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Figure 54. Schematic representation of the biomechanical pathways involved in cartilage 

synthesis. Hydrostatic Pressure (HP) enhances Ca2+ and Na+ channels and the Na+/K+ pump 

which interacts with PKA that regulates chondrogenesis (Sox9/CREB). Shear stress induced by 

flow stimulate the primary cilium of chondrocytes that also plays a key role in the Sox9/CREB 

cycle. Finally, US stimulation activates the TRPV4 channels and actin polymerization that 

induces chondrogenesis as well ............................................................................................149 
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Figure 59. A system envelops a complex connection web: green arrows represent, 

multidisciplinary connections, black arrows the interdisciplinary ones, and the blue circle is 

the transdisciplinary field of biomedicine. ............................................................................158 

Figure 60. Graphical abstract of Chapter I. Porosity is an important feature in biomechanics 
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Figure 61. A-C) STL models of the scaffolds of each layer-down topography (PS 1.5 mm). In A) 

layers 1,2,3,4 are inserted periodically one on top of the next one. B) The hexagonal pattern 

only has one layer which is repeated along Z axis. C) In the Square pattern there are two 

different layers intercalated repeatedly. D-E) Cross-sectional images of the fabricated 

scaffolds. Scale bars correspond to 2 mm in all cases. .........................................................184 

Figure 62. A & D) Normalized Proliferation assays for b-TPUe and PCL materials, respectively. 

B) Absorbance of fluorescence emitted at 590 nm for b-TPUe at day 1. C) Same as B at day 21. 
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E) Absorbance of fluorescence emitted at 590 nm for PCL at day 1. F) Same as E at day 21. P-

Value less than 0.05 was represented *; P-Value < 0.01 with ** and P-Value < 0.001 ***. 

Brackets means significance different with the rest of PS inside the same geometry. ........ 185 

Figure 63. A) Fluorescence units (590 nm) from AlamarBlue© assay for b-TPUe and PCL 

scaffolds against their experimental porosity at days 1, 7, 14 and 21 (n=3). B) Fluorescence 

units (590 nm) from AlamarBlue© assay for b-TPUe and PCL scaffolds against their S/V ratio 

at days 1, 7, 14 and 21 (n=3).   C) Angle frequency (AF) for each geometry as obtained from 

the frequency resulted by dividing the number of angles for each geometry by the total 

number of angles for all geometries. D) Infographic scheme of how stresses was applied on 

the scaffolds together with the representation of PS and the different printed angles which 

affects in cell adhesion. ........................................................................................................ 190 

Figure 64. A-H) Stress-strain curves for the optimal architectures in comparison with the 

average curve from Cartilage samples. A-D) Samples with perimeters. E-H) Samples without 

perimeters. Each curve corresponds to the average curve applying linear interpolation (n=3).

 ............................................................................................................................................. 193 

Figure 65. -D) µCT cross-sectional images (coronal and sagittal middle planes) of T1.5 and T2 

geometries. Inside orange circles are presented the ‘pilars’ formed because of filament 

superposition among layers. Color bars represents the real distance among those ‘pilars’ 

(which should be PS), in the legend they are aligned for comparing sizes between samples. 

Orange bar corresponds to T1.5 b-TPUe, red bar T1.5 PCL, green bar T2 b-TPUe and blue bar 

T2 PCL. E) Porosity ratio obtained from segmentation image analysis from µCT technique for 

b-TPUe and PCL, geometries: T1.5 and T2. P-Value less than 0.001 was represented with *** 

for b-TPUe and with ### for PCL. (n=3) F) DNA content for PCL and b-TPUe in T1.5 and T2 

geometries. P-Value less than 0.05 was represented *; P-Value < 0.01 with ** and P-Value < 

0.001 *** among equal material. P-Value < 0.001 ### with respect the rest of cases. G) ESEM 

images of b-TPUe T1. In the amplified picture, it is localized what seems ECM from ifpMSCs. 

b-TPUe seems to present some rugosity at microstructure, and, consequently there are found 

more cells attached.............................................................................................................. 196 
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Figure 66. Graphical abstract of Chapter II. Scheme of the whole procedure followed in Part 

II. ...........................................................................................................................................204 

Figure 67. AFM topography analyses. (A-F) Height images captured from AFM for, (A) Mili Q 

water as control, (B) ethanol 70% (mixed with Mili Q water), used to sterilized scaffolds, (C) 

2-propanol 100% buffer, used to diluted hexamethylenediamine (necessary to PBA 

functionalization) and (D) KH2PO4 0.16 % Glutaraldehyde buffer used to crosslinked collagen 

fibers in the collagen type I functionalization. (E) Height images for collagen functionalized 

scaffolds, whereas (F) exposes a PBA functionalized fiber. In all cases, the ROI was 5x5 µm. 

(G) PSD curves from AFM buffer analyses compared with control. (H) PSD of functionalized 

scaffolds versus control. .......................................................................................................216 

Figure 68. Macroscopic and microscopic characterization. (A) Images captured by magnifying 

glass under transmitted light from different buffers. Control was Mili Q water, 70% ethanol 

mixed with Mili Q water, pure isopropanol, and KH2PO4 0.16 % Glutaraldehyde buffer. (B) 

Ninhydrin standard absorbance curve is done by a spectrophotometer. (C) Ninhydrin assay for 

aminnated scaffolds (scaffolds embedded inside hexamethylenediamine 2-prop buffer) and 

control (naïve scaffolds). (D) Confocal images from autofluorescence of bTPUe scaffolds 

functionalized with PBA, and control (non-functionalized). (E) Confocal images from 

immunohistochemistry scaffolds, Immunolabeling as type I collagen functionalization, and 

control as naïve scaffolds. Magnifying was 10X. ..................................................................219 

Figure 69. Metabolic and cell proliferation of bTPUe functionalized scaffold loaded with IPFP-

MSCs. (A) Alamar Blue reduction fluorescence response (λ = 570 nm) for bTPUe scaffolds 

without treatment (control), PBA functionalized scaffolds, and type I collagen functionalized 

scaffolds at days 1, 3, 7, 14, and, 21. (B) Alamar Blue reduction/DNA fold increase (obtained 

by dividing Supplementary Figure S4A BY S4B) curves for PBA functionalized scaffolds and type 

I collagen functionalized scaffolds along 21 days. (n=3) (***, p < 0.001; *, p < 0.05; N.S., not 

significance), (C-K) Confocal images from Live/Dead assay (Thermo Fisher Scientific) of naïve 

bTPUe scaffolds as control and both functionalization protocols. Magnifying was 10X. .....222 

Figure 70. Chondro-inductive properties of bTPUe functionalized scaffold loaded with IPFP-

MSCs. (A) GAG concentrations obtain through papain assay for naïve bTPUe scaffold and both 
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functionalization protocols on day 1 and day 21. (B) DNA concentrations were obtained 

through papain assay for naïve bTPUe scaffolds and both functionalization protocols on day 

1 and day 21. (C) GAG/DNA ratios for naïve bTPUe scaffolds and both functionalization 

protocols at day 1 and day 21 (n=3). (***, p < 0.001; *, p < 0.05; ###, p < 0.001; ^^^, p < 

0.001). (D) Gene expression fold increase obtained through qPCR. Control used were IPFP-

MSCs cultured at day 0. PBA was scaffolds functionalized with PBA under normal cell medium, 

PBA Dif was the same scaffolds under chondrogenic medium, both at day 21. Collagen 

scaffolds were collagen type I functionalized scaffolds under normal medium, Collagen Dif 

was same scaffolds under chondrogenic medium, both at day 21. Col2 was COL2A1. Sox9 was 

the Transcription factor SOX-9. Acan was Aggrecan. Col1 was COL1A1. (n=3) (***, p < 0.001; 

*, p < 0.05; ###, p < 0.001; ^^^, p < 0.001; N.S., Not Significance). Black bars correlated 

chondrogenic markers of functionalized scaffolds versus control. N.S: implies exception in 

previous correlation. Blue # correlates control concerning others. Grey bars correlate PBA with 

PBA Dif. Green bars correlate Collagen with Collagen Dif. .................................................. 226 

Figure 71. SEM images from control, PBA functionalized and type I collagen functionalized 

scaffolds at day 21. (A-E) Control images, where (B) shows a magnification of a viable cell. (E) 

shows poor cell-biomaterial interaction. (F-J) PBA images, (F) clearly show the presence of 

ECM over scaffold fibers, (G) represents cell-cell interactions. (J) Shows cell-ECM interactions. 

Collagen images, where (I) shows the presence of ECM over scaffold surface, (K) shows cell-

biomaterial interaction and ECM preserved morphology and, (L) shows a chondrocyte-like 

cell. ....................................................................................................................................... 228 

Figure 72. Diagram of the work framework from Chapter III. ........................................... 238 

Figure 73. Bioreactor (BR) design. (A) Final design (cell chamber and transducers coupled) 

renderization. (B) Render image of cell chamber BR and input and output (IO) cylinders. (C) IO 

channels render images. (D) The visual concept of the transducer with the coupling system. 

(E) (a) represents the Olympus preamplifier that was connected after the recording 

oscilloscope (b) and the receiver transducer (c); (d) the cell chamber and BR heart; e) 

transmitter transducer, which was directly connected to the wave generator (f); (g) Raspberry 

PI that is uncharged of received the signals from the Oscilloscope and to control the Arduino 

board; (h) Arduino Uno that regulates pump rotation speed and flow rate; (i) peristaltic pump 
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that exerts the laminar fluid flow through the bioreactor; (j) the medium reservoir with a 0.22 

µm filter for O2 and CO2 exchange........................................................................................250 

Figure 74.  BR final arrangement and global parameters. (A) Photography of the final 

assembly of the BR inside a laminar hood. (B) Photography of the Arduino circuit that controls 

the peristaltic pump. (C) Output signals recorder by Raspberry PI. Red represents the 

functionalized scaffold with seeded cells, and in black, the same scaffold without cells. (D) 

Pressure amplitude of P-Wave vs. Voltage amplitude exciting transducer. (E) Results from flow 

rate calibration, Flow rate vs. Voltage amplitude of peristaltic pump. (F) A 2D fluid dynamic 

model in FEM to evaluate the incidence flow speed (a and c) over scaffold fibers and their 

corresponding shear stresses (b and d) depending on the flow rate. Two flow rates are 

represented 0.5 mL·min-1 and 0.8 mL·min-1. .........................................................................254 

Figure 75. FEM model of P-wave propagation phenomena. (A) 2D representation of the 

different domains of the FEM model. (B) Thermal image of the “u” component of the 

displacement of the transmitter ultrasound transducer (i.e., X component) at t = 0.5 µs (a) and 

t = 1 µs (b). (C) P-wave propagation at different times: (a) t = 0.5 µs, (b) t = 1 µs, (c) t = 15 µs, 

(d) t = 18 µs, (e) t = 34 µs, and (f) t = 50 µs. (D) Thermal image of the “u” component (i.e., X 

component) of the displacement of the receiver ultrasound transducer at t = 35 µs (a) and t = 

40 µs. (b). (E) The final electrical modeled signal was obtained from the FEM model. ........256 

Figure 76. (A) Alamar Blue assay with different flow rates and control. Values were 

normalized for day 1. (B) DNA quantification at day 7 of experimentation of control and BR 

