to prevent the
inactivation of PTCH1 or Ihog. Mechanotherapy should account for these
or other target mechanisms to selective block tumor progressor and the

pathways that upregulate cancer propagation.

opment of new cancer therapies. In particular, the structure of the ECM
emerges as a critical therapeutic driver, as the stiffness of the ECM is closely
related to a poor prognostic disease in the proposed pathways. Therefore,
mechanotherapy must focus on altering the biochemical and biomechanical
properties of the tumor microenvironment and balance the pathways that
prevent tumor progression in a non-invasive way.
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2.2 Tumor modeling
Mathematical oncology is both a well-established and a rapidly-evolving field
of research. The origins of this field date back to the differential equations
that have been used to model and predict the uncontrolled proliferation of
cancer cells and the effects of treatment for many years.

The pioneering works of Greenspan and McElwain remained an isolated case
of mathematical oncology for two decades [292, 293, 294, 295]. In the 1990s, a
large number of mathematical models were developed to describe the spatial
growth of tumors, using approaches that ranged from simple diffusive models
to complex multiphase models. Later, the interactions between the tumor
and the immune system, mechanics, as well as the angiogenesis process, also
became the focus of extensive theoretical research. Since then, comprehensive
reviews on the advancements in mathematical oncology can be found in the
references provided [296, 109, 297, 86, 298, 83, 299, 45, 300, 63, 301, 85, 302].

In cancer modeling, mathematical models can be broadly categorized into
two types: discrete and continuum. Discrete models represent cancer as a
collection of individual cells, whereas continuum models represent cancer as
a continuous distribution of cells.

Discrete models simulate cancer at the subcellular and individual cellular
scale, including protein synthesis, mutations, proliferation, apoptosis, cell
adhesions, and migration. The most commonly used discrete models are
based on whether cells are on a structured mesh (on-lattice models) or not
(off-lattice models). Specifically, in on-lattice models, multiple cells can
occupy a single lattice position (lattice-gas cellular automata), or each cell
can occupy a single lattice position (cellular automata), or multiple positions
(cellular Potts). Off-lattice models represent cells as autonomous agents that
can move freely in a space without the use of a grid. These models can
better represent the motility of agents and biomechanics, such as center-based
and boundary-based models. For further reading on discrete models, we
recommend [303], which provides a clear review of discrete models in cancer,
including available open-source toolkits.

Continuum models, on the other hand, describe the distribution of clusters
of cells and tissues in a given region at the macroscale. These models can
provide a macroscopic view of cancer progression and can be used to predict
how cancer will respond to treatment. They are based on systems of partial
differential equations (PDE) which mainly include terms of reaction, diffusion,
and convection.

Reaction terms are the source or sink functions of cells to mainly model
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proliferation and apoptosis. These reaction terms can range from simple
exponential equations to more complex models, such as gomperztian, lo-
gistic, and even functions that consider the competition between cells using
predator-prey dynamics or Volterra-Lotka equations [304, 84]. Furthermore,
the inherent uncertainty and variability in biological systems can be con-
sidered including stochastic functions as react terms in the model. The effect
of therapies is usually modeled by altering parameters of proliferation or
apoptosis or adding new reaction terms in the model [305, 168].

Convection and diffusion terms usually model motility and migration. In
particular, Darcy’s law is widely utilized for the diffusion of cells, despite its
linearity and infinite speed of propagation hindering the regulation of the
propagation front –inherent to each cell species–. To address this limitation,
some studies incorporate the finite speed of the tumor’s leading edge [306,
307, 308, 169, 309, 310, 311, 312].

These terms can be used also to model cellular movement in response to
established gradients, such as chemical or mechanical signals (chemotaxis
and mechanotaxis) [313, 314, 315]. Substances such as nutrients, growth
factors, drugs, and proteins cascade are widely modeled as reaction-diffusion
equations, coupled with other terms of PDE related to migration, proliferation,
and even other agents to account for cell metabolism [316, 92]

The time scales also vary greatly depending on the type of process being
studied. Proliferation, for example, can take hours to days as cancer cells
divide and multiply. The formation and growth of a tumor can take weeks
to months, as the cancer cells continue to divide and infiltrate surrounding
tissue. In addition, while near invasion can take days, the complete process
of metastasis can take weeks to years as cancer cells travel through the blood
vessels or lymphatic system to reach new sites [317].

While continuum models are efficient in terms of computational cost, they
may not be able to fully capture the intricate interactions between individual
cells. This is where challenging hybrid and multiscale models come in - they
blend the events happening at a subcellular, cellular, and tissue level, all
while considering appropriate time and length scales [318].

Recent research in the field of mathematical oncology has also considered
tumor growth dynamics from a mechanical continuum perspective. Tissues
can be modeled using continuum mechanics since they can be understood as
homogenized multiphase materials.

In this dissertation, we describe the main approaches of the macroscale
continuum from finite growth theory and its simplification into infinites-
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imal growth theory, which neglects the discontinuities on microscopic levels
considering the tumor microenvironment as continuously distributed in the
entire space it occupies. The fundamental theory underpinning the growth
of tissues from the mechanics emerges from the works of [319, 179, 81]
and the subsequent literature review performed by [54]. Since then, studies
have primarily focused on the growth and remodeling theory of soft tis-
sues [150, 82], without specific application to tumor modeling. However,
some authors have specialized in cancer, considering growth with solid and
fluid phases [86, 151, 180, 63]. More recently, [63, 45] summarized their
comprehensive approach to tumor modeling from different angles: fluid and
solid mechanical models, drug delivery, vascularization, and angiogenesis.
The main equations of these models include multiphase systems, momentum
balance, constitutive behavior, the mass balance that account for net prolif-
eration and motility, and reaction-diffusion laws for biochemical components.
In the following sections, we discuss the fundamental principles of continuum
mechanics and their large application to the study of cancer.

2.2.1 Framework of Continuum

To elucidate the growth of tumors from a mechanical perspective, we initiate
the discussion with the fundamentals of the Finite Strain theory [320] rooted in
Classical Continuum Mechanics (CCM). This theory constitutes a preliminary
approximation, as it assumes the material to be perfectly continuous. Then,
we simplify here Generalized Continuum Mechanics (GCM) for which each
material point P transmits both forces ti and moments mi. Therefore, under
CCM, each material point P within the domain Ω only transmits forces,
which are represented by the traction vector ti.

Let P be a point in the undeformed body B at the initial time t=0 and in the
undeformed configuration ko, which deforms to the point p in the deformed
body b at time t in the current configuration kt (Figure 2.4). The point P is
located at the material or Lagrangian coordinates XXX, and p is located at the
spatial or Eulerian coordinates xxx. Thus, the initial position is represented
by XXX while xxx denotes the position after a time t when the body is deformed.
The displacement of particles, referred to as the undeformed coordinates
(material coordinates), is expressed by Equation (2.2.1).

uuu(XXX, t) = xxx(XXX, t) − XXX. (2.2.1)

Material deformation at a material point is given by the gradient tensor F,
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which relates the reference and current configuration by Equation (2.2.2).

FFF = dxxx
dXXX . (2.2.2)

Consider dV the volume occupied by a particle and ρo(XXX) the density in

Figure 2.4: Fundamentals of Classical Continuum MechanicsFundamentals of Classical Continuum MechanicsFundamentals of Classical Continuum Mechanics. Config-
urations, Displacements, and Deformations.

the initial undeformed configuration ko(B). Thus, the mass of the particle is
given by dMo = ρodV . After a time interval, dv and ρ are the volume and
density of the current deformed configuration kt(b). The change in volume or
density due to deformation is described by the determinant of the deformation
gradient as J=|FFF| or in terms of volume or density variation between the
current and initial configuration J =

∣∣∣ dv

dV

∣∣∣ =
∣∣∣ρo

ρ

∣∣∣. Then, the conservation of
mass for a single constituent in Lagrangian and Eulerian coordinates is:

ρo(XXX) = J(XXX, t)ρ(XXX, t),
∂ρ

∂t
+ ∇ · (ρvvv) = 0,

(2.2.3)
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where the velocity of the particle is given by vvv = dxxx
dt

. The finite deformation
of the Green-Lagrange symmetric tensor E is defined to account for the
strains.

E = 1
2 ·
(
FTF − I

)
, (2.2.4)

where I is the second-order identity tensor. Furthermore, the symmetric
Green-Lagrange tensor E can be expressed in terms of displacements u, as:

E = 1
2

(
∇u + ∇uT + ∇uT · ∇u

)
. (2.2.5)

The strain energy density is the energy stored in the tissue during stretching,
and the use of different strain energy functions W depends on the tumor
behavior. Stresses are obtained by deriving the strain energy density to E
or strain deformation invariants, obtaining different constitutive equations.
Invariants are tensors that satisfy the principle of material-frame indifference
and do not change with Eulerian or material-frame rotations. The invariants
used in this review are mainly used in non-linear elasticity; see equation (2.2.6).
They are applied to a selected tensor A.

IA = tr(A)

IIA = 1
2

(
(tr(AAA))2 − tr(AAA2)

)
,

IIIA = |A|.

(2.2.6)

Regarding stresses, it is common to use the second Piola-Kirchoff pseudo-
stress tensor S:

S = ∂W
∂E = ∂W

∂IE

∂IE

∂E + ∂W
∂IIE

∂IIE

∂E + ∂W
∂IIIE

∂IIIE

∂E , (2.2.7)

where the invariants here refer to the finite Green-Lagrange deformation
tensor. However, other stresses are commonly used for convenience of config-
uration. In the Lagrangian approach, it highlights the first Piola-Kirchoff
stress tensor P, which associates the undeformed body with the stresses in
the current configuration. In the Eulerian formulation, the Cauchy stress
tensor –real stress– σ is referred to as the deformed body b in the current
configuration. The relation between pseudo-stresses and the Cauchy stress
tensor is given by Equation (2.2.8).

P = JσF−T,

S = JF−1σF−T.
(2.2.8)
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Another widely used notation is that described by the Cauchy-Green de-
formation tensors: the right Cauchy-Green deformation tensor C = FTF,
and the left Cauchy-Green deformation tensor B = FFT. Considering the
deformation tensor and the relation among pseudo-stresses, other formulas
that can be found in the literature are:

P = FS = ∂W
∂F = F∂W

∂E = 2F∂W
∂C ,

S = F−1P = F−1 ∂W
∂F = ∂W

∂E = 2∂W
∂C .

(2.2.9)

Last, the equilibrium of the system is achieved if the balanced momentum is
guaranteed:

∇ · P + b = ρo
∂2uuu
∂t2 , (2.2.10)

where P depends on the behavior of the constitutive material of each tissue,
ρo is the material density, b are the body forces, and the term on the right
represents the terms of inertia. Note that the characteristic velocities in
biological tissues and growth are small – growth is relatively slow compared
to elastic or viscoelastic response of tissues [51]–, so inertia terms can be
neglected, and quasi-static equilibrium imposes.

2.2.2 Growth from Continuum

Once the mechanical basics are established, tumor growth is included in the
mechanics framework similar to the thermoelastic problem [320]. Then, the
expansion or resorption of the tumor causes deformation from the initial zero-
stress state (ZSS) and there is a subsequent elastic rearrangement to ensure
the equilibrium of the medium to current stress state [51]. Consequently,
the deformation gradient tensor multiplicatively decomposes into the growth
tensor Fg and the elastic tensor Fe (Figure 2.5a), although a third compon-
ent could also be included to account for residual stresses accumulated in
tumors [45, 179, 321, 158]. This residual stress works similar to prestressed
concrete in Civil Engineering, making the tissue skeleton more efficient to
loads [51].

F = FeFg, (2.2.11)

where F is the total gradient deformation, Fe is the elastic rearrangement
produced after the tumor dynamics and Fg considers the gain or resorption
of the tumor mass described by the stretch rate g, Fg = gλg, with λg the
anisotropy tensor that distributes growth in different directions through
different weights. If the growth tensor is taken as isotropic, then λg = I.
Just as it happened with the Jacobians of the deformation, the changes in
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Figure 2.5: Theoretical framework of growth theoryTheoretical framework of growth theoryTheoretical framework of growth theory. a) Finite growth
theory. b) Infinitesimal growth theory.

volume or density produced by growth are described by the determinant of
gradient deformation Jg=|Fg|. Then, if Jg > 1 growth takes place, while
if Jg < 1, resorption occurs. The mass conservation that now accounts for
mass gain or resorption can be expressed in a Lagrangian or Eulerian frame
reference:

d(ρJ)
dt

= JρΓ,

∂ρ

∂t
+ ∇ · (ρvvv) = ρΓ,

(2.2.12)

where the source term Γ accounts for the gain or loss of tumor mass. Some
describe growth as an increase in the mass of already existing cells in the
body [150, 53], hypertrophy, while others account for the increase in the
number of cells – proliferation or duplication of cells – and its motion –
motility or migration–, hyperplasia. Furthermore, growth dynamics can also
be a function of the availability and concentration of nutrients [150, 180, 151],
the generation or degradation of some cellular components [321, 322, 323],
proteins [309, 92], drugs [324, 180] and stress as it is pointed in the next
section. The relationship between the term of the isotropic growth strain
and the proliferation rate is given by [150]:

dg

dt
= 1

3gΓ. (2.2.13)

Additionally, volumetric fractions are used to model the multiphase tumor
system. Considering that the constant density of each phase is ρi = ∂mi

∂v
,
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the volumetric fraction occupied by a phase can be represented by ϕi = ∂vi

∂v
,

see details in references [325, 326, 81]. The classical theory of the growth
of mixtures implies that the mass densities of each phase can change, but
only in such a way that the mass is conserved [326, 150], which means that
there can be mass interchange, but not true mass production [327, 328]. This
overcomes the limitation of the theory of growth, in which there is a violation
of the Continuum principle by creating new points [51]. The existence of
different phases can be expressed as:

ϕF +
n∑

i=1
ϕi = 1, (2.2.14)

where the subindex F refers to the interstitial fluid and the subindex i

denotes the constituents of the solid tumor. In this context, the phase-field
models are useful tools for solving interfacial problems, where fluid and solid
phases would be changed between two values in the zone around the interface,
avoiding abrupt changes between phases and allowing the diffuse nature
interface [91, 92, 329]. In addition, some authors support the creation of
mass-produced during tumor growth, so the previous equation is no longer
satisfied, and the sum of the constituents would exceed the unit [84, 330].
Specifically, the mass conservation of the fluid and solid phases is a function
of time and space:

∂ϕF

∂t
+ ∇ · (ϕFvFvFvF ) = ϕF ΓF ;

∂ϕi

∂t
+ ∇ · (ϕivivivi) = ϕiΓi.

(2.2.15)

In addition to the reaction term of proliferation Γi, multiphase systems can
involve feedback and interactions between different solid phases as explained
previously. Lastly, the migration of the solid phases includes a diffusion term
JJJ i:

∂ϕi

∂t
+ ∇ · (ϕivivivi) = ∇ · JJJ i + ϕiΓi, (2.2.16)

where JJJ i is the flux. Regarding the different phases that make up the
continuum, equation (2.2.11) should be described for each phase as Fi =
FeiFgi.

2.2.2.1 Infinitesimal growth theory

Since tumor deformation is a quasistatic process that occurs over a much lar-
ger time scale than elastic rearrangements, the continuum is widely modeled
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considering infinitesimal theory and linear elasticity [92, 91, 331, 332, 90, 89],
considering small strains and rotations. As such, linear elasticity provides a
suitable mechanical framework for investigating the effects of mechanotrans-
duction. Notwithstanding However, the choice of strain theory depends on the
specific purpose of the study. To move from the multiplicative decomposition
of large strains to the additive decomposition of small strains (Figure 2.5b),
we define the polar decomposition of the gradient tensor FFF:

FFF = RRRUUU, (2.2.17)

with UUU the right stretch tensor and RRR the rotation tensor. In particular, the
stretch tensor is defined by :

UUU =
√

FTFTFTFFF ≈ III + εεε + h.o.t., (2.2.18)

where the small strain tensor is defined by εεε = 1
2

(
∇uuu + ∇uTuTuT

)
and h.o.t.

refers to high-order terms. The rotation tensor is:

RRR = exp(ΘΘΘ) ≈ III + eeeΘΘΘ + h.o.t., (2.2.19)

with eee is the Levi-Civita tensor and ΘΘΘ the rotation tensor. Combining
equations (2.2.17), (2.2.18) and (2.2.19), and assuming ΘΘΘ ≪ 1, then:

FFF = (III + εεε)(III) = (III + εεε) + h.o.t. (2.2.20)

Notice that the spatial derivative of displacements in equation (2.2.1) can be
described as:

∂uuu
∂XXX = ∂xxx

∂XXX − III = FFF − III −→ εεε ≈ ∂uuu
∂XXX = FFF − III. (2.2.21)

Using (2.2.20), assuming small deformations and rotations, the multiplicative
decomposition of (2.2.11) reads:

FFF = FeFeFeFgFgFg = (III + εeεeεe)(III + εgεgεg) = III + εgεgεg + εeεeεe. (2.2.22)

Finally, the infinitesimal growth theory is based on:

εeεeεe + εgεgεg + III = εεε + III = FFF. (2.2.23)

Then, Equation (2.2.11) simplifies into the additive equation (2.2.24):

εεε = εeεeεe + εgεgεg, (2.2.24)
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where εeεeεe = 1
2(∇u + ∇uT) is the elastic small deformation that guarantees

mechanical equilibrium and the volumetric growth deformation is εgεgεg = gλgλgλg.
Taking into account small strains, the elastic Cauchy stress tensor may be
expressed as:

σeσeσe = σσσ − σgσgσg, (2.2.25)

where σσσ is the total tensional state obtained from equation (2.2.7) and σgσgσg is
the induced growth stress. Assuming the volumetric growth of the tumor,
σgσgσg = Kεgεgεg, with K the bulk modulus. Finally, note that the advective
term of the mass continuity equation (2.2.16) would be negligible under the
assumption of small displacements, small strains, and gradual changes in
tumor phases.

2.2.2.2 Governing equations: elasticity and poroelasticity

Due to the heterogeneous nature of the tumor, it is important to model
the mechanical behavior according to it. We denote by We the strain
energy density of the solid skeleton drained, and Wp the contribution of
saturated pores to the strain energy density. The total contribution reads
W = We + Wp. Most of the constitutive relations of solid elastic used in the
literature are the Blatz-Ko, Neo-Hookean, Exponential, and Ciarlet equations,
as shown in Table 2.1. Although viscosity is a fundamental parameter in
reorganization at small scales, viscosity is no longer relevant over long times –
intrinsic to growth. Therefore, the equations of tumor behavior do not include
the solid viscosity of the cells that could be described by the Kelvin-Voigt,
Maxwell, or Burgers models. However, viscosity can be a crucial parameter in
fluid behavior, as outlined in Section 2.1.1. Despite the different constitutive
relations proposed in the literature, [321] concluded that the evolution of
stress appeared to be independent of the chosen constitutive relation [321],
although exponential law better fitt cancer breast and colon adenocarcinoma
experiments.

In addition to the elastic properties of the tumor, the fluid component is
usually taken into account. Studies widely used the Biot theory of porooelasti-
city [337], which is based on the assumption that the deformation of the tumor
is caused by both the solid matrix and the fluid that fills its pores. Although
the theory was initially developed to describe the mechanical behavior of soil,
it has also been widely applied to other porous materials such as bone, and
tumor tissues.

Then, Biot’s theory allows us to model the elastic behavior of the tumor,
the fluid flow inside the pores, and the interaction between the solid matrix
and the fluid-filled pores [325]. To model poroelasticity, several possibilities



2.2. TUMOR MODELING 35

Table 2.1
Essential strain energy functions used in tumor growth modelingEssential strain energy functions used in tumor growth modelingEssential strain energy functions used in tumor growth modeling. Con-
stants λ and µ are the first Lamé parameter and the shear modulus,
respectivelya. The invariants described above are related to the right
Cauchy tensor (C) and the left Cauchy tensor (B). Je is the elastic de-

terminant and f, z, A1, A2 and C are constants.

Law Main equation Source

C. Neo-Hookean We = 0.5µ(IC − 3 + 2lnJe) + 0.5λ(Je − 1)2 [321, 323]

C. Blatz-Ko We = µf
2

[
(IC − 3) − 2

z (IIIC
z/2 − 1)

]
+ µ(1 − f)

2

[ IIC

IIIC
− 3 − 2

z (IIIC
−z/2 − 1)

]
[321, 150, 333]

C. Ciarlet We = λ

4 · (IIIB − ln IIIB − 1) + µ

2 · (IB − ln IIIB − 3) [334, 335, 166]

Exponential We = A1

(
eC1(−3+ICJ−2/3

e ) − 1
)

+ A2 (−1 + Je)2 [321]
C. Linear We = 0.5λ(IE)2 + µI2

E [331, 336, 92, 91]

aNote that elastic parameters should be drained if poroelasticity is considered.

arise to model the solid displacement and the fluid displacement uuu − uuuF ,
the solid displacement and the relative solid-fluid displacement uuu − w, or a
combination of the solid displacement and the pore pressure uuu − p. This last
approximation is the most used in tumor growth due to the reduction of
degrees of freedom and allows focusing on the influence of fluid pressure on
the solid skeleton.

According to this formulation, the fluid strain energy can be modeled by a
quadratic potential Wp = −α

2 (p−po)2, where α is the Biot coefficient, which
represents the volume of fluid gained or lost when the pore pressure returns
to its initial state [338], The variation in fluid content ζ assuming constant
density is related to elastic volumetric strain εv, and the pore pressure p:

ζ = ϕF − ϕF 0 = 1
M

(p − p0) + αεv, (2.2.26)

where ϕF is the current fluid phase, ϕF 0 is the initial fluid content, and M is
the Biot modulus, which considers the increase in fluid amount as a result of a
unit increase in the pore pressure, under constant volumetric stress [338, 339].
Then, the fluid mass conservation can be rewritten as the Storage equation:

∂ζ

∂t
= ∇ · qqq + ΓF −→ 1

M

∂p

∂t
+ α

∂εv

∂t
= ∇ · qqq + ΓF . (2.2.27)

where the pressure flux is represented by qqq, and the parabolic Darcy law gen-
erally defines it, qqq = kh∇p, with kh denoting conductivity, which is a function
of the viscosity of the dynamic fluid, the porosity, and the permeability of
the medium [337, 338]. The term ΓF considers the fluid interchange between
the lymphatic and vascular systems and the interstitial fluid described, which
is usually defined by the Starling equation [340, 186, 341, 304, 342].
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As pointed out at the beginning of the section, it is relevant to consider the
multiscale scale of the problem. Thus, some authors have also considered
the microscale of biochemical interactions by reaction or reaction-diffusion
equations, as described in (2.2.16). From these equations, the dependence of
growth on local oxygen [151, 324, 343], nutrients [333, 344], proteins [92, 309,
91] and even the effect of therapy such as drug delivery [324, 180]. Notably,
slight variations of these substances prolonged in time can produce the same
effect as a sizeable instantaneous fluctuation. For instance, reference [170]
shows that hypoxia processes and small flow (apparently negligible) of Hh
prolonged in time significantly influence the growth or migration.

2.2.2.3 Modeling mechanotransduction

Based on growth theory, studies have advanced in research proposing that
growth modifies tumor stress and strain state and that stress acts as a
regulator of proliferation and migration –mechanotransduction–, as has been
demonstrated experimentally (see Section 2.1.1). Then, growth-induced stress
models as a bidirectional coupling.

The first biomechanical models that involve mechanotransduction in tumors
were proposed by [151], who formulated and validated a linear poroelastic
model that accounts for the inhibition of proliferation of the melanoma
tumor spheroid line (MU89) embedded in agarose gel matrices. Since then,
mechanotransduction M has been modeled as a phenomenological function
that affects migration and proliferation rates through stress.

The key idea is that the forces present in the tumor are pressure-like, and
directly proportional to tumor cells through a function that describes the
dependence of growth on solid stress. Considering the previous Eulerian equa-
tion of mass continuity described (2.2.16), mechanotransduction is usually
included in mass continuity as follows:

∂ϕi

∂t
+ ∇ · (ϕivi) = ∇ · (MJJJ i) + MϕiΓi, (2.2.28)

being M the mechanotransduction function that can affect migration (first
term on the right) and proliferation (second term on the right). Table 2.2
shows the main mechanotransduction functions used in the literature to date.
Specifically, the contribution of modeling mechanotransduction translates
into different approaches which fit the experimental data described in 2.1.2.
Some computational studies found that growth-induced stress promotes higher
levels of solid stress in the tumor interior and lower in the periphery [186].
Furthermore, high compressive solid stress can collapse blood vessels in the
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Table 2.2
Mechanotransduction laws used in recent yearsMechanotransduction laws used in recent yearsMechanotransduction laws used in recent years. The fitting parameters
βi, q, and χσ are related to the size of the cell and the fitting of prolifer-
ation to relieve stress. Hydrostatic stress that accounts for volumetric
changes is σh = 1/3tr(σσσ), Σ refers to the adhesion forces of the cells
and Von-Misses stress, which is a measure of the energy of distortion,

is defined by σvm =

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

2 , where σi

refers to main stresses. The compressive stress threshold that cells sense
is defined by σcrit

h is characteristic of each cell line. The choice of what
type of stress is considered depends on the purpose of the study, so other
proposals such as Tresca stress could be included if the main source of

mechanotransduction is shear stress.

Affected term Mechanotransduction law Source
Growth M = 1 − βσh [151, 186, 321, 324, 322,

84]
Growth M =

(
1 − (β1σhβ2

−1 + σh)
)

[343]

Growth M =
[
q +

(
1 − q

)
e

χσ

(
σh−σcrit

h

)

1 + e
χσ

(
σh−σcrit

h

) ]
[84, 330]

Growth M = 1 − β1
Σ

Σ + β2
[158]

Migration M = e−βσvm [89, 90, 332]
Migration and Growth M = e−β1(σvm+β2|σh|) [92]

tumor interior [186], negatively affecting drug delivery [322]. However, a
highly vascularized region in the tumor periphery is associated with better
oxygenation and positive drug delivery such as chemotherapy [324] and
nanomedicine [322].

Furthermore, [343] proved that stiffer cells propagate through softer tissue
and [321] quantified 1.5 the number of times the tumor must be more rigid
than its surrounding to displace it. Reference [321] also suggested that solid
stress involves tumor inhibition independently of the constitutive equation
chosen, although it strongly depends on mechanical interactions with the
surrounding host tissue. References [84, 330] showed the interspecific com-
petition of species that defines the Volterra-Lotka or predator-prey equations
that describe the dynamics of tumor and healthy cells. Indeed, tumor cells
are inhibited if stress exceeds a critical threshold value.

Some studies also propose a pseudopotential stress law based on cell repulsive
interactions and attractive forces. In particular, reference [326] developed a
switch function in which mechanotransduction occurs if there is compression
on the membrane of proliferative cells. The works of [345, 346] change the law
for a monotonic mollifier of the step function, and more recently [158] propose
four mechanotransduction functions (linear, exponential, inversely propor-
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tional, and Michaelis-Menten-like equation – which is shown in Table 2.2)
fitting experiments.

Considering also the effect of mechanotransduction on migration, [89] recon-
structed the coupling parameter β from Magnetic Resonance Imaging (MRI).
This could be one of the critical points in personalized mechanotransduction
models, including chemotherapy effects. More recently, the intra-tumoral
heterogeneity of gliomas [90] and the impact of drug delivery in breast tumors
were also included in the mechanically coupled equations [332]. Lastly, [92]
proposed a personalized prostate cancer model in which not only stress-driven
growth but also the mechanics produced by benign hyperplasia slow tumor
growth. This is the only function of mechanotransduction known, as far as
we are aware, that accounts for migration and proliferation terms and for
both Hydrostatic and Von-Misses stress.

These pioneering studies serve as powerful tools to simulate and analyze the
complex biological and physiological processes underlying cancer develop-
ment and progression. These models have demonstrated the potential to
make predictions about cancer progression, and response to treatment, and
ultimately would improve patient outcomes.

The application of mathematical and engineering techniques in oncology
is expected to become increasingly important as we strive to understand
the underlying mechanisms of cancer, identify novel therapeutic strategies,
and personalize treatment plans. The integration of mathematical and
computational models into clinical decision-making has the potential to
transform the field of oncology and revolutionize the way we approach cancer
diagnosis and treatment.
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2.3 Ultrasound in mechanotherapy
Mechanotherapy, also known as mechanical signaling therapy, is an emerging
cancer treatment that uses mechanics to target and destroy cancer cells. This
approach is based on the idea that cancer cells have a heightened sensitivity
to mechanical forces and that applying these forces can disrupt their function
and promote their death.

As detailed below, a variety of techniques are nowadays being developed by
different laboratories to actively impact cell behavior by altering microenvir-
onment. They range from drugs that modify the elasticity of the remodeled
microenvironment and cell stiffness, to mechanical waves. These principles
serve as valuable tools for research and understanding and are currently
translatable to clinical applications, as mechanical waves can be applied
using transducers or patches and drugs can be administered to patients.
Furthermore, this potential therapies can be combined to increase the efficacy
of treatments and improve overall prognosis of the disease.

In altering the tumor microenvironment, a drug-loaded hydrogel matrix
selectively captured and eliminated cancer cells, since they are attracted to
the modified extracellular matrix (ECM), where they are eliminated [347].
Hence, the matrix acts as a stiffness filter, differentiating between tumor and
healthy cells, independently of the applied drug load. In addition, normalizing
the tumor matrix by degrading its collagen with bacterial collagenase treat-
ment [348], and by pirfenidone [349], alleviates the solid stress and reduces
the interstitial fluid pressure improving vascular density and the supply of
drugs to the tumor. This supply can be remoted regulated by magnetic
nanoparticles (MNP) [350, 351] and also mechanical waves [352, 353, 354].

In biomechanics, mechanical waves have been usually used to study and
characterize the mechanical properties of biological tissues. Mechanical waves
are a promising technique that opens a line in therapy since they can be
remotely focused and they minimize side effects. They are disturbances that
propagate through a medium transferring energy without the transference of
mass. These waves are caused by oscillations or vibrations of the particles
of the medium and can be classified into two main categories: longitudinal
or compressional waves, in which the motion of the particles is parallel to
the direction of wave propagation and are characterized by the alternation of
compression and rarefaction of the medium through which they travel; and
transverse or shear waves, in which the motion of the particles is perpendicular
to the direction of wave propagation.

In particular, ultrasound is longitudinal mechanical waves with frequencies
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higher than the upper audible limit of human hearing (20 kHz). The primary
application of ultrasound in Engineering was monitoring health structures in
nondestructive testing, although its application to diagnostic and screening
in medical imaging is clear.

In addition, its therapeutic potential has been demonstrated in recent years.
Depending on the wave parameters, ultrasound is used for tissue regeneration,
stimulation, thermal ablation, gene delivery, drug-mediated, and to selectively
impact cancer cells [355, 356, 313, 68, 357].

In Figure 2.6, we illustrate the relation of frequency of the ultrasound with
the wavelength and their relation to length and time scales in cancer.

Figure 2.6: Relation of the frequency with wavelength, size,
and time-scale of cancer. We have considered the relation λ = cpf−1,

where ultrasound wave speed is assumed cp ≈ 1490ms−1.

The Mechanical Index (MI) is a measure of the power of an ultrasound beam.
It is derived from the need for an indicator for the possible non-thermal
bioeffects of the acoustic field. It is defined as:

MI = pr√
f

, (2.3.1)

where pr is the rarefactional pressure amplitude measured in MPa and f is
the center frequency of the transducer, in [MHz] Furthermore, the Intensity
Spatial Peak Temporal Average (ISPTA) measures the average intensity



2.3. ULTRASOUND IN MECHANOTHERAPY 41

during the entire sonication and is thus a good measure of tissue heating,
which scales in proportion to sonication duration. The definition of ISPTA
yields:

ISPTA = 1
tp

∫ tp

0

1
A

∫
A

I(t, x, y, z) dA dt, (2.3.2)

where tp is the pulse duration and I(t, x, y, z) is the temporal and spatial
distribution of the acoustic intensity. In the context of therapeutic ultra-
sound, ISPTA is an important parameter for determining the potential for
non-thermal effects of ultrasound, such as cavitation, tissue heating, and
mechanical disruption of tissue.

As pointed out in Section 2.1, HIFU is a type of thermal ablation therapy
that uses high-energy ultrasound waves to heat and destroy cancer cells. In
particular, HIFU uses high-intensity ultrasound with ISPTA values in the
range of 102-104Wcm−2 to produce thermal and mechanical effects in tissue.

One of the main advantages of HIFU is that allows for real-time monitoring of
the tissue due to its dependence on MRI guidance. HIFU has been shown to
be effective in treating early-stage prostate cancer, with reported long-term
cancer-specific survival rates of up to 90% [358, 68]. However, the high
energy of the sound waves can result in the destruction of both healthy and
cancerous tissue, leading to unintended harm. Thus, HIFU is only used to
treat small and localized tumors, and it may not be effective in treating
larger or more advanced cancers.

To avoid indiscriminately destroy of healthy tissue as well as tumors, an
alternative approach involves low intensity ultrasound (LIUS), or its pulsed
version (LIPUS).

Currently, there is no universally accepted definition of low-intensity ultra-
sound. Some studies indicate restricted used of LIUS to ISPTA< 0.3Wcm−2

[359, 74], while others consider a more broad range where ISPTA < 3 − 5Wcm−2.
For the purpose of this thesis, we include the more permissive ISPTA values,
to have a complete broad range of biomechanical effects in cancer including
mainly mechanotransduction and cytodisruption.

In therapeutics, FDA limits the maximum allowable ISPTA for most medical
ultrasound therapy applications in the range of 102-104Wcm−2. However,
these limits can vary widely depending on the specific therapy being used
and the conditions under which it is applied.

LIUS has been explored for a range of therapeutic purposes [360, 359]. From
sonodynamic therapy, low-intensity ultrasound applied to cancer cells in
combination with a sonosensitizer triggers cavitation – phenomenon wherein
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bubbles form in a liquid material when the local pressure (such as might be
produced by the rarefaction part of a passing ultrasound wave) falls below
the vapor pressure of the liquid sufficient to pull the material apart. Stable
cavitation refers to the oscillation of bubbles in response to the ultrasound,
while transient cavitation refers to the violent collapse of bubbles, which can
cause tissue damage–, generating free radicals and causing cell death.

Furthermore, in ultrasound-mediated chemotherapy, the insonation of a
tumor with the presence of a chemotherapeutic agent enhances its delivery to
cancer cells while reducing its cytotoxic impact on surrounding normal tissues.
This is achieved through the use of ultrasound alone, in conjunction with
microbubbles, and through the use of drug-loaded microbubbles or liposomes
attached to microbubbles.

Regarding gene delivery, it is suggested that focused ultrasound can induce
sonoporation, resulting in temporary permeation of cell membranes. This
allows for the introduction of therapeutic molecules into cancer cells, although
the exact mechanism by which genetic material crosses the endothelial barrier
to reach the tumor is yet to be determined.

More recently, LIUS has been demonstrated to selectively kill cancer cells
while sparing healthy tissue. This specificity makes LIUS a highly promising
candidate for cancer therapy and will be discussed in greater detail in the
following subsection.

Although literature reveals a wide range of sonication conditions utilized
in various studies, making it difficult to draw precise comparisons between
the findings, in Figure 2.7 we summarize the key insights into the main
mechanical and biological effects produced at different intensities and acoustic
pressures. Thus, LIUS therapy can include a wide range from cytodisruption
to mechanotransduction, and even it can result in a combination of effects.
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Figure 2.7: Relation between pressure and energy and bioeffects.
Intensity has been calculated through I = p2/ρcp, being p the root
mean square pressure amplitude. Note that not only intensity hinders

mechanical or biological effects but also frequency.

2.3.1 Low-intensity ultrasound as target therapy in cancer

LIUS has been theoretically proposed to mainly cytodisrupt cancer cells by se-
lectively resonating the right diameter cells under the name of oncotripsy [71].
Furthermore, the viscoelasticity of the microenvironment was theoretically
proposed to reduce the natural frequencies of cells, which increases the time
to lysis [72].

On the experimental side, LIUS has been associated with an increase in
apoptotic human cancer cells; see Table 2.3 for a detailed setup of experiments.
In particular, researchers found that the cytoskeleton is disrupted after
sonification. Cytodisruption is highly dependent on frequency, cell type, and
pulse duration, increasing with a longer pulse duration (PD) despite the same
total energy applied [74, 70].

In this line, US stimulation in a continuous waveform at lower intensities can
generate mechanical stimulation similar to that in a pulsed form at higher
intensity [75]. In addition, standing waves, reflection, and cavitation are
mechanistically necessary for cytodisruption [70, 75], while high stiffness or
viscosity of the medium significantly affects the propagation of waves [70],
promoting patternings in growth as a result of the distribution of field
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stress [73]. Remarkably, LIUS has also significantly reduced the ability
to induce osteoclastic differentiation [76], suggesting a possible effective
treatment of bone metastasis.

In addition to the cytodisruption mechanism of oncotripsy, LIUS has been
shown experimentally to affect proliferation via mechanotransduction. Al-
though the detailed mechanisms of the inhibitions pathways are not yet
clear and the number of experiments is quite low, novel reports investigate
LIUS mechanotransduction pathways proposing that LIUS promotes Piezo-1
activation that allows calcium entry upstream [80, 79].

Regarding migration, in recent studies, [78, 77] found that LIUS inhibits
the collective migration of cancer cells, specifically pancreatic tumor cells,
in wound healing processes while fibroblasts are not selectively inhibited.
Results showed a collective response to the acoustic performance, with more
prominent effects on non-starved cells.

These studies are proof-of-concept for the physical effects of ultrasound
stimulation on tumor cell growth and migration, demonstrating significant
therapeutic potential. However, the mechanism of action and the varying
responses triggered by different frequencies, energies, and configurations are
not fully understood, so the further biological study is ongoing to understand
the underlying mechanisms. The current state of LIUS research is costly and
time-consuming due to the need for empirical experimentation.

In order to fully understand the mechanism of LIUS and optimize its thera-
peutic potential, mathematical modeling can be utilized to simulate the
complex interactions between the ultrasound waves and the tumor microen-
vironment, and in combination with other treatments. Ultrasound-tumor
interaction models can provide valuable insights into the underlying mech-
anisms of LIUS and aid in the development of more effective treatment
strategies. In the long term, these models could be combined with relevant
patient information to create customized treatment plans that optimize the
effectiveness of LIUS for each individual patient [89, 91, 90].

Recent advancements in the field have revealed not only the potential of
ultrasound but also shear waves as a promising therapeutic option, following
mechanotransduction principles. Our research group and the group led by
Ralph Sinkus at King’s College London have made significant strides in this
area [361, 362, 363], demonstrating the effectiveness of shear wave therapy
in cancer.

As highlighted in Figure 2.6, shear waves operate at lower frequency ranges
than ultrasound, allowing mechanotransduction while minimizing the pos-
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Table 2.3
Main setups in LIUS therapy in vitro. The relation between intensity
and acoustic pressure has been established. The notation [−] is used

when there is no information.

Cell line Frequency
[MHz]

Intensity
[mW/cm2]

Acoustic
pressure
[MPa]

Setup and Comments Bioeffectsa N Source

CT-26, K562, U937,
T cell (in suspen-
sion)

0.3-0.67 < 9.7 · 104 <1.2 TUS= 2 min/day for 2
days. PD=2-40ms. DC=
10%. Requires stand-
ing waves and reflection
for cavitation. Selective
growth inhibition

Cytodisruption 3-9 [70]

T47D, MCF-12A
(monolayers)

1.5 10,30,
50,100

0.012, 0.021,
0.027, 0.039

TUS=10min/day for 3
days. PD = 200µs. DC=
20%. Decreasing prolifera-
tion with increasing intens-
ity, PD, and DC. Selective
growth inhibition

Mechanotransduction 1 [75]

HT29, Caco2 0.65-4.5 87.4 - 6.7·104 0.036-1 TUS= 10min/day for 1
day. PD= 30s. DC= 25%
Inhibition of growth with
intensity and frequency

Mechanotransduction
- Cytodisruption

2 [74]

MDA-MB-231,
Raw264.7

1.5 30 0.021 TUS=20min/day for 10
days. PD = 200µ. DC=
20% Viability is not af-
fected. Reduction of osteo-
clastic differentiation

Mechanotransduction 3 [76]

A375, A549, Hela,
Hacat

0.67 254 0.061 TUS = 2min for 2 days,
PD=30ms, DC= 10%. Im-
portance of stress field
distribution. Selective
growth inhibition

Mechanotransduction
- Cytodisruption

[−] [73]

MDA-MB-231,
A375P, HT180
(in suspension on
matrigel, in vivo
in CAM models,
organoids)

0.33 7.7 0.011 TUS= 2h/day for 3 days.
PD = [−]. DC= 50%.
Growth inhibition

Mechanotransduction:
Piezo1 channel

2-3 [80]

MDA-MB-231,
MCF10A (monolay-
ers in matrigel)

0.33 7.7 0.011 TUS= 2h/day for 3 days.
PD = [−]. DC= 50%.
Growth inhibition

Mechanotransduction:
Piezo1 channel

4 [79]

PANC-1 (monolay-
ers)

1 < 100 0.038 TUS= 10-20-30min. DC=
100%. Migration inhibi-
tion

Mechanotransduction 4 [78,
77]

aWe use the term mechanotransduction if there is no mechanical cavitation and
cytodisruption if there is, although in some studies there is not clear and combined
effect could coexist.

sible cytodisruption and resonance of cells caused by ultrasound at more
higher frequencies and intensities [71, 72]. Moreover, as LIUS, SW avoids
the indiscriminate ablation of cells produced by HIFU. Regarding another
oscillatory shear stress, it can be noted the use of shear stress through per-
fused interstitial fluid pulses [364]. The shear stresses could be generated
indirectly from LIUS by multiscale interactions and mode conversions such
as acoustic radiation force, microstreaming, or cavitation jetting.

This thesis is focused on the use of ultrasound, but the successful efforts in
utilizing shear waves as a therapy demonstrate the importance of continuing to
explore and develop new techniques in the field of mechanotherapy. The ability
to harness the power of these mechanical waves opens up new possibilities
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for the treatment of a variety of conditions, and further research in this area
holds great potential for improving patient outcomes.

With that in mind, in the following section, we present different models used
in literature to model wave propagation in soft tissues, with approaches for
both shear and longitudinal waves.

2.3.2 Wave propagation modeling in tumors

The propagation of waves in tumors is modeled using the basic equations
that govern the continuum: compatibility, dynamic balance momentum, and
constitutive equation. Due to the intrinsic behavior of each tissue, as well
as in growth, different models arise to evaluate the tumor response. In soft
tissue wave propagation, it is usually assumed small displacements and null
mass transport in propagation.

Viscoelastic propagation models take into account the solid elastic phase
and the associated viscosity and are commonly used in the field of medical
imaging for the evaluation of soft tissues.

The most widely used viscoelastic propagation models in soft tissues are the
Maxwell and Kelvin-Voigt constitutive equations, although more viscoelastic
models exist [365, 366, 367, 368]. The Maxwell model represents a material
as a combination of a spring and a dashpot in series, while the Kelvin-Voigt
model represents a material as a combination of a spring and a dashpot in
parallel. The spring represents the elastic behavior of the material, while the
dashpot represents the viscous behavior.

The Voigt model is more accurate in predicting creep than the Maxwell model
as it predicts a constant strain in the long term, while the Maxwell model
predicts linear strain-time behavior. Therefore, to study how the material
behaves while the wave propagates through it, it is accurate to assume that
the Kelvin-Voigt can be a reliable approximation. The equations that govern
wave propagation are:

∇ · σ + b = ρ
∂2uuu
∂t2

σσσ = CeCeCeεεε + CvCvCv ∂εεε

∂t

(2.3.3)

where the small strain is εεε = 1
2(∇u + ∇uT), and CeCeCe and CvCvCv are the fourth

elastic range tensor and the fourth viscous range tensor, which account for
the undrained material properties of the tissue.

The selection of a suitable model for the analysis of wave propagation in
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tumors is a critical step that requires careful consideration of various factors,
including the specific loading conditions, the mechanical and physical prop-
erties of the tumor and surrounding medium, and the geometries involved.
In order to obtain accurate results, it is essential to gather the necessary
input data through experiments and performs inverse problem analyses,
which can inform the choice of the most appropriate model and deepen our
understanding of the underlying mechanics.

By utilizing models of wave propagation in tumors, we can analyze and
understand the response of tumors to ultrasound waves in terms of mechanical
variables such as stress, strain, and displacement. However, it is important
to note that these models do not incorporate the effects of ultrasound on
biological processes.

In order to understand the impact of ultrasound on tumor dynamics, including
the patterns and effects on cell migration and proliferation, new models are
needed that couple ultrasound and tumor mechanics. This requires the
integration of mathematical equations that accurately capture both the wave
propagation and tumor mechanics, rather than treating them as separate
phenomena.
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2.4 Key points to contribute
Having established the state-of-the-art in the field of mathematical and
mechanical oncology, the key starting points from which contributions are
made in the following section are summarized:

• Abrupt changes in cell growth can impact and compete with mechanics
and migration patterns. Biologically, the focus is on understanding
the potential formation of these patterns, while mathematically and
computationally, there is a lack of models that analyze controlled
migration together with non-homogeneous growth from Continuum.

• Cancer stem cells have been found to be resistant to conventional
therapies, so there is a clear need for new treatments to overcome this
challenge.

• Low-Intensity Ultrasound is highlighted in recent years as a potential
target mechanotherapy that could be combined with conventional
therapies to improve treatment efficacy.

• There is currently a lack of models that integrate Low-Intensity Ultra-
sound with tumor dynamics.
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CONTRIBUTIONS
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Chapter 3

Controlled propagation
flux and non-homogeneous

growth

3.1 Introduction
Cells sense their environment and adapt their growth and reorganization
to the adjacent cells, in terms of division –hyperplasia– , cell enlargement –
hypertrophy, cell motility – migration –, and ECM reorganization.

The development and maintenance of tissues and organs heavily rely on
migration and growth processes, which require a reorganization of cellular
distribution and often result in significant morphological changes, such as
in the case of epithelial-mesenchymal transition [369]. These changes can
impact remodeling and stress levels, leading to alterations in intracellular and
extracellular pressure that affect both the biomechanical and biochemical
properties of the cell and its surrounding environment.

Under these conditions, Shraiman introduced a theoretical mechanical feed-
back mechanism that modulates growth, disrupting the state of balance
between proliferation and apoptosis. This approach postulates that even in
homogeneous mechanical environments, cells can undergo mutations that
result in differences in their proliferation and growth rates relative to the
surrounding tissue, leading to cellular competition and mechanical stresses.
As a result, each cell can assess its own proliferation and growth rate relative
to the microenvironment and adjust its growth accordingly [55, 57].

In Part I of this dissertation, the phenomenon of growth-induced stress –
i.e. the stress produced by cells during growth – was presented. If the
growth process is non-homogeneous, it can be accurately postulated that
heterogeneous stress is a consequence of the non-uniform growth of the tissue.

In the presence of uniform growth rate and free boundary conditions, tis-
sue elasticity responds by adjusting tissue strain growth through uniform
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(a) Cluster of cells growing faster than its surroundings could cause the loss of cell–cell adhesion.

(b) Rearrangement of growth and pressure affects both mutant cluster cells and adjacent cells.

Figure 3.1: Heterogeneous cluster growth.

dilatation, without introducing additional stresses. However, with non-
homogeneous growth, clusters of cells may experience slower or faster growth
rates compared to their surrounding cells, resulting in strain or compression
within the cluster or its surrounding tissue. The extent of this strain depends
on the stress level, and cells may lose their adhesion and become disaggregated
from the tissue as shown in Figure 3.1(a), or potentially causing buckling in
adjacent cells as well, as ilustrated in Figure 3.1(b).

Cytonemes, which are membrane nanotubes, not only mediate cellular com-
munication but also sense mechanical stimuli from neighboring cells, as many
studies have shown [370, 371, 372, 373, 374, 170]. Therefore, cells can perceive
pressure and growth from surrounding cells differently, depending on their
intercellular connections. Typically, cytonemes have a range of approximately
3-7 cell units, which equates to around 60µm [374]. Cytoneme-cytoneme
or cytoneme-membrane interactions facilitate cell-to-cell communication, as
depicted in Figure 3.2.

Figure 3.2: Cytonemes mechanosensingCytonemes mechanosensingCytonemes mechanosensing. Outline of the cytoneme–
cytoneme or cytoneme–membrane interactions of the adjacent cells, which
are assumed to be spatially consistent with the mechanical transmissions

due to growth and internal regulation of pressure.
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However, the situation changes when motion is introduced to the growth-stress
process. If cells are able to move within the tissue, the non-uniform stress
induced by heterogeneous growth may be partially alleviated and reorganized.
Consequently, the drive toward homeostasis may not be prevalent throughout
the entire tissue.

The migration of collective cells is propelled by traction forces produced by
some cells located behind the propagation front [56]. These forces exert a
localized impact on the environment and communicate with adjacent cells
through both biochemical and biomechanical signaling pathways that interact
and modify gradients.

As pointed out in Section 2.2.2, the diffusion term of continuum equations
has been widely modeled as linear and isotropic, despite migration being a
controlled speed process in which a propagation front appears. To overcome
this drawback, some studies suggest adding a relaxation term that limits the
infinite propagation speed characteristic of linear diffusion using relaxation
terms [375]. In contrast, others define a finite-speed tumor propagation
front through the porous medium equation (PME)1 [306], and its limitation
through second-order terms by Brinkman’s law [376]. References [307, 308,
309, 310, 311, 312] use a flux-saturated PME with measurable propagation
speed.

Flux-saturated models are essentially equations in divergence form so that
their flux saturates at a constant value as long as the size of the gradients is
large enough. These models frequently appear in some areas of mathematical
physics (radioactive transport theory and astrophysics, for example) and
are gaining relevance in mathematical biology (morphogenesis and tumor
dynamics). This flux model allows us to combine both the diffusion of porous
media and flux-saturated mechanisms to obtain a deeper understanding of
each of them and their mutual interaction that opens the possibility of new
emerging behaviors.

The main advantage of including the effects of saturated flow compared to
PME is that saturated flow terms introduce a new biological parameter: the
speed of the tumor propagation front, which enables to control and regulate
the profile of tumor progression both from a qualitative point of view defining
the characteristics of the front and quantitatively since the speed of the tumor
can be regulated from experimental data. [311].

This limited speed also affects the evolution of the rest of the terms involved
1The Porous Medium Equation owes its name to its use in describing the flow of an

ideal gas in a homogeneous porous medium. In biology, PME refers to a non-linear cell
flux that accounts for a finite propagation.



54 CHAPTER 3. CONTROLLED PROPAGATION FLUX AND NON-HOMOGENEOUS
GROWTH

in the process: growth and stress. Then, the strength of this Chapter lies in
joining some of the most relevant items of the current oncological models:
controlling the tumor propagation front [153, 377] and including the role of
non-homogeneous growth in mechanics [319, 54, 378, 55, 82].

In particular, we focus on how abrupt changes in tumor cell density leads to
a competition of non-homogeneous growth and its driven-stress, proliferation,
and migration.

3.2 Mathematical model
We follow the principles of Finite Growth theory and its simplification into
small strains, where strains are additive, as explained in Section 2.2.2. We
rewrite the Neo-Hookean elastic strain energy function described in Table 2.1
in terms of bulk K and shear modulus µ, considering small strains and growth.
Then:

W =
∫ (

µ
(
εεε − 1

3 tr(εεε)III
)2

+ K

2

(
tr(εεε)III − εεεg

)2)
dx. (3.2.1)

The first term on the right represents pure shear, and the second term is the
bulk compression affected by the volumetric strain growth of the tissue. The
growth strain is described now as non-homogeneous:

εεεg =
∫ t

0
(g − ⟨g⟩)γγγ ds, (3.2.2)

where γγγ is the tensor that distributes the growth in different directions. In
this study, we have assumed isotropic or volumetric growth, so γγγ = 1/3III
results to be driven by the hydrostatic pressure.

The growth stretch function is defined by g = αnn, where n is the cell density
and αn is the coupling factor that accounts for the volume or mass gain ratio.
The local average growth rate is ⟨g⟩(x, t). We have applied the theory of cell
communication to model the local interaction of growth and its influence on
internal homeostatic growth regulation. Then, the average stretch growth is
a regular function for each cell, which has support on the range within which
cytonemes operate:

⟨g⟩(x, t) =
∫ ϵ

−ϵ

g(x − y, t)δ(y) dy, (3.2.3)

where δ is a regularizing function with compact support on (−ϵ, ϵ), being ϵ

the cytoneme zone of influence and sensitivity of each cell to its environment.
The regularizing function is described by δϵ(x) = ϵ−N δ

(x

ϵ

)
, with ϵ > 0 and



3.2. MATHEMATICAL MODEL 55

δ measurable, positive and bounded function with integral one, supported in
the unit ball in RN .

The governing equation is obtained by deriving strain elastic energy function
to strains. Then, the Cauchy elastic stress is:

σσσe = 2µ
(
εεε − 1

3εεεIII
)

+ κ
(
εεεIII − εεεg

)
. (3.2.4)

On the other hand, researchers have investigated the mechanisms of cell
proliferation by studying the relationship between the number of cells N ,
time t, and spatial variable x. Cell division is typically modeled using a
logistic function that governs the process of cell duplication until the tumor
reaches its carrying capacity C, which is defined as the maximum number of
cells that can be supported per unit volume. The temporal evolution of the
cell population can be described using the following differential equation:

dN

dt
= NTn

(
1 − N

C

)
, (3.2.5)

To account for heterogeneous proliferation, the duplication rate has been
treated as spatially and temporally dependent, i.e. Tn(x, t).

The number of cells relates to cell density by the relation n(x, t) = NV −1.
Then, deriving equation 3.2.5 considering this relationship, and including
migration, the conservation of mass in terms of cell density that responds to
an abrupt change in cell density is governed by:

dn

dt
+ n

∂V

∂t
V −1 = ∇ · JJJ + Tnn

(
1 − nV

C

)
. (3.2.6)

In this chapter, we propose an alternative method to address the problem
of solving the entire system of equations of mechanics and tumor dynamics.
Instead, we seek to determine the precise volumetric elastic strain at which
momentum balance is achieved. Following the approach introduced in previ-
ous studies [55, 57], we minimize the strain energy function – equation (3.2.1)
– with respect to the displacement vector to ensure that the energy balance
is satisfied, and subsequently, to meet two additional conditions: that the
divergence of the stress tensor is zero and that the small strain compatibility
equation is fulfilled. This strategy enable us to establish a direct and rigorous
relationship between the elastic strain and the evolution of cell density.

In the minimization of the functional, boundary conditions must be included.
These conditions lead to the emergence of an additive scalar term χ(x) as
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follows:
∂tr(εεε)

∂t
= g − µ

K + µ

(
g − ⟨g⟩

)
+ χ, (3.2.7)

where χ satisfies ∂2χ1

∂x2 = 0. Considering free boundary conditions, then it
is deduced that χ = 0. The hydrostatic stress can be easily obtained by
σh = Ktr(εεεe) or σh = 1/3tr(σσσe), leading to:

∂σh

∂t
= − Kµ

K + µ

(
g − ⟨g⟩

)
. (3.2.8)

Finally, the volumetric strain can be related to volume – V – deformation by:

∂V

∂t
V −1 = ∂tr(εεε)

∂t
= ∇ · vvvn. (3.2.9)

Taking into account now the definition of the growth stretch function and
described relations 3.2.7 and 3.2.9, we can rewrite the cell density evolution
as:

dn

dt
= ∇ · JJJ + Tnn

(
1 − nV

C

)
− αnn2 + µ

K + µ
n
(

αnn − ⟨αnn⟩
)

. (3.2.10)

This equation describes the evolution of cell density, resulting from the
interplay between migration, proliferation, and non-homogeneous growth.
The term representing non-homogeneous growth, which is derived from
mechanical equations, can be interpreted as a retrograde diffusion term that
considers non-homogeneous stress-driven growth, as will be discussed in more
detail later. The volume gain of cells evolve according to equations 3.2.7
and 3.2.9, impacting the stress state of the cells and vice versa.

We aim to clear control the speed of propagation of the front with the so-
called flux-saturated equations. The purpose is to combine two non-linear
diffusion mechanisms: porous media and the flux–saturated terms, which
results in a saturated flow as long as the gradient size is large enough. The
proposed flux is defined by the equation:

JJJ = Dn
nm∇n√

n2 +
(D

cn

)2
|∇n|2

, (3.2.11)

where the coefficient of diffusion for cells is conventionally represented as Dn

and is commonly known as viscosity in Helle-Shaw type models. However, in
this specific context, the term viscosity will not be employed to prevent any
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erroneous association with tissue viscosity. The coefficient m is an empirical
parameter related to the propagation and the medium porosity, with m ≥ 1,
and cn the speed of propagation of the solution support.