0.8 mL·min-1. (C) General collagen quantification with Sirius Red assay of the control and BR 

samples (0.8 mL·min-1). (D) Collagen type II quantification using Elisa kit for both control and 

BR (0.8 mL·min-1) samples. (E) SEM images at day 7 of both scaffolds and scale bars are 

expressed in microns. (* means p-value < 0.001; cont. = continuous perfusion flow, disct. = 

discrete perfusion flow). .......................................................................................................259 

Figure 77. Immunofluorescence merges images without primary antibody (i.e., negative) of 

the control sample (A) and BR sample (B). (C) Control and BR samples with primary type II 

collagen antibody + 2nd Ab and primary aggrecan antibody + 2nd Ab. Cell Tracker™ green is 
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represented in green. Secondary Ab (Alexa 647 nm) is shown in red. In blue, the DAPI marker 

is represented. ..................................................................................................................... 261 

Figure 78. (A) P-wave arbitrary signals obtained from the cell content scaffolds during BR 

experimentation. (B) P-wave arbitrary signals obtained from the blank scaffolds (no cells) 

during BR experimentation. (C) Amplitude evolution curve of average amplitude signals. (D) 

Time of flight (ToF) curves. (E) Thermal 2D images of fluid shear stress (CFD) model using 

different scaffold fiber diameters. (F) Output Flow speed from the BR vs. the scaffold fiber 

diameter (FD) in black; and the instant velocity of the middle point (X = 0, Y = 0) inside the 

scaffold domain. (G) Density evolution along time of BR cell content in scaffold samples and 

blank scaffolds obtained by cross-correlation empirical signals with synthetical ones. (H) 

Speed of sound of scaffold domain (cSD) (scaffold + water) obtained by cross-correlation. (*: 

P-value < 0.001). .................................................................................................................. 265 

Figure 79. Word cloud of the role of microstructure. ......................................................... 279 

Figure 80. Word cloud of tissues as dynamic systems. ...................................................... 281 

Figure 81. The slicing step is divided in two main steps: i) the STL-file formation and ii) the 

GCODE formation. ............................................................................................................... 297 

Figure 82. Diagram of layer height and its relation with the critical layer height. .......... 299 

Figure 83. Scheme of different infill arragements. Image adapted from that one published 

by Domingo et al. 1044 ........................................................................................................... 302 

Figure 84. Scheme of piezoelectric effect. .......................................................................... 304 

Figure 85. Cross section of an ultrasound transducer and its components. Image courtesy of 

Dr Rachael Nightingale, Radiopaedia.org, rID: 54040 ......................................................... 307 

Figure 86. Nine different geometries were proposed for the proliferation assay, each one was 

carefully studied. After, some of those geometries were discarded to simplify deeper analyses, 

reducing sample number. Finally, selected geometries were exposed to mechanical assays, 

microarchitecture analyses, viability tests and cell-material interactions inquiries. ........... 309 
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Figure 87. A) Scheme of fiber distribution and dependency of fiber length as a function of 

scaffold radius (Rs). B) In the hexagonal geometry, the real length of the filaments was slightly 

larger than square and triangular conformations. It was extracted calculating the number of 

hexagons approximating a straight filament divided by the apothem (αhex). lf : length of the 

filament. Ds: scaffold diameter. ...........................................................................................311 

Figure 88. A) FACS markers for stemness. B) Differentiation capacity. Controls were IPFP-MSCs 

with DMEM, 10%FBS and 1%P/S. Differentiated mediums were: Osteogenic medium applied 

was StemMACS OsteoDiff 130-091-678, Miltenyi. Adipogenic medium applied was StemMACS 

adipoDiff 130-091-677, Miltenyl. Chondrogenic medium applied was DMEM supplemented 

with 10 ng/ml TGF- ß1, 0.1 µM dexamethasone, 40 µg/ml L-proline, 50 µg/ml L-Ascorbate-2-

Phosphate, and 50 mg/ml ITS. (Scale bar = 110 µm). ...........................................................313 

Figure 89. A-B) Stress vs. Strain curve of cube b-TPUe scaffold under compression pattern in 

the rheometer and UTM for Triangular geometry and PS 1.5 mm, A) ‘in plane’, and B) ‘out of 

plane’. C-D) Stress vs. Strain curve of cube b-TPUe scaffold under compression pattern in the 

rheometer and UTM for Triangular geometry and PS 2 mm, C) ‘in plane’, and D) ‘out of plane’. 

E-F) Stress vs. Strain curve of cube PCL scaffold under compression pattern in the rheometer 

and UTM for Triangular geometry and PS 1.5 mm, E) ‘in plane’, and F) ‘out of plane’. G-H) 

Stress vs. Strain curve of cube PCL scaffold under compression pattern in the rheometer and 

UTM for Triangular geometry and PS 1.5 mm, G) ‘in plane’, and H) ‘out of plane’.  (n=3) ..314 

Figure 90. Same as previous figure without perimeters (n=3). ............................................317 

Figure 91. ESEM images of PCL, although there are cells attached to the fibers, it seems to be 

a coating layer above the scaffold. Possibly due to material degradation because of the assay.

 ..............................................................................................................................................317 

Figure 92. AFM topography analyses. (A-B) Height images captured from AFM for, A) ethanol 

70% (mixed with Mili Q water), used to sterilized scaffolds, B) ethanol 70% (mixed with Mili Q 

water), used to sterilized scaffolds C) PSD curves from AFM ethanol buffers analyses. ......321 

Figure 93. A) FACS markers for stemness. B) Differentiation capacity. Controls were IPFP-MSCs 

with DMEM, 10%FBS and 1%P/S. Differentiated mediums were: Osteogenic medium applied 
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was StemMACS OsteoDiff 130-091-678, Miltenyi. Adipogenic medium applied was StemMACS 

adipoDiff 130-091-677, Miltenyl. Chondrogenic medium applied was DMEM supplemented 

with 10 ng/ml TGF- ß1, 0.1 µM dexamethasone, 40 µg/ml L-proline, 50 µg/ml L-Ascorbate-2-

Phosphate, and 50 mg/ml ITS. (Scale bar = 110 µm). .......................................................... 322 

Figure 94. A), B) Metabolic activity study carried out on days 0 and 3 using the Alamar Blue  

reagent. FF scaffolds have been functionalized with collagen using different concentrations of 

glutaraldehyde (0%; 0.16% and 0.625%) and glycine (0M, 0.5M, 0.2M, respectively). The 

positive control has only been seeded without previous functionalization. (*** p <0.001). 

Images obtained with the confocal microscope Nikon Eclipse Ti after the treatment of FF 

scaffolds with the LIVE/DEAD® cytotoxicity/viability kit. C) Positive control. D) 0% 

glutaraldehyde and 0M glycine E) 0.16% glutaraldehyde and 0.5M glycine. F) 0.625% 

glutaraldehyde and 0.2M glycine. ....................................................................................... 324 

Figure 95. A) Alamar Blue fold increase obtained normalizing Alamar Blue reduction assay 

fluorescence raw results by day 1. B) DNA fold increase obtained by normalizing fluoresnce 

raw results by day 1. (n=3) (***, p < 0.001; *, p < 0.05; N.S., not significance). .................. 326 

Figure 96. (A) Front view of Input/Output (IO) channels, (B) Profile view of IO channels. (C) 

Profile view of Scaffold chamber and IO channels. Ultrasound (US) field is represented in 

orange whereas the perfusion flow are represented in blue. .............................................. 327 

Figure 97. (A) Pearson coefficients obtained from Pearson correlation between water 

experimental signal and FEM (Finite Element Model) synthetical signals. (B) Pearson 

coefficients obtained from Pearson correlation between PLA (polylactic acid) experimental 

signal and FEM (Finite Element Model) synthetical signals. (C) Comparison of experimental 

water signal with the modeled one. (D) Comparison of experimental PLA signal with the 

modeled one. (ρ = Pearson coefficient)................................................................................ 328 

Figure 98. Modeled signals of our pressure wave sweeping mesh size (∆x), each step was 100 

µm; thus, the parametric sweep varied form 1 mm to final 100 µm. (∆x=distance of mesh 

size,is equal in both directions X and Y ................................................................................ 330 
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Figure 99. (A) FACS markers for stemness. (B) Differentiation capacity. Controls were IPFP-

MSCs with DMEM, 10%FBS and 1%P/S. Differentiated mediums were: Osteogenic medium 

applied was StemMACS OsteoDiff 130-091-678, Miltenyi. Adipogenic medium applied was 

StemMACS adipoDiff 130-091-677, Miltenyl. Chondrogenic medium applied was DMEM 

supplemented with 10 ng/ml TGF- ß1, 0.1 µM dexamethasone, 40 µg/ml L-proline, 50 µg/ml 

L-Ascorbate-2-Phosphate, and 50 mg/ml ITS. (Scale bar = 200 µm). ...................................330 

Figure 100. (A) Standard curve of DNA quantification. DNA content was estimated using a 

fluorometric marker (DAPI staining) and DNA standard curve was done using DNA from Calf 

Thymus (Sigma-Aldrich). (B) Standard curve of general collagen quantification. Collagen 

content was measured via Sirius Red assay, absorbance supernatant was measured in a 

microplate reader at 540 nm (Synergy HT, BIO-TEK), for standard collagen from calf skin was 

used (Sigma). (C) Standard curve of type II collagen quantification following manufacturer’s 

protocols by Chondrex. (R2 is the coefficient of determination for linearity, 1 means 

completely linearity, 0 means no linerarity). ........................................................................332 
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Tenemos presente en el acervo colectivo la idea, influenciada en parte 

por la ficción, de que la ciencia la desarrollan científicos. Y claro, cabe 

preguntarnos, ¿qué es un científico? La respuesta fácil caería en definir como tal 

a aquél que trabaja en base o para la ciencia. Si bien, el saber popular tiene por 

cierta la imagen de una persona introvertida, encerrada en sus pensamientos y 

trabajando sobremanera encerrada entre cuatro paredes llenas de “trastos” a las 

que gustamos llamar laboratorios. Me temo que la realidad difiere bastante. 

Porque, ante todo, los científicos son personas. Y, pese a la mitología 

popular, personas más comunes de lo que pueda parecer. Es esta alienación con 

la realidad la que, en mi humilde opinión, aleja a la ciencia cotidiana —aquella 

que se explica a lo largo de este trabajo— de la proyección mental que la mayoría 

de la población tiene de la misma.  

La realidad es que la gran mayoría, sino todos, de los grandes avances 

científicos de nuestra sociedad siempre son avances colectivos. La ciencia, no es 

un resultado individual, y tampoco es inmediato. Los grandes descubrimientos, 

al fin de cuentas, lo son porque la gente los aclama como tal. A sí, permitirme que 

describa la ciencia como una herramienta hecha por personas para personas, 

una herramienta que nos permite crecer, comprender y entender. Y, a medida 

que se avanza en este camino sobre el aumento de consciencia general, uno se da 

cuenta de dos cosas: primero, lo que uno sabe es más bien poco; y segundo, lo 

que uno hace tampoco es que sea mucho.  