The solutions of the flux-saturated equations preserve the migration fronts and
provide a qualitative and quantitative fit with the experimental data [309, 170],
in the sense of maintaining compactness of the support and the finite speed
of propagation. It also preserves the possible discontinuities, allowing the
appearance of emerging invasion profiles. This class of concepts has often
been used in similar contexts, such as cell communication [170, 379] and
morphogenesis processes associated with the equations of Keller–Segel [380,
381].

3.3 Numerical methods
To carry out numerical computations, we have utilized a custom code de-
veloped in Matlab (©MathWorks Inc., Natick, MA, USA) based on the
method of finite differences.

The requirement for preserving the tumor propagation front and avoiding
numerical noise from the saturated flux calls for high approximation or-
ders. To meet this requirement, we utilize the Weighted Non-Oscillatory
method (WENO), which aims to achieve high-order accuracy by blending
multiple low-order numerical approximations through the use of weights.
Smoothness indicators are calculated for each approximation and are then
used to determine the weights. The final solution is obtained by taking a
combination of the weighted approximations [310, 382, 383, 384, 385]. The
WENO method provides accurate high-order stability resolution while main-
taining non-oscillatory, stable, and sharp discontinuity transitions. In our
implementation, we adapt the fifth-order WENO method [384, 385, 386] with
1000 points to perform spatial discretization. For time domain discretization,
we employ the third-order explicit Runge–Kutta method.

We consider a range of parameter values to computationally analyze the
different types of patterns caused by the proliferation-migration-growth
interaction. For parameter selection, we base on the literature data: (i)
growth rate of human colon adenocarcinoma obtained experimentally [387]
for a range of α parameter; (ii) dynamics in front of glioblastomas [309] for
the diffusion, speed of propagation and carrying capacity, which is defined
in 106cells; (iii) data of LN229 glioma for mechanical parameters reported
by [388], where Elastic Young modulus is considered E = 1kPa. Assuming
the Poisson coefficient v ≈ 0.45, the bulk and shear moduli are K = 3.33kPa
and µ = 0.34kPa. The equations are solved in one dimension.
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3.4 Results

3.4.1 Linear, non-linear and non-linear saturated flux

To provide a more robust and grounded analysis of the non-linear propagation
models, it is advisable to perform qualitative results that showcase the
differences between linear, non-linear, and non-linear saturated fluxes. These
demonstrations will help highlight the strengths and unique features of each
model and provide a clearer understanding of the mechanisms at play.

Then, we define the linear flux as JJJ = Dn∇n, where Dn is the linear diffusion
coefficient of cells. The non-linear flux is described by the equation JJJ =
Dnnm∇n, in which the non-linear relationship between the flux and cell
density is established and more complex interactions between cells and
their environment can be captured. Finally, the non-linear saturated flux
is described by equation (3.2.11). This model takes into account both the
non-linear relationship between the flux and cell density and the effect of
saturation on the flux.

To analyze the propagation of the different cell fluxes, we perform simulations
from three different initial conditions, namely the step function, the triple
step function and the sigmoid function. These initial conditions are selected
as they provide a diverse range of mathematical profiles, each with unique
characteristics and behaviors.

The two first functions are useful for capturing sudden transitions in cell
density and are represented mathematically as a piecewise function. In
particular, the step function represents a sudden and sharp change in cell
density, where the value of cell density is constant in one region and abruptly
changes to a different constant value in another region, which could occur
under mutations. For instance, mutations in genes that regulate the cell
cycle, such as tumor suppressor genes or oncogenes, can result in selective
uncontrolled cell growth and proliferation, which suddenly begin to grow at
a much faster rate than normal tumor cells, leading to sudden transitions.

The triple step function contains three discontinuities in its graph. These
jumps result in rapid changes in the values of the function at specific points,
which can be used to model rapid changes in a quantity over time, not only
in the borders but also in the inner regions.

On the other hand, the sigmoid function models a gradual and smooth change
in cell density over time, with a characteristic S-shaped curve. This function
is useful for modeling biological processes where growth occurs in a smooth
and continuous manner without sharp discontinuities.



3.4. RESULTS 59

As shown in Figure 3.3, linear flux completely breaks down the propagation
front for the three initial conditions, with the most notable being piecewise
functions, where the discontinuity and the front are completely lost. The
most important difference between non-linear and saturated non-linear flux
lies in the verticality of the propagation front, which is maintained in the
saturated flux and lost in the non-linear.

Focusing on the saturated flow, the parameter m holds a significant import-
ance in characterizing the non-linear diffusion dynamics of the system. The
value of m has an impact on the speed of the propagation front, with m = 1
indicating a finite propagation speed that is bounded by the cn veloctity.
When m exceeds 1, the velocity of the front is limited and partially suppressed,
resulting in a decrease in speed while maintaining stability independently of
the initial condition (see Figure 3.4).

Therefore, solutions of the flux-saturated equations can maintain the features
of the initial data, including the compactness of its support and the presence
of potential jump discontinuities. This results in the formation of steep
invasion profiles characterized by a sudden increase in cell density, which
are essential for a comprehensive understanding of tumor cell behavior when
non-homogeneous growth occurs.

Steep invasion profiles can manifest in a variety of biological processes bey-
ond invasive cancers. For instance, during immune responses, T cells and
macrophages infiltrating tissues to combat infections or injuries can lead
to such profiles. Similarly, embryonic development entails cell migration
and proliferation, often resulting in steep invasion profiles, especially at the
interfaces between different tissue types. Lastly, wound healing involves the
migration of cells to the wound site, causing steep invasion profiles and an
abrupt rise in cell density in the vicinity of the injury.

3.4.2 Proliferation and non-homogeneous growth

In this subsection, we analyze the behavior of cell density in the absence of
migration, as represented by JJJ = 0 in equation (3.2.10). Assuming constant
parameters αn and Tn, we found that the effect of parameter αn slows the
evolution of cell density compared to classical logistic growth, where αn = 0
(see Figure 3.5(a)).

However, the cells located in front regions are impacted by stress-driven
growth discrepancies arising from the absence of neighboring cells, leading
to a rise in cell density at the corners over time, as shown in Figure 3.5(a).
When volume rate acquisition surpasses a critical threshold, defined as
αn ≥ 1 · 10−1 mm2 cell−1 h−1, the system is unable to mitigate the non-
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(a) Cell density evolution in step function
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(b) Cell density evolution in triple step function
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(c) Cell density evolution in sigmoid function

Figure 3.3: Cell density evolution from different initial condi-
tions and fluxes. Simulations performed at time t=11 days, with D = 1

mm2h−1, cn = 1 ms−1 and m = 1.
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(a) Cell density evolution in triple step function
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(b) Cell density evolution in sigmoid function
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(c) Cell density evolution in sigmoid function

Figure 3.4: Cell density evolution for flux-saturated equation
from different initial conditions and m parameter, varying

between 1,2 and 8.
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homogeneous growth, leading to a concentration of density at zones where
the growth stress changes abruptly.

The aggregation of cells in response to non-homogeneous growth differences
is a result of the retrograde diffusion process governing the dynamics of cell
density, which becomes more pronounced with growth, leading to an increase
in concentration over time. The cell density remains bounded for each value
of αn, in agreement with previous studies [58]. This phenomenon can be
observed at jump zones or at the corners of the domain (see Figure 3.5(b)), and
its underlying mechanism is the homeostatic adjustment of non-homogeneous
stress and proliferation.

The study also explores heterogeneous growth scenarios that may occur when
a group of cells grows at a different rate than the surrounding cells, as shown
in Figure 3.6(a) and Figure 3.6(b). In these scenarios, stress-driven growth
varies and is manifested as higher or lower αn values in the core region

Instabilities in cell density also emerge and the proposed dynamic is inad-
equate to mitigate their impact. Over time, these instabilities escalate to
reach a maximum value that is limited by the carrying capacity. This can
only be alleviated through the implementation of a migration process that can
diffuse the cell concentration or density instabilities, which will be explored
in the subsequent section.

To establish the reliability of the observed cell density fluctuations, we
compare them with solutions obtained from higher discretizations, including
those with a finer resolution than the fluctuations under consideration. This
comparison eliminates the impact of numerical errors. It is worth noting
that we do not normalize the results with respect to the carrying capacity,
which is the product of density and volume. Therefore, changes in carrying
capacity may arise from alterations in both density and volume.

3.4.3 Saturated flux, proliferation and non-homogeneous growth

In this susection, we evaluate the performance of the complete cell flux model
incorporating the flux-saturated dispersion term. This term regulates the
effects of non-uniform cell growth on the density of the cell population. Our
results show that the speed of the tumor front is largely independent of the
value of the parameter αn, as demonstrated in Figure 3.7(a), which compares
the speed of the front for different values of αn.

However, we observe significant qualitative differences in the evolution of the
tumor front as a result of non-uniform growth. These differences are reflected
in the tendency to lose the convex shape of the tumor density, as seen in
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(a) Non-homogeneous growth leads to abrupt changes in cell density, which do not occur if αn = 0,
t = 11.25days.
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(b) Increase of cell density differences with time, with αn = 1 · 10−2mm2cell−1h−1.

Figure 3.5: Cell density evolution in sharp discontinuities. Pro-
liferation parameter Tn = 3.45 · 10−2h−1 and JJJ = 0.
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(a) Cluster of cells growing slower than its surroundings. Parameter αn = 1 · 10−1mm2cell−1h−1

in the core and αn = 1 · 10−2mm2cell−1h−1 in inner region.
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(b) Cluster of cells growing faster than its surroundings. Parameter αn = 1 · 10−3mm2cell−1h−1

and αn = 1 · 10−2mm2cell−1h−1 in the core and the inner region.

Figure 3.6: Heterogeneous cell density evolution. Proliferation
parameter Tn = 3.45 · 10−2h−1 and JJJ = 0.
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Figures 3.7(a) and 3.8, particularly when growth differences are substantial.

Our findings also suggest that cell migration regulates the stress differences
caused by cells growing slower than their surroundings for m = 1, which was
not observed in the absence of flux, as reported in Figure 3.5. The results
indicate that mechanical feedback leads to an equilibrium state of the cell
cluster, identified as a quiescent state regulated by internal pressure and local
growth (see Figure 3.7(b)).

Interestingly, if the proliferation rate Tn decreases over time – at t = 30h and
t = 50h –, the mechanism is delayed, leading to the asymptotic achievement
of the local homeostatic state, as shown in Figure 3.8(a). Conversely, the
effect becomes reversible if the parameters of non-uniform growth and/or
proliferation are modified in the cell group. For example, if growth differences
decrease or local proliferation increases, the cell density in the mutated
zone tends to converge with the rest of the tumor, even if the difference in
parameters is substantial (see Figure 3.8(b)), consistent with the biological
characteristics of the quiescent state [155].

Furthermore, this model suggests that when non-homogeneous growth is not
taken into account, excessive proliferation can cause a sudden increase in
density evolution, as the tumor’s support system cannot keep up with its
internal growth rate. This was demonstrated in the case study of traveling
waves associated with flux saturation [307]. Extreme values of proliferation
or non-homogeneous growth could also result in the loss of damping of
density instabilities, or even the emergence of new discontinuities, as seen in
Figures 3.7 and 3.8.

3.4.3.1 Role of m parameter

The parameter m has been shown to be a crucial factor in regulating the
progression of the tumor front, its shape, and the distribution of cell density.
As we have observed, increasing the value of m may lead to keep growth
instabilities and density fluctuations within the tumor (Figure 3.9) when
m ≥ 2.



66 CHAPTER 3. CONTROLLED PROPAGATION FLUX AND NON-HOMOGENEOUS
GROWTH

(a) Effect of constant αn parameter on proliferation and migration at time t = 11.25h.

(b) Cluster of cells with high parameter αn in the core (αn=1 · 10−2mm2cell−1h−1)
than its surroundings (αn=1 · 10−3mm2cell−1h−1).

Figure 3.7: Cell density evolution considering flux-saturated
migration, non-homogeneous growth and proliferation. Paramet-
ers: Tn = 3.45 · 10−2h−1, D = 0.348 · 10−2mm2h−1, cn = 0.87 · 10−2 and

m = 1.
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(a) Heterogeneous proliferation rate is considered in space at time, with αn parameters of
Figure 3.7(b). In the inner regions, and at time t = 30h, Tn = 3.45·10−3h−1. At t = 50h,
proliferation is totally inhibited, Tn = 0h−1. In the corner regions, Tn = 3.45 · 10−2h−1.

(b) Non-homogeneous stress is relieved at time t = 30h, where αn = 1 ·
10−3mm2cell−1h−1 and Tn = 3.45 · 10−2h−1. At t = 50 h, tendency of αn and
Tn changes: αn = 1 · 10−3mm2cell−1h−1, Tn = 6.9 · 10−2 h−1 and αn = 5 ·
10−3mm2cell−1h−1, Tn = 3.45 · 10−2 h−1 for the core and inner region, respectively.

Figure 3.8: Cell density evolution considering flux-saturated
migration, non-homogeneous growth and heterogeneous prolif-
eration. Parameters: D = 0.348 · 10−2mm2h−1, cn = 0.87 · 10−2 and

m = 1.
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Figure 3.9: Cell density evolution considering flux-saturated
migration, non-homogeneous growth and proliferation, with

different m parameter. Simulations at time t = 22.5h.

Moreover, it is conceivable to alleviate these instabilities by elevating the velo-
city of tumor expansion, denoted by cn, as opposed to enhancing the diffusion
coefficient, referred to as Dn. Nonetheless, it is essential to acknowledge that
achieving such enhancement may not be practical based on experimental
evidence, as reported by reference [309]. Specifically, when the value of the
growth exponent m surpasses unity (m > 1), there may be a requirement
for an increased pace of tumor propagation to mitigate the internal growth
instabilities.

3.5 Conclusions
In this study, we investigated the role of non-homogeneous growth, prolifer-
ation, and migration in regulating the reorganization of tumor cell density
during its evolution.

The selection of the cell flux model is contingent upon the level of detail desired
in the analysis. The linear Darcy flux is straightforward in implementation and
analysis but may not sufficiently capture the intricate interactions between
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cells and their surroundings. On the other hand, the non-linear flux provides
a more complete representation of these interactions but may overlook the
saturation’s influence, i.e. it restricts infinite propagation but cannot regulate
the speed of propagation.

In contrast, the non-linear saturated flux offers the most in-depth comprehen-
sion of the interactions and effectively accounts for the effect of saturation
on the flux, controlling migration dynamics and allowing for instabilities,
when m ≥ 1. Hence, the saturated flow was deemed appropriate for this
study. However, in cases where instabilities due to non-uniform growth are
not a concern, it can be simplified to non-linear flow to reduce computational
complexity and cost.

The results of our investigation demonstrate that growth-induced stress
generates a dual effect of aggregation and homeostasis, playing a crucial role
in regulating growth and motility.

Through numerical simulations, we demonstrate that differences in growth
can lead to a decrease in proliferation. Our analysis shows that, in the
absence of migration, growth mechanisms combined with non-homogeneous
stress can result in significant oscillations in cell density, which are bounded
by the rates of proliferation, stress-driven growth, and the carrying capacity
of the logistic model.

This study investigates how non-homogeneous growth affects the migration
process. The results suggest that this process can counteract retrograde
diffusion oscillations resulting from proliferation and non-homogeneous stress-
driven growth. Our findings emphasize the competition between retrograde
diffusion and non-linear diffusion through flux saturation in porous media.

Moreover, the proposed system could replicate many evolutionary patterns
seen in experiments, making it a useful tool for future research. From a
mathematical modeling perspective, introducing non-homogeneous growth
terms cause cell density discontinuities that alter the convexification tendency
of flux-saturated processes.

Our proposed system could accurately reproduce observed evolutionary pat-
terns in experiments, which makes it a valuable tool for further research.
In summary, our study underscores the importance of considering non-
homogeneous growth, proliferation, and migration as competitors in the
regulation of tumor cell density reorganization
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Chapter 4

Ultrasound propagation in
tumor spheroid

4.1 Introduction
Ultrasound propagation through biological tissue is a complex process that
is influenced by a variety of biomechanical factors. In this chapter, we focus
on simulating ultrasound propagation through an in vitro tumor spheroid,
with a particular emphasis on the effect of viscoelasticity.

Our proposal is to employ low-intensity ultrasound (LIUS) at high frequencies,
utilizing lower acoustic pressures to prevent cavitation. Previous studies
have indicated that cells are able to perceive and respond to static pressures
as low as 5-10kPa [154, 151, 155], while numerical studies suggest even low
values of 1kPa [330, 84, 304]. These findings suggest that cells possess the
ability to sense and convert even lower dynamic pressures into chemical
and biological signals, without the risk of cytodisruption. By utilizing
LIUS at high frequencies with lower acoustic pressures, we can leverage this
mechanosensing capability to potentially achieve therapeutic effects without
causing cavitation to cells.

The concept behind this approach is based on the hypothesis that static
stress necessitates more intensity to evoke a response, due to the dissipation
of stress, while dynamic pressure does not have sufficient time to dissipate.
For instance, in static rheology, when a material is subjected to a constant
force and reaches a steady state, the redistribution of stresses can cause
mechanoreceptors to sense a fraction of the transient stresses.

The mechanisms involved in stress redistribution are intricate and may include
multiple factors. One of these factors is the cytoskeleton, which provides
structural support to cells and plays a critical role in distributing mechanical
loads within the cell. Another factor is the viscosity of the solid phases of the
material, as well as the dissipation of stresses through the flow of interstitial
fluid through pores.
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Thus, using LIUS with lower acoustic pressure and higher frequencies can
avoid potential uncontrollability issues in in-vivo experiments and at high-
length scales associated with cytodisruption and standing waves.

The primary goal of our study is to conduct a comprehensive parametric
investigation of the effects of various frequencies, acoustic pressures, and
viscosities on ultrasound propagation.

We focus on developing a model for ultrasound propagation in a Kelvin-Voigt
viscoelastic medium with an embedded tumor spheroid. As outlined in the
Background section, we assume that the time scale for wave propagation is
significantly shorter than the fluid flow within the tumor, thereby warranting
the use of a viscoelastic model as a simpler and more accurate representation
as compared to a poroelastic model. However, it is pertinent to acknowledge
that alternative models may also be considered, and the efficacy of utilizing
viscoelastic propagation can be further evaluated through comparative ana-
lyses. Through this study, we aim to gain a deeper understanding of how
these mechanical factors modify ultrasound propagation and how they can
be potentially leveraged to influence tumor dynamics.

To achieve our objective, we propose to model ultrasound propagation in-
dependently of its duty cycle, whether it is continuous or pulsed. We make
this decision since we apply the mechanical wave throughout the entire cell
growth process, and the duty cycle operates on a timescale of milliseconds
that depends on persistence. Consequently, once a mechanical stimulus is
applied, the response persists for a few seconds, much like how vision allows us
to see individual frames as part of a motion picture. As a result, even during
the silent period of the duty cycle, signaling remains activated, enabling us
to consider the stress field.

By modeling the ultrasound wave until it reaches a stationary state, in which
stress remains constant irrespective of the duty cycle, we can efficiently invest-
igate the effects of ultrasonic stress on tumor dynamics. The stationary stress
state achieved in our simulations is an important input for the model presen-
ted in the next Chapter, where we investigate how ultrasound-induced stress,
in combination with the stress generated during tumor growth, influences
tumor dynamics via mechanotransduction.

4.2 Mathematical model
The ultrasound wave travels in the direction of wave propagation, compressing
the medium along that direction. We formulate the displacement of the wave
as a boundary condition, for instance, in a lateral face (x = a). Then,
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displacements generated by a transducer in the y-axis direction are described
in the simplified form:

uuuu =
(

0, A sin (2πftu)
)

, (4.2.1)

where A is the wave amplitude in terms of displacements and f is the central
frequency. Before natural wave dissipation, the wave travels at constant

speed cp =

√
K + 4

3 µ

ρ
, where K and µ are the undrained bulk and shear

modulus, and ρ stands for medium density.

The dynamic balance equation that accounts for the inertial terms produced
during sonication reads:

∇ · σσσu = ρ
∂2uuuu

∂tu
2 , (4.2.2)

where σσσu is the stress produced by mechanical wave propagation. To accur-
ately model the complex attenuation that occurs on a fast time scale, we
utilize the Kelvin-Voigt governing equation (KV), as described in Section 2.3.2
and presented below:

σσσu = 2µ
(
εεεu − 1

3tr(εεεu)III
)

+ Ktr(εεεu)III + 2ηµ

(∂εεεu

∂tu
− 1

3tr
(∂εεεu

∂tu

)
III
)

+ ηK
∂tr(εεεu)

∂tu
III,

(4.2.3)
where the small strain is εεεu = 1

2(∇uu+∇uu
T). In our analysis, the weakening

of ultrasound waves is described by the shear viscosity ηµ and volumetric
viscosity ηK . To incorporate the effect of bulk viscosity, we consider the
attenuation coefficient αη of an ultrasonic wave at a given frequency, as
previously described in the literature [389, 390]:

ηK = αη2ρcp
3

(2πf)2 − 4
3ηµ. (4.2.4)

Notwithstanding, the contribution of the shear viscosity can be neglected due
to the low order of magnitude of the shear component of the compressional
waves.

Attenuation is frequency dependent. At 5MHz, fat tissue and parenchyma
exhibit dissipation values ranging from αη ∈ [0.2, 1.2]dBmm−1 [391], cor-
responding to viscosities of ηK ∈ [0.15, 1]Pa · s. Leukemia cells, on the
other hand, exhibit values of αη = 0.5dBmm−1 and a viscosity of ηK =
0.37Pa · s [392]; while blood can reach values of αη = 0.05dBmm−1, corres-
ponding to a viscosity of ηK = 0.047Pa · s [393], and the microscopic viscosity
of the plasma membrane is ηK = 0.21Pa · s [394].
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At the macro scale, the viscosity increase and it can reach values of ηK ∈
[0.7, 4.1]Pa · s in breast cancer [205], and even ηK ∈ [5.56, 6.56]Pa · s in
prostate cancer [395]. For further details on viscosity measurements, we refer
to study [213].

4.3 Numerical methods
The self-developed computational model is solved in the Finite Element
Analysis Program [396] – FEAP – and Matlab (©MathWorks Inc., Natick,
MA, USA). We solve the system assuming a two-dimensional problem and
plane strain.

The sensibility analysis includes range of frequencies of f = [1 − 20]MHz,
acoustic pressures of A = [0.1 − 5] kPa, and viscosities of ηi =[0-10]Pa·s,
being i the culture medium c or tumor viscosities T . These ranges of
frequencies and intensities are well below those established by the FDA,
which significantly minimizes the possibility of collateral damage. Specifically,
we have verified that the spatial-peak temporal-average intensity ISPTA
< 100mW · cm−2, and the mechanical index MI<1.9.

For the purpose of simulations, we consider a melanoma tumor spheroid of
200µm embedded in culture medium within a bioreactor of 2 cm in each
direction. To limit computational expense, we confine our modeling to a
2mm region of the culture medium, as illustrated in Figure 4.1. In addition,
we employ the Lysmer-Kuhlemyer Boundary Conditions to account for non-
reflecting boundaries which absorb the 90% of the wave, and where the
normal stress is expressed as σnσnσn = klρcp

∂uuu
∂t

, being kl a constant between
[1 − 100] [397].

Figure 4.1: Wave propagation simulation simplification. The
displacement boundary condition time dependent is set in a face x=a,

while absorbing boundary conditions are applied in all faces.

We propagate continuous ultrasound through the spatial domain thrice to
reach stationary state. The quantity of elements necessary for the simulations
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is dependent on both the space and time intervals. The spatial discretization
is assumed as dx = λ/30, where the wavelength is λ = cp

f
. As for the time

interval, it is taken as dt = f−1mh
−1, being mh the number of elements in

each direction.

4.4 Results

4.4.1 Viscosity

The conducted simulations varying viscosities demonstrate the importance
of taking into account dissipation in therapeutic ultrasound. As shown in
Figure 4.2, ultrasound waves propagate uniformly through elastic media at a
constant wave speed that does not depend on frequency.

However, introducing viscosity in the simulations results in a frequency-
dependent wave speed, wave attenuation, and wave dispersion, which is a
time-dependent behavior that increases with viscosity.

Figure 4.2: Viscosity-attenuation dependence. Homogeneous
and elastic propagation maintains amplitude constant while viscosity
attenuates wave propagation. Higher viscosity of the tumor produces
a decrease in wave amplitude. All cases are shown for ηc = 0.05Pa · s,

f = 5MHz, and A =1.5kPa.

When the viscosity of a tumor exceeds that of the surrounding medium, it
leads to diffraction of the ultrasound wave, resulting in regions where the
maximum acoustic pressure cannot be achieved, as demonstrated in Figure 4.3.
The degree of this diffraction effect relies on the disparity in viscosity between
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the tumor and its surrounding environment. This phenomenon has the
potential to influence the growth patterns of the tumor, as elaborated in the
subsequent chapter.

Figure 4.3: Viscosity and attenuation in less viscous medium.
The diffraction and the loss of amplitude wave increase with higher tumor
viscosities. All cases are shown for ηc = 0.05Pa · s, f = 5MHz, and
A =1.5kPa. Note that the last cycles of waves gain amplitude because of

the absorbing conditions used, which reflect the 10% of the energya.

aThis issue could be overcome by modifying the absorbing boundary conditions or by
increasing the size of the sample.

Conversely, when the viscosity of the surrounding medium is greater than that
of the tumor, the ultrasound wave is attenuated before reaching the tumor
spheroid, as shown in Figure 4.4. It is important to note that increasing the
viscosity of the medium leads to a reduction in wave amplitude, which may
necessitate an increase in acoustic pressure to achieve higher stress levels in
the tumor under higher viscosity conditions.

4.4.2 Acoustic pressure

e conducted an investigation to examine the effects of varying acoustic
pressure on wave amplitudes in a viscoelastic medium with heterogeneous
viscosity. The findings, illustrated in Figure 4.5, reveal that increasing the
acoustic pressure, while maintaining a constant frequency and viscosity, leads
to higher wave amplitudes and, thus, higher levels of generated stress.

When propagating waves through a viscoelastic medium, the response of the
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Figure 4.4: Viscosity and attenuation in more viscous medium.
Higher viscosities of the medium imply higher attenuation before reaching
the tumor spheroid. All cases are shown for ηT = 0.05Pa · s, f = 5MHz,

and A =1.5kPa.

medium to different acoustic pressures is contingent on both the frequency
of the waves and the magnitude of the acoustic pressure. At low acoustic
pressures, the response of the medium is primarily elastic, and the waves
propagate through the medium with minimal energy dissipation. As the
acoustic pressure increases, the medium starts to exhibit viscoelastic behavior,
with energy dissipation becoming more pronounced as the waves propagate.

At high acoustic pressures, the viscoelastic response of the medium can
become predominant, resulting in intense wave weakening. This underscores
the significance of selecting the appropriate acoustic pressure carefully in
low-intensity therapeutic ultrasound treatments to avoid overly attenuating
or absorbing the waves, which could compromise the optimal therapeutic
outcomes.

4.4.3 Frequency

As the frequency of an ultrasonic wave increases, its wavelength generally
decreases, enabling higher intensities to be achieved without altering the
acoustic pressure of the wave. However, the impact of frequency on wave
propagation is influenced by the material properties of the medium. At lower
frequencies, materials exhibit greater elasticity, while at higher frequencies,
they become more viscous, leading to amplitude wave loss.
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Figure 4.5: Acoustic pressure analysis. An increase in acoustic
pressure lead to increased wave amplitude. All cases are shown for

ηc = 0.05Pa · s, ηT = 2Pa · s, and f = 5MHz.

Simulations reveal that a frequency of 20 MHz results in significantly greater
dissipation compared to lower frequencies. In contrast, for a frequency of 1
MHz and given the dimensions of the tumor spheroid, the viscosity of the
medium appears to have little effect on wave attenuation, as depicted in
Figure 4.6. It is important to consider the material properties of the medium
when selecting the appropriate frequency to ensure optimal therapeutic
outcomes.

If we aim to use a high frequency in a viscous medium to induce therapeutic
effects, we would need to increase the emitted acoustic pressure to mitigate
the effects of viscosity, as demonstrated in Figure 4.7. However, an extreme
increase in frequency and intensity could potentially exceed the established
safety limits.

To conclude, we present the temporal evolution of mechanical waves in
both elastic and viscoelastic media with varying frequencies, specifically
focusing on cases where the tumor has a higher viscosity than the surrounding
medium. Two different frequencies, 5MHz and 20MHz were considered, and
the evolution of the wave behavior was visualized in Figure 4.8.

The maps show the hydrostatic stress at different times during sonication,
including before the wave reaches the tumor after it reaches the tumor, and
when a stationary state is achieved. Our findings indicate that for elastic cases,
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Figure 4.6: Frequency analysis. Higher frequencies show greater wave
dissipation and less wavelength. Note that frequencies of 1 and 5 MHz
are scaled to present them in the same range of amplitudes. Parameters

of ηT = 2Pa · s and ηc = 0.05Pa · s and A=1.5kPa.

the amplitude and speed of wave propagation remain constant. However,
when viscoelasticity is considered, there is a slight decrease in hydrostatic
stress.

Moreover, we observed that increasing the frequency results in greater amp-
litude decay resulting in lower tension areas and a decrease in wave speed.
Additionally, the diffraction effect highlighted in earlier discussions can also
be achieved at equal frequencies if the tumor’s viscosity is even higher than
that of its surrounding medium. These results emphasize the importance of
carefully selecting the appropriate frequency and considering the material
properties of the medium in low-intensity ultrasound treatments for optimal
therapeutic outcomes.

Stress has been identified as an important parameter in the promotion of
mechanotherapy. Table 4.1 presents a summary of the peak hydrostatic
pressure achieved at the central point of a tumor by a stationary wave,
implying that higher peak pressures could lead to a greater reduction in
cell proliferation, i.e. configurations of f =1MHz and f = 5MHz with
A =1.5-3kPa, and considering ηc=0.05Pa·s and ηc=2Pa·s.
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Figure 4.7: Frequency with increased acoustic pressure. Increased
pressure in high frequencies lead to a decrease in wave attenuation.
Parameters of ηT = 2Pa · s and ηc = 0.05Pa · s. For f = 5MHz, the

acoustic pressure is A =1.5kPa.

Table 4.1
Numerical results of peak pressures in LIUS therapy.

f [MHz] A [kPa] ηc[Pa · s] ηT [Pa · s] pr [kPa]
1 1.5 0.05 2 1.342
5 1.5 0.05 2 1.227
10 1.5 0.05 2 0.775
20 1.5 0.05 2 0.193
20 5 0.05 2 0.742
5 0.1 0.05 2 0.075
5 0.5 0.05 2 0.471
5 3 0.05 2 2.550
5 1.5 0 0 1.340
5 1.5 0.05 0.05 1.298
5 1.5 0.05 5 1.107
5 1.5 0.05 10 0.920
5 1.5 2 0.05 0.500
5 1.5 5 0.05 0.262
5 1.5 10 0.05 0.022
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(a) Elastic wave propagation, with f = 5MHz and A=1.5kPa. The speed of the wave remains
constant over propagation.

(b) Viscoelastic wave propagation, with f = 5MHz, A = 1.5kPa, ηT = 2Pa · s and ηc = 0.05Pa · s.
Decrease in the speed and amplitude of wave compared with elastic case. Subtle areas of shadow
are becoming discernible.

(c) Viscoelastic wave propagation, with f = 20MHz, A =1.5kPa, and ηT = 2Pa · s and ηc =
0.05Pa · s. Higher decrease in speed and attenuation compared with f =5MHz propagation.
Distinct stress-induced shadow areas are readily discernible.

Figure 4.8: Ultrasound hydrostatic stress in different wave
propagations. Simulations are shown including pre-tumor, post-tumor,

and upon reaching steady-state conditions.
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4.5 Conclusions
Our findings underscore the significance of accounting for the viscoelastic
behavior of tissue when designing and optimizing LIUS treatments. Failing to
consider these effects can result in inaccurate predictions of wave dissipation
and overestimation of the stress experienced by cells, leading to unrealistic
scenarios.

In our simulations, we have observed that the higher viscosity of the tumor
tissue resulted in shadow zones behind the sonicated area, where the wave
energy dissipates due to the viscosity of the tumor spheroid.

Acoustic pressure is a fundamental parameter that significantly influences
the efficacy and safety of LIUS treatments. Excessive acoustic pressure can
trigger cavitation and heating effects, leading to mechanical disruption of
tissues and irreversible damage. In contrast, inadequate acoustic pressure
may not produce the desired therapeutic effects, allowing cells to proliferate
and migrate to regions with lower stress levels.

In addition to acoustic pressure, the selection of the appropriate frequency for
LIUS is required to achieve optimal therapeutic outcomes, such as apoptosis
or quiescence in cancer treatments. The choice of frequency depends on
various factors, such as the target tissue geometry, medium properties, and
desired intensity. Lower frequencies are associated with deeper penetration
into tissues, making them ideal for treatments targeting structures located
deeper in the body. However, as the frequency increases, the wave energy is
increasingly absorbed and dissipated, resulting in greater weakening of the
wave. The degree of absorption depends on the properties of the medium
through which the wave propagates, such as its viscosity.

The findings of this numerical in vitro study are highly relevant for the
potential translation of LIUS into potential effective clinical treatments.
For instance, in the treatment of superficial cancers like melanoma, higher
frequencies can be used since the target tissue is closed to the skin surface,
and the attenuation of the wave is minimal. On the other hand, for deep-
seated cancers such as pancreatic cancer, lower frequencies may be studied
to achieve optimal focused therapeutic effects due to the need for deeper
penetration into the body. The selection of an appropriate frequency should
also consider the desired precision of the treatment, as higher frequencies
provide better resolution and hence more focused treatment.

Taking into consideration the range of frequency, acoustic pressure, and
intensity parameters, our study indicates that in order to effectively induce
mechanotransduction, the tumor size should be larger than the wavelength of
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the material or, at the very least, the wavelength should be able to propagate
through the tumor without significant attenuation due to medium viscosity,
provided that the acoustic pressure remains above a certain threshold. The
relationship between these parameters is complex and must be carefully
optimized to ensure that the desired therapeutic outcomes are achieved while
minimizing the potential for adverse effects such as tissue damage.

Based on our data, we conclude that a frequency of f = 1 − 5MHz could
be an appropriate choice for treating a 200µm tumor spheroid, given its
viscosity range of ηT ∈ [1, 3]Pa·s and the viscosity of the culture medium two
orders of magnitude lower. While the optimal acoustic pressure depends on
the specific cell type, our findings suggest that static hydrostatic stresses
within the range examined could be sufficient to inhibit spheroid growth, and
acoustic pressures greater than A = 1.5kPa may be effective for the stated
frequencies.

Therefore, selecting the appropriate mechanical parameters depend on specific
medium properties, desired intensity, and target tissue geometry. Numerical
studies could provide insights into the optimal mechanical parameters for
different cell types and disease states, which can guide the development of in
vitro and in vivo studies and future clinical applications.

In conclusion, our findings have the potential to inform the design of
ultrasound-based cancer therapies, improve our ability to predict and manip-
ulate the ultrasound-tissue interaction, and ultimately guide and contribute
to the development of safe and effective LIUS co-treatments for cancer or
other diseases while minimizing the risk of adverse effects.
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Chapter 5

LIUS therapy in a growing
tumor spheroid

5.1 Introduction
Once we have simulated different ultrasound propagations, we aim at joining
ultrasound propagation to tumor evolution. Then, this chapter is focused on
developing a biomechanical multiscale model that includes the therapeutic
effect that LIUS seems to cause on growing tumors. The mathematical model
is proposed at two different scales: i) slow-time scale in which the tumor
grows and migrates and ii) fast-time scale in which ultrasound propagates
through the tumor. Both scales are coupled by mechanotransduction, which
occurs at an ultrasonic time interval and triggers tumor dynamics response
at a slow-scale.

Firstly, we reconstruct the mechanotransduction parameters of our math-
ematical model approach with a preliminary experiment conducted in the
laboratory using A375 melanoma cancer stem cell spheroids exposed to 5 MHz
ultrasound with varying acoustic pressures. To reproduce the experiment
in silico, we simplify the degrees of freedom in the mathematical model and
adjust the parameters for proliferation, cellular decay, mechanotransduction,
and ultrasound wave propagation.

After contrast with preliminary experimental procedures, we aim to fur-
ther investigate the mechanotransduction process in cancer stem cell spher-
oids. Specifically, we focus on varying the mechanical parameters studied in
Chapter 4, such as frequency, acoustic pressure, and viscosity, to establish
potential biological outcomes such as apoptosis or quiescences with different
mechanical configurations. By systematically varying these parameters and
analyzing their effects on mechanotransduction, we hope to gain a deeper
understanding of the underlying mechanisms involved in ultrasound-induced
mechanotransduction in cancer stem cell spheroids.

This sensibility analysis is performed to our overall understanding of how
ultrasound can be used to potentially impact cancer by reducing the pro-
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liferation and dissemination of tumors. By identifying the key mechanical
parameters that influence mechanotransduction, we can better design ultra-
sound protocols to achieve specific therapeutic outcomes.

Lastly, we have conducted simulations based on published data without ul-
trasound [84, 330]. Using the mechanotransduction parameters reconstructed
from the previous study, we suggest how growth, migration, and patterning
can be modified by ultrasound application. Moreover, the insights achieved
from this study may also inform the development of novel strategies for cancer
co-treatment based on ultrasound-induced mechanotransduction.

5.2 Mathematical model
We propose a multiscale model that accounts for the low-intensity ultrasound
influence (microsecond-second time scale, tu) on a growing tumor (hour-day
time scale t) via mechanotransduction function. The multiscale method is a
strategy for capturing the long-term effects that are not visible on a small
scale but become significant at a larger and slower scale.

As described in Chapter 2, tumors are poroelastic materials composed of
different phase components, including nutrients, healthy cells, tumor cells,
interstitial fluid, proteins, and ECM. For the purposed study, the tumor is
assumed to have a fluid phase (ϕF ) of interstitial fluid and different solid
phases (ϕi) which provide the elastic stiffness. The solid phases included here
are tumor cells (ϕT ), healthy cells (ϕH), and the extracellular matrix (ϕM ).

The proposed model is based on the well-studied thermodynamic framework
of Biot’s poroelasticity and growth theory, and we refer to [337, 151, 84, 330]
to deep into the fundamentals of the equations, in which the model of
poroelastic cell competition and mechanotransduction are based. We use the
uuu − p poroelastic notation, neglecting the relative fluid-solid displacement
to focus on how fluid pressure affects the dynamic of solid phases. We
assume infinitesimal strain theory and linear elasticity since there is no large
deformation during ultrasound insonification [70] and growth does not develop
great deformation.

The balance momentum that describes the dynamic mechanical equilibrium
is:

∇ · σσσ = ρ
∂2uuu
∂t2 , (5.2.1)

where ρ is the medium density and uuu are the displacements. The Cauchy
multiscale stress tensor in a sonicated growing tumor is described by:

σσσ(xxx, t) = σσσs(xxx, t) + σσσu(xxx, tu), (5.2.2)



5.2. MATHEMATICAL MODEL 87

where the slow-scale stress σσσs(xxx, t) accounts for the growth and the poroelastic
rearrangements while the fast-scale stress σσσu(xxx, tu) refers to ultrasonic stress
which occurs at time tu. To isolate the governing equations at each temporal
scale, we define the average of the multiscale stress over an ultrasonic spatial
and temporal cycle [398, 399], i.e. reference ultrasonic wavelength λ and
period T :

⟨σσσ⟩ = 1
λT

∫ T

0

∫ λ

0
σσσ dxxx dtu. (5.2.3)

Considering the definition of multiscale stress, the above reads:

⟨σσσ⟩ = 1
λT

∫ T

0

∫ λ

0
σσσs dxxx dtu + 1

λT

∫ T

0

∫ λ

0
σσσu dxxx dtu, (5.2.4)

being the slow stress independent of the ultrasonic scale, ⟨σσσs⟩ = σσσs. On
the other hand, ultrasonic stress is a function of the sinus over λ and T , as
denoted in equation 4.2.1, so ⟨σσσu⟩ = 0. Then, the average of the multiscale
stress is the slow-scale stress, ⟨σσσ⟩ = σσσs, and subsequently, the average of the
slow-scale stress is the total multiscale stress, ⟨σσσs⟩ = σσσ. Finally, regarding
equation (5.2.2) and the independence of the slow-scale stress from the
ultrasonic scale, the ultrasonic stress is σσσu = σσσ − ⟨σσσ⟩.

Once the multiscale approach is formalized, we define the slow-scale stress as
an additive decomposition:

σσσs = σσσe + σσσp + σσσg, (5.2.5)

being σσσe the so-called effective solid stress tensor, σσσp the fluid pressure
contribution, and σσσg the stress generated during growth. Hence, the equation
of dynamic equilibrium (5.2.1) applied to slow-scale stress can be considered as
a quasistatic process since characteristic velocities are small and inertia terms
can be neglected. For an elastic isotropic material, the constitutive equation
for the effective solid stress that accounts for the elastic rearrangements
yields:

σσσe = 2µd

(
εεε − 1

3tr(εεε)III
)

+ Kdtr(εεε)III, (5.2.6)

where the small strain is εεε = 1
2(∇u + ∇uT), with uuu the displacements, III

the second-order identity tensor, and Kd and µd the drained bulk and shear
modulus. We can neglect the viscous solid contribution at the slow-scale
governing equation since the relaxation terms of rearrangements are on a
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smaller time scale than growth. The stress produced by the fluid is:

σσσp = −α
(

p − p0

)
III, (5.2.7)

with α the Biot coefficient, p the fluid pore pressure, and p0 the initial fluid
pore pressure. The evolution of the fluid pressure p is regulated by the
Storage equation:

∂ζ

∂t
= 1

M

∂p

∂t
+ α

∂tr(εεε)
∂t

= ∇ ·
(

k∇p
)

+ ΓF, (5.2.8)

being ζ the dimensionless variation of fluid content defined by the difference
between the actual and initial fluid phase ζ = ϕF − ϕF0. The parameter M

is the Biot modulus, and k is the conductivity, k = κνf
−1, where κ is the

permeability of the medium, and the dynamic fluid viscosity is described by
νf . The source term ΓF accounts for the fluid interchange between vessels
and capillaries. Considering Starling’s theory [330, 84, 400, 304, 186], the
fluid flow source yields:

ΓF = kv

[
(pv − p) − ω(πv − πl)

]
− kl(p − pl), (5.2.9)

where pv relates to the vessel pressure, ω is the reflection coefficient which
weights the interstitial osmotic pressure (πv − πl), and pl is the lymphatic
pressure drainage working in the opposite direction of the vessel pressure
system. The kv and kl parameters are the conductivity coefficients of the
vessel and lymphatic system respectively. Following the recent trends in
literature, the conductivity of the lymphatic system can be described as a
function of tumor cells that includes decreasing drainage of the lymphatic
system caused by tumor growth:

kl =
[
1 − (ϕT − ϕT 0)

]
kln, (5.2.10)

with kln the conductivity of the lymphatic system under normal condi-
tions [330, 400]. Finally, the stress produced by growth reads:

σσσg = −Kdgγγγ, (5.2.11)

where g is the growth strain function and γγγ is the tensor that distributes
the growth in different directions. In this study, we have assumed isotropic
or volumetric growth, so γγγ = 1/3III, which is also utilized in Chapter 3.
Additionally, homogeneous growth is considered for the sake of simplicity in
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this particular investigation. The growth function reads:

g = ϕT + ϕH + ϕM − ϕT 0 − ϕH0 − ϕM0, (5.2.12)

with the zero subindexes denoting the initial volume fractions. The volumetric
fractions evolve and interact with the mechanical environment and, among
others, by:

∂ϕT

∂t
= ∇ · (MT DT ϕT ∇ϕT ) + ϕFMTϕTΓTTT,

∂ϕH

∂t
= ϕF MHϕHΓHTH ,

∂ϕM

∂t
= βT ϕT + βHϕH − δM ϕM ΓM ,

(5.2.13)

where the first equation describes the tumor phase dynamics. In particular,
the first term on the right accounts for tumor the non-linear tumor phase
flux, described here by a finite-speed tumor propagation front limited by
the diffusion coefficient DT . The second term considers the competitive
interaction among other species – ΓT, fluid phase ϕF and proliferation TT –.
Both migration and source terms account for mechanotransduction function –
MT –. Mechanotransduction, competition, fluid phase and proliferation are
also described for healthy cells by MH, ΓH and TH . The ECM evolution
depends on i)the species interaction ΓM, ii) the ECM synthesis promoted by
the cells by the production rates βT and βH , and iii) the ECM degradation
processes enabled by the loss rate δM [330]. The competition terms ΓT ,
ΓH and ΓM are defined by the following predator-prey or Volterra-Lokta
dynamics [401]:

ΓT =
(

1 − αT T ϕT − αT HϕH − αT M ϕM

)
,

ΓH =
(

1 − αHT ϕT − αHHϕH − αHM ϕM

)
,

ΓM = αMT ϕT + αMHϕH

(5.2.14)

where the coefficients αii, with i = {T, H, M}, represent the interaction
among the cell species. To complete the system of equations, we define the
mechanotransduction function. Based on time scales at which mechanotrans-
duction occurs, we propose that cells perceive the promedio of the sigmoid
function MBi at an ultrasonic time interval, in which cells could sense perturb-
ations and activate mechanotransduction pathways that alter proliferation
above a certain stress threshold [221, 225, 215]. Then, mechanotransduction
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can be expressed as:

Mi = 1
T

∫ T

0
MBi

dtu, (5.2.15)

where MBi is based on already published works summarized in Table 2.2:

MBi
=
[
qi + (1 − qi)ebi(|σM|−βuσLi

)
(

1 + ebi(|σM|−βuσLi
)
)−1]

. (5.2.16)

Indeed, the initial proliferation or migration of cells decreases to the maximum
of the viability of the cells, achieving the factor of qi when the stress σM
perceived by the cells in the environment exceeds a threshold σLi

. In literature,
this threshold is obtained for static stress and values around [1 − 10]kPa [154,
151, 155, 330, 84, 304]. However, to also account for dynamic stress, we adopt
a linear parameter βu, which reduces the sensitivity limit of cells. Parameter
bi refers to the smoothness of the transition zone of the sigmoid function, i.e.,
how fast or slow cells adapt their proliferation to stress.

We assume that cells sense both static hydrostatic growth-induced and
dynamic ultrasonic-induced stress via mechanotransduction pathways. Then:

σM =
(

σh
s + σh

u

)
, (5.2.17)

where the superscript h is the hydrostatic stress defined by σh = 1
3tr(σσσ) for

each time-scale stress. We neglect the shear stress contribution because its
order of magnitude is much smaller than the normal components due to the
plane ultrasound wave and the isotropic growth. In Figure 5.1, we schematize
how the mechanotransduction function works.

To conclude the formalization, we obtain σσσh
u over a period of time from the

propagation of a P-wave emitted by a transducer through the medium, as
previously explained in Chapter 4.
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Figure 5.1: Mechanotransduction function. Cells perceive the
promedio of the sigmoid function MB . The slow ultrasound stress is
constant at an ultrasonic time interval, while ultrasound stress exhibits
dynamic behavior, oscillating between rarefaction and compression – for
this case, we have plotted the absolute stress of a wave with an amplitude
of 1kPa –. To account for the dynamic nature of ultrasound stress, the
static stress limit, σL, is decreased by a coefficient, βu. However, if
the limit is exceeded, it may result in cell disruption and cessation of

proliferation, indicated by MB = 0.a

aNote that our current function does not account for the cytodisruption effect.

5.3 Methods

5.3.1 Numerical methods

Regarding the initial conditions, the initial fluid phase is defined by equation
ϕF0 = 1 − ϕT0 − ϕH0 − ϕM0. The initial fluid pressure guarantees the equi-
librium of the Storage equation, so p0 causes the source term to be null at
the initial time instant t = 0h. Furthermore, the initial components of the
tumor and healthy cells are distributed in space according to a smoothing
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function S proposed in reference [330]:

ϕT 0 = ϕT 0S,

ϕH0 = ϕH0

(
1 − S

)
,

S =
[
1 + ebS

(r−lt)
l

]−1
,

(5.3.1)

where the parameter ϕi0 is the initial concentration rate, lt represents the
tumor size, r the radius of the tumor, and l the total length size of the
medium, while bS is the smoothing coefficient.

Regarding boundary conditions (BC), we adopt Winkler-inspired Boundary
Conditions to adopt the confinement of the tumor spheroid at slow scales σnσnσn =
−kwuuu, where nnn is the outer normal vector and kw is a constant [92]. For
fast-scale ultrasound propagation, we use the Lysmer-Kuhlemyer Boundary
Condition to account for nonreflecting boundaries or absorbing boundary
conditions [397], as discussed in Chapter 4. The normal stress reads σnσnσn =
klρcp

∂uuu
∂t

, where kl is a constant between [0 − 100].

The self-developed computational model is solved in finite elements using Fi-
nite Element Analysis Program [396] – FEAP 8.6– and Matlab (©MathWorks
Inc., Natick, MA, USA). We solve the multiscale system assuming a two-
dimensional problem and plane strain.

As explained in Section 5.2, the different scales model can be considered
independent, and the flowchart of the numerical simulations is reported in
Figure 5.2.

We conducted a set of simulations using a multiscale model that includes
mechanotransduction effects, with different mechanical parameter values
according to Chapter 4. The parameter values used in each simulation are
summarized in Table 5.1 and the specific parameters for fast-scale ultrasound
were described in Chapter 4. In some cases, certain parameters were kept
constant across simulations, while in others, they were varied to explore
their impact on the outcome. Specifically, in our preliminary experiments
prediction, we simplify the model. We make sure to specify which parameters
are being modified for each simulation in the corresponding figures or results.

5.3.2 Experimental method

In this section, we provide a detailed account of the cell culture method, cell
line acquisition, and setup used in our experiments. The cell culture setup
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Figure 5.2: Flowchart of the multiscale model. The system is
initialized at slow-scale, where the displacements, fluid pressure, and solid
phases are obtained. The solid phases are added into fast-scale model of
wave propagation to consider the viscosity medium of the tumor cell phase
dependence. The fast-scale model evolves until the stationary waves are
achieved, and ultrasonic hydrostatic stress is computed. Together with
the hydrostatic slow stress, the ultrasonic stress is considered to compute
the evolution of the system accounting for mechanotransduction. The
results are again included at slow and fast-scale to complete the time

loop until the final time of simulations is achieved.

has been performed and extensively improved over the years by members
of our collaborating group Advanced therapies: differentiation, regeneration,
and cancer of the University of Granada. Our team, on the other hand, is at
the forefront of using mechanical waves in soft tissues [398, 213].

5.3.2.1 Experimental setup

The bioreactor in which CSCs are located is subjected to a 70% alcohol
spray and subsequently placed in a chamber designed for ultraviolet (UV)
sterilization. This process lasts for 30 minutes and ensures disinfection of
the bioreactor by effectively eliminating potential contaminants with the
use of UV light. The water and attenuating material chambers are filled
with caution to prevent overflow and avoid any form of contamination or
interference. Additionally, the chambers are covered with insulating tape.
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Table 5.1
Multiscale modeling parameters for numerical simulations

Description Symbol Data Units Reference
Young modulus E 8 kPa [151, 114,

330]
Undrained Poisson
modulus

νu 0.49999 [-] [151, 114]

Drained Poisson modu-
lus

ν 0.4 [-] [151, 114, 92]

Mass density ρ 1000 kg · m−3 [-]
Hydraulic conductivity kh 3.1 · 10−14 m2 · Pa−1s−1 [151, 114,

186, 340,
342]

Biot coefficient α 9.91 · 10−1 [-] [330, 402]
Biot modulus M 1.79 MPa [330, 402]
Vessel conductivity kv 2.70 · 10−8 Pa−1 · s−1 [340, 186,

400]
Vessel pressure pv 3.33 · 103 Pa [186]
Reflection coefficient ω 9.00 · 10−1 [-] [340, 400]
Interst osmotic pres-
sure

πv − πe 1.33 · 103 Pa [340, 400]

Lymphatic conductiv-
ity

klo 9.98 · 10−8 Pa−1 · s−1 [186]

Lymphatic vessel pres-
sure

pl 1.33 · 102 Pa [84]

Exchange coefficient αT T 1.30 - [330]
Exchange coefficient αT H 1.00 - [330]
Exchange coefficient αT M 1.00 - [330]
Exchange coefficient αHH 3.00 - [330]
Exchange coefficient αHT 2.00 - [330]
Exchange coefficient αHM 1.00 - [330]
Coefficient βT 5.79 · 10−7 s−1 [330]
Coefficient βH 1.16 · 10−6 s−1 [330]
Coefficient δM αMT 2.89 · 10−6 s−1 [330]
Coefficient δM αMH 2.89 · 10−6 s−1 [330]
Initial condition ϕT ϕT 0 1.50 · 10−1 - [330]
Initial condition ϕH ϕH0 1.50 · 10−1 - [330]
Initial condition ϕM ϕM0 4 · 10−1 - [330]
Proliferation rate ϕT TT 1.26 · 10−5 s−1 [330]
Proliferation rate ϕH TH 1.26 · 10−5 s−1 [330]
Common lower rate q 0.05 [-] [330]
Smootheness mechano-
transduction

χσ −0.05 Pa−1 [330]

Dynamic stress coeffi-
cient

βs 0.2 [−] Fitted

Tumor Limit stress σL 1.2 · 103 Pa [330, 154,
151, 155]

The complete setup is shown in Figure 5.3. The Arduino is connected to the
computer and the software is loaded, which enables the switch of mechanical
signals. The Arduino also serves as a trigger to restart the signal and prevent
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any time delay. The wave is generated using Matlab software and then
loaded onto the wave generator. Before connecting the wave generator to the
amplifier, the signal is first verified using an oscilloscope to ensure that the
frequencies and connections are correct. Once the signals have been tested,
the transducer is connected and placed on the support, and coupling gel is
extended on the transducers and bioreactor faces as a coupling material to
avoid air bubbles. The relays are then connected.

As the final step, the cells are transferred to their designated chambers in
the bioreactor and placed in the incubator until the subsequent analysis.
To conduct the examination, the bioreactor is taken out of the incubator
and moved into a UV sterilization chamber with laminar flow to avoid
contamination.

Figure 5.3: Setup of the preliminar measurements.

The bioreactor utilized for cell culture consists of five sequentially arranged
Petri dishes containing A375 melanoma cells embedded in culture medium
and an attenuating medium (oil), as depicted in Figure 5.4. This experimental
setup is designed to enable the generation of various wave amplitudes using a
single transducer, as the emitted wave loses energy while propagating through
different media. To prevent heating effects, a water-filled region is included
at the beginning of the bioreactor. Acoustic pressure values are measured in
each culture using a hydrophone probe, which is submerged in a replica of
the bioreactor to capture acoustic pressure values without affecting tumor
response. Through this method, we have determined that the first culture
experiences 15.5 kPa, the second 7.5 kPa, and the third 1.5 kPa.
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Figure 5.4: Sonication scheme. The transducer emits the ultrasonic
wave through a first medium of water, which prevents the temperature
from increasing. The wave then travels through the culture containing
cells and then attenuating media, causing the acoustic pressure to decrease
as it encounters different materials. As a result, the same bioreactor can

be used for a given frequency and various amplitudes.

5.3.2.2 Cell culture

Melanoma cancer cell line (A375) are acquired from the American Type
Culture Collection (ATCC) and arecultured according to the recommended
procedures by the ATCC. The cell lines are passaged for a period of less than
6 months and were regularly screened for mycoplasma contamination. Cells
were maintained in advanced DMEM (Sigma-Aldrich) supplemented with
10% FBS (Gibco) and 5% Penicillin/Streptomycin (Sigma-Aldrich).

To obtain tertiary spheres, melanoma cells are cultured in suspension using
low-attachment plates containing DMEM-F12, 1% streptomycin-penicillin, 1
mg/mL hydrocortisone (Sigma-Aldrich), 4 ng/mL heparin (Sigma-Aldrich),
1X ITS (Gibco), 1X B27 (Gibco), 10 ng/mL EGF (Sigma-Aldrich), 10 ng/mL
FGF (Sigma-Aldrich), 10 ng/mL HGF, and 10 ng/mL IL6 (Miltenyi Biotec).
The cells are cultured for 6 days and the spheres are disaggregated every
72 hours until tertiary spheres are obtained. To achieve this, the spheres
are collected by centrifugation at 1500 rpm for 5 minutes, incubated with
trypsin-EDTA (Sigma-Aldrich) at 37°C for 5 minutes, and then inactivated
with FBS. The cells are then washed with PBS and reseeded in the same
culture conditions.