¡Pero qué dice este “loco”! ¿Y la cantidad de horas —años en mi caso— 

que lleva hacer algo “nuevo”? Sí, es cierto, la ciencia es difícil, entender cómo 

funcionan las cosas es complejo. La Naturaleza es infinitamente enrevesada y 

abismal, y a la misma vez simple. Puede que nunca la lleguemos a entender en su 

totalidad. Creo, si se me permite la interpretación, que el problema recae en la 

escala; y es que nuestra escala de percepción es humana, medimos el tiempo en 

relación a nosotros y eso nos hace delimitar la realidad. A quién se le ocurre 

mirar al abismo a los ojos y descubre la mota de polvo que somos, corre el riesgo 
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de perder la cordura si permanece mucho tiempo ahí sentado. Pero, si miras la 

realidad de refilón, con la mente abierta y sin miedo a equivocarte puedes llegar 

a ver la belleza de la vida. Entender, durante un breve instante, que el océano es 

un mar de gotas, tal y como dijeron los budistas. Y la Ciencia, como no puede ser 

de otra manera, es una suma de esfuerzo, voluntad, saber y autosuperación no 

de una sino de muchas personas que al final luchan también contra la ignorancia 

y el paso del tiempo.  

Con esta imagen que he descrito en la imaginación del lector, me gustaría 

mostrar como el trabajo aquí realizado es, a fin de cuentas, una colaboración 

inmensa que engloba varios años y termina repercutiendo en mi persona. 

En primer lugar, quiero agradecer la existencia de este trabajo a mi tutor 

(también primer director), Juan Antonio Marchal Corrales, catedrático del 

Departamento de Anatomía y Embriología humana por la universidad de 

Granada. Parece mentira que la relación que nos traemos entre manos vaya ya a 

ser una relación de más de siete años. Empezó siendo una relación extraña donde 

entré in extremis en el máster que a fecha de este escrito él dirige. Durante el 

desarrollo del proyecto de fin de máster, el profesor Marchal me dejó mucha 

libertad. Palabras suyas son: “Sé que dándote libertad harás cosas”. Así, gracias 

a su confianza, que sigue arrastrando todos estos años, este proyecto ha salido a 

la luz. 

En segundo lugar, a Guillermo Rus Carlborg, catedrático del 

Departamento de Mecánica de Estructura de la universidad de Granada. La 

primera vez que fui a su laboratorio me sorprendió y asustó. No por el número 

total de cables— a día de hoy sigo sin saber exactamente cuántos hay, entre 

muchos y muchísimos— sino por el complejo mundo de los ultrasonidos que 

desarrolló dentro de la facultad. En parte fue un revolucionario, pues se opuso a 

la idea de que un ingeniero de caminos sólo hace carreteras, puentes y presas. Se 

atrevió a instaurar en su facultad la bioingeniería, y puede que por ello no le 
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asustó que un ingeniero biomédico — por entonces, éramos pocos en España— 

quisiera colaborar con su grupo. 

En tercer lugar, a Patricia Gálvez Martín, responsable de proyectos de I+D 

de Bioibérica S.A.U. Nuestro primer encuentro fue complejo, y es que la doctora 

Patricia impone. Es una profesional fuerte, valiente, con las ideas claras que sabe 

dirigir y sabe mucho de I+D. Confrontar a alguien tan “potente” siendo un simple 

estudiante abruma. Y, aún así, ella no te trata como un mero estudiante, a menos 

nunca me trató así. Su trato siempre ha sido profesional, educado y productivo. 

Tiene una gran ambición que se manifiesta en las ideas y aportes a los proyectos. 

Sin duda los resultados son mejores gracias a ella. También posee una gran 

paciencia, pues aguantarme no es fácil, y le agradezco sinceramente haberlo 

hecho todos estos años, así como haber depositado su confianza. 

En cuarto lugar, agradezco a Gema Jiménez González, doctora de la 

Universidad de Granada, su apoyo en este trabajo. No solo desde el nivel 

profesional, donde me ha enseñado y ayudado a mejorar considerablemente. 

Sino también en momentos que, sin duda, espero que recuerde. El camino arduo 

en las estelas del doctorado ha sido menos árido gracias a ella. Es un ejemplo de 

perseverancia y fortaleza, de saber estar, de realismo y esfuerzo que sin duda me 

ha hecho mejor trabajador y mejor persona. Por ello, gracias Gema. 

En quinto lugar, a Juan de Vicente Álvarez Manzaneda, catedrático del 

Departamento de Física Aplicada de la Universidad de Granada. Creo que sólo 

conozco una persona más educada que este hombre, mi abuelo que en paz 

descanse. Le agradezco sinceramente su apoyo a este mero ingeniero que no se 

puede comparar a los inmensos —a menos eso me parecieron— conocimientos 

que este hombre posee de los conceptos físicos. Una vez perdida la vergüenza 

por mi sincera ignorancia, me enseñó un mundo fascinante del que estudiar. 

Decir, que siempre me abrió su laboratorio, pese a no ser parte de él. Y su ayuda, 

enseñanza y amabilidad son algo que en este mundo se agradecen por su escasez. 
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En sexto lugar, a Antonio Callejas Zafra, doctor por la universidad de 

Granada. Por nuestras conversaciones a las diez de la noche, por vivir de la 

misma forma los avances como yo y por darle vueltas la cabeza tanto como yo. 

Mucho has dado, y este trabajo sin ti tampoco existiría. 

En séptimo lugar, quiero agradecer a mis compañeros —porque los 

compañeros lo siguen siendo allá donde estén cada uno— Cristina Antich Acedo 

y Carlos Chocarro Wrona, ambos de mi quinta y doctores ya. Hemos pasado 

muchos momentos juntos en el edificio al que llaman CIBM. Tantos, que a día de 

hoy no puedo separar mi doctorado del aprendizaje que hemos realizado juntos. 

Puede que un ingeniero no sea un experto en caballitos de mar, pero no podrán 

negar que mis chistes son buenos — no me lo creo ni yo, lo sé. 

En octavos lugares, porque aquí hay muchas. Quiero agradecer a todas 

mis compañeras del CIBM su compañerismo, su amabilidad, su ayuda, su 

escucha, su habla, sus dudas, sus alegrías, sus esfuerzos, también sus derrotas, su 

cercanía, sus risas, sus críticas, sus historias…  

Entre ellas, gracias a Carmen Griñán Lisón porque sí, porque no hacen falta 

palabras para ella.  

Gracias a Elena López Ruiz, por abrir camino, que no es tan fácil como se cree.  

Gracias a Saúl Navarro Marchal, porque es majo, cercano y siempre me ha ayudado 

cuando se lo he pedido.  

Gracias a Julia López de Andrés, porque seamos sinceros, sin sus apuntes de cultivos 

la vida sería peor.  Es concienzuda como pocas y hacedme caso, muy perseverante. 

Estoy convencido de que algún día leeré noticias sobre ella. 

Gracias Paula Pleguezuelos Beltrán y Eli Nygren Jiménez, que oye, se atrevieron a 

ir a Dublín, además de que son muy trabajadoras, buenas personas y simpáticas. Os 

pido perdón por la caña que os di, pero espero que os vaya bien — u os esté yendo 

bien si me leéis desde el futuro—.  
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A Ana Voltes Martínez, por las terceras, cuartas y quintas oportunidades. Por 

escuchar, por saber regañar cuando toca y también por no darte por vencida 

conmigo. Eres un tesoro, y estés donde estés, sé que te irá bien.  

A Yaiza Jiménez Martínez, otro tesorito, ¿te puedo llamar hermana de tesis?  

A Jesús Peña López y Pablo Graván Jiménez, compañeros de pedidos y de pádel. 

Hacéis bien, hacedme caso, el laboratorio es mucho más fácil gracias a vosotros. 

A, Pablo Hernández Camarero, un héroe invisible, un referente, un sabio. A tus pies 

me pongo como investigador y como persona. Mucho tienes que enseñar, pena me 

da quien no lo vea.  

A Jesús Ruíz Espígares, por ser tan original. Viniste con Desiré y aún me sigues 

enseñando cosas a día de hoy. Gracias. 

A Aitor González Titos, por ser tú, porque haces más ameno todo. Las mañanas sin 

tu risa atronadora son menos mañanas. Ánimo, Aitor, eres fuerte. Yo confío en ti. 

También agradecer a Belén Toledo Cutillas, Belén García Ortega, Gloria Ruíz 

Alcalá, Manuel Picón Ruíz, MariPaz Zafra Martín, Alfonso Rubio Navarro y quién 

se me quede en el tintero por ser grandes compañeras/os y hacer del grupo un 

lugar más acogedor.  

Y también agradezco a mis estudiantes, Desiré Venegas Bustos y Helena Contreras 

Vigo, porque las dos me habéis ayudado más de lo que os podáis imaginar. 

Ahora con los novenos lugares, que tampoco son pocos. Quiero agradecer 

a todos mis compañeros de la ETS de la Universidad de Granada.  

Empezando por Manuel Hurtado Estévez, diciendo que es una muy buena 

persona, un muy buen colega y una persona muy trabajadora. Sé que serás el 

siguiente.  

A José Cortés Cortés, un gran compañero que me debe una vuelta en 

bicicleta — sin caernos, eso sí.  
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A Beatriz Blanco Besteiro, por no matarme por chistes de gallegos. 

A Inás Faris Al Azzawi, nuestra madre dentro del grupo de ultrasonidos.  

A Rafa Marqués Gómez por ser tan entusiasta del diseño, de las IAs, de todo. 

Porque aprendes mucho con él y encima te diviertes.  

A Jorge Torres Pérez, gracias señor, un honor trabajar con usted. Bromas 

aparte, es un muy buen ingeniero, muy buen investigador y muy buen compañero.  

A Antonio Gómez Fernández, por su buen hacer. A Juanma por haberme 

ayudado y escuchado tanto, siento ser tan pesado, pero es que los matemáticos 

abundáis muy poco.  

A Hirad Shamimi Noori, por cambiar las minas por las personas, sé que 

llegarás lejos. Y como antes, si alguien se quedara en el tintero, también es de muy 

agradecer.  

Por último, a mi pupila, Natalia García San Martín, porque como siempre, 

es mejor maestra de lo que cree. 

En décimo lugar, a todos los técnicos del CIC de la universidad de 

Granada. Que cual escritor en la sombra, han realizado mucho de este trabajo. Y 

pudiendo quedarse ahí, me han enseñado, me han ayudado y me han apoyado 

tanto. ¡Qué grandes profesionales son! Muchas gracias por no sólo apoyar este 

proyecto y traerlo a la vida, sino también gracias por todo lo que se sale de 

vuestro trabajo y aun así aportáis. Gracias a Ana Santos Carro, a Mohamed Tassi 

Mzamzi, a Isabel Sánchez Almazo, a Fátima Linares Ordoñez, a Gustavo Ortíz 

Ferrón y a Pablo Álvarez Megías.  

Igualmente quiero agradecer al profesor Daniel Kelly del Trinity College 

de Dublín por aceptarme durante tres meses en su grupo. También gracias a 

todos mi compañeros y compañeros del Trinity, me llevo un muy grato recuerdo 

de vosotros y el deseo de visitar Dublín otra vez. 
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El lector puede ver que hay muchos más nombres de los que aparecen en 

las publicaciones relacionadas a este artículo. Y le puedo asegurar, de que hay 

muchas más personas implicadas que por motivos de extensión no puedo incluir. 

Ruego que me disculpen. 