5.3.2.3 Cell proliferation assay

To evaluate cell proliferation, we employ the Alamar blue assay (Biorad)
as the measurement method. Cell growth is monitored on days 0, 1, and
3. To ensure reliable results, two parallel experiments are conducted. In
the first experiment, a bioreactor is exposed to 24 hours of ultrasound, and
measurements were taken. In the second experiment, a bioreactor is utilized
where cells underwent the 72-hour treatment without interruption. This
approach is implemented to avoid any potential interference or damage during
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the manipulation of the spheroids.

The experimental procedure consists of adding 10µl of Alamar blue solution
per 100µl of media to the cells and incubating them for 2 hours. Following
the incubation period, the fluorescence intensity is measured using the Syn-
ergy HT instrument (BIO-TEK) at an excitation wavelength of 530nm and
emissions of 590nm.

5.4 Results

5.4.1 Multiscale mechanotherapy in-vitro

The experimental configuration used in this study was based on previous
knowledge of how stress can impact cell growth, as discussed in Chapter 4.
The selection of the ultrasound frequency is important to achieving optimal
therapeutic outcomes, as very low frequencies would not penetrate the tumor,
while high frequencies could potentially cause cytodisruption through reson-
ance. Therefore, we select a frequency of 5MHz, which is within the range
that can partially penetrate the tumor and enhance mechanotransduction
without causing cytoskeleton damage.

In reference to the acoustic pressure, we apply acoustic pressures of 1.5kPa,
7.5kPa, and 15.5kPa, as illustrated in Figure 5.4. These values fall within
a safe range, as they are sufficient to induce mechanotransduction without
causing tissue disruption.

5.4.1.1 Experimental results

For the preliminary analysis of the data, a non-parametric methodology is
developed under the assumption of non-normality in the growth rate variables.
The choice is performed as a consequence of the small size of the sample
per group. It should be understood that experiments in medical engineering
are expensive and costly in terms of design, time, and setup. The rates are
standardized from the initial growth quantities, where the control group is
not exposed to any ultrasound propagation and the effect group was sonicated
to a frequency of 5MHz.

Our preliminary experiments suggest that tumor cells diminish their net
proliferation if they are sonicated at 5MHz compared with non-sonicated cells
for three days, as shown in Figure 5.5. Furthermore, the different acoustic
pressures do not show significant differences between them – data not shown –
but evidence of statistical significance, indicating that the sensitivity limit of
the cells is reached before 1.5kPa, which is in agreement with the hypothesis
that the sensitivity limit of cells is lower for dynamic stress than for static
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stress [330, 84, 304, 154].

For the methodology, the hypothesis contrast is analyzed by the Wilcoxon-
Mann-Whitney test for small samples and independent means with the exact
distribution. A p-value of 0.018 is obtained with a fixed 5% of type I error.
This probability reveals a statistically significant inference for the difference
of means in the groups, observing a less rate for the cellular population
exposed to high-frequency ultrasound.

Figure 5.5: Preliminar experiments for non-sonicated and sonic-
ated cells. Cell proliferation diminishes if the tumor spheroid is sonicated
at 5MHz for three days, compared with non-sonicated cells. ∗p < 0.05 in

the Wilcoxon-Mann-Whitney test, n=3.

5.4.1.2 Multiscale mechanotherapy model

We have reduced the degrees of freedom of the mathematical model to fit our
experimental data and reconstruct the mechanotransduction parameters. For
sake of simplicity, we have assumed the absence of the extracellular matrix
and healthy phases, and we only consider the coexistence of proliferative
tumor cells and fluid within the tumor spheroid, meaning thatD = αT H =
αT M = ΓF = ΓH = ΓM = βT = βH = 0.

We have chosen specific mechanical parameters for our experiment, including
a frequency of f = 5MHz, a tumor viscosity of ηT =2Pa·s, a culture medium
viscosity of ηc=0.05Pa·s, and an acoustic pressure of A =1.5kPa. The selection
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of acoustic pressure is based on the results of our preliminary experiments,
which have indicated no significant differences between the different acoustic
pressures applied.

To begin with, the simulation parameters are calibrated using the results
obtained from the control experiment, which have considered the observed
deceleration of cell proliferation on the first day. This decline is linked
to the rearrangement and development of spheroid clusters. Therefore, it
is plausible that the absence of notable distinctions between the control
and sonication groups on the first day of the experiment is a result of the
cellular reorganization. A constant and higher proliferation rate is maintained
from the first to the third day. Once the growth parameters are calibrated,
we proceed to adjust the mechanotransduction parameters to match the
experimental results.

From a computational standpoint, the hydrostatic stresses characterizing the
stress state of the tumor manifest themselves at two distinct scales: the slow
and the ultrasonic stress, as illustrated in Figure 5.6. With regard to the
slow-scale stress, compression is predominantly concentrated in the core of
the tumor, while tension begins to be present in the inner regions, as depicted
in Figure 5.6(a). These results are consistent with prior research examined
in [147, 45, 166].

It is noteworthy that the stress scales involved in this study exhibit significant
differences, with the tumor-induced growth stress being in the order of
Pascals, while the ultrasound stress is three orders of magnitude higher. The
considerable difference in stress scales between the ultrasound and slow-scale
stress implies that ultrasound stress is expected to exert a more prominent
impact on mechanotransduction than slow-scale stress. Thus, slow-scale
stress contribution to mechanotransduction is comparatively less significant
than that of ultrasound stress.

Furthermore, numerical simulations suggest that ultrasound diffraction through
the tumor can result in shadow areas with lower displacements and stresses,
as expounded in Chapter 4.

For this particular case study, diffraction is attributed to the difference in
viscosities between the culture medium and the tumor spheroid, as well as the
applied frequency, resulting in a heterogeneous stress distribution within the
bioreactor. These findings fit previous studies reported in the literature [73].
On the experimental front, these results could be verified through the use of
a high-speed camera.

Then, propagation patterns of mechanical waves are the key players in
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(a) Slow hydrostatic stress evolution at t=1,2,3 days. Compression increases at the center of the
spheroid as it grows.

(b) Fast ultrasound stress before reach tumor spheroid, after and when stationary state is reached.

Figure 5.6: Hydrostatic stresses during growth.
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mechanotransduction. According to simulations, the mechanotransduction
function MT remains spatially constant in the control culture since the
total stress generated during the three-day growth remained well below the
threshold stress of cells over a period of time.

On the other hand, the application of low-intensity ultrasound results in the
formation of stress shadow areas due to tumor diffraction, leading to spatial
heterogeneity of mechanotransduction (as shown in Figure 5.7). However, in
our experiments, the stress shadow is not strong enough to cause any growth
or migration patterns of the cells through pressure gradients towards areas
of lower stress. Nevertheless, it is important to note that the development of
such patterns in the tumor is possible with different parameters of sonication
or mechanotransduction, as numerically suggested in the following section.

Figure 5.7: Mechanotransduction maps. Control culture exhibits
constant mechanotransduction values in space, while dynamic LIUS
hydrostatic stress causes shadow areas that are translated into patterns
in mechanotransduction. The main parameters used for these simulations
are αT T = 2.9, β = 0.2, t = 3 days. The key US parameters are

A = 1.35kPa, f = 5MHz, ηT = 2Pa · s and ηc = 0.05Pa · s.

Numerical results suggest that tumor cell proliferation is reduced when
subjected to f = 5MHz sonication, as compared to control experiments and
based on the mechanotransduction described. Figure 5.8 shows that the
overall tumor phase decreases, which is more visible when the tumor cell
phases are normalized along the y-axis.

Despite the lack of experimental cell count localization, it is feasible to
estimate the total number of cells by integrating the tumor phase over space
at a given time, i.e.,

∫
A

ϕT (x, y, t)dA, and compare it with the experimental
findings. Indeed, the numerical simulations presented in this study closely
replicate the initial experimental findings, as illustrated in Figure 5.9.
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Figure 5.8: Computational simulations show a decrease in cell
proliferation of sonicated cells. The main parameters used for these
simulations are αT T = 2.9, β = 0.2, t = 3 days. The key US parameters

are A = 1.35kPa, f = 5MHz, ηT = 2Pa · s and ηc = 0.05Pa · s

Chapter 4 presents a sensitivity analysis of frequencies, amplitudes, and
viscosities to investigate the behavior of the mechanical wave under different
assumptions. The findings of the study are then utilized to explore how cells
may respond to various sonication conditions through mechanotransduction.

It is important to note that the mechanotransduction parameters are adjusted
for the reference experiment model, which has a frequency of 5 MHz, an
acoustic pressure of 1.5 kPa, and viscosities ηT = 2Pa · s and ηc = 0.05Pa · s.
As such, the results presented below are based on these reference parameters.

Firstly, we investigate the dependence of acoustic pressure, as shown in
Figure 5.10. Considering the reference acoustic pressure, higher amplitudes
could lead to a greater decrease in proliferation, although the sensitivity
limit of the cells is reached before the limit of perceived stress. Consequently,
higher acoustic pressure would not result in substantial changes.

Notwithstanding, further increasing the acoustic pressure well above the
limit could result in the extreme case of cytodisruption, where the maximum
stress perceived by the cells is reached, leading to their destruction through
phenomena such as cavitation or resonance.

On the other hand, reducing stress to 0.1 and 0.5kPa could lead to a lower
growth rate compared to the control, as cells would continue to proliferate in
regions with higher stress, while their growth would be hindered in areas that
have reached the dynamic limit of sensitivity. Our analysis indicates that
tumor proliferation could be diminished within a range of acoustic pressures
between 0.5-3kPa at a frequency of 5MHz.

Figure 5.12 illustrates the parametric investigation of viscosity, which has
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Figure 5.9: Computational model can reproduce in vitro ex-
periments. Simulations suggest a reduction of cell viability for sonic-
ated spheroids at frequency f = 5MHz, A = 1.5kPa, tumor viscosity
ηT = 2Pa · s and culture medium viscosity ηc = 0.05Pa · s. The shaded
bands represent experiments while the solid lines denote numerical sim-
ulations. A change in trend is observed between control and sonicated
cells, where cell proliferation decreases a 48% with the application of
LIUS. The proliferation parameters used are TT = 0.58 · 10−5h−1 at
the first day, and TT = 0.77 · 10−5h−1 from day one, while αT T = 2.9.
Mechanotransduction parameters are qT = 0.05, bT = 0.05, βs = 0.2, and

σLT = 1.2kPa.

been previously established to be directly proportional to wave attenuation.
Specifically, when the tumor exhibits higher viscosity than its surrounding
medium, and the medium viscosity is not too elevated, the intensity that
reaches the tumor increases, resulting in more noticeable mechanotransduction
effects. Additionally, a more viscous tumor will dissipate more energy, leading
to more significant growth at the same acoustic pressures.

On the other hand, if the viscosity of the medium is higher than that of the
tumor, the wave could potentially attenuate before reaching the tumor. This
would result in tensions that are not significant enough to reduce proliferation.
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Figure 5.10: Acoustic pressure in growth. The increase of acoustic
pressure reduces proliferation while low acoustic pressure may have not in-
fluence tumor duplication, as the A =0.1kPa, which overlaps with control.
The main parameters used for these simulations are f = 5MHz, tumor
viscosity ηT = 2Pa · s and culture medium viscosity ηc = 0.05Pa · s. The
proliferation parameters used are TT = 0.58 ·10−5h−1 at the first day, and
TT = 0.77 · 10−5h−1 from day one, while αT T = 2.9. Mechanotransduc-
tion parameters are qT = 0.05, bT = 0.05, βs = 0.2, and σLT = 1.2kPa.

An example of this scenario could be when the viscosity of the medium is
extremely high, such as 10Pa·s. As demonstrated in Chapter 4, Figure 5.12
reveals that high frequencies in viscous media are characterized by significant
attenuation, leading to a higher amount of energy dissipation in the medium.
Consequently, lower amplitudes and stresses can be expected, resulting in
considerable tumor growth in comparison to the control at frequencies of
1MHz and 5MHz. These frequencies, when subjected to an acoustic pressure
of 1.5kPa, generate stress fields comparable to the stress limit.

Remarkably, there are marginal differences between the frequencies of 1 MHz
and 5 MHz, as both are capable of achieving the requisite amplitudes to
achieve the stress limit. However, since the 1 MHz wave possesses much
longer wavelengths, the mechanotransduction phenomenon is more likely to
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Figure 5.11: Viscosities in growth. The elevation of tumor viscosity
results in greater stress shadow areas, thereby reducing proliferation rates.
However, these shadows alone are insufficient to induce proliferation.
When the viscosity of the surrounding medium increases, it leads to
complete wave attenuation, which means that the acoustic pressures
received by the cells are well below the stress threshold. As a consequence,
the cells proliferate, even reaching values comparable to those of non-
sonicated cells. The main parameters used for these simulations are
f = 5MHz and A = 1.5kPa. The proliferation parameters used are
TT = 0.58 · 10−5h−1 at the first day, and TT = 0.77 · 10−5h−1 from day
one, while αT T = 2.9. Mechanotransduction parameters are qT = 0.05,

bT = 0.05, βs = 0.2, and σLT = 1.2kPa, t = 3 days.

result from shaking rather than wave penetration into the spheroid.

To achieve similar effects at f =20 MHz, assuming the same viscosity and
mechanotransduction parameters, the acoustic pressure would need to be
increased, resulting in higher intensity, as proposed in Figure 5.13, in which a
frequency of f =20MHz and A = 5kPa decreases cell proliferation compared
to A =1.5kPa. The interdependence of acoustic pressure, viscosity, and
frequency parameters plays a crucial role in regulating the amplitude of the
wave in a given domain, leading to the formation of heterogeneous stress fields
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Figure 5.12: Frequencies in growth. High frequencies generate stress
shadow areas in which cells can proliferate, whereas lower frequencies do
not produce significant changes in the mechanical transduction, resulting
in cells growing at similar rates and receiving acoustic pressures below
the stress threshold. The main parameters used for these simulations are
A = 1.5kPa, tumor viscosity ηT = 2Pa · s and culture medium viscosity
ηc = 0.05Pa · s. The proliferation parameters used are TT = 0.58·10−5h−1

at the first day, and TT = 0.77 · 10−5h−1 from day one, while αT T = 2.9.
Mechanotransduction parameters are qT = 0.05, bT = 0.05, βs = 0.2, and

σLT = 1.2kPa, t = 3 days.

that generate diverse mechanotransduction outcomes. The main findings are
summarized in Table 5.2.

Specifically, our numerical simulations suggest that acoustic pressures of
1.5kPa can reduce proliferation rates by 46.6-48% when the frequency ranges
between 1-5MHz, and for medium viscosity values of ηc = 0.05Pa · s. For
higher frequency values, such as 20 MHz, the acoustic pressure needs to be
increased to 5kPa to achieve a decrease of 52.5%.

On the other hand, an increase in the viscosity of the medium leads to
a corresponding increase in attenuation, which may limit the reduction
in proliferation rates significantly, reaching values comparable to control
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Figure 5.13: Frequencies and acoustic pressure in growth. High
frequencies with high acoustic pressure could decrease duplication com-
pared with lower acoustic pressures. The main parameters used for these
simulations are tumor viscosity ηT = 2Pa · s and culture medium viscosity
ηc = 0.05Pa · s. The proliferation parameters used are TT = 0.58·10−5h−1

at the first day, and TT = 0.77 · 10−5h−1 from day one, while αT T = 2.9.
Mechanotransduction parameters are qT = 0.05, bT = 0.05, βs = 0.2, and

σLT = 1.2kPa, t = 3 days.

conditions (0-39.6% reduction compared to non-sonicated cells). In such
cases, it would be necessary to increase the acoustic pressure if the medium
is highly viscous.

Our findings are consistent with previous studies [154, 151, 156, 157, 158],
which have reported at least a 50% reduction in proliferation rates compared
to stress-free growth and a 30% increase in apoptotic cell activity with static
tension values of 5-10kPa. Accordingly, our results lend support to the
hypothesis that comparable reductions in proliferation rates can be attained
through the application of lower dynamic stress.

Further studies exploring the coupling and interplay between these parameters
can provide valuable insights into the mechanism of mechanotransduction
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Table 5.2
Numerical results of LIUS therapy and proliferation reduction in compar-

ison to the control group on the third day.

f [MHz] A [kPa] ηc[Pa · s] ηT [Pa · s] Proliferation
decrease [%]

1 1.5 0.05 2 48.4
5 1.5 0.05 2 48
20 1.5 0.05 2 27.3
20 5 0.05 2 52.5
5 0.1 0.05 2 0.0
5 0.5 0.05 2 38.1
5 3 0.05 2 50.7
5 1.5 0.05 5 47.5
5 1.5 0.05 10 46.6
5 1.5 2 0.05 39.6
5 1.5 5 0.05 14.8
5 1.5 10 0.05 0.21

and its role in tumor growth and proliferation.

5.4.2 Selectively patterns in growth and migration

To evaluate the complete model, we propose to apply LIUS to a previously
validated model [330]. For these simulations, we use all the equations de-
scribed in Section 5.2 and the mechanotransduction parameters fitted to our
experimental data.

We no longer evaluate the growth rate quantitatively but instead focus on
the spatial and temporal distribution of tumor cells, considering the various
phases mentioned earlier. This approach allows for a more comprehensive
and nuanced understanding of the effects of mechanotransduction on tumor
growth and proliferation, including the dynamics of spheroid formation and
progression. Overall, this approach provides a more holistic view of the
complex interplay between physical and biological factors in tumor growth
and progression.

In these simulations, a tumor tissue with a radius of 3mm is considered,
surrounded by healthy cells, extracellular matrix, and fluid phase. The tumor
viscosity is assumed to be 5Pa · s, which is representative of the complex
microenvironment in which tumors grow and interact.
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5.4.2.1 Cross-diffusion

To explore the impact of flux in the tumor phase, we initially conduct
simulations without incorporating ultrasound. We observe a cross-diffusion
phenomenon in this scenario, as depicted in Figure 5.14. Tumor cells are able
to move while healthy cells and extracellular matrix adjust their growth to
respond to tumor motility, while they do not account for their own flux. In our
modeling of this system, we adopt the parameters proposed in reference [330]
and set the tumor phase diffusion coefficient to DT = 6 · 10−12mm2h−1.
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Figure 5.14: Cross-diffusion of cells phases. Non-linear flux facilit-
ates the migration of the tumor phase, allowing cells to disperse in space,
in contrast to immobilized cells with fixed support. This tumor diffusion
process is then transmitted to other solid phases through a cross-diffusion
effect. Dash lines refer to growth without flux, while solid lines refer to
growth considering the flux of cells. In both cases, sonication is neglected.

Results at time t = 21days.

5.4.2.2 Selective therapy and patterning

In this study, we aim to explore the feasibility of selectively modifying tumor
cells through the application of ultrasound. Specifically, we utilize a frequency
of 1MHz, which we have found to have similar effects as 5MHz for small
spheroid dimensions when the same amplitude and viscosity are considered.
However, for larger spheroid dimensions, the use of 1 MHz may be sufficient to
induce mechanotransduction with similar parameters as previously indicated,
while the wave dissipation with 5MHz may not reach the required limit
stresses, leading to continued proliferation.
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Simulation studies suggest that ultrasound does not exert a direct impact
on the proliferation and production of healthy cells, for healthy cell mechan-
otransduction parameters of σL ≥ 10kPa and βs=0.2. The level of stress
experienced by healthy cells is significantly lower than that experienced by
tumor cells, indicating that ultrasound limits the stress on healthy cells to a
greater extent than on tumor cells.

The growth of the tumor and healthy cells is interdependent due to predator-
prey relations, and a decrease in the growth of tumor cells affects healthy cells
but does not impact their net proliferation since the threshold for healthy cell
proliferation is higher. It should be noted that the interaction of ultrasound
with cells may lead to the remodeling of the extracellular matrix (ECM)
structure.

In the absence of movement, the presence of zones with different stress levels
may lead to instabilities. The tumor phase then grows by breaking the initial
tumor symmetry, leading to a concentration of cells at points of lower stress,
as depicted in Figure 5.15. This stress is transmitted to the ECM phase,
which in turn deregulates its growth.

These observations shed light on why some experimental studies have reported
the continued proliferation of cells. Tumor cells may proliferate in shadow
zones where the threshold stress is heterogeneously reached, resulting in no
significant difference in total cell count compared to the control. However,
the spatial distribution of cells could be a critical factor for investigation.

Taken together, these findings suggest that ultrasound may selectively affect
health cells more than on tumor cells. Nevertheless, the interplay between the
growth of tumors and healthy cells could influence their spatial distribution,
emphasizing the importance of further investigation in this regard.

If migration is allowed, a similar effect to that observed in Chapter 3 occurs,
where migration dissipates and homogenizes differences in growth or stress.
This is supported by the findings of [78, 77], where a decrease in migration
was observed compared with non-sonicated cells. Furthermore, tumor cells
migrate in a predetermined direction while regulating growth internally.

In particular, cells leading in areas of lower stress may be able to incentivize
migration. Cells could use cytonemes to sense the stress state of their
environment and respond accordingly, for example by extending cytonemes
towards stiffer regions or retracting them from areas of high stress.

These results suggest that allowing for migration can impact the distribution
of cells and may be an important factor to consider in the regulation of growth
and stress. These findings also highlight the importance of understanding
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Figure 5.15: Patterns in growth. LIUS selectively reduces the
proliferation of the tumor cell phase, causing patterns in low-stress
areas that translate to the ECM phase while the healthy phase remains
unaltered. Dash lines refer to growth without sonication and considering
the null flux of cells, while solid lines refer to sonicated tumor phase with
the null flux of cells. The used parameters are f = 1MHz, A = 1.5kP a,

and ηT = 5Pa·s. Results at time t = 21days.

the role of mechanical parameters in these processes. Further investigation is
needed to fully understand the complex interplay between migration, growth,
stress, and cytoneme signaling in the context of ultrasound therapy.

Theoretically, it is possible for cells to evade apoptosis or quiescence by
migrating through areas of lower stress. This phenomenon could be opposite
to durotaxis, where cells move towards areas of higher pressure gradients. In
fact, if the tumor viscosity increases to 10Pa · s or if the higher frequency
and acoustic pressure are applied, the resulting patterns and effects would
be more pronounced. In the following section, we demonstrate the evolution
of tumor cells, fluid pressure, and both fast and slow stresses over time with
a sonication of f = 1MHz and an acoustic pressure of A =1.5 kPa.

Our findings suggest that significant differences in perceived limit stress
between different areas of the tumor can lead to distinct growth phases during
tumor evolution. In Figure 5.17, we present the results when migration is
not allowed, while Figure 5.18 shows the effects of natural cell movement.
As expected, the cells tend to concentrate in areas of lower stress, with the
ECM responding by adjusting to the tumor cells, while healthy cells occupy
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Figure 5.16: Patterns in migration. LIUS inhibits migration, while
flux disperses the patterns that LIUS causes in the tumor cell phase.
Dash lines refer to growth without sonication and considering the flux
of cells, while solid lines refer to sonicated tumor phase with the flux of
cells. The used parameters are f = 1MHz, A = 1.5kPa, and ηT = 5Pa·s.

Results at time t = 21days.

the space left by the tumor cells.

Interstitial fluid pressure is known to increase with the tumor cell phase,
resulting in a break in the symmetry of pressure. This pressure gradient may
lead to the compression of blood vessels and hinder the delivery of oxygen
and nutrients to tumor cells, leading to hypoxia and starvation in some areas.
As the tumor grows and expands, the fluid pressure effects become more
pronounced in the direction of its progression.

The existence of cell mobility amplifies the diffusion of tumor cells and
directed migration, leading to a decrease in the total cell concentration but
an increase in dispersion, which allows for stress dissipation and reduces the
prominent elevation in interstitial pressure seen when migration is neglected.

Similarly, the slow stress generated by the tumor also shows a quantitative
increase, although it is lower than in the case of only growth. The compression
is more pronounced in the direction of tumor expansion, which is the preferred
direction of migration. Meanwhile, the core exhibits tensile stress, which
decreases over time.

For the purpose of illustration, we demonstrate the capacity of a higher
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(a) Tumor phase growth creates pattern in response to the ultrasound direction of propagation.

(b) Fluid pressure increase as a tumor phase function.

(c) Slow hydrostatic stress responds to ultrasound creating compression patterns in the direction
of wave propagation.

Figure 5.17: Tumor phase, fluid pressure, and slow-stress
evolution during sonication at f = 1MHz. The main parameters
used for these simulations are ηT = 10Pa · s, f = 1MHz, A =1.5kPa.

Results are shown for t=5,10,15 and 21 days.
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(a) Migration dissipates non-homogeneous patterns inside tumor spheroid, although the migration
gradient of the cells moves towards the propagation direction of the ultrasound.

(b) Migration dissipates the areas of higher fluid pressure accumulation compared with non-
migration studies.

(c) Slow hydrostatic stress responds to ultrasound creating compression patterns in the direction
of wave propagation, but they are mitigated compared with non-migration studies.

Figure 5.18: Tumor phase, fluid pressure, and slow-stress
evolution during sonication with migration at f = 1MHz. The
main parameters used for these simulations are ηT = 10Pa · s, f = 1MHz,
A =1.5kPa, and DT = 6 ·10−12mm2h−1. Results are shown for t=5,10,15

and 21 days.
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frequency of f = 5 MHz and a viscosity of ηT = 10Pa · s to induce significant
wave attenuations, leading to unrestricted growth in shadow zones. Con-
sequently, proliferation and migration attain counts that approach those of
the control, despite exhibiting completely distinct growth patterns. Specific-
ally, proliferation continues to escalate in shadow zones while being impeded
in close proximity to the ultrasound, resulting in discernible patterns in
the direction of propagation, as demonstrated in Figure 5.19. Moreover, as
previously observed, migration effectively dissipates the build-up of cellular
and stress-related accumulations, albeit a predominant migration direction
still prevails, as depicted in Figure 5.20.

To conclude our findings, we present the displacement of the center of gravity
of the tumoral phase in the three numerically studied cases. Figure 5.21
demonstrates that, for the cases with f =1MHz, the center of gravity shifts
1% in the direction of propagation when considering ηT =5Pa · s, and 2-3%
when ηT =10Pa · s, compared to the growth of the control without ultrasound
applied. Additionally, the center of mass of the tumoral phase decreases by
10-16%. For f = 5MHz, the tumoral phase decrease is much less noticeable
(1%), although the center of gravity shifts by 3-4% compared to the control.
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(a) Tumor phase growth creates pattern in response to the ultrasound direction of propagation.

(b) Fluid pressure increase as a tumor phase function.

(c) Slow hydrostatic stress responds to ultrasound creating compression patterns in the direction
of wave propagation.

Figure 5.19: Tumor phase, fluid pressure, and slow-stress
evolution during sonication at f = 5MHz. The main parameters
used for these simulations are ηT = 10Pa · s, f = 5MHz, A =1.5kPa.

Results are shown for t=5,10,15 and 21 days.
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(a) Migration dissipates non-homogeneous patterns inside tumor spheroid, although the migration
gradient of the cells moves towards the propagation direction of the ultrasound

(b) Migration dissipates the areas of higher fluid pressure accumulation compared with non-
migration studies.

(c) Slow hydrostatic stress responds to ultrasound creating compression patterns in the direction
of wave propagation, but they are mitigated compared with non-migration studies.

Figure 5.20: Tumor phase, fluid pressure, and slow-stress
evolution during sonication with migration at f = 5MHz. The
main parameters used for these simulations are ηT = 10Pa · s, f = 5MHz,
A =1.5kPa, and DT = 6 ·10−12mm2h−1. Results are shown for t=5,10,15

and 21 days.
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Figure 5.21: Displacement of the center of gravity in the wave
propagation direction. The first coordinate indicates the position of
the center of gravity along the y-axis, while the second coordinate of the

point refers to the tumoral phase.
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5.5 Conclusions
We have proposed a novel multiscale model that can accurately reproduce
the effects of LIUS mechanotherapy on cancer cells at the in-vitro level.
The non-thermal nature of our proposed ultrasonic bio-effects allows for a
less aggressive treatment of unconfined tumors, and in particular to directly
target and remove CSCs responsible for tumor development and recurrence
while inhibiting metastasis.

The presented model of mechanotransduction affords a precise and quan-
tifiable account of the differential thresholds between dynamic and static
stimulation. This circumvents the need for arbitrary and ad-hoc relationships,
such as the calculation of the root mean square of ultrasonic stress, to explain
the observed disparities.

Our preliminary experiments with therapeutic ultrasound suggest that CSC
growth can be inhibited by using 5MHz and pressure amplitudes of more
than 1.5kPa. This provides a starting point for further investigation in this
area, potentially leading to new treatment options for cancer, suggesting
that cancer cells are more sensitive to ultrasound-induced tension than static
stress.