También quiero reflejar en estas páginas una imagen más oculta del 

doctorado, pues, aunque se vea como un simple documento acreditando las 

habilidades obtenidas por el/la doctorando, en realidad es un camino arduo, 

largo y agotador. Hay muchos momentos de bajeza donde la toalla está más cerca 

de la lona que del banquillo de entrenamiento. Y, por supuesto, es en esos 

momentos donde gracias a otras personas y el vínculo que formamos con ellas 

podemos seguir adelante. Es por ello que me gustaría dejar constancia de su valía 

y constar mi agradecimiento hacia ellas. 

La primera de ellas es mi abuela María Luisa Sánchez Segura. A ella todo 

lo escrito en este trabajo le sonaría fantástico, puede que mágico. Tampoco 

conocía el inglés. Pero, en lugar de pensar que podría ser una pérdida de tiempo 

que un ingeniero se dedicara a hacer investigación, desde antes incluso de 

empezar me apoyó. Y fue gracias a su apoyo, tanto emocional como económico, 

que mi persona puede escribirte estas palabras en este trabajo. Sin ella, nada de 

lo realizado hubiera si quiera existido. Porque en mi caso, han sido muchos las 

etapas donde las horas de trabajo no iban acompañadas de un salario y gracias a 

haber tenido familia las pude resistir. Y, aunque siento pena de que ella ya no 

pueda ver el fin del camino. Gracias a ella he aprendido el valor de seguir 

adelante e intentar hacer las cosas bien. 

Asimismo, voy a agradecer a mi mascota, Pancho, que, aunque a muchos 

les parezca estúpido y absurdo incluir aquí a un animal, me llevo grandes cosas 

de haber podido vivir con él. Como perro que fue, lo que yo estuviera haciendo 

le traería sin cuidado, él estaba más interesado en los palos, las piñas y las 

piedras. Era feliz de tener comida y cama, y siempre se encargaba de agradecerlo 

diese igual el día y el momento. Aprendí mucho de su enfermedad, su proceso, y 
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su muerte. Me enseñó que la vida se puede vivir de forma plena hasta el último 

instante. Y que, llegado el momento, uno se puede despedir de forma elegante, 

sin hacer ruido. 

Por supuesto agradezco a mis padres, Agustín y Pepa, porque sin ellos yo 

no existiría. Porque sin ellos, yo no sería lo que soy. Porque sin ellos, yo no habría 

hecho nada de esto. He aquí, querido lector, que quiero que te tomes un tiempo 

a reflexionar y honrar sobre tus propios padres. Por otro lado, ya a título 

personal y humano. Aguantar a un hijo tan quejoso como yo es cansado, y 

siempre que lo he pedido me han escuchado. Puede que no compartan mis 

opiniones, ideas o sugerencias. Sin embargo, nada de eso les ha impedido 

escucharme tanto cuando les venía bien como cuando no. Es también gracias a 

ellos que he podido realizar la estancia que me permite validar mi doctorado 

internacional. Así, mi agradecimiento es un agradecimiento triple.  

Agradecer a la pareja de uno no es fácil, son tantas cosas las que se 

comparten que uno no sabe muy bien qué decir. Para aquellos que no la 

conozcan, Ana ha sido mi compañera incluso antes de embarcarme en este 

camino. Ha pasado de principio a fin por este proceso junto a mí. Han sido 

muchas las noches que ha tenido que aguantar mis quejas, mis cabreos y mis 

manías. Sinceramente no le deseo eso a nadie. Aun así, ella se ha manejado para 

hacerlo con una solvencia envidiable a la vez que ha crecido como persona, como 

profesional y como pareja. Ya no es cariño, respeto y agradecimiento lo que tengo 

por ella, sino admiración. No sé si un día podré devolver todo lo que he recibido 

de ella. Pero sin duda, el hecho de intentarlo me llena de gozo e ilusión. Gracias 

Ana, por todo. 

En relación al agradecimiento a la familia, qué decir, me gusta mucho mi 

familia.  

Si bien sí podría destacar a mi tía Angustias, hermana de mi abuela, que, 

como ella, he recibido su apoyo a lo largo de estos años para seguir adelante.  
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También de mis primos, que, aunque nos vemos poco siempre están ahí 

para “dejarse ganar” a algún juego de mesa. 

 A mis tías y tíos, que tanto han hecho y seguirán haciendo por mí. Si 

pudiera resumirlo con una frase sería esta: “no te sientas apenado por lo recibido, 

sonríe y di gracias”. Entonces diré gracias, sabiendo que todo lo que soy y todo lo 

que haga siempre será gracias a vosotros. 

No me puedo olvidar de la familia de Ana; Pepi, Emilio, Marta, gracias de 

corazón por acogerme como uno más, por dar tanto y estar ahí. 

Mención especial tienen Juan y María Rosa que han hecho que un español 

se pueda expresar en inglés sin sentirse idiota. 

Y, por último, a mis amigos y amigas por no dejar que la llama se marchite 

pese al devenir de la vida con sus vientos distantes. Me hubiera gustado tener más 

tiempo, pero os aseguro, que el que tengamos, lo intentaré apreciar con todo mi 

ser. 

Como material adicional, agradecer a todas esas profesoras y profesores 

que me han acompañado desde la infancia hasta mis estudios universitarios. 

Porque un pedacito de ellos ya es parte de mí, camuflado en mis palabras, mis 

gestos y mis ideas. Pero, sobre todo, por encender la chispa de la curiosidad en 

mí. Por haber dado el paso de ser buenos profesores a grandes maestros. 

Sinceramente, gracias.  

Para terminar, querido lector, a ti también te quiero dar las gracias por 

introducirte en estas páginas. He intentado dar mi mejor versión y hacer que 

pese a tratarse de una tesis doctoral en biomedicina sea entretenida — a su 

manera— y amena.  Y si me dejas, quiero dejarte este mensaje.  

La ciencia no es un dogma, es sistemática, es cierto que muchas veces es 

predecible bajo los conocimientos adecuados. Pero te quiero defender la 

necesidad de la fe en su proceso. Y sí, digo fe, pues la fe no es sólo propiedad de 
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la religión. Porque muchas veces tenemos grandes ideas que pensamos que van 

a funcionar, las intentamos una y otra vez sin resultado. Y es, en última instancia, 

esa fe indomable en nuestros principios y en la creencia de que estamos en lo 

cierto lo que nos lleva a continuar. La fe es una herramienta fundamental en la 

actividad humana, en el progreso social, científico y tecnológico. La fe nos hace 

mejorar como especie, nos proporciona metas y nos empuja a seguir cuando las 

fuerzas fallan. Y es responsabilidad nuestra saber usarla sabiamente.  

La frontera entre la ilusión y el fanatismo es más difusa de lo que pudiese 

parecer, siendo más fácil de lo que parece caer en las redes de este último. Porque 

querido lector, los científicos y científicas primero son personas —recuerda 

esto— y luego son profesionales. 

Con esto me despido hasta que nos volvamos a encontrar.  

Si lo hacemos será una alegría y si no, no puede remediarse.  

Al final, de mayor o menor manera todos somos compañeros de viaje en 

la travesía de la vida.  

Espero que disfrutes de este. 

Gracias por tu tiempo, un saludo de un caminante más 

Daniel Martínez Moreno. 
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“If you cannot explain it simply, you do not 
understand it well enough.” 
 
“Si no puedes explicarlo de forma sencilla, es 
que no lo entiendes bien.” 
 
Albert Einstein 
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1. Abstract 
Osteoarthritis (OA) is a sizeable socioeconomic condition mainly 

affecting articular cartilage, a tissue with limited self-healing potential and hence 

a suitable target for regenerative medicine and tissue engineering (TE). To date, 

non-effective therapies for cartilage injuries have been discovered. The most 

pressing requirement in cartilage tissue engineering (CTE) is the development 

of biomaterials capable of customizing the tissue's complicated extracellular 

matrix (ECM). Further, novel bioengineered medical devices that stimulate the 

ex vivo growth of biomimetic CTE scaffolds are required. 

Regenerative Medicine (RM) is the therapeutical approach that tries 

organ/tissue repair, replacement, or regeneration to restore decreased function 

caused by any cause, including congenital deficiencies, illness, trauma, or age. It 

employs several technology techniques that go beyond typical transplantation 

and replacement therapy. These methods may include but are not limited to 

soluble chemicals, gene therapy, stem cell transplantation, TE, and cell and tissue 

type reprogramming. Alternatively, TE is an interdisciplinary discipline that uses 

engineering and life science concepts to create biological replacements that 

restore, maintain, or improve tissue function. 

Using cell-based treatments (or CTE products) to regenerate and repair 

cartilage is not new; techniques like matrix-induced autologous chondrocyte 

implantation (MACI) and autologous chondrocyte implantation (ACI) have been 

employed in clinical settings for many years. Even recently, a promised 

alternative, Instant Mesenchymal Stem Cells (MSC) Product Accompanying 

Autologous Chondron Transplantation (IMPACT), has been experimented with 

in situ based on fibrin glue containing allogeneic MSCs. Although these methods 

present some efficacy; however, it is challenging to maintain the proper 

chondrocyte cell quantity and differentiation stage in vitro, and the integration 

of cells into the surrounding tissue is still subpar. In this sense, the main objective 
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of this thesis has been to offer solutions to these drawbacks. So, the manuscript 

has been divided into three chapters. 

The first chapter examined how varied geometries and pore sizes (i.e., 

microstructure) affect the adhesion and proliferation of infrapatellar fat pad-

derived mesenchymal stem cells (IPFP-MSCs) in biofabricated 3D thermoplastic 

scaffolds. These studies used a novel biomaterial for CTE, 1,4-butanediol 

thermoplastic polyurethane (b-TPUe), and a standardized one 

(polycaprolactone, PCL). Cell adhesion, proliferation, and mechanical properties 

were found to alter depending on the form, porosity, and type of biomaterial 

used. Conclusively, b-TPUe scaffolds more closely mimicked cartilage dynamics, 

and that triangular geometry with 1.5 mm of fiber distance was the best-adapted 

morphology for CTE. 

In the second chapter, scaffolds of b-TPUe were functionalized using type 

I collagen and 1-pyrene butyric acid (PBA). After, they were seeded with IPFP-

MSCs to verify the effectiveness of these methods in comparison with naive 

scaffolds. Alamar Blue and confocal tests show that PBA functionalized scaffolds 

enable superior cell adhesion and proliferation throughout the first 21 days, 

being cell proliferation and vitality lesser than type I collagen functionalization. 

Nonetheless, both methods increased the production of ECM and the presence of 

chondrogenic markers (Sox9, Col2a, and Acan). 

The third chapter demonstrates for the first time the chondrogenic 

evolution of functionalized 3D scaffolds made of b-TPUe in real-time in a 

bioreactor (BR) with low shear pressures. A combination of ultrasonic 

monitoring and cross-correlation allowed this issue. Applying the signals 

obtained by a finite element model (FEM) of elastic pulse wave propagation and 

the empirical signals made it possible to calculate the actual sound speed and 

density. Further, IPFP-MSCs were utilized as a cellular source for the 

functionalized b-TPUe- based 3D scaffold. Results showed how the BR induced 

chondrogenesis in comparison with static 3D cultures. Conclusively, the BR 
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represented a valuable tool for generating considerable chondrogenesis in a 

controlled manner. 