In addition, our model can predict the effects of LIUS therapy at different
frequencies and acoustic pressures. Our preliminary research provides insight
into acoustic pressure as the key parameter in selective therapy for tumor
cells, patterns in growth, and thus computational modeling to aid in decision-
making.

We have identified the importance of surpassing stress limits in all tumor
zones to prevent the existence of preferred zones of growth and migration,
highly undesired in therapy while keeping the safety limits.

Numerical results from our model suggest that the proliferation of healthy
cells remains selectively activated while tumor cells undergo apoptosis, allow-
ing for modeling selective therapy and that tumor cell migration regulates
redistribution of the other solid components by the cross-diffusion process.

Our findings demonstrate that higher frequency ultrasound combined with
differences in viscosity can induce patterning in both proliferation and migra-
tion, resulting in a break in the initial symmetry or isotropy of the model
and displacing the center of gravity of tumor cell phase in the direction of
wave propagation. These patterns not only impact growth, but also compres-
sional stress-driven growth and interstitial fluid pressure, which increase the
direction of tumor propagation and potentially lead to hypoxia and nutrient
deprivation. Our results also suggest that migration plays an important role
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in dissipating both growth and interstitial fluid stresses.

The multiscale model proposed provides a promising approach to exploring
the effects of LIUS mechanotherapy on cancer cells. With further development
and experimentation, this approach could offer a less aggressive, more effective,
and cost-efficient treatment option for cancer.

Moving forward, it is necessary to fully elucidate the underlying mechanisms
and develop targeted interventions that effectively disrupt tumor growth and
progression while minimizing adverse effects on surrounding healthy tissue.
Additionally, our model does not account for the remodeling of extracellular
matrix (ECM) or proteins, which may be an important consideration for
future modeling efforts. It should also be noted that our results are based
on reconstructed mechanotransduction parameters, and different parameters
could trigger more abrupt responses.

In summary, our multiscale model provides a promising approach for ex-
ploring the effects of LIUS mechanotherapy on cancer cells. With further
development and experimentation, this approach could provide a novel com-
plement treatment option for cancer that is less aggressive, more effective,
and more cost-efficient than current therapies.
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Chapter 6

Discussion

In this dissertation, we have synthesized various mechanobiology approaches
that have emerged in recent years, encompassing both biological and mech-
anical perspectives within the framework of continuum mechanics. The
comprehensive background review covers the main hypotheses underlying
mechanotransduction, the essential features of the theory governing growth
modeling from mechanics, the equations that govern tumor behavior, the
highlights of LIUS therapy, and the framework of wave propagation in soft
tissues.

Following the literature review, we have identified several potential contribu-
tions, including investigating the interplay between non-homogeneous growth
and migration, and the growing demand for innovative technological and
computational tools that facilitate a deeper understanding of tumor evolution.
Im we have highlighted the potential use of low-intensity ultrasound to target
cancer stem cells.

This thesis proposes three computational models that enhance the under-
standing of mechanobiology and mechanotransduction by examining tumor
dynamics in response to mechanical forces, as well as the effects of mechano-
therapy on tumor development.

In summary, the first proposal investigates the competition between migration,
proliferation, and mutations, which results in non-homogeneous volume
changes that generate stresses that modify tumor evolution. The set of
equations consists of coupled stress-growth equations with a migration term.

This study highlights, firstly, the need to use nonlinear flows to describe tumor
migration, in contrast to the linear flows frequently used in mechanically-
based growth approaches [89, 90]. This need arises from the requirement
to control the velocity and front of migration, which is lost in linear flows,
as observed for different scenarios in Figure 3.3, and as established in the
literature [307, 308, 309, 310, 311, 312].

In particular, the saturated nonlinear flow controls the propagation front’s
advance through a biological parameter of finite velocity. Furthermore, the
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porosity parameter m modifies the propagation front’s speed, decreasing it
as m increases, as depicted in Figure 3.4.

However, the need to preserve the tumor propagation front and avoid nu-
merical noise from the saturated flow calls for high approximation orders.
To obtain this requirement, we utilize the Weighted Non-Oscillatory method
(WENO), which aims to achieve high-order accuracy by blending multiple
low-order numerical approximations through the use of weights. Smoothness
indicators are calculated for each approximation and are then used to determ-
ine the weights. The final solution is obtained by taking a combination of
the weighted approximations [310, 384]. Thus, the WENO method provides
accurate high-order stability resolution while maintaining non-oscillatory,
stable, and sharp discontinuity transition

On the other hand, small changes in growth generate mechanical feedback
that may lead to instabilities, as theoretically proposed in references [55, 57]
and numerically demonstrated in this study, as shown in Figures 3.5 and 3.6.
Furthermore, allowing for controlled cellular movement within the tumor
can dissipate these stresses and regulate growth, as indicated in Figures 3.7
and 3.8.

To control this regulation, the use of the saturated non-linear flow is considered
appropriate in this study. However, in cases where instabilities resulting from
non-uniform growth are not a concern, it can be simplified to a non-linear
flow to reduce computational complexity and cost, as we have done in the
subsequent study.

Once these phenomena are studied, we have considered the effect of mechan-
otherapy on tumor dynamics by analyzing the ultrasound propagation in a
spheroid embedded in a culture medium using a Kelvin-Voigt viscoelastic
constitutive equation [365, 366, 367, 368]. We have performed a sensibil-
ity analysis including a range of frequencies of f = [1 − 20]MHz, acoustic
pressures of A = [0.1 − 5] kPa, and viscosities of ηi =[0-10]Pa·s, being i the
culture medium c or tumor viscosities T . The set of equations has been
solved in finite elements considering two dimensions.

Based on the propagation model, we have observed that higher viscosity of
tumor tissue results in shadow zones behind the tumor spheroid, where wave
energy dissipates due to the viscosity of the tumor spheroid. It is important
to note that this effect could potentially be even more pronounced if the
problem were considered in three dimensions.

Acoustic pressure plays a significant role in the efficacy and safety of LIUS
treatments. Excessive acoustic pressure can trigger cavitation and heating
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effects, leading to mechanical disruption of tissues and irreversible damage.
In contrast, inadequate acoustic pressure may not produce the desired thera-
peutic effects, allowing cells to proliferate and migrate to regions with lower
stress levels.

In addition to acoustic pressure, selecting the appropriate frequency for LIUS
is necessary to achieve optimal therapeutic outcomes, such as apoptosis or
quiescence in cancer treatments. The frequency choice depends on various
factors, including target tissue geometry, medium properties, and desired
intensity. Lower frequencies penetrate deeper into tissues, making them ideal
for treatments targeting structures located deeper in the body. However, as
the frequency increases, the wave energy is increasingly absorbed and dissip-
ated, resulting in greater weakening of the wave. The degree of absorption
depends on the properties of the medium through which the wave propagates,
such as its viscosity.

Although the optimal acoustic pressure depends on the specific cell type, our
findings suggest that dynamic hydrostatic stresses within the range examined
could be sufficient to inhibit spheroid growth, and acoustic pressures greater
than A = 1.5kPa may be effective for the stated frequency.

Finally, we propose a multiscale model that integrates the effects of mechanical
waves on tumor development through mechanotransduction. The proposal
is based on equations grounded on Finite Growth Theory considering small
deformations, similar to other studies [84, 330, 89, 90, 332, 92]. We have
solved the model using Finite Elements in two dimension.

The multiscale system includes coupled stress-growth equations and two main
timescales: a fast-scale where waves propagate and mechanotransduction
occurs, and a slow-scale where tumor cells proliferate, migrate, and adapt to
the microenvironment. The microenvironment is modeled as a poroelastic
medium composed of solid components, including tumor cells, healthy cells,
and ECM, as well as fluid phases.

In contrast to studies based on cytodisruption, [70, 71, 72, 73, 74], our idea of
LIUS therapy is based on the triggered response of cells via mechanotransduc-
tion, where proliferation is partially inhibited [73, 74, 75, 76, 77, 78, 79, 80].

The hypothesis is that dynamic pressure is more effective in generating
a cellular response than static stress due to the complex mechanisms of
stress redistribution involving the cytoskeleton and interstitial fluid flow
through pores. The mechanotransduction coupling function, described in
equations 5.2.16 and 5.2.17 is based on functions of mechanotransduction
described and validated in literature [151, 186, 321, 324, 322, 84, 343, 84,
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330, 89, 90, 332, 92].

The contribution to the function of mechanotransduction is to add the
difference in threshold between dynamic and static stimulation, without
requiring ad-hoc relationships while providing a quantitative explanation
for the observed differences. Thus, the function of mechanotransduction is
defined in an ultrasonic time period in which cell mechanosensors could receive
signaling linked to the cytoskeleton network extremely quickly [218, 219], and
then respond triggering changes in proliferation and migration, as proposed
in [224, 218].

In order to generate similar intensities to those reported in the literature, and
to avoid possible cavitation phenomena, we have exceeded the frequencies
and increased the acoustic pressure, as compared to current studies whose
parameters are shown in Table 2.3.

Thus, we propose to experimentally sonicate melanoma A-375 cancer stem
cells at a frequency of f = 5MHz and amplitudes ranging from A = [1.5 −
15.5]kPa, assuming a tumor viscosity of ηT = 2Pa · s and a culture medium
viscosity of ηc = 0.05Pa · s, in line with the viscosity ranges established in
the literature [391, 392, 393, 205, 394, 213, 395].

The preliminary experiment indicates that the proliferation of melanoma
cancer stem cells is inhibited by a percentage of change of 48% when son-
icated at a frequency of f = 5MHz, which supports the feasibility of LIUS
as a treatment, given that CSCs are currently resistant to conventional
therapies [32, 33, 34, 34].

A simplified multiscale computational model can accurately reproduce this
observed phenomenon for given mechanotransduction parameters, as shown
in Figure 5.9.

These findings are consistent with previous studies [154, 151, 156, 157, 158,
84, 330], which have reported a 50% reduction in proliferation rates compared
to stress-free growth and a 30% increase in apoptotic cell activity with static
tension values of 1-10kPa. Accordingly, the results lend support to the
hypothesis that comparable reductions in proliferation rates can be achieved
through the application of lower dynamic stress.

Moreover, these results provide predictions for both the growth and stress
and deformation states of the medium and spheroid. Specifically, we observed
growing compressive stress in the core regions, as proposed by previous
studies [147, 45, 166]. Additionally, the study also points out that the
compressional state increases over time.
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We have considered various scenarios where the fate of the tumor spheroid is
differently affected by stress, and we have performed a parametric analysis of
the effect of ultrasound on mechanotransduction, as summarized in Table 5.2.

The numerical simulations indicate that acoustic pressures of 1.5kPa may
reduce proliferation rates by 46.6-48.4% when the frequency ranges between
1-5MHz, and for medium viscosity values of ηc = 0.05Pa · s. For higher
frequency values, such as 20 MHz, the acoustic pressure needs to be increased
to 5kPa to achieve a decrease of 52.5%.

On the other hand, an increase in the viscosity of the medium leads to
a corresponding increase in attenuation, which may limit the reduction
in proliferation rates significantly, reaching values comparable to control
conditions (0-39.6% reduction compared to control). In such cases, it would
be necessary to increase the acoustic pressure if the medium is highly viscous.

Then, we studied the full multiscale system considering all solid phases and
the migration of the tumor phase. This research indicates that therapeutic
ultrasound not only suppresses tumor cell proliferation but also hinders
their migration, which is in agreement with experimental results obtained by
references [78, 77]. Moreover, the inclusion of migration to the tumoral phase
in the model results in a cross-diffusion process, where the tumor cells move
through the different phases and interact through a predator-prey scheme.
This leads to competition between different tumor phases, and the migration
of one phase propagates to the other phases.

The selective mechanotherapy function proposes that healthy cell proliferation
remains unaffected due to their higher sensitivity threshold, while decreasing
the tumor phase may increase the role of healthy cells due to the predator-
prey system. This provides a potential strategy for selectively targeting
cancer cells while preserving healthy tissue as reported in [70, 75, 73].

This preliminary research proposes that ultrasound may generate patterning
in proliferation and migration, breaking the initial symmetry of the system
based on the applied stress and cell sensitivity ranges, as experimentally
studied in reference [73] and numerically corroborated in Figure 5.17 and 5.18.
Furthermore, the results suggest that diffusion dampens slow stress, homo-
genizing the response of the tumor to the environment, as also pointed out
in Chapter 3, but preserving migration towards areas of lower stress.

In particular, these models can describe the displacement of the center of
gravity of the tumor, which, although does not reach large values in our study
(1-4%), could increase with different parameters and geometries. Indeed,
they can be used to propose different angles of sonication in order to avoid
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directed migration to conflictive areas. Consequently, this approach allows
for the optimization of therapeutic strategies, by analyzing and designing
more precise and effective setups.

Interstitial fluid pressure increases with tumor growth. Under normal con-
ditions, the IFP is heterogeneous, with higher values in the core and lower
values at the borders [189, 45], in the order of kPa. On this basis, this
thesis predicts the breakage of the stress symmetry since there are pressure
gradients in the direction of ultrasonic propagation, as observed in Figure 5.17
and 5.18.

Finally, it is deduced that although the tumor initially grows by mass effect,
the application of ultrasound generates compressive and rarefactive stresses
which induce compressive stress states in the cells. This, in turn, leads to
partial inhibition of proliferation and migration, depending on the ultrasound
pressure gradients.

However, this thesis has some limitations. Tissue hyperelasticity has not
been accounted for, and mechanical and biological properties have been relied
upon from literature as a successful indentation or speed-camera-controlled
experiments have not been conducted.

Although preliminary experiments in Chapter 5 have been numerically repro-
duced, the number of experiments is low due to the stochasticity and high
experimental cost associated with CSC culture, and this dissertation mainly
remains within the computational framework.

Therefore, further experiments at longer times are required to evaluate dif-
ferent computational responses, refine the models for improved accuracy,
and determine the optimal use of frequency and acoustic pressure depending
on the viscoelasticity of the medium. Furthermore, we have assumed vis-
coelasticity based on Kelvin-Voigt equations in propagation, and there is a
need for a sensitivity analysis that accounts for the plausibility of the chosen
constitutive equation.

Additionally, the mechanotransduction pathways of proteins have not been in-
corporated into our proposal, as they have not been experimentally validated.
Instead, mechanotransduction has been applied directly to the duplication or
diffusion ratio, even though cellular responses are triggered by proteins. We
have neither considered the effect of co-therapies.

Finally, this study is a preliminary numerical approach to the mechanobiology
and ultrasonic mechanotherapy of in vitro spheroids. The simple geometries
used have not accounted for more complex formations, which may exhibit
additional phenomena such as scattering. To create a more realistic in vivo
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scenario, these phenomena and their associated patterns would need to be
considered.
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Chapter 7

Conclusions

With experimental costs remaining high and biological processes exhibiting
significant stochasticity, mathematical oncology offers valuable insights and
aid in the development of effective treatment strategies and understanding of
tumor behavior. The importance of new cancer therapies, particularly low-
intensity ultrasound, and the need for computational tools and technologies
that can target cancer stem cells that are resistant to current therapies have
been emphasized in this study.

In this context, this thesis represents an interdisciplinary investigation of
mechanobiology in cancer. The specific contributions of this thesis are
summarized as follows:

• Non-linear saturated flux controls the biological speed of the
invasion front, while linear flux leads to an infinite speed of propaga-
tion, and non-linear fluxes keep the stability of the front. Furthermore,
the porosity parameter m regulates the speed of migration, decreasing
it while m increases.

• Variations in growth may lead to instabilities that act as
retrograde diffusion in competition with proliferation due to the
mechanical feedback.

• Cell migration can avoid instabilities and dissipate abrupt
changes of non-homogeneous stress-driven growth.

• Low-pressure and high frequencies acoustic waves stimulate
signaling while maintaining low intensity to trigger growth and migra-
tion inhibition while avoiding cytodisruption.

• Acoustic pressure is the dominant parameter in mechano-
transduction. Low acoustic pressures may not be sufficient to alter
tumor fate. However, once a threshold stress level is surpassed, further
increases in acoustic pressure may not be necessary to induce signaling,
while excessive levels of acoustic pressure could lead to the limit of cell
disruption.
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• The interdependent parameters of acoustic pressure, viscosity,
and frequency can be tuned to optimize the selectivity of
therapeutic applications. The energy dissipation increases with
viscosity, and frequency selection is influenced by tumor size. Low-
frequency waves generate longer wavelengths, resulting in tumor shaking.
In contrast, high-frequency waves may interact with the components
of the cells. The proposed computational model reduces the need for
experimental testing of different mechanical parameter configurations,
including transducer placement, angle of sonication, geometries, and
tissue layers.

• The proposed mechanotransduction function provides a quant-
itative explanation for the observed differences in the threshold
between dynamic and static stimulation without requiring ad-hoc
relationships.

• Dynamic pressure is more effective than static stress in gen-
erating a cellular response, and it has been numerically and ex-
perimentally validated, as evidenced by the ability to achieve similar
reductions in proliferation rates at 1.5kPa (46.6-48.4%).

• Cancer stem cells growth can be inhibited in by using 5MHz
and an acoustic pressures greater than 1.5kPa, as suggested by
the preliminary experiment of therapeutic ultrasound.

• The migratory behavior of the tumor phase leads to a cross-
diffusion process, where the movement is propagated to other solid
phases via a predator-prey interaction scheme.

• Healthy cell proliferation remains selectively unaffected by
LIUS due to their higher sensitivity threshold, while the reduction of
the tumor cell burden through LIUS may increase the role of healthy
cells in the predator-prey system.

• Ultrasound can generate patterning in proliferation and migra-
tion, breaking the initial symmetry of the system and thus displacing
the center of gravity of the tumor cells to areas of lower acoustic
pressure.

• Interstitial fluid pressure adapts to ultrasound patterns, in-
creasing in the direction of propagation due to the concentration of
tumor cells. Furthermore, compressional slow stress increases over time.

• Therapeutic ultrasound hinders cell migration. In addition,
migration dampens slow stress and fluid pressure homogenizing the
response of the tumor to the environment.
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Chapter 8

Ongoing and future work

Considering Chapter 3, some broad opportunities start with the analysis
of this model. Specifically, it is possible to incorporate the aforementioned
Brinkman’s law and perform analytical studies on the qualitative aspects of
the solutions (oscillations or non-convexification of shape in density, among
others). In a short time, we are also interested in incorporating the bio-
chemical interactions, which will modulate both growth and cell adhesion
properties.

Regarding Chapters 4 and 5, the present study does not comprehensively
describe the complex protein interactions that regulate the signaling pathways
associated with cell proliferation and migration. Thus, to elucidate the specific
molecular mechanisms underlying the observed changes in cellular behavior,
future studies could incorporate a proteomic analysis. Such analysis would
provide valuable insights into the altered signaling pathways and protein
expression patterns that promote the decrease in cell proliferation observed
in this study. Furthermore, nutrient consumption and hypoxia should also
be taken into account.

In the short term, it is essential to incorporate the effect of chemotherapy into
the models to aid in the determination of optimal drug and ultrasound doses,
as well as mechanical parameters, for an effective treatment that minimizes
collateral effects. For instance, we could numerically investigate the effect
of combining some dose of chemotherapy with non-continuous ultrasound
application, where we apply ultrasound for a few hours per day and allow
proliferation without ultrasound for the remaining hours. By systematically
varying these parameters, we can determine the optimal treatment regimen
that maximizes treatment efficacy.

In addition to longitudinal mechanical waves, our group is also investigat-
ing the potential of shear waves. Within the numerical framework of this
thesis, we can modify initial conditions, frequency ranges, and the associated
mechanotransduction function, which would now be dependent on Von Mises
or Tresca stress to account for shear components. With this study, we could
compare the effects of shear waves with LIUS to investigate how the cell
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sensitivity parameters change when the nature of the stress source is modified.

In addition, we have simulated the tumor as a viscoelastic material at the
ultrasonic scale. While dynamic poroelasticity has primarily been studied
in the context of bone tissue and earthquake engineering, we are striving to
incorporate dynamic poroelasticity into wave propagation modeling to exam-
ine the different response patterns in comparison to viscoelastic propagation.
In this regard, the fluid phase would be assumed to mainly absorb the stress.

Dynamic poroelasticity follows Biot principles and its equations are more
complex than static poroelasticity [403, 404, 325, 405]. When considering
both solid and fluid phases, two compression waves are obtained, one fast
wave and one slow wave, and a third shear wave. In soft tissues, in which
the solid phase lacks high stiffness, the wave tends to travel faster through
the fluid and slower through the skeleton.

The set of equations for wave propagation in dynamic poroelasticity can be
described again in three different formulations. However, the uuu-p formulation
does not exist in the time domain, so the uuu-w or uuu-uFuFuF formulation is usually
used. The main equations that we are investigating are:
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σFσFσF = −ϕF p = Qtr(εεε) + Rtr(εFεFεF )

(8.0.1)

where the small solid strain is εεε = 1
2(∇u + ∇uT) and the small fluid strain

is εFεFεF = ∇ · u. The densities of solid and fluid are denoted by ρs and ρf

respectively. Porosity is described by ϕF , and Q and R are poroelastic
coupling constants, while κ is the permeability. The apparent density is
defined by ρa = CϕF ρf , where C is a constant depending on the frequency
of excitation and the geometry of the pores, which is usually considered
C=0.66.

At this point, we already computed and validated the model, as depicted



135

in Figure 8.1 and 8.2 in which a longitudinal wave propagates through a
homogeneous poroelastic medium with different values of permeability. The
results suggest that high permeability leads to a decrease in solid wave
amplitude – energy dissipation – while lower permeability leads to similar
wave amplitudes. Further efforts are necessary to understand the responses
accounting for the heterogeneity of the medium and to study the relations of
permeability, porosity, and coupling parameters.

0
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Figure 8.1: On going work: poroelastic wave propagation with
high permeability. Results are shown for a homogeneous medium,
with ρF = ρs = 1000kg · m−3, ν = 0.4, ϕ = 0.3, Q = R = 1.2 · 109Pa,
C=0.66, and κ = 1 · 109m2Pa−1s−1. For high values of κ, solid phase

waves diminish their amplitude with respect to fluid phase waves.
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Figure 8.2: On going work: poroelastic wave propagation with
low permeability. Results are shown for a homogeneous medium, with
ρF = ρs = 1000kg · m−3, ν = 0.4, ϕ = 0.3, Q = R = 1.2 · 109Pa, C=0.66,
and κ = 3.1 · 10−14m2Pa−1s−1. For lower values of κ, solid and fluid

phase waves have similar amplitude.

Finally, in the coming years, tumor reengineering is expected to become a
challenging component in the analysis of tumor dynamics. Therefore, more
mathematical proposals are needed regarding the topic addressed in this
thesis in order to clarify questions about the action and consequences of
co-therapies, ultimately translating the models to a patient-specific scale and
contributing to clinical decision-making.
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Appendix A

List of publications

The results of this dissertation have been published in peer-reviewed journals
and they have been presented at different conferences.

A.1 Articles in peer-reviewed journals
– B. Blanco, H. Gomez, J. Melchor, R. Palma, J. Soler, G. Rus, Mechan-

otransduction in tumor growth modeling. Physics of Life Reviews.
2023; 44: 279-301https://doi.org/10.1016/j.plrev.2023.01.017.
JCR score: D1. Associated with Chapter 2.

– B. Blanco, J. Campos, J. Melchor, J. Soler, Modeling Interactions
among Migration, Growth, and Pressure in Tumor Dynamics. Math-
ematics. 2021; 9(12):1376. https://doi.org/10.3390/math9121376.
JCR score: D1. Associated with Chapter 3.

– B. Blanco et al., Modeling LIUS therapy in a growing tumor spheroid.
In preparation. 2023. Associated with Chapters 4 and 5.

A.2 Contributions in conferences
– B. Blanco, R. Palma, H. Gomez, J. Soler, G.Rus, A computational

model for the therapeutic effect of low-intensity ultrasound on a growing
tumor spheroid, (accepted for poster presentation) ISTU. April 2023
Lyon, France.

– B. Blanco, H. Gomez, J. Melchor, G. Rus, J. Soler, Biomechanical
model for solid tumor growth. 14th Virtual Congress WCCM & EC-
COMAS 2020. International Association for Computational Mechanics
(IACM) and European Community on Computational Methods in
Applied Sciences (ECCOMAS).

– B. Blanco, H. Gomez, J. Melchor, G. Rus, J. Soler, Modelo bio-
mecánico para crecimiento tumoral sólido in vitro. IX Reunión del
Capítulo Español de la Sociedad Europea de Biomecánica (ESB), Las
Palmas de Gran Canaria, Spain, 2019. Universidad de Las Palmas de
Gran Canaria.

https://doi.org/10.1016/j.plrev.2023.01.017
https://doi.org/10.3390/math9121376
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Appendix B

Collaborations in other
works

Prostate cancer detection and characterization
This collaboration emerged in the first year of this thesis, starting from a
dissertation of laboratory colleague [365], who patented a new transurethral
medical technology for characterizing the mechanical properties of prostate
tissues, proving promising preliminary in-silico results for the future detection
of prostate cancer.

In particular, the technique of elastography has been utilized extensively
since the 1990s to quantify tissue stiffness through the velocity of shear waves.
However, the application of this technique is limited due to difficulties in
separating longitudinal and shear waves, as well as the pressure applied during
measurement. To address these limitations, a Transurethral Shear Wave
Elastography sensor (TU-SWE) was developed to isolate pure shear waves,
eliminating the risk of wave interference. This sensor consists of a rotational
actuator disk and four piezoceramic receivers arranged circumferentially,
which facilitate the transmission of shear waves that interact with the tissue
prior to the reception.

The main aim of my work was to perform a proof-of-concept of the TU-SWE
sensor in prostate-like gelatine phantoms through a two-part methodology.
The first part consisted of an experimental setup for obtaining shear wave
stiffness in the phantoms using the TU-SWE transducer, while the second
part involved obtaining Verasonics dispersion curves for validation. The
variables under investigation were the applied suction pressure and the
distance between the emitter and receivers within the phantom. A series of
phantoms were tested at various gelatine concentrations (ranging from 7.5%
to 15%), suction pressures (ranging from 0 to 10 kPa), and emission-receiver
distances (ranging from 0 to 10 mm).

The main conclusions drawn from this study are as follows: 1) careful
calibration is necessary to compensate for the electromechanical cross-talk of
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the TU-SWE probe; 2) Verasonics calibration curves are consistent with TU-
SWE shear wave speed measurements; and 3) experimental results indicate
that the applied suction pressure and emission-receiver distance do not affect
the shear wave stiffness measurements. The preliminary results suggest
that the proposed probe in reference [365] can effectively reconstruct the
mechanical constants from the propagated shear wave.

This work was presented at three international conferences:

- B.Blanco, A. Gomez, J. Torres, I. H Faris, A. Callejas, J. Melchor, M.
Carvajal, N. Saffari, G.Rus. Validation of the transurethral shear wave
elastography probe in prostate like gelatine phantoms, International
Congress on Ultrasonics, University of Leuven, Brugges, Belgium, 2019.

- B.Blanco, A. Gomez, J. Torres, I. H Faris, A. Callejas, J. Melchor,
M. Carvajal, N. Saffari, G.Rus. Performance study of a transurethral
shear wave probe in prostate phantoms, 27th Annual International
Conference on Composites/ Nano Engineering, Granada, Spain, 2019.

- B.Blanco, A. Gomez, J. Torres, I. H Faris, A. Callejas, J. Melchor, M.
Carvajal, N. Saffari, G.Rus. Validation of the transurethral shear wave
elastography probe in prostate like gelatine phantoms, EUROSON -
31st Congress of the EFSUMB, European Federation of Societies for Ul-
trasound in Medicine and Biology (EFSUMB) y la Federación Española
de Sociedades de Ultrasonidos en Medicina y Biología (FESUMB),
Granada, Spain, 2019.

Viscoelastic properties characterization of tumor spher-
oids with AFM
In a collaborative effort with the Center for Research in Information and
Communication Technologies of the University of Granada, we conducted
measurements on tumor spheroids to obtain their viscoelastic properties. The
spheroids were provided by the collaborating group of Advanced therapies:
differentiation, regeneration, and cancer – the same team who performed
experiments described in Chapter 5 –, and the measurements were carried
out by the laboratory head and technicians.

Our team assisted in the measurements by preparing the samples and identi-
fying the spheroids using a microscope. Despite our efforts, the measurement
process proved to be complex, and no conclusive results have been obtained
thus far. For future endeavors, it is imperative to optimize the measurement
protocol and ensure the viability of the cells during and after the experiment.



143

Teaching
Regarding teaching Mechanics in the Bachelor of Civil Engineering and
Electronic Engineering, the following contributions in Book Chapters have
been published:

– B. Blanco, J. Chiachio, M. Chiachio, A. Callejas, G. Rus, J. Melchor
(2019). Teaching the 21st century Civil Engineering: research results
and critical perspective, Innovación docente e investigación en ciencias,
ingeniería y arquitectura, 52 (pp. 625-636), Dykinson, ISBN: 978-84-
1324-559-1, 2019.

– B. Blanco, A. Callejas, J. Chiachio, M. Chiachio, G. Rus, J. Melchor
(2019). Project-based learning in strength of materials: degree in
Industrial Electronic Engineering in academic courses between 2015
and 2017, Innovación docente e investigación en ciencias, ingeniería
y arquitectura, 61 (pp. 731-740), Dykinson, ISBN: 978-84-1324-559-1,
2019.
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Appendix C

Extended summary in
Spanish

C.1 Introducción
El cáncer es la segunda causa principal de muerte en todo el mundo. Según
datos publicados en la referencia [1], se detectaron 19,3 millones de nuevos
casos y se produjeron 10,0 millones de muertes en todo el mundo en 2020,
acumulando casi una cuarta parte de ellas en Europa (4,3 millones de casos),
y se prevé que siga aumentando en los próximos años. En España, los datos
estiman 282 mil nuevos casos y 113 mil muertes en 2020, siendo el cáncer de
próstata, mama, colon y pulmón el más incidente [2, 3].

El cáncer es una preocupación importante para la salud pública con un
impacto significativo tanto en los resultados de los pacientes como en los
costos sanitarios. De hecho, el cáncer es una de las principales causas de
carga económica y de salud entre las enfermedades crónicas en la Unión
Europea [4, 5, 6, 7]. Se espera que el coste del tratamiento del cáncer siga
aumentando en el futuro, lo que lo convierte en una preocupación significativa
para los sistemas de salud y los responsables políticos [6, 8, 9, 10].

La comprensión de los procesos moleculares involucrados en la transforma-
ción de las células cancerosas ha avanzado significativamente en los últimos
años [11, 12, 13, 14, 15]. Sin embargo, a pesar del notable progreso que se ha
logrado, nuestra comprensión de estos mecanismos sigue siendo muy limitada
y aún queda mucho por descubrir.

La causa multifactorial del cáncer está relacionada con las alteraciones y muta-
ciones del genoma que resultan en el crecimiento anormal de las células. En
general, el origen del cáncer es un proceso complejo que puede verse influido
por una combinación de factores genéticos y ambientales. Las mutaciones son
modificaciones irreversibles del ADN que se pueden heredar, mientras que las
alteraciones se refieren a cambios epigenéticos que modifican la expresión del
genoma sin modificar el ADN [16, 17, 18, 19, 20, 21, 22, 23, 24]. Hay varios
factores de riesgo que pueden contribuir al desarrollo de estas mutaciones,
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incluidas las mutaciones genéticas heredadas, los factores ambientales, las
infecciones, la radiación, la obesidad, el estilo de vida sedentario, el envejeci-
miento, la dieta, el consumo de alcohol y tabaco [25, 26, 27, 28, 29, 30, 31].

Los tratamientos existentes para el cáncer, incluyendo la quimioterapia
convencional y la radioterapia, pueden tener efectos secundarios significativos
y pueden no eliminar eficazmente las células precursoras del cáncer conocidas
como células madre del cáncer (CSC), [32, 33, 34, 34]. Las CSC tienen un
impacto significativo en la metástasis y se les atribuye una gran influencia en
las recaídas debido a sus capacidades de autorenovación y diferenciación [35,
36, 37, 38, 39].

Actualmente hay nuevas terapias en el horizonte, como la inmunoterapia,
pero la estratificación de los pacientes es un desafío y los costes son altos [40,
41, 42, 43, 44]. Por lo tanto, se necesitan nuevas estrategias para interactuar
con las células desarrollando nuevos tratamientos que mejoren el pronóstico
de los pacientes.

Además de los procesos bioquímicos, las fuerzas mecánicas juegan un papel
crítico en la carcinogénesis. La literatura reciente proporciona amplias pruebas
de que las células son tanto jugadores pasivos como activos en la homeostasis
mecánica del cuerpo y que las alteraciones en las fuerzas mecánicas pueden
modificar la función celular [45, 46, 47, 48, 49, 50]. En este contexto, el
crecimiento uniforme no es un estado predeterminado, sino el resultado de la
regulación activa y la competencia de la proliferación celular, la movilidad,
los agentes químicos y la retroalimentación mecánica, en la que el crecimiento
modifica las tensiones –crecimiento impulsado por la tensión– y la tensión
regula el crecimiento y sus patrones asociados [55, 56, 57, 58].

Recientemente, se ha destacado la importancia de la mecánica de las células
cancerosas como un controlador crítico de la progresión de la enfermedad.
En este contexto, la mecanobiología estudia cómo las células responden a
estímulos mecánicos biológicamente. En particular, destaca el potencial de
los principios de mecanotransducción como complemento de las terapias ya
existentes [59, 60, 61]. La literatura sobre mecanotransducción es amplia,
pero en su mayoría se limita a grandes vías biológicas y de proteínas.

La importancia de traducir la mecanotransducción en terapia se ha vuelto cada
vez más visible y el desarrollo de tecnologías mecánicas para combatir el cáncer
no ha hecho más que empezar. Diferentes laboratorios están desarrollando
una variedad de principios para impactar activamente el comportamiento
celular mediante la modificación del microambiente mecánico [62, 63]. Estos
principios van desde el uso de ultrasonidos (US) hasta fármacos que alteran
la elasticidad del microambiente y la rigidez celular. Estos principios son
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traducibles al paciente, ya que el US se puede aplicar mediante transductores
o parches, y el segundo se basa en la administración de fármacos.

En cuanto al US y dejando de lado las terapias térmicas como el ultrasonido
focalizado de alta intensidad (HIFU) y la sonoporación [64, 65, 66, 67, 68, 69],
ya que dependen de diferentes mecanismos que requieren dirigirse cuida-
dosamente a los tumores confinados ya que destruyen el tejido sano, el
ultrasonido de baja intensidad (LIUS) y su versión pulsada (LIPUS) pro-
ponen impactar a las células cancerosas por dos mecanismos principales:
i) resonancia selectiva de las células bajo el nombre de oncotripsia, que se
basa en la destrucción del citoesqueleto[70, 71, 72, 73, 74], y ii) respuesta
desencadenada de mecanotransducción a través de vías de señalización [73,
74, 75, 76, 77, 78, 79, 80].

Aunque estos estudios han evidenciado repetidamente efectos potenciales sig-
nificativos, la falta de comprensión del mecanismo, y las diferentes respuestas
desencadenadas por diversas frecuencias, energías y configuraciones, hacen
que el concepto todavía no sea aplicable en su estado actual.

Por ello, la comprensión de la configuración de ondas mecánicas está sus-
citando cada vez más atención, aunque todavía, los mecanismos de cómo el
LIUS afecta al comportamiento de las células cancerosas es considerablemente
restringido. La razón principal radica en el elevado coste experimental, los
efectos estocásticos asociados a los experimentos biológicos y la complejidad
técnica de obtener datos in-vivo.

En este marco teórico, la oncología matemática y la medicina predictiva son
herramientas valiosas para complementar el entendimiento de la biología
experimental. Aunque, por desgracia, no se puede confiar plenamente en
las predicciones de un modelo matemático para un sistema biológico [51], el
desarrollo de modelos multifísicos de las interacciones mecánico-biológicas es
clave para desentrañar el comportamiento tumoral [81, 82, 83, 45, 63, 84, 85].

Así, los modelos de mecanobiología computacional son un punto importante de
partida para comprender la progresión de la enfermedad [86, 87, 52]. De hecho,
un modelo puede describir y representar con precisión un sistema biológico
si sigue las tendencias cualitativas de las pruebas experimentales [51]. En
última aproximación, los modelos a medida (morfología realista y propiedades
inherentes al tumor) podrían ayudar a los clínicos en el diagnóstico y la toma
de decisiones [88, 89, 90, 91, 92]. Así, los modelos podrían utilizarse como
estrategia médica complementaria en el prediagnóstico. Por ejemplo, se
podría probar e incluso combinar una combinación de fármacos [93, 94] y
diferentes ondas mecánicas para optimizar el tratamiento. Asegurando las
proporciones adecuadas, se podría maximizar la eficacia del tratamiento y
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minimizar los costes sanitarios [63].

La razón principal para investigar el cáncer desde la mecánica computacional
radica en la necesidad de comprender el comportamiento de la dinámica
tumoral en respuesta a la interacción mecánica en situaciones normales y
cambiantes, e identificar nuevas dianas para los tratamientos destinados a
combatir las CSC, teniendo en cuenta la cascada de señalización de las vías
de mecanotransducción desde la generación de señales mecánicas a escala
tisular hasta el nivel celular y molecular.

No obstante, la modelización es todo un reto. La morfología tumoral, la coex-
istencia de diferentes tipos celulares, las interacciones bioquímico-mecánicas
y la no linealidad de los tejidos implican ecuaciones diferenciales parciales
de alto orden que exigen métodos eficientes de resolución en términos de
coste computacional y memoria. Los procedimientos numéricos para ob-
tener soluciones aproximadas al sistema de ecuaciones se basan principal-
mente en el Método de las Diferencias Finitas (FDM), que puede ayudar en
modelos más simplificados mediante la aproximación directa de la solución
desconocida por aproximación de diferencias finitas en nodos, y Método de
Elementos Finitos (FEM), que es una herramienta útil para resolver retos
computacionales más complejos mediante el uso de polinomios estándar para
interpolar funciones y así aproximar la solución desconocida dentro de un
elemento [95, 96, 97, 98, 99].

En este escenario, el proyecto Mecanoterapia llevado a cabo por nuestro
grupo de investigación en la Universidad de Granada representa una es-
trategia novedosa en la lucha contra la carcinogénesis. Nuestro enfoque busca
comprender y manipular la mecánica celular combinando experimentos y mod-
elado, utilizando los últimos avances en mecánica, genómica, transcriptómica,
proteómica y metabolómica.

La tesis que se presenta es un componente esencial de dicho proyecto. En
concreto, establece el marco teórico de referencia que incluye las principales
vías de señalización relacionadas con la mecánica y los estados de tensión
en la progresión de los tumores, con la finalidad de desarrollar modelos
computacionales multiescala que ayuden a comprender la dinámica tumoral
incorporando fenómenos como la proliferación, la migración controlada, el
crecimiento impulsado por la tensión y las interacciones de las ondas mecán-
icas.
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C.2 Objetivos
El principal objetivo de esta tesis es desarrollar herramientas computacionales
para comprender y abordar la carcinogénesis desde la mecánica. Para lograrlo,
es necesario cumplir una serie de objetivos específicos que se detallan a
continuación:

1. Establecer el marco de la mecanobiología tumoral y sus mod-
elos teóricos. Describir las principales características de los tumores
avasculares y revisar el conocimiento actual de la mecanobiología
tumoral, proporcionando un marco común para los diferentes enfoques
teóricos que han surgido en la literatura desde la perspectiva de la
Teoría Clásica de los Medios Continuos y dando una visión de las
mecanoterapias emergentes, centrándose en los ultrasonidos de baja
intensidad a nivel experimental y teórico.

2. Estudiar la competición entre mecánica y migración en respuesta
a un cambio abrupto en la densidad celular. Comparar los efec-
tos lineales, no lineales y no lineales de flujo saturado en la migración.
Desarrollar un modelo matemático basado en mecánica para compren-
der la respuesta del crecimiento no homogéneo de células a cambios
bruscos en la densidad celular controlando el frente de velocidad de
propagación. Analizar la interacción entre la proliferación, la migración
y el crecimiento impulsado por la tensión no homogénea.

3. Modelar la interacción ultrasónica a nivel de esferoide. Modelar
la propagación de ultrasonidos en esferoides tumorales, considerando
la atenuación inherente de las ondas mecánicas realizando un análisis
de sensibilidad de la propagación de ondas con respecto a la presión
acústica, la viscosidad y la frecuencia.

4. Desarrollar un modelo multiescala de mecanoterapia en el que
los ultrasonidos de baja intensidad influyan en la dinámica
tumoral a través de la mecanotransducción. Proponer un modelo
computacional multiescala que simule el efecto terapéutico que los LIUS
parecen causar en un esferoide tumoral poroelástico en crecimiento a
través de la mecanotransducción. Validar el modelo mediante la com-
paración con datos experimentales, y utilizar las simulaciones numéricas
para explorar la inhibición de la proliferación y migración selectiva, así
como la formación de patrones.
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C.3 Contribuciones
En esta tesis, hemos sintetizado diversos enfoques mecanobiológicos que han
surgido en los últimos años, abarcando perspectivas tanto biológicas como
mecánicas en el marco de la mecánica de los medios continuos. Nuestra
exhaustiva revisión de los antecedentes abarca las principales hipótesis suby-
acentes a la mecanotransducción, las características esenciales de la teoría
que fundamenta el modelado del crecimiento a partir de la mecánica, los
modelos que rigen el comportamiento tumoral, los aspectos más destacados
de la terapia LIUS y el marco de la propagación de ondas en tejidos blandos.

Tras la revisión bibliográfica, hemos identificado varias contribuciones poten-
ciales, como la interacción entre el crecimiento no homogéneo y la migración
y la creciente demanda de herramientas tecnológicas y computacionales
innovadoras que faciliten una comprensión más profunda de la evolución
tumoral. Además, hemos destacado el uso potencial de los ultrasonidos de
baja intensidad para atacar las células madre cancerosas.

Esta tesis propone tres modelos computacionales que mejoran la comprensión
de la mecanobiología y la mecanotransducción examinando la dinámica, la
migración y el crecimiento tumoral en respuesta a fuerzas mecánicas, así
como los efectos de la mecanoterapia en el desarrollo tumoral.

En resumen, nuestro primer modelo investiga la competencia entre migración,
proliferación y mutaciones, que da lugar a cambios de volumen no homogéneos
que generan tensiones que modifican la evolución tumoral. Para estudiar esta
competición, desarrollamos ecuaciones acopladas de mecánica-crecimiento y
resolvemos el sistema por minimización de la energía y utilizando el método
esencialmente no oscilatorio ponderado (WENO) en diferencias finitas en
una dimensión. Los resultados sugieren que deben utilizarse flujos no lineales
para limitar la velocidad de propagación. Además, el estudio indica que el
crecimiento no homogéneo ralentiza la proliferación a la vez que provoca
inestabilidades en la densidad celular en un fenómeno conocido como difusión
retrógrada, que se ve mitigado por la posibilidad de movimiento celular.

Una vez estudiados estos fenómenos, consideramos el efecto de la mecan-
oterapia en la dinámica tumoral investigando cómo se propagan las ondas
ultrasónicas a través de un esferoide embebido en un medio de cultivo utiliz-
ando un modelo viscoelástico de Kelvin-Voigt con diferentes parámetros de
frecuencias, presiones acústicas y viscosidades. El estudio paramétrico sugiere
que no contemplar la viscoelasticidad puede conducir a una sobreestimación
de la energía que llega al tejido, ya que no tiene en cuenta la disipación de las
ondas de ultrasonido causada por la viscosidad del tejido, mientras que una
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alta presión acústica puede provocar daños irreversibles o la muerte celular, y
una presión acústica baja puede no producir los efectos terapéuticos deseados.
La selección de la frecuencia adecuada depende de diversos factores, como la
geometría del tejido diana, las propiedades del medio y la intensidad deseada.
El estudio concluye que las simulaciones numéricas de propagaciones de
onda pueden ayudar a determinar los parámetros mecánicos óptimos para
diferentes tipos celulares y estados de enfermedad, lo que puede guiar el
desarrollo de tratamientos de LIUS seguros y efectivos para el cáncer y otras
enfermedades.

Por último, proponemos un modelo multiescala que integra los efectos de las
ondas mecánicas en el desarrollo tumoral a través de la mecanotransducción.
El modelo consiste en ecuaciones acopladas de tensión-crecimiento y dos
escalas temporales principales: escala rápida, donde la onda se propaga y
ocurre la mecanotransducción, y escala lenta, donde el tumor crece y se
adapta al microambiente como un medio poroelástico. Para demostrar la
validez del modelo, realizamos una validación experimental y preliminar con
esferoides in vitro. Consideramos varios escenarios con diferentes parámetros
de propagación para realizar un análisis de sensibilidad del efecto de los
ultrasonidos en la mecanotransducción. Nuestros resultados sugieren que el
modelo puede replicar los datos experimentales, permitiendo predicciones
tanto del crecimiento como de los estados tensionales y de deformación
del medio y del esferoide. Así, se ha comprobado numéricamente que los
ultrasonidos generan campos de tensión que inhiben y ralentizan tanto
el crecimiento como la migración, creando patrones basados tanto en las
tensiones aplicadas como en los rangos de sensibilidad celular, y alterando
los gradientes de tensión lenta de crecimiento y presión de fluido intersticial.

C.4 Discusión
En esta tesis, se han sintetizado los enfoques de mecanobiología que han
surgido en los últimos años, abarcando tanto perspectivas biológicas como
mecánicas dentro del marco de la mecánica de los medios continuos. La
revisión exhaustiva de antecedentes engloba las principales hipótesis suby-
acentes a la mecanotransducción, las características esenciales de la teoría
que fundamentan la modelización del crecimiento a partir de la mecánica, las
ecuaciones que rigen el comportamiento tumoral, los aspectos más destacados
de la terapia LIUS y el marco de propagación de ondas en tejidos blandos.

Después de la revisión de la literatura, se han identificado varias contribuciones
potenciales, incluyendo la interacción entre el crecimiento y la migración
no homogéneos, y la creciente demanda de herramientas tecnológicas y
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computacionales innovadoras que faciliten una comprensión más profunda de
la dinámica tumoral. También se ha destacado el novedoso uso de ultrasonido
de baja intensidad para atacar a las células madre del cáncer.

Esta tesis propone tres modelos computacionales que mejoran la comprensión
de la mecanobiología y la mecanotransducción examinando la dinámica
del tumor en respuesta a las fuerzas mecánicas, así como los efectos de la
mecanoterapia en el desarrollo del tumor.

En resumen, la primera propuesta investiga la competencia entre la migración,
la proliferación y las mutaciones, lo que resulta en cambios de volumen no
homogéneos que generan tensiones que modifican la evolución del tumor.
El conjunto de ecuaciones consiste en ecuaciones de crecimiento y tensión
acopladas con un término de migración de flujo saturado.

Este estudio destaca, en primer lugar, la necesidad de utilizar flujos no
lineales para describir la migración del tumor, en contraste con los flujos
lineales que se utilizan con frecuencia en los enfoques de crecimiento basados
en la mecánica [89, 90]. Esta necesidad surge de la necesidad de controlar
la velocidad y el frente de migración, perdido en los flujos lineales, como
se observa para diferentes escenarios en la Figura 3.3, y como ya se ha
establecido previamente en la literatura [307, 308, 309, 310, 311, 312].

En particular, el flujo no lineal saturado controla el avance del frente de
propagación a través de un parámetro biológico de velocidad finita. Además,
el parámetro de porosidad m modifica la velocidad del frente de propagación,
disminuyéndola a medida que m aumenta, como se representa en la Figura 3.4.

Sin embargo, la necesidad de preservar el frente de propagación del tumor
y evitar el posible ruido numérico del flujo saturado requiere órdenes de
aproximación altos. Para lograr este requisito, se utiliza el método ponderado
no oscilatorio (WENO), que tiene como objetivo lograr una precisión de alto
orden mediante la combinación de múltiples aproximaciones numéricas de bajo
orden a través del uso de pesos y coeficientes. En este método. se calculan
indicadores de suavidad para cada aproximación y luego se utilizan para
determinar los pesos. La solución final se obtiene formando una combinación
de las aproximaciones ponderadas [310, 384]. Por lo tanto, el método WENO
proporciona una resolución de estabilidad de alto orden precisa, a la vez que
mantiene una transición no oscilatoria, estable y nítida de la discontinuidad.

Por otro lado, los pequeños cambios en el crecimiento generan retroali-
mentación mecánica que puede llevar a inestabilidades, como se propone
teóricamente en las referencias [55, 57] y se demuestra numéricamente en
este estudio, como se observa en las Figura 3.5 y 3.6. Además, permitir el
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movimiento celular controlado dentro del tumor puede disipar estas tensiones
y regular el crecimiento, de acuerdo a las Figura 3.7 y 3.8.

Para controlar esta regulación, se considera apropiado el uso del flujo no
lineal saturado en este estudio. Sin embargo, en los casos en que las inestabil-
idades resultantes del crecimiento no uniforme no son una preocupación, se
puede simplificar a un flujo no lineal para reducir la complejidad y el coste
computacional, tal y como se ha hecho en el estudio posterior.

Una vez que se han estudiado estos fenómenos, hemos considerado el efecto
de la mecanoterapia en la dinámica tumoral analizando la propagación de
ultrasonidos en un esferoide embebido en un medio de cultivo, utilizando la
ecuación constitutiva viscoelástica de Kelvin-Voigt [365, 366, 367, 368]. Se
ha realizado un análisis de sensibilidad que incluye un rango de frecuencias
de f = [1 − 20]MHz, presiones acústicas de A = [0.1 − 5] kPa, y viscosidades
de ηi =[0-10]Pa·s, siendo i las viscosidades del medio de cultivo c o del tumor
T . El conjunto de ecuaciones se ha resuelto en elementos finitos considerando
dos dimensiones.

Basándonos en el modelo de propagación, hemos observado que una mayor
viscosidad del tejido tumoral favorece zonas de sombra detrás del esferoide
tumoral, donde la energía de la onda se disipa debido a la viscosidad del
esferoide. Cabe destacar que este efecto podría ser más pronunciado incluso
si se considerasen las tres dimensiones del problema.

La presión acústica juega un papel significativo en la eficacia y seguridad de
los tratamientos LIUS. Una presión acústica excesiva puede desencadenar
efectos de cavitación y calentamiento, lo que lleva a la alteración mecánica
de los tejidos y a un posible daño irreversible del mismo. Por el contrario,
una presión acústica inadecuada puede no producir los efectos terapéuticos
deseados, permitiendo que las células proliferen y migren a regiones con
niveles de tensión más bajos.

Además de la presión acústica, la selección de la frecuencia adecuada para
LIUS es necesaria para lograr resultados terapéuticos óptimos, como la
apoptosis o la quiescencia en los tratamientos contra el cáncer. La elección
de la frecuencia depende de varios factores, como la geometría del tejido a
tratar, las propiedades del medio y la intensidad deseada. Las frecuencias más
bajas penetran más profundamente en los tejidos, lo que las hace ideales para
tratamientos dirigidos a estructuras ubicadas más profundamente en el cuerpo.
Sin embargo, a medida que aumenta la frecuencia, la energía de la onda se
absorbe y se disipa cada vez más, lo que resulta en una mayor debilidad de la
onda. Además, el grado de absorción depende de las propiedades del medio
a través del cual se propaga la onda, como puede ser su viscosidad.
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Aunque la presión acústica óptima depende del tipo celular específico, nuestros
hallazgos sugieren que las tensiones dinámicas hidrostáticas que se han
examinado podrían ser suficientes para inhibir el crecimiento de esferoides,
y que las presiones acústicas mayores que A = 1.5kPa podrían ser efectivas
para la frecuencia indicada.

Finalmente, proponemos un modelo multiescala que integra los efectos de
las ondas mecánicas en el desarrollo del tumor a través de la mecanotrans-
ducción. La propuesta se basa en ecuaciones fundamentadas en la Teoría de
Crecimiento Finito considerando pequeñas deformaciones, de forma similar a
otros estudios [84, 330, 89, 90, 332, 92]. Hemos resuelto el modelo usando
Elementos Finitos en dos dimensiones.

El sistema multiescala incluye ecuaciones acopladas de crecimiento y esfuerzo
y dos escalas de tiempo principales: una escala rápida donde las ondas
se propagan y ocurre la mecanotransducción, y una escala lenta donde
las células del tumor proliferan, migran y se adaptan al microambiente.
El microambiente se modela como un medio poroelástico compuesto por
componentes sólidos, incluyendo células tumorales, células sanas y la matriz
extracelular, así como fases fluidas.

En contraste con los estudios basados en la citodisrupción [70, 71, 72, 73, 74],
nuestro aport se basa en la respuesta desencadenada de las células a través
de la mecanotransducción, donde la proliferación se inhibe parcialmente [73,
74, 75, 76, 77, 78, 79, 80].

La hipótesis es que la presión dinámica es más efectiva para generar una
respuesta celular que la tensión estática debido a los complejos mecanismos
de redistribución de tensión que involucran al citoesqueleto y al flujo de
fluidos intersticiales a través de los poros. La función de acoplamiento de
mecanotransducción, descrita en las ecuaciones 5.2.16 y 5.2.17, se basa en
funciones de mecanotransducción descritas y validadas en la literatura [151,
186, 321, 324, 322, 84, 343, 84, 330, 89, 90, 332, 92].

La contribución a la función de la mecanotransducción se basa en incluir
la diferencia en el umbral entre la estimulación dinámica y estática, sin
requerir relaciones ad hoc, al mismo tiempo que proporciona una explicación
cuantitativa de las diferencias observadas. Por lo tanto, la función de la
mecanotransducción se define en un período de tiempo ultrasónico en el que
los mecanosensores celulares podrían recibir señales relacionadas con la red
del citoesqueleto extremadamente rápidamente [218, 219], y luego responder
desencadenando cambios en la proliferación y migración, como se propone
en [224, 218].
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Con el fin de generar intensidades similares a las descritas en la literatura y
evitar posibles fenómenos de cavitación, hemos superado las frecuencias e
incrementado la presión acústica, en comparación con los estudios actuales
cuyos parámetros se muestran en la Tabla 2.3.

Así, proponemos tratar experimentalmente células madre cancerosas de
melanoma A-375 a una frecuencia de f = 5MHz y amplitudes que oscilan
entre A = [1.5 − 15.5]kPa, asumiendo una viscosidad tumoral de ηT = 2Pa · s
y una viscosidad del medio de cultivo de ηc = 0.05Pa · s, en línea con los
rangos de viscosidad establecidos previamente en otros estudios [391, 392,
393, 205, 394, 213, 395].

El experimento preliminar indica que la proliferación de las células madre
cancerosas de melanoma se inhibe en un porcentaje del cambio del 48% cuando
se sonican a una frecuencia de f = 5MHz, lo que respalda la viabilidad de
LIUS como tratamiento, dado que las CSC son actualmente resistentes a las
terapias convencionales [32, 33, 34, 34].

El modelo computacional multiescala propuesto y simplificado puede repro-
ducir con precisión el decrecimiento de células observado para determinados
parámetros de mecanotransducción, como se muestra en la Figura 5.9.

Estos hallazgos son consistentes con estudios anteriores [154, 151, 156, 157,
158, 84, 330], que han reportado una reducción del 50% en las tasas de
proliferación en comparación con el crecimiento libre de tensión y un aumento
del 30% en la actividad apoptótica de las células con valores de tensión estática
de 1-10kPa. En consecuencia, los resultados respaldan la hipótesis de que
reducciones comparables en las tasas de proliferación pueden lograrse a través
de la aplicación de una tensión dinámica menor.

Además, estos resultados proporcionan predicciones tanto para el crecimiento
como para los estados de tensión y deformación del medio y el esferoide.
Específicamente, observamos un creciente tensión compresiva en las regiones
centrales, como se propone en estudios anteriores [147, 45, 166]. Además, el
estudio también indica que la compresión aumenta con el crecimiento.

Hemos considerado varios escenarios en los que el esferoide tumoral se ve
afectado de manera diferente por la tensión y hemos realizado un análisis
paramétrico del efecto del ultrasonido en la mecanotransducción, como se
resume en la Tabla 5.2.

Las simulaciones numéricas indican que las presiones acústicas de 1.5kPa
pueden reducir las tasas de proliferación en un 46.6-48.4% cuando la frecuencia
oscila entre 1-5MHz, y para valores de viscosidad del medio de ηc = 0.05Pa · s.
Para valores de frecuencia más altos, como 20 MHz, la presión acústica debe
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aumentarse a 5kPa para lograr una disminución del 52.5%.

Por otro lado, un aumento en la viscosidad del medio conduce a un aumento
en la atenuación, lo que puede limitar significativamente la reducción en las
tasas de proliferación, alcanzando valores comparables a las condiciones de
control (reducción del 0-39.6% de las células). En tales casos, sería necesario
aumentar la presión acústica si el medio es altamente viscoso.