In summary, a whole process has been developed that uses IPFP-MSCs 

and functionalized b-TPUe scaffold to generate viable CTE grafts destined for OA 

treatment. Our highest novelty relies on the absence of an external growth factor 

to induce chondrogenesis in our 3D scaffolds. Further, a novel system that 

accelerates the maturation of these grafts and measures the ECM synthesis in 

real-time has been developed and validated. 

Therefore, the efficiency of our methodology in terms of cell 

concentration and ECM production in a relatively short time should imply a 

possible accurate alternative for CTE. 
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2. Resumen 
La osteoartritis (OA) es una importante afección socioeconómica que 

afecta principalmente al cartílago articular, un tejido con un potencial de 

autocuración limitado y, por tanto, un objetivo adecuado para la medicina 

regenerativa y la ingeniería tisular (TE). Hasta la fecha, se han descubierto 

terapias poco eficaces para las lesiones del cartílago. El requisito más apremiante 

en ingeniería tisular del cartílago (CTE) es el desarrollo de biomateriales capaces 

de personalizar la complicada matriz extracelular (ECM) del tejido. Además, se 

necesitan nuevos dispositivos médicos de bioingeniería que estimulen el 

crecimiento ex vivo de andamiajes biomiméticos de ETC. 

La medicina regenerativa (RM) es el enfoque terapéutico que trata de 

reparar, sustituir o regenerar órganos/tejidos para restablecer las funciones 

disminuidas por cualquier causa, incluidas las deficiencias congénitas, las 

enfermedades, los traumatismos o la edad. Emplea varias técnicas que van más 

allá de la típica terapia de trasplante y sustitución. Estos métodos pueden incluir, 

entre otros, sustancias químicas solubles, terapia génica, trasplante de células 

madre, TE y reprogramación de tipos de células y tejidos. Por su parte, la TE es 

una disciplina interdisciplinar que utiliza conceptos de ingeniería y ciencias de 

la vida para crear sustitutos biológicos que restauren, mantengan o mejoren la 

función de los tejidos. 

El uso de tratamientos basados en células (o productos de CTE) para 

regenerar y reparar el cartílago no es nuevo; técnicas como la implantación de 

condrocitos autólogos inducida por matriz (MACI) y la implantación de 

condrocitos autólogos (ACI) se han empleado en entornos clínicos durante 

muchos años. Incluso recientemente, se ha experimentado con una alternativa 

prometedora, el producto instantáneo de células madre mesenquimales (MSC) 

que acompaña al trasplante autólogo de condrocitos (IMPACT), in situ a base de 

pegamento a base de fibrina, que contiene MSC alogénicas. Aunque estos 
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métodos presentan cierta eficacia, resulta difícil mantener la cantidad adecuada 

de condrocitos y el estadio de diferenciación in vitro, y la integración de las 

células en el tejido circundante sigue siendo deficiente. En este sentido, el 

principal objetivo de esta tesis ha sido ofrecer soluciones a estos inconvenientes. 

Así, el manuscrito se ha dividido en tres capítulos. 

En el primer capítulo se examinó cómo las distintas geometrías y 

tamaños de poro (es decir, la microestructura) afectan a la adhesión y 

proliferación de células madre mesenquimales derivadas de la almohadilla de 

grasa infrapatelar (IPFP-MSCs) en andamios termoplásticos 3D biofabricados. 

En estos estudios se utilizó un biomaterial novedoso para CTE, el poliuretano 

termoplástico 1,4-butanodiol (b-TPUe), y otro estandarizado (policaprolactona, 

PCL). Se observó que la adhesión celular, la proliferación y las propiedades 

mecánicas variaban en función de la forma, la porosidad y el tipo de biomaterial 

utilizado. En conclusión, los andamios de b-TPUe imitaban mejor la dinámica del 

cartílago, y que la geometría triangular con 1,5 mm de distancia entre fibras era 

la morfología mejor adaptada para la ETC. 

En el segundo capítulo, los andamios de b-TPUe se funcionalizaron con 

colágeno de tipo I y ácido 1-pireno butírico (PBA). Después, se sembraron con 

IPFP-MSCs para verificar la eficacia de estos métodos en comparación con los 

andamios ingenuos. Las pruebas confocales y con azul de Alamar muestran que 

los andamios funcionalizados con PBA permiten una adhesión y proliferación 

celular superiores a lo largo de los primeros 21 días, siendo la proliferación y 

viabilidad celular menores que la funcionalización con colágeno tipo I. No 

obstante, ambos métodos aumentaron la producción de ECM y la presencia de 

marcadores condrogénicos (Sox9, Col2a y Acan). 

El tercer capítulo demuestra por primera vez la evolución condrogénica 

de andamios 3D funcionalizados de b-TPUe en tiempo real en un biorreactor 

(BR) con bajas presiones de cizallamiento. Una combinación de monitorización 

ultrasónica y correlación cruzada permitió esta cuestión. La aplicación de las 
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señales obtenidas mediante un modelo de elementos finitos (FEM) de 

propagación de ondas de pulso elásticas y las señales empíricas permitió calcular 

la velocidad y la densidad reales del sonido. Además, se utilizaron IPFP-MSC 

como fuente celular para el andamio 3D funcionalizado basado en b-TPUe. Los 

resultados mostraron cómo el BR inducía la condrogénesis en comparación con 

los cultivos 3D estáticos. En conclusión, el BR representa una herramienta 

valiosa para generar una condrogénesis considerable de forma controlada. 

En resumen, se ha desarrollado un proceso completo que utiliza IPFP-

MSCs y un andamio b-TPUe funcionalizado para generar injertos de CTE viables 

destinados al tratamiento de la OA. Nuestra mayor novedad radica en la ausencia 

de un factor de crecimiento externo para inducir la condrogénesis en nuestros 

andamios 3D. Además, se ha desarrollado y validado un novedoso sistema que 

acelera la maduración de estos injertos y mide la síntesis de ECM en tiempo real. 

Por lo tanto, la eficacia de nuestra metodología en términos de 

concentración celular y producción de ECM en un tiempo relativamente corto 

debería implicar una posible alternativa precisa para la CTE. 
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GRAPHICAL ABSTRACT. The core of this doctoral, where Tissue Engineering (TE) and 
Knee Biomechanics principles were followed. A sophisticated pathway was created, 

divided into three sections or chapters. 1) Information about nanostructures and scaffold 
topograph 2) Microstructure and scaffold geometry y 3) Biomechanics and dynamical 

stimulation. Finally, the three steps produce a product suitable for cartilage tissue 
engineering (CTE). 

RESUMEN GRÁFICO. El núcleo de este doctorado, donde se siguieron los principios de la 
Ingeniería Tisular (TE) y la Biomecánica de la Rodilla. Se creó un sofisticado itinerario 

dividido en tres secciones o capítulos. 1) Información sobre nanoestructuras y topografía 
del andamio 2) Microestructura y geometría del andamio y 3) Biomecánica y estimulación 
dinámica. Finalmente, los tres pasos dan lugar a un producto adecuado para la ingeniería 

tisular del cartílago (CTE). 
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“The answers you get depend on the 
questions you ask.” 

“Las respuestas que obtenga 
dependerán de las preguntas que haga.” 

Thomas Samuel Kuhn 
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3. Regenerative medicine 

3.1. Background 

The devastating demand for organ transplantation has been 

challenging, as it has the ideal immunosuppression-free strategies. Donor organ 

allocation may exhibit racial, gender, age, and regional biases, which may 

intensify as the supply-demand gap expands1. At the end of 2009, the number of 

patients in the organ-demanding queue was 28,458; ten years later, in 2019, that 

quantity increased to 112,568 patients (almost four times higher), but only 

39,718 transplants were done2,3. Therefore, the main objective of Regenerative 

Medicine (RM) is to overcome those limitations, and consequently, it could be 

defined as the use of different therapies to regenerate human cells, tissues, or 

organs4. 

Considering organ transplantation as a technical procedure, its history 

can be split into three different eras —there are four if the period preceding the 

first successful transplantation is also taken into account (a pre-transplant 

age)— which are: i) surgery, ii) immunology, and iii) RM (see Figure 1)5.  Skin 

transplantation was first mentioned in written literature in the 4th century B.C., 

with a story from Jacobus De Voragine’s 348 ad Legenda Aurea6. In 1817, French 

physician Henri Dutrochet wrote a letter to the editor of Gazette de Santé on skin 

transplantation. According to the letter, an army subordinate had been punished 

by having his nose cut off and asked locals to reconstruct him6. However, the first 

register of successful implantation was not confirmed until 1944, during World 

War II. The patient died at age 84, having lived 60 years after his implant5.  

Nevertheless, this was an exceptional case because of the severe injuries of the 

patient who received the skin graft; his immunity was compromised to the point 

of not causing a rejection of the transplantation.  

Several years after, in the late 1970s, it was invented a revolutionary drug 

that would exchange the implant paradigm, cyclosporine, an immunosuppressor 
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that drastically enhanced long-term survival5,7. Cyclosporine inhibits calcineurin, 

which is responsible for activating interleukin-2 (Il-2) transcription under 

normal circumstances. It also inhibits the transcription of lymphokine 

production and lymphocyte cytokine release7. 

Regarding RM, which is the consequence of the last transplantation era, 

its origin is far from being new being the regeneration concept first appeared in 

ancient myths and legends like the Prometheus one when Zeus ordered that 

every day Prometheus’ liver was restored to feed the stormy eagle8,9. The term 

regeneration has existed since this myth, perhaps even earlier, but it was not 

until the early 1900s that it became a reality rather than a fantasy thanks to 

scientists like Alexis Carrel (father of in vitro cell culture)8. The ability to culture 

cells outside living organisms may not initially seem very useful. However, 

thanks to this discovery, studies on cell regeneration, cell differentiation, 

embryonic induction, pharmacological assays, and an infinite number of other 

Figure 1. Timeline of organ transplantation.  The history of these procedures is 
divided by three remarkable landmarks: the first successful organ transplantation at 
1944, the invention of immunosuppressors as cyclosporine at lates 1970s, and, the 

start of implementation of vascular grafts thanks to new advanced 
immunosuppressors. (Figure adapted from Salvatori et al. 2015 with permission). 
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research projects have all been made possible10. An outstanding example of 

obtained goals from in vitro experimentation was the theory of embryonic 

induction by Hans Spemann, who won the Nobel Prize in 193511.  

Readers must understand that before this revolutionary invention, 

scientists used animals to try to analyze those kinds of cellular phenomena12. 

Abraham Trembley’s research of the hydra, which demonstrated that a whole 

creature could recover from its severed appendage, is said to have given rise to 

the present science of regeneration13. The extraordinary regenerating ability of 

amphibian newts, axolotls, and zebrafishes, also caught the attention of scientists 

in the 18th and 19th centuries. These animals are still regarded as the gold 

standard models for research on regeneration today14. 

The real beginning of RM dates from 1999 by William Haseltine15 as a 

field of research matched with the start of the immunology transplant era; in the 

late 1970s, Drs Joseph Vacanti and Robert Langer developed the field of tissue 

engineering (TE)16. Thus, a new branch of new experts should have been formed 

as biomedical engineers, biomaterial scientists, and biotechnologists. In favor of 

simplicity, this interdisciplinary community's first field of work was the skin. In 

1979 when Dr. Howard Green et al. realized the first cell-based TE product 

(Epice), despite its novelty, the final graft was far from being a fully developed 

new skin tissue, just being a single-layer graft17. A few years later, a good skin 

product was developed, Apligraf, which expands the dermis and epidermis 

layers of the skin18.  Thanks to these two new inventions, TE obtained much 

popularity during the next decade, and it was no surprise to find researchers 

starting cartilage tissue engineering (CTE)19.  