Posteriormente, hemos estudiamos el sistema multiescala completo consid-
erando todas las fases sólidas y la migración de la fase tumoral. Esta
investigación indica que la terapia de ultrasonido no solo inhibe la prolif-
eración de las células tumorales, sino que también ralentiza su migración,
en concordancia con los resultados experimentales obtenidos en las refer-
encias [78, 77]. Además, la inclusión de la migración en la fase tumoral
del modelo resulta en un proceso de difusión cruzada, en el que las células
tumorales se mueven a través de las diferentes fases e interactúan mediante
un esquema de depredador-presa. Esto lleva a la competencia entre diferentes
fases sólidas y la migración de una fase se propaga a las otras fases.

La función de mecanoterapia selectiva propone que la proliferación de células
sanas permanece inalterada debido a su umbral de sensibilidad más alto,
mientras que la disminución de la fase tumoral puede aumentar la concentra-
ción de las células sanas debido al sistema depredador-presa. Así, la terapia
selectiva a través de mecanotransducción se ha propuesto como una estrategia
potencial para dirigirse selectivamente a las células cancerosas y preservar el
tejido sano, como se ha reflejado ya en las referencias [70, 75, 73].

Esta investigación preliminar propone que la terapia de ultrasonidos puede
generar patrones en la proliferación y migración, rompiendo la simetría inicial
del sistema en función de la tensión aplicada y los rangos de sensibilidad
celular, como se ha estudiado experimentalmente en la referencia [73] y
corroborado numéricamente en la Figura 5.17 y 5.18. Además, los resultados
sugieren que la difusión amortigua la tensión lenta, homogeneizando la
respuesta del tumor al entorno, como también se señaló en el Capítulo 3,
pero preservando la migración hacia áreas de menor tensión.

En particular, estos modelos pueden describir el desplazamiento del centro
de gravedad del tumor, el cual, aunque no alcanza grandes valores en nuestro
estudio (1-4%), podría aumentar con diferentes parámetros y geometrías.
De hecho, se pueden usar para proponer diferentes ángulos de sonicación
para evitar la migración dirigida a áreas conflictivas. En consecuencia, este
enfoque permitiría la optimización de las estrategias terapéuticas, mediante
el análisis y diseño de configuraciones dirigidas y efectivas.
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La presión del fluido intersticial aumenta con el crecimiento del tumor. En
condiciones normales, la presión es heterogénea, con valores más altos en
el núcleo y valores más bajos en los bordes, del orden de kPa, como se ha
observado en [189, 45]. Bajo estas premisas, esta tesis predice la ruptura de
la simetría de la tensión debido a los gradientes de presión en la dirección
de la propagación ultrasónica, tal como se observa en la Figura 5.17 y la
Figura 5.18.

Finalmente, se deduce que aunque el tumor crece inicialmente por efecto
masa, la aplicación de ultrasonido genera tensiones compresivas y rarafactivas
que inducen estados de compresión en las células. Esto, a su vez, conduce a
la inhibición parcial de la proliferación y la migración, dependiendo de los
gradientes de presión ultrasónica.

Sin embargo, esta tesis tiene algunas limitaciones. No se ha tenido en cuenta
la hiperelasticidad del tejido, y las propiedades mecánicas y biológicas se han
basado en la literatura, ya que no se han llevado a cabo experimentos de
indentación o de control de velocidad con cámaras. ¡

Aunque se han reproducido numéricamente algunos experimentos preliminares
del Capítulo 5, el número de experimentos es bajo debido a la estocasticidad
y al alto coste experimental asociado con el cultivo de CSC, por lo que esta
tesis se mantiene principalmente dentro del marco computacional.

Por lo tanto, se requieren más experimentos y a mayor largo plazo para evaluar
diferentes respuestas computacionales, refinar los modelos para una mayor
precisión y determinar el uso óptimo de la frecuencia y la presión acústica
dependiendo de la viscoelasticidad del medio. Además, hemos supuesto la
viscoelasticidad basada en las ecuaciones de Kelvin-Voigt en la propagación,
y es necesario un análisis de sensibilidad que tenga en cuenta la plausibilidad
de la ecuación constitutiva elegida.

Además, en nuestra propuesta no se han incorporado las vías de mecanotrans-
ducción de proteínas, ya que no se han podido validar experimentalmente.
En su lugar, se ha aplicado la mecanotransducción directamente a la relación
de duplicación o difusión, aunque las respuestas celulares son desencadenadas
por las proteínas. Tampoco hemos considerado el efecto de las co-terapias.

Por último, este estudio es una aproximación numérica preliminar a la
mecanobiología y la mecanoterapia ultrasónica de esferoides in vitro. Las
geometrías simples utilizadas no han tenido en cuenta formaciones más
complejas, que pueden exhibir fenómenos adicionales como la dispersión.
Para crear un escenario in vivo más realista, sería necesario considerar estos
fenómenos y sus patrones asociados.
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C.5 Conclusiones
Para concluir, la oncología matemática es una valiosa herramienta de ayuda
en el desarrollo de estrategias efectivas de tratamiento y comprensión del
comportamiento tumoral, mitigando los altos costes experimentales y su
significativa estocasticidad. La importancia de las nuevas terapias contra
el cáncer, particularmente la terapia de ultrasonido de baja intensidad, y
la necesidad de herramientas y tecnologías computacionales que puedan
atacar selectivamente a las células madre cancerosas resistentes a las terapias
actuales han sido enfatizadas en este estudio.

En este contexto, esta tesis representa una investigación interdisciplinar de
la mecanobiología en el cáncer. Las contribuciones específicas de esta tesis se
resumen a continuación:

• El flujo no lineal saturado controla la velocidad biológica del
frente de invasión, mientras que el flujo lineal conduce a una velocidad
de propagación infinita, y los flujos no lineales mantienen la estabilidad
del frente. Además, el parámetro de porosidad m regula la velocidad
de migración, disminuyéndola a medida que m aumenta.

• Las variaciones en el crecimiento pueden conducir a inestabil-
idades que actúan como difusión retrógrada en competencia con
la proliferación debido a la retroalimentación mecánica.

• La migración celular puede evitar inestabilidades y disipar
cambios abruptos de crecimiento impulsado por el estrés no homo-
géneo.

• Las ondas acústicas de baja presión y alta frecuencia estim-
ulan la señalización mientras mantienen una baja intensidad para
desencadenar la inhibición del crecimiento y la migración, evitando la
citodisrupción.

• La presión acústica es el parámetro dominante en la mecano-
transducción. Las presiones acústicas bajas pueden no ser suficientes
para alterar el destino del tumor. Sin embargo, una vez que se supera un
nivel de estrés umbral, aumentar aún más la presión acústica puede no
ser necesario para inducir la señalización, mientras que niveles excesivos
de presión acústica podrían llevar al límite de la citodisrupción.

• Los parámetros interdependientes de presión acústica, vis-
cosidad y frecuencia se pueden ajustar para optimizar la se-
lectividad de las aplicaciones terapéuticas. La disipación de
energía aumenta con la viscosidad, y la selección de la frecuencia está
influenciada por el tamaño del tumor. Las ondas de baja frecuencia
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generan longitudes de onda más largas, lo que resulta en una agitación
del tumor. En contraste, las ondas de alta frecuencia pueden inter-
actuar con los componentes de las células. El modelo computacional
propuesto reduce la necesidad de pruebas experimentales de diferentes
configuraciones de parámetros mecánicos, incluyendo la ubicación del
transductor, el ángulo de sonificación, las geometrías y las capas de
tejido.

• La función de mecanotransducción propuesta proporciona una
explicación cuantitativa para las diferencias observadas en el
umbral entre la estimulación dinámica y estática sin necesidad
de relaciones ad-hoc.

• La presión dinámica es más efectiva que el estrés estático en
generar una respuesta celular, lo cual ha sido validado numérica
y experimentalmente, como se evidencia en la capacidad de lograr
reducciones similares en las tasas de proliferación a 1.5kPa (46.6-48.4%).

• El crecimiento de las células madre cancerosas puede ser inhi-
bido utilizando 5MHz y presiones acústicas mayores a 1.5kPa,
como sugiere el experimento preliminar de ultrasonido terapéutico.

• El comportamiento migratorio de la fase tumoral conduce a un
proceso de difusión cruzada, donde el movimiento se propaga a otras
fases sólidas a través de un esquema de interacción depredador-presa.

• La proliferación de las células sanas permanece selectivamente
inalterada por LUIS debido a su umbral de sensibilidad más
alto, mientras que la reducción de la carga celular tumoral a través
de ULIS puede aumentar el papel de las células sanas en el sistema
depredador-presa.

• El ultrasonido puede generar un patrón en la proliferación y
migración, rompiendo la simetría inicial del sistema y desplazando el
centro de gravedad de las células tumorales a áreas de menor presión
acústica.

• La presión del fluido intersticial se adapta a los patrones de
ultrasonido, aumentando en la dirección de propagación debido a
la concentración de células tumorales. Además, la tensión lenta de
compresión aumenta con el tiempo.

• El ultrasonido terapéutico dificulta la migración celular. Además,
la migración amortigua la tensión lenta y la presión del fluido homo-
geneizando la respuesta del tumor al entorno.
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C.6 Futuras líneas de investigación
En relación al Capítulo 3, es posible incorporar la ley de Brinkman mencionada
anteriormente y realizar estudios analíticos sobre los aspectos cualitativos
de las soluciones (como oscilaciones o la no-convexificación de la forma de
densidad, entre otros). Además, en un corto plazo, estamos interesados en
incorporar las interacciones bioquímicas que modulan tanto el crecimiento
como las propiedades de adhesión celular.

En cuanto a los Capítulos 4 y 5, el presente estudio no describe de manera
completa las complejas interacciones proteicas que regulan las vías de señal-
ización asociadas con la proliferación y migración celular. Por lo tanto, para
dilucidar los mecanismos moleculares específicos subyacentes a los cambios
observados en el comportamiento celular, los estudios futuros podrían incor-
porar un análisis proteómico. Dicho análisis proporcionaría valiosas ideas
sobre las vías de señalización alteradas y los patrones de expresión proteica
que promueven la disminución en la proliferación celular observada en este
estudio. Además, el consumo de nutrientes y la hipoxia también deberían
tenerse en cuenta.

En el corto plazo, es esencial incorporar el efecto de la quimioterapia en los
modelos para ayudar en la determinación de las dosis óptimas de fármacos
y ultrasonido, así como de los parámetros mecánicos, para un tratamiento
efectivo que minimice los efectos colaterales. Por ejemplo, podríamos invest-
igar numéricamente el efecto de combinar una dosis de quimioterapia con la
aplicación no continua de ultrasonido, donde aplicamos el ultrasonido durante
algunas horas al día y permitimos la proliferación sin ultrasonido durante
las horas restantes. Al variar sistemáticamente estos parámetros, podemos
determinar el régimen de tratamiento óptimo que maximice la eficacia del
tratamiento.

Además de las ondas mecánicas longitudinales, nuestro grupo también está
investigando el potencial de las ondas de corte. Dentro del marco numérico de
esta tesis, podemos modificar las condiciones iniciales, los rangos de frecuencia
y la función de mecanotransducción asociada, que ahora dependería de la
tensión de Von Mises o Tresca para tener en cuenta las componentes de corte.
Con este estudio, podríamos comparar los efectos de las ondas de corte con
el LIUS para investigar cómo cambian los parámetros de sensibilidad celular
cuando se modifica la naturaleza de la fuente de tensión.

Además, hemos simulado el tumor como un material viscoelástico a escala
ultrasonido. Si bien la poroelasticidad dinámica se ha estudiado principal-
mente en el contexto del tejido óseo y la ingeniería sísmica, nos esforzamos
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por incorporarla en la modelización de la propagación de ondas para exam-
inar los diferentes patrones de respuesta en comparación con la propagación
viscoelástica. En este sentido, se asumiría que la fase líquida principalmente
absorbe la tensión.

La poroelasticidad dinámica sigue los principios de Biot y sus ecuaciones
son más complejas que la poroelasticidad estática [403, 404, 325, 405]. Al
considerar ambas fases sólida y fluida, se obtienen dos ondas de compresión,
una onda rápida y una onda lenta, y una tercera onda de corte. En los tejidos
blandos, en los que la fase sólida carece de alta rigidez, la onda tiende a
viajar más rápido a través del fluido y más lento a través del citoesqueleto.

El conjunto de ecuaciones para la propagación de ondas en la poroelasticidad
dinámica puede describirse de nuevo en tres formulaciones diferentes. Sin
embargo, la formulación uuu-p no existe en el dominio del tiempo, por lo que
se suele utilizar la formulación uuu-w o uuu-uFuFuF . Las principales ecuaciones que
estamos investigando son 8.0.1.

En este punto, ya hemos programado y validado el modelo, como se muestra
en la Figura 8.1 y 8.2, en la cual una onda longitudinal se propaga a través
de un medio poroelástico homogéneo con diferentes valores de permeabilidad.
Los resultados sugieren que una permeabilidad alta conduce a una disminución
en la amplitud de la onda sólida – disipación de energía – mientras que una
permeabilidad baja conduce a amplitudes de onda similares. Se necesitan
esfuerzos adicionales para comprender las respuestas que tienen en cuenta la
heterogeneidad del medio y para estudiar las relaciones entre la permeabilidad,
la porosidad y los parámetros de acoplamiento.

Por último, en los próximos años la reingeniería de tumores está destinada a
convertirse en un componente desafiante en el análisis de la dinámica tumoral.
Por lo tanto, se necesitan más propuestas matemáticas en relación a la
temática abordada en la presente tesis con el fin de esclarecer preguntas sobre
la acción y las consecuencias de las co-terapias, para finalmente traducir los
modelos a una escala específica del paciente y contribuir en última instancia
a la toma de decisiones clínicas.
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Appendix D

Finite Difference
formulation

In this Appendix, we show the finite difference formulation associated with
Chapter 3. To solve the problem, we have followed the pioneering works of
Shu [382, 383, 384, 385] and codes previously developed in reference [386].

For sake of simplicity, we have rewritten the equation 3.2.10 in one-dimension:

∂u

∂t
= ∂

∂x

(
D

um ∂u
∂x√

u2 +
(D

c

)2
| ∂u

∂x |2

)
+ S(u) (D.0.1)

where u(x, t) is the solution, and x and t are the spatial and temporal
variables, respectively. The source terms S(u) yields:

S(u) = Tu
(

1 − uV

C

)
− αu2 + µ

K + µ
u
(
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)

. (D.0.2)

The WENO method aims to provide a high-order accurate solution free from
oscillations, even in the presence of shocks. The algorithm for calculating
the non-linear flux is:

1. Compute the first flux approximation.
We have assumed the first flux approximation as w = ∂u

∂x
, and we

preliminary discretize it as wi = ui+1 − ui−1

2∆x
, where wi is the central

finite difference approximation of ∂u

∂x
at the point xi, ui+1 and ui−1 are

the values of u at xi+1 and xi−1 respectively, and ∆x is the distance
between xi+1 and xi−1, which is the same as the distance between any



two neighboring points of the grid. Then we have:
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(D.0.3)

and we assume w constant.

2. Compute the Lax-Friedrichs Flux Splitting:

g+
i+1/2 = 1

2(fi + βui)

g−
i−1/2 = 1

2(fi − βui),
(D.0.4)

where g+
i+1/2 is the approximation of the flux going from xi to xi+1, and

g−
i−1/2 is the approximation of the flux going from xi to xi−1, and β is

a parameter that determines the strength of the flux splitting, which
is taken as β = max(|f |). For simplification, from now we consider
h = g−

i+1/2 and k = g+
i−1/2.

3. Approximate the solution in each subdomain using the following high-
order polynomials:

p0n = 2hi−2 − 7hi−1 + 11hi

6
p1n = −hi−1 + 5hi + 2hi+1

6
p2n = 2hi + 5hi+1 − hi+2

6
p0p = −ki−2 + 5ki−1 + 2ki

6
p1p = 2ki−1 + 5ki − ki+1

6
p2p = 11ki − 7ki+1 + 2ki+2

6

(D.0.5)

4. Compute a set of smoothness indicators that measure the degree of



non-smoothness of the solution in each subdomain.

B0n = 13
12(hi−2 − 2hi−1 + hi)2 + 1

4(hi−2 − 4hi−1 + 3hi)2

B1n = 13
12(hi−1 − 2hi + hi+1)2 + 1

4(hi−1 − hi+1)2

B2n = 13
12(hi − 2hi+1 + hi+2)2 + 1

4(3hi − 4hi+1 + hi+2)2

B0p = 13
12(ki−2 − 2ki−1 + ki)2 + 1

4(ki−2 − 4ki−1 + 3ki)2

B1p = 13
12(ki−1 − 2ki + ki+1)2 + 1

4(ki−1 − ki+1)2

B2p = 13
12(ki − 2ki+1 + ki+2)2 + 1

4(3ki − 4ki+1 + ki+2)2

(D.0.6)

5. Compute a set of nonlinear weights that balance the contribution of
each polynomial to the final reconstruction.

α0n = d0n

(ϵ + B0n)2

α1n = d1n

(ϵ + B1n)2

α2n = d2n

(ϵ + B2n)2

αn = α0n + α1n + α2n

α0p = d0p

(ϵ + B0p)2

α1p = d1p

(ϵ + B1p)2

α2p = d2p

(ϵ + B2p)2

αp = α0p + α1p + α2p

(D.0.7)

with:

d0n = 1
10 , d1n = 6

10 , d2n = 3
10

d0p = 3
10 , d1p = 6

10 , d2p = 1
10

and ϵ = 1 · 10−6.



6. Compute stencil weights.

w0n = α0n

αn

w1n = α1n

αn

w2n = α2n

αn

w0p = α0p

αp

w1p = α1p

αp

w2p = α2p

αp

(D.0.8)

7. Combine the polynomials and weights to obtain a high-order accurate
approximation of the solution.

fn = h−
i+ 1

2
= w0n · p0n + w1n · p1n + w2n · p2n

fp = g+
i− 1

2
= w0p · p0p + w1p · p1p + w2p · p2p

(D.0.9)

8. Combine the polynomials and weights to obtain a high-order accurate
approximation of the solution at the interfaces and add the source term:

Li =
(fp − fpi−1) + (fn − fni−1)

∆x
+ S(u). (D.0.10)

Finally, we use the third-order Runge-Kutta method to integrate in time:

u(1) = un + ∆tL(un)

u(2) = 3
4un + 1

4u(1) + 1
4∆tL(u(1))

u(3) = 1
3un + 2

3u(2) + 2
3∆tL(u(2)).

(D.0.11)

Specifically, given the value of u at time tn, the scheme calculates an in-
termediate value u(1) using a standard forward Euler step and a weighted
combination of un and u(1) is used to estimate u at the midpoint of the time
step. Finally, the scheme uses a weighted combination of un and u(2) to
estimate the solution at the end of the time step.
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Appendix E

Weak formulation of
equations

E.1 General concepts
The numerical model is self-coded in FEAP 8.6, considering two dimensions
and plane strain. The problem is defined in Cartesian coordinates. The
MATErial set command is used to specify the parameters for each material as
well as to specify the element type associated with the material set parameters.

First, we define an own-coded material, in which we defined the equations of
the problem and set parameters. We then blend a square mesh with surface
elements defined by quadrilateral (bilateral) shapes consisting of four nodes.
The number of used elements depends on the dimensions and characteristics
of the problem, ranging between 104 and 40 · 104.

For the boundary conditions, line elements (2-node element) are defined using
the standard FEAP element library. These are assigned with the FEAP
materials: LABC for absorbing boundary conditions in wave propagation
and WINKler for Winkler boundary conditions in the slow-scale model.

The Newmark-β method with standard parameters is used as the numerical
integration technique to solve the system of second-order differential equa-
tions while implicit Backward Euler integration is considered for first-order
differential equations. The spatial discretization is performed with standard
isoparametric shape functions of Lagrange type.

From now, we show the residuals and tangent matrices associated with
Chapters 4 and 5. The total degree of freedoms (a) are six: the displacements
(ux,uy), the fluid pressure (p), and the solid phases (ϕT , ϕH , ϕM ), which we
activate or deactivate them depending on the purpose study.

For sake of simplicity, we explain the process for the linear elastic problem
and we then show directly the residuals and tangent matrices for all degrees
of freedom. Furthermore, we assume that the double dot accounts for the
second derivative of time.



To obtain the weak form, the balance of momentum equation is multiplied
by test functions – virtual increments of the degrees of freedom – δuuu for
displacements – and integrated over the problem domain Ω, by applying the
divergence theorem and considering Neumann Boundary conditions. Then,
the balance of momentum in weak form reads:

−
∫

Ω
(∇sδuuu) : σσσT dΩ +

∮
Γ

δuuu · tttdΓ −
∫

Ω
δuuu · (bbb − ρüuu)dΩ = 0. (E.1.1)

To obtain an approximation solution of this weak form, the degree of freedom
at node a given by au

a , their corresponding time derivatives, the virtual
increments δau

a , and spatial coordinates ax
a are discretized by using standard

three-dimensional shape functions N based on isoparametric Lagrangian
polynomials:

uuu ≈ Naau
a ,

üuu ≈ Naäu
a ,

δuuu ≈ Naδau
a ,

xxx ≈ Naax
a,

(E.1.2)

where the Einstein summation convention is used. In addition to the above,
we also need to discretize the derivatives of the displacement and test functions
with respect to the spatial coordinates. In this case:

∇suuu ≈ ∇sNaau
a ≈ BBBs

aau
a ,

∇sδuuu ≈ BBBs
aδau

a ,
(E.1.3)

where BBBs
a is the derivative of the shape function with respect to the spatial

coordinates. Considering two-dimension and plane strain, the matrix reads:

BBBs
a =



Na,1 0

0 Na,2

0 0

Na,2 Na,1


. (E.1.4)

The residual at node a is directly obtained from the weak form, introducing
the previous discretizations and integrating in the finite element of domain



Ωe and boundary Γe:

RRRu
a = −

∫
Ωe

(BBBs
a)t

σσσ dΩe +
∮

Γe

NatttdΓe −
∫

Ωe

NaρüuudΩe (E.1.5)

where the superscript t denote the transponse of the matrix. The residual
is then differentiated with respect to the degrees of freedom and their time
derivatives to obtain the tangent matrices:

KKKij
ab = −∂RRRi

a

∂aj
b

CCCij
ab = −∂RRRi

a

∂ȧj
b

MMMij
ab = −∂RRRi

a

∂äj
b

(E.1.6)

where KKK, CCC and MMM are the stiffness, capacity and mass matrices, respectively.
The supra indices i, j denote the degree of freedom and and a and b are two
arbitrary nodes. In the following and for sake of simplicity, we directly show
the residuals and the tangent matrices used in this work for all degrees of
freedom.

E.2 Dynamic balance equation

∇ · σσσ = ρüuu (E.2.1)

RRRu
a = −

∫
Ωe

(BBBs
a)t

σσσ dΩe +
∮

Γe

NatttdΓe −
∫

Ωe

NaρüuudΩe (E.2.2)

considering the constitutive equation σσσ = CCCe : εεε − σσσp − σσσg, we have:

KKKuu
ab =

∫
Ωe

(BBBs
a)tCCCeBBBs

bdΩe (E.2.3)

KKKup
ab = −

∫
Ωe

(BBBs
a)tαNbdΩe (E.2.4)

KKKuϕi

ab = −
∫

Ωe

(BBBs
a)tKNbdΩe (E.2.5)



MMMuu
ab =

∫
Ωe

NaρNbIIIdΩe (E.2.6)

Furthermore, the viscoelasticity must be considered in wave propagation.
Then, the constitutive equation should add the term σσσv = CvCvCv : ε̇εε and the
capacity matrix is added:

CCCuu
ab =

∫
Ωe

(BBBs
a)tCCCvBBBs

bdΩe (E.2.7)

E.3 Fluid pressure

1
M

∂p

∂t
+ α

∂εv

∂t
= −∇ · qqq + ΓF , (E.3.1)

where qqq = −kkk · ∇p, ΓF = kv

[
(pv − p) − ω(πv − πl)

]
− kl(p − pl), and

kl =
[
1 − (ϕT − ϕT 0)

]
kln.

RRRp
a =

∫
Ωe

BBBp
aqqqdΩe +

∮
Γe

NaqdΓe −
∫

Ωe

Na
1

M

dp

dt
dΩe

−
∫

Ωe

Naα
dεv

dt
dΩe +

∫
Ωe

NaΓF dΩe,

(E.3.2)

with BBBp
a = (Na,1 , Na,2 , Na,3).

KKKpp
ab =

∫
Ωe

(BBBp
a)tkkkBBBp

adΩe +
∫

Ωe

Na(kv + kl)NbdΩe (E.3.3)

KKKpϕT

ab = −
∫

Ωe

Na(p − pl)klnNbdΩe (E.3.4)

CCCpp
ab =

∫
Ωe

Na
1

M
NbdΩe (E.3.5)

CCCpu
ab =

∫
Ωe

NaαBBBp
bdΩe (E.3.6)

CCCpϕi

ab = −
∫

Ωe

NaαNbdΩe (E.3.7)



E.4 Tumor cells phase

∂ϕT

∂t
= ∇ ·

(
DT MT ϕT ∇ϕT

)
+ MTϕF ϕT ΓT T T (E.4.1)

RRRϕT

a = −
∫

Ωe

(BBBg
a)tDT MT ϕT ∇ϕT dΩe

+
∮

Γe

NaDT MT ϕT ∇ϕT dΓe

+
∫

Ωe

Na

(dϕT

dt
− MT ϕF ϕT ΓT T T

)
dΩe

(E.4.2)

KKKϕT ϕT

a =
∫

Ωe

(BBBg
a)tDT MT (Nb∇ϕT + ϕTBBBg

b)dΩe

+
∫

Ωe

NaMT T T
[
ΓT (ϕF − αϕT ) − αT T ϕF ϕT

]
NbdΩe,

(E.4.3)

with BBBg
a = (Na,1 , Na,2 , Na,3).

KKKϕT ϕH

a = −
∫

Ωe

NaMT T T
[
ϕT (αΓT + αT HϕF )

]
NbdΩe (E.4.4)

KKKϕT ϕM

a = −
∫

Ωe

NaMT T T
[
ϕT (αΓT + αT M ϕF )

]
NbdΩe (E.4.5)

KKKϕT p
a =

∫
Ωe

Na
1

M
MT T T ϕT ΓT NbdΩe (E.4.6)

CCCϕT ϕT

ab = −
∫

Ωe

NaNbdΩe (E.4.7)

Mechanotransduction function MT (u) is assumed to be constant during one
day of development, and since the growth model is updated daily, it can be
considered constant with respect to displacements during a day.



E.5 Healthy cells phase

∂ϕH

∂t
= MHϕF ϕHΓHT H , (E.5.1)

RRRϕH

a =
∫

Ωe

Na

(dϕH

dt
− MHϕF ϕHΓHT H

)
dΩe (E.5.2)

KKKϕH ϕH

a =
∫

Ωe

NaMHT H
[
ΓH(ϕF − αϕH) − αHHϕF ϕH

]
NbdΩe (E.5.3)

KKKϕH ϕT

a = −
∫

Ωe

NaMHT H
[
ϕH(αϕH + αHT ϕF )

]
NbdΩe (E.5.4)

KKKϕH ϕM

a = −
∫

Ωe

NaMHT H
[
ϕH(αΓH + αHM ϕF )

]
NbdΩe (E.5.5)

KKKϕH p
a =

∫
Ωe

Na
1

M
MHT HϕHΓHNbdΩe (E.5.6)

CCCϕH ϕH

ab = −
∫

Ωe

NaNbdΩe (E.5.7)

Mechanotransduction MH(u) is assumed to be constant during one day
of development, and since the growth model is updated daily, it can be
considered constant with respect to displacements during a day.

E.6 Extracellular matrix

∂ϕM

∂t
= βT ϕT + βHϕH − δM ϕM ΓM (E.6.1)

RRRϕM

a =
∫

Ωe

Na

(dϕM

dt
− βT ϕT − βHϕH + δM ϕM ΓM

)
dΩe (E.6.2)

KKKϕM ϕT

a =
∫

Ωe

Na(βT − δM ϕM αMT )NbdΩe (E.6.3)

KKKϕM ϕH

a =
∫

Ωe

Na(βH − δM ϕM αMH)NbdΩe (E.6.4)



KKKϕM ϕM

a = −
∫

Ωe

NaδM (αMT ϕT + αMHϕH)NbdΩe (E.6.5)

CCCϕM ϕM

ab = −
∫

Ωe

NaNbdΩe (E.6.6)
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mundo, todas las cosas que tienen algo de difi-
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Don Quijote de la Mancha
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