Almost ten years later, thanks to the discovery of stem cells, the 

application of those early TE methodologies with the high regenerative potential 

of these cells that RM was developed as it is known nowadays8,20. Unfortunately, 

excess in reducing research times, unacceptable manufacturing costs, and lack of 

fundamental understanding of tissue synthesis led to a cold period for advances 
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in RM16. It lasted several years since the subsequent RM advance was obtained: 

the first implantable tissue-engineered bladder was developed in 200621. And 

nowadays, RM is an up-and-coming research field recognized as the forefront of 

health care22. By 2020, associated market research projects worthed $67.5 

billion21. 

3.2. Definition 

As mentioned previously, due to the vast interconnections between TE 

and RM, there was controversy differentiating both terms. The first standard 

definition of RM was established by Greenwood et al. in 200623 as:  

‘Repair, replacement or regeneration of cells, tissues or organs to 
restore impaired function resulting from any cause, including 
congenital defects, disease, trauma and aging. It uses a combination 
of several technological approaches that moves it beyond traditional 
transplantation and replacement therapies. These approaches may 
include, but are not limited to, the use of soluble molecules, gene 
therapy, stem cell transplantation, tissue engineering and the 
reprogramming of cell and tissue types.’ 

To synthesize and give a satisfactory global definition for the research 

community Chris Manson and Peter Dunnil24 established the current description 

in 2008: 

‘Regenerative medicine replaces or regenerates human cells, tissue or 
organs, to restore or establish normal function.’ 

Almost at the same time, the regulation of regenerative medicine ended 

in the code from the medical agencies (e.g., EMA or FDA) for all the possible 

treatments of RM called Advanced Therapy Medicinal Products (ATMPs). 

Therefore, ATMPS were defined by the EMA as: 

‘Medicines for human use that are based on genes, tissues or cells. They 
offer groundbreaking new opportunities for the treatment of disease 
and injury.’ 

All the different alternatives of ATMPs must follow Regulation (EC) No 

1394/200725 and Directive 2001/83/EC26. 
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Consequently, understanding RM as a valuable therapeutic approach 

with the same objective as organ transplantation procedures can be divided into 

three technical methods (Figure 2): stem-cell treatment, gene therapy, and 

tissue engineering27. 

3.3. Stem cell treatment 

Stem cells are undifferentiated or partly differentiated cells in 

multicellular animals that may specialize into numerous types of cells and 

multiply forever to create more of the same stem cell28.  Cell potency refers to a 

cell’s capacity to develop into other types of cells29. The stronger a cell’s potency, 

the more cell types it may develop into. Potency begins with totipotency to 

denote a cell with the maximum differentiation potential, then progresses to 

pluripotency, multipotency, oligopotency, and eventually unipotency (see 

Figure 3). 

Figure 2. Representation of the three technical approaches for 
Regenerative Medicine. 
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3.3.1. Pluripotency 

The first time embryonic stem cells (ESC) were isolated was in 1998; 

due to their early developmental stage, they can regenerate any defective or 

damaged cell30. Nonetheless, they are not widely used due to ethical concerns 

over their harvesting and the risk for teratoma growth and immunological 

rejection31. As a result, it is infrequent only to discover a few examples of their 

use, such as retina implants (which have a reduced immune response) for 

individuals with retinitis pigmentosa or dystrophy32.  

Realizing all of the constraints of working with ESCs, there was a strong 

stream of effort seeking to duplicate the practically infinite possibilities of these 

Figure 3. Cell potent lineage. 
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cells in a more straightforward method, leading to the discovery of induced 

pluripotent stem cells (iPSCs) by Nobel Prize winner Shinya Yamanaka in 

200733. The earliest uses of iPSCs were to create cardiac34, renal35, liver36, and 

pancreatic37 tissues. iPSCs can also be used to generate organoids capable of 

replicating the functional unit of a specific human tissue38,39, allowing the 

development of novel treatments without animal studies. However, their use has 

raised several safety concerns, including the potential for dangerous clones to 

emerge and contamination from undifferentiated cells40,41. In the most recent 

iPSC report, published in 2016, the guidelines for achieving adequate safety and 

effectiveness of a final cell therapy product, the quality requirements for source 

materials, and the ethical limitations of their applications were established42.  

3.3.2. Multipotency 

Another appreciable raw source of RM therapies is the adult stem cells 

(ASC), which cause their relatively high abundance in the human body, easy 

obtention, and high regenerative capacities43,44. One valuable source of these 

cells in the bone marrow is the Hematopoietic Stem Cells (HSC), positive for 

CD34, and the Mesenchymal Stem Cells (MSC, aka Stromal Cells), negative for 

CD3443.  

HSCs can differentiate into all blood cell lineages; consequently, they 

have been used to transplant blood and bone marrow which are increasingly 

used to treat various ailments, including onco-hematological disorders and 

refractory autoimmune conditions. The European Group for Blood and Marrow 

Transplantation has documented some success in patients with multiple 

sclerosis, rheumatoid arthritis, systemic lupus erythematosus, and other 

disorders45. HSC therapeutic goals have been expanded to include inherited 

neurologically debilitating metabolic conditions, such as lysosomal storage 

diseases,  peroxisomal storage diseases, and autism spectrum disorders46. Also, 

HSCs are used to restore the functional immune system in a wide range of 
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immunodeficiencies47, reconstruct the myeloablative hematopoietic system in 

cancer patients48, and enhance tolerance to mismatched organ allografts49. 

The MSC population is sometimes called stromal because of its 

supporting role in establishing a suitable niche for HSC differentiation into 

lymphohematopoietic system cells. MSCs have been isolated from various adult 

and fetal tissues, including adipose tissue, muscles, skin, liver, kidney, spleen, 

placenta, amniotic fluid, and umbilical cord50. Perhaps, because of their diverse 

raw sources, there are no specific surface makers to identify MSC yet. 

Consequently, the International Society for Cellular Therapy has established a 

protocol to characterize this family of cells51: i) they present adhesion under 

conventional culture conditions, ii) they are CD105+, CD73+, CD90+, CD45-, CD34-

, CD14-, and, iii) they present in vitro differentiation into osteoblasts, adipocytes, 

and chondroblasts (Figure 4). 

MSC cells have emerged as an essential player in cell-based therapy 

because they dampen inflammation and favor tolerance52. Further reasons for 

their attraction are their immense plasticity, easy expansion ex vivo with the 

maintenance of genetic stability, homing to inflamed sites, and repair potential53. 

An immunoablative conditioning regimen is not required in the application of 

MSCs because they do not express human class II leukocyte antigens and co-

stimulatory molecules on their surface, while they show deficient levels of 

human class I leukocyte antigen expression54; therefore MSCs can be considered 

as immunevasive55,56.  
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MSCs have been used in the treatment of a variety of diseases, including 

steroid-refractory acute graft-versus-host disease57. MSCs have also been used 

to treat multiple refractory sclerosis, systemic lupus erythematosus, and 

intestinal chronic inflammatory diseases58. MSCs provide a one-of-a-kind 

opportunity for Crohn’s disease patients to receive local injections59. In 

literature, there is a vast branch of regenerative procedures using MSCs where 

can be extracted three overall confirmations: i) MSCs are highly safe, with the 

most severe risks being transient fever and thromboembolic events60,61. ii) Long-

term engraftment and survival rates are extremely low, reducing the risk of 

malignant transformation 62. iii) The standardization of infusion source, dosage, 

delivery strategy, and timing in each specific clinical setting must be carefully 

evaluated; the International Society for Cell and Gene Therapy proposed a 

standard analytical evaluation method63. 

3.3.3. Unipotency (or Singlepotency) 

In a less manner, Tissue-Specific Stem cells (TSSC) have been used for RM; 

an example of their application is the Holoclar® (Chiesi Pharma), which is made 

up of a sheet produced from limbal stem cells that have been plated on a fibrin 

Figure 4 MSCs differentiation potential. 
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matrix and are implanted directly into the patient’s eye64. Another promising 

application of TSSCs is in treating junctional epidermolysis bullosa, a debilitating 

and frequently fatal hereditary condition where; epidermal grafts can be 

generated using patient-healthy keratinocytes65. 

3.4. Gene Therapy 

Initially, gene therapy was intended to repair a faulty function in monogenic 

illnesses such as muscular dystrophy, cystic fibrosis, and metabolic disorders. Its 

applications are expanded to include multifactorial disorders such as 

cardiovascular disease, neurodegenerative disease, infectious diseases, and 

cancer66. Gene therapy (Figure 5) can be defined as the therapeutic introduction 

of a gene, known as a transgene, into patients' cells (that could be in vivo or in 

vitro)67. Thus, its most effective applications are i) Ex vivo replacement therapy 

with HSCs, which was first applied to treat severe combined immune deficiency 

(SCID) via an adenosine deaminase retroviral vector (ADA-encoding RV)68. ii) Ex 

Figure 5. Gene therapy pathway. 
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vivo gene addition therapy as the treatment for Wiskott Aldrich syndrome using 

lentiviral vectors (LV)69, or β-thalassemia70. And iii) in vivo gene replacement 

therapy with adeno-associated viral vectors (AAV) where some promising 

applications have been made in SMA-1 positive children71 or Parkinson’s 

disease72. 

A vehicle (called a vector) is needed to target the nucleus to deliver the 

transgene into cells. Recombinant viral vectors are designed to harness the 

native viral infection pathways and simultaneously limit replicative life cycles. 

The combination of transgene and its regulatory components is called an 

expression cassette. Viral vectors can be broadly categorized as integrating and 

non-integrating depending on their ability to integrate the vector genome into 

recipient cells' nuclear DNA66. 

The delivery of a functional form of a mutant gene and the encoded 

protein that is absent or malfunctioning in target cells is referred to as gene 

replacement/addition73. Gene subtraction techniques are designed to 

mitigate the effects of gain-of-function mutations or to combat infectious 

illnesses74,75.  Gene editing is the holy grail of gene therapy, which is 

theoretically considered predictable and stable. Some examples of gene editing 

tools are zinc-finger nucleases, transcription activator-like effector nucleases, 

and CRISPR/Cas9 RNA-guided nucleases76. The considerable enthusiasm that 

resembles this technique is that even if DNA breaks at off-target sites and their 

effects must be carefully handled, gene editing provides the potential to solve 

two of the most challenging difficulties in gene therapy: transgene expression 

control and insertional mutagenesis77,78. 

Although gene therapy appears to treat practically all of our medical 

issues potentially, this technique involves a lot of ethical dissertations and severe 

technical difficulties. Examples are the gene transfection efficiency (which is not 

so high), the time persistence of the gene transfection to allow an adequate 

treatment, the control of the transgene expression, and an accurate vector 
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integration that avoids insertional mutagenesis79. In addition, the patient’s 

immune response will affect the vector intake and the transgenes80.  
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4. Tissue Engineering 

4.1. Background 

The goals of TE and RM are inextricably linked because TE is just a 

technological framework for RM applications. TE is a biomaterials development 

approach that combines scaffolds, cells, and biologically active stimuli (see 

Figure 6). Considering this, TE creates tissue and organ substitutes that can 

protect, repair, or enhance the capabilities of their injured or diseased 

counterparts in vivo81. 

Because TE's history is closely tied to RM, it is usual for both names to be 

misconstrued as synonyms. In Figure 7, a timeline with its most relevant events 

Figure 6. Scheme of the three main pillars of TE. They must be seen as a fully 
integrated structure with various distinct action channels connecting them. 
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is represented, where there is especially relevant the development of in vitro 

cryopreservation by Polger82. As was exposed above, the beginning of the current 

conventional RM was a TE application. Nevertheless, most authors consider the 

beginning of TE to be in the late 1970s when different research groups started to 

synthesize skin grafts through the formation of keratinizing colonies by James G. 

Rheinwatd83 or the cultivation of early epidermal grafts by Howard Green84 

directly harvested from patients' biopsies. At first, this could not be an 

impressive task. Many years ago, Carrel had already developed in vitro cell 

culture, but keratinocytes needed a specific feed layer made by mouse MSCs85.  

Perhaps the significance of these advances, and the resulting inflated 

expectations of TE, were a direct result of the rapid release of the first TE 

product, the Epicel (by Genzyme, USA)86. Further, another invention was quickly 

released by Integra Life Sciences' (Plainsboro, NJ), a dermal regeneration 

template used to treat burn wounds where the damage goes deep into the 

dermis. This time, the TE graft also included a scaffold of a cross-linked bovine 

type I collagen and shark chondroitin 6-sulfate combination87. Almost at the 

same time, it was synthesized the first skin graft combining dermis and 

epidermis88. A few years later, the second human tissue to be studied by TE was 

the cartilage; in 1994, a cartilage TE graft was commercialized by Carticel89.   

Figure 7. Time-line of more relevant TE history events. The black line 
represents the most accepted beginning of current TE. Red circle envelops the 

first iteration of a commercial cartilage TE product, a significant historical 
landmark for this work. 
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In the 1990s, diverse TE candidates were tried with insufficient 

success90; skin and cartilage tissues are two with no extended vascularization 

directly affecting their tissue functions91. This high-tech market crashed in the 

early 2000s as jaded investors stopped backing high-risk initiatives such as TE  

firms92. According to a 2004 research, activity in the skin, cartilage, and other 

structural applications decreased by more than 50%, resulting in the loss of 800 

full-time employment93. Despite this, the advances made in the last three decades 

have ended in top molecular diagnostics, with a market value of more than $3 

billion in 2002 and rising 25% per year94. 

4.2. Definition 

TE was first defined by Langer and Vacanti95 in 1993 when they realized 

the problem of transplant when is a lack of transplantable organs source as 

follows: 

‘Tissue engineering is an interdisciplinary field that applies the 
principles of engineering and the life sciences toward the development 
of biological substitutes that restore, maintain, or improve tissue 
function.’ 

They proposed a scheme of three pillars to construct the basis of TE: i) 

isolated cells or cell substitutes, ii) tissue-inducing substances, and iii) cells 

placed on or within matrices. That representation is mainly preserved, as it was 

exposed above in previous Figure 6; nevertheless, TE is a high-technology field 

in constant evolution that is constantly nourished by new developments in 

engineering and biomaterials96. Thus, its conventional definition can be 

exchanged after future relevant applicable inventions for TE, although the 

treatment pathway of TE is mainly the same as the one proposed by Langer and 

Vacanti, see Figure 8.  As a cutting-edge technology, TE is exposed to different 

challenges that are not solved yet, a scarcity of both renewable sources of 

functional cells and accurate biomaterials that present good mechanical, 

biochemical, and biological properties. In addition, the main objective of present 
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TE investigations is to create large vascularization grafts to simulate larger 

tissues97.  

4.3. Challenges and advances in TE 

Thanks to technological inventions, TE has experienced many advances 

in its short history (Figure 9). The first one is the development of more 

sophisticated producing pathways for iPSCs98,99. Respecting MSCs, now that 

cellular accommodation is better understood. Consequently, the study of ECM 

has achieved a higher level of relevancy cause its pleasing properties for inducing 

tissue differentiation; MSCs are programmed to create a pool of desirable growth 

factors and cytokines100–103. In addition, some new cell sources have been 

identified as adipose-stromal cells104 and amniotic-fluid-derived stem cells105.  

Also of particular interest was the discovery that substrates stiffness influences 

cell phenotype (i.e., mechanotransduction)106. More surprising was to discover 

how cells, as with biochemical factors, can remember past mechanical events and 

adapt to them for any possible subsequent mechanical stimulus107.  

Figure 8. Pathway of TE as an applicated therapy. 
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Recent advances in biochemistry allowed a considerable increase in 

biomaterial conjugations108,109 together with precise bioactive cues delivery 

systems110,111. In addition, our comprehension of the human immune system and 

graft-host responses is much higher than three decades ago112,113. New 

biomaterial synthetic procedures allow the creation of biomimetic grafts114,115, 

highly reducing inflammation. Further, thanks to this increase in knowledge, 

scientists can make more flexible macrophage subsets' proinflammatory 

responses in response to particular signal induction, which reduces the host 

immune response116,117.  

A combination of gene therapy and TE allows extraordinary results like 

those obtained by genetic editing of pig organs to adapt them for human 

transplantation118. Another approach for human transplantation is organ 

decellularization, where with the use of detergents, cells are completely 

removed; afterward, iPSCs or ASCs extracted from patients are seeded on that 

Figure 9. Scheme of new advances acquired in TE during last decade. 
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decellularized organs119–122. Examples of this methodology are developments of 

kidney123,124, blood vessels125–127, pancreas128,  liver129,130, lung131,132, bladder133 

and heart134. 

But perhaps the fundamental advances in TE are due to biofabrication 

innovations, such as self-assembly135,136 and three-dimensional (3D) 

bioprinting137,138 that have been able to create complex structures with 

integrated vasculature139,140 and high cell concentrations mixed with bioinks 

composed of biomaterials or ECM components140,141, together with high spatial 

resolution142,143. It had such a profound impact that a new field of study emerged 

due to the ability to create new in vitro models capable of reproducing organ 

behavior: organ-a-chip144–149 and organoids150–153. More recently, the use of 

biomaterials with the ability to reshape their geometries over time because of 

external stimuli (e.g., pH and temperature changes, humidity) allowed the 

development of the novel named technology called four-dimensional (4D) 

bioprinting154,155. 
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5. Biomaterials 

5.1. Background 

Ancient Greeks and Chinese practitioners of biomaterials research 

exploited natural materials to lessen the symptoms of disease hundreds of years 

ago156. However, the development of medical devices made of synthetic and 

natural materials did not advance significantly until the latter half of the 20th 

century157. PMMA, also known as poly(methyl methacrylate), was first used in 

dentistry in 1937158. Voorhees experimented with parachute fabric (Vinyon N) 

as a vascular prosthetic just after World War II159. The bizarre idea that a 

conventional fabric could be applied for arterial prosthesis was put out in Rob's 

1958 textbook on cardiovascular surgery160. Early in the 1960s, Charnley 

performed complete hip replacements using PMMA, ultrahigh-molecular-weight 

polyethylene, and stainless steel161. Since that time, our understanding of the 

anatomy of vertebrates and human tissue has increased sharply. We understand 

that studying substances like those found in woolly mammoth skin will help to 

better understand collagen in human tissue157. 

5.2. Definition 

The definition of biomaterials was accepted by consensus in 1987 by the 

European Society for Biomaterials and recorded by David F. Willians162.  

‘A biomaterial is a nonviable material used in a medical device, 
intended to interact with biological systems.’ 

Even it is essential to understand the previous term biocompatibility 

because it is what distinguishes a material from a biomaterial163: 

‘Biocompatibility is the ability of a material to perform with an 
appropriate host response in a specific application.’ 

Homsy coined the word "biocompatible" in 1970 after investigating the 

relationship between several tiny chemicals and cell toxicity and concluding that 
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a surgical procedure material must be biocompatible to avoid this164. In the 

1990s, the International Organization for Standardization (ISO) saved the term 

biocompatibility in ISO 10993165. Since then, it has been a mandatory step in 

biomaterial science, and all new biomaterials must follow it. 

The previous definition could seem precise enough, but it is surrounded 

by tricky concerns regarding what should be the host response to the implanted 

biomaterial. It is essential to illuminate what is understood by foreign-body 

reaction (FBR) to clarify the presented problematic166. 

Any biomaterial implanted causes a local or systemic reaction in the host 

tissue if the biomaterial is put into the body by injection or surgery167. Although 

several biomaterials and medical devices have been successfully implanted in 

people, no stealth material that can outperform the human surveillance system 

has been developed168. FBR is brought on by protein adsorption on the substance 

(biofouling), which causes the implant to be encapsulated by a thick collagenous 

capsule and prevents the implant from interacting with the surrounding tissue 

further166. The different FBR stages are represented in Figure 10. 

Considering the previous definition of FBR, some examples of 

biomaterial implantation do not follow this path. For instance, the 

subcutaneously implanted is a solid slab of poly(hydroxyethyl ethyl 

Figure 10. Representation of the Foreign-Body Response steps.  At the early 
stages, the nude scaffold is covered by a layer of coating proteins to attract the 

macrophages. The phagocytosis is frustrated due to biomaterial size, and, finally 
the biomaterials is encapsulated by a fibrous layer mostly made by collagen. 
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methacrylate) (pHEMA) hydrogel, either as a solid slab or as a porous material 

having 40 µm diameter interconnected pores. The solid slab heals using the 

traditional FBR. On the other hand, the 40 µm porous pHEMA heals with no 

capsular sac and a highly vascularized tissue reconstruction169. So, can a 

biomaterial have more than one healing process? Or, can a response that isolates 

a substance from the body be deemed biocompatible? 

5.3. Relevant terms related to biomaterials 

Along with biomaterial development, some aspects may be clarified to 

categorize and differentiate one from the others based on their unique 

characteristics and application. The distinction between degradation and 

erosion is an example of the need to clarify these terms; degradation mainly 

occurs via hydrolysis; however it can also occur through oxidative, 

photodegradation, or enzymatic mechanisms170. On the other hand, erosion is 

caused by deterioration of the biomaterial, abrasions, dissolution, or mechanical 

wear. And one condition does not necessarily imply the other; for instance, an 

implantable poly(lactic acid) (PLA) scaffold begins to degrade because of the 

FBR. That degradation is observed due to a reduction of their weight, but no 

apparent erosion is observed at those early stages. Therefore, erosion is only 

observable when PLA breakdown is well underway170. Then the main difference 

between these terms are: 

• Degradation: A chemical process that cleaves covalent bonds.  

Biodegradation is used when a biological agent (enzyme, cell, or 

bacterium) is causing the chemical breakdown of the implanted device, 

as proposed by the European Society for Biomaterials Consensus 

Conference162. 

 

• Erosion appears when the biomaterial experiments with size, shape, or 

mass variations. Bioerosion can be used where a non-polar 
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biomaterial starts its transition to be water-soluble under physiological 

conditions171.  

▪ Surface erosion happens when the conversion rate to 

water-soluble biomaterial surpasses the water 

penetration rate, resulting in material surface erosion 

without altering the biomaterial core172. 

▪ Bulk erosion: Unlike surface erosion, bulk erosion 

occurs when water penetration overpasses the 

conversion rate to water-soluble. In this situation, 

biomaterial degradation occurs through the bulk 

structure172. 

 

• Bioinert: it is called from a substance that does not elicit a negative 

response from the body's immune system when it is introduced into the 

body173. 

 

• Bioactive refers to an item or material affecting or evoking a reaction 

from living tissue174. 

 

• Biointegration is the attaching of live tissue to the surface of a 

biomaterial or implant independent of any mechanical interlocking 

mechanism. It is frequently used to describe the binding between 

hydroxyapatite-coated dental implants.  Biointegration is critical to the 

implant's success and lifetime175. 

5.4. Evolution of biomaterials 

Regarding the chemical composition and structure, biomaterials can be 

classified as (Figure 11): i) metallic materials (e.g., vanadium Steel), which must 

avoid any possible corrosion176. ii) Ceramic materials (e.g., alumina) are generally 

complex and can be bioinert, bioactive, biodegradable, or resorbable ceramics177. iii) 
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Synthetic polymeric biomaterials (e.g., polyethylene, polyamide) present simpler 

manufacturability and processability, and they must be biocompatible and present 

sterilizability178. iv) Composite materials (e.g., natural as bone, synthetic as 

fiberglass) present hierarchical structures regarding porosity or fibrous 

structural features179. v) Biodegradable polymeric materials (e.g., poly-3-

hydroxybutyrate -PHB-, cellulose) are biomaterials that are absorbable, erodible, 

or resorbable making them perfect candidates to avoid chronic FBRs and to 

regenerate tissue180. 

Nevertheless, the evolution of biomaterials presents a higher correlation 

with biomaterial properties than with their chemical composition. Therefore, it 

is unsurprising that the first kind of biomaterials was biodegradable because 

biodegradability is relatively easy to obtain. PLA was initially synthesized in 

1944, while poly(glycolic acid) PGA was explored in about 1954181. The DexonTM 

suture, a PGA polyester that has been in use since around 1970182, was an early 

example of a biodegradable polymer. Despite being created in the 1930s, 

Figure 11. Classificatory scheme of biomaterials depending on their 
chemical composition. 
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polycaprolactone (PCL) was also employed in clinical trials of a contraceptive 

device in the 1980s183.   

Once biodegradability mainly was obtained, the next developmental step 

was to create biomaterials capable of response to physiological stimulation, the 

called smart biomaterials184. Kuhn et al. invented the first intelligent polymeric 

material in 1950, which was most likely a pH-sensitive, artificial muscle-like, 

swelling-deswelling hydrogel185. Later, pH-sensitive hydrogels were created as 

an early example of a biomolecular system that responded to its surroundings in 

a medically significant manner186. However, Dong and Hoffman 1987 showed 

that the temperature responsiveness of poly(N-isopropyl acrylamide) (pNIPAM) 

hydrogels began the field of smart polymers187. 

Regarding vascular stent implants or the development of new catheters 

that do not induce immune response during surgical intervention, biomaterials 

applied in these procedures must not interact with any external particles (e.g., 

proteins, platelets). Thus, an excellent relevance goal of biomaterial science is 

the obtention of non-fouling biomaterials188. The first of their kind was 

developed in 1983 by Merrill and Salzman189, and research on platelet resistance 

by Nagaoka et al.190. Examples of these non-fouling materials are 

polysulfobetaines191.  

Observing the history of biomaterials, it is true that polymers are the 

most studied but are far from perfect among all the types of biomaterials. Several 

mishaps exist since synthetic polymers usually do not present a tailored chain 

sequence distribution192, whereas natural polymers depend on the state of the 

living organisms that produce them193. Further, several polymers do present not 

adequate biocompatible properties, like hydrophobicity194. Being a 

fundamental adaptability step to modify their surface for inducing bioactivation, 

with a process called surface modification195,196.   

Biomedical engineers have been looking for new controlled, and more 

accurate polymerization methods.  Atzet et al. created a biodegradable pHEMA 
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by employing chain-transfer polymerization (ATRP) to generate pHEMA blocks 

with a molecular weight of 6,000 Da from a dibromoisobutyryl-terminated 

PCL197. ARGET (activators regenerated by electron transfer) polymerization was 

created in 2007 to provide regulated radical polymerization in the presence of 

oxygen and with very low copper ion concentrations198. K. B. Sharpless used the 

phrase "Click Chemistry" in 2001 to characterize high-yielding reactions, broad 

in scope, produced only by products that can be removed without 

chromatography. They are stereospecific, simple to perform, and can be carried 

out in readily removable or benign solvents199. Thanks to the advances in 

polymerization protocols, new polymers that, in principle, could not seem 

biocompatible, like polyurethane, have been able to develop200. 

In addition to all these advances, we must also add the advances made by 

RM and TE, which remarked the importance of 3D structures in cell phenotypic 

and tissue recapitulation201. Recently, 3D organoids202 and patterned two- and 

3D organs on a chip203 have become popular, and both require biomaterials and 

deep comprehension of how the ECM affects tissue development204–206. 

5.5. The importance of the ECM 

Collagen fibers are the components that give tissues their tensile 

strength and prevent tissue creep under continual loads. Elastic fibers aid in the 

recovery of skin and cardiovascular tissue under constant mechanical loads. 

Proteoglycans are abundant in tissues such as cartilage, which are subjected to 

high compression forces while moving. Shear loading is detected by cells in these 

tissues, which act as force transducers, converting it into chemical impulses that 

stimulate the creation of more matrix components. Cell attachment factors (e.g., 

glycoproteins) are essential for maintaining continuity between the 

cytoskeleton of the cell and the ECM207. 
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5.5.1. Collagens 

Currently, nineteen distinct collagens have been discovered, all of which 

have particular characteristics and properties208. Collagen comprises three 

polypeptide chains coiled into a ropelike coil (Figure 12)209. This molecule 

region is responsible for the mechanical characteristics of tendons and ligaments 

(i.e., the ability to withstand tensile loads). Each chain, known as α-chain, is 

distinguished by three-amino acid repeating patterns, and, depending on each 

collagen type, chosen α-chains could be identical or not210. Changes to the 

glycine-X-Y amino acid sequence frequently result in collagen molecular failure 

creating mechanical instability (e.g., osteogenesis imperfecta)211. Intermolecular 

interactions between the α-chains of nearby molecules reinforce the helical 

complex, which is naturally tension-resistant212. 

5.5.2. Elastic fibers 

The elastic fibers of the ECM allow tissues such as the skin, lungs, and 

blood vessels to withstand repeated stretching and severe deformation while 

resuming their original shape. Depending on the intensity and direction of the 

stresses pressing on the tissue, elastin is organized differently210. The fibers can 

be organized as tiny, individual fibers (as in the epidermis or lung) or as a three-

dimensional honeycomb-like network of fine fibers (as in the aorta), with 

concentric fenestrated sheets (as in the aorta) or tiny, individual fibers (e.g., 

elastic cartilage)210. 

Figure 12. A fragment of a collagen molecule that demonstrates how the 
alpha chains are wrapped into a triple helix. The amino acids are similarly 

organized in a helix within each chain, with glycine facing the triple helix's core. 
The dots stand in for the other amino acids. 
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Regarding elastic fiber composition, it is formed by an elastin core 

surrounded by several microfibrils (Figure 13). The microfibrils, mainly 

composed of fibrillin, serve as a scaffold for the initial deposition of elastin, but 

after the production of the fiber's core elastin, the bulk of the microfibrils are 

relocated to the fiber's exterior211. Desmosine and isodesmosine, two amino 

acids found in elastin, create cross-links between neighboring tropoelastin 

chains, giving elastin its elastic qualities213. Despite the uncertainty over the 

natural process, the amount of elastin present in the tissue often indicates the 

degree of its mechanical strain213. Adult humans may produce elastin in response 

to cyclic strain, injury, UV radiation214, and tissues in several disease states, 

including emphysema215; however, adults cannot repair the elastic fiber 

assembly processes function is not restored213.  

Figure 13. A representation of elastic fibers with a microfibril-
containing elastin core is shown. 
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5.5.3. Proteoglycans (PGs) 

A core protein covalently linked to one or more glycosaminoglycan 

(GAG) side chains define the PGs216. The core proteins vary widely in size and are 

frequently unique to each PG species. The GAG chains are formed of repeating 

disaccharide units, and the kind and number of units significantly impact the PG's 

properties (Figure 14). Chondroitin sulfates 4 (CS A) and 6 (CS C), keratan 

sulfate (KS), dermatan sulfate (DS, sometimes known as CS B), heparan sulfate 

(HS), and hyaluronic acid (HA) are the six major GAGs217. HA is unique because 

it is neither sulfated nor linked to a protein core. 

All GAGs are negatively charged and have a proclivity to attraction, 

resulting in an osmotic imbalance that causes the matrix to absorb water from 

its surroundings216. The degree of hydration is determined by the number of GAG 

chains and the swelling limitation imposed by the surrounding collagen fibers216. 

The proportion of GAG in tissues subjected to high compressive forces (e.g., 

articular cartilage, AC) differs from that in tension-resisting tissues such as 

tendons and ligaments218. The proportions of PG species vary with mechanical 

load, with the CS:DS ratio being larger in tissues exposed to compression and 

lower in tissues resisting tension218. 

Figure 14. Representation of a conventional PGs with an amplification of 
their monomers. In the dotted line square there is the Hyaluronic acid obtained 

by the mixture of the hyaluronan (core molecule) with other PGs. 
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Substantial evidence supports the claims that appropriate physiological 

mechanical loading is necessary to maintain proper tissue architecture, and 

connective tissues vary their PG composition and type in response to applied 

stress  variations219. For instance, in healthy AC, joint mobility is essential for the 

appropriate maintenance and turnover of PG. Joint immobility or disuse causes 

cartilage shrinkage due to PG loss from the matrix219. Cartilage responds to 

changes in applied stresses by changing its PG content and type220. Even more, 

movement is sufficient to sustain PG content in sheep AC without needing weight 

bearing221.  

The production and breakdown of aggrecan are also disturbed in 

arthritic disorders brought on by trauma or degenerative processes, and the 

aggrecan monomer is unable to bind to HA and form large aggregates reducing 

multiple decompressive properties of cartilage222. This problematic issue is also 

relevant for the load-bearing interverbal discs (with high PG content)223. It has 

been known for some time that lateral compression of fetal tendons causes 

significant alterations in certain PGs and at the gene level. The messenger 

ribonucleic acids (mRNAs) for aggrecan and biglycan rose without affecting the 

mRNAs for decorin or type I collagen224. These alterations appear to be mediated 

by a specific growth factor, transforming growth factor beta (TGF- β), a potent 

stimulator for aggrecan and biglycan but not decorin224. The importance of 

biomechanics in tissues and, more specifically, in cartilage tissue will be 

discussed in the following chapters. 

5.5.4. Glycoproteins 

Glycoproteins are a minor yet significant portion of the overall ECM 

components; they are soluble, multidomain macromolecules with many 

functions. Although they do not perform many mechanical functions, they are 

crucial for maintaining the surrounding matrix and connecting it to the cell, i.e., 

cell-ECM interactions (Figure 15)225.  



DOCTORAL THESIS DANIEL MARTÍNEZ MORENO 

42 
 

Cell-ECM interactions are essential; they control many processes 

influencing cell shape changes, boosting cell motility, and promoting cell division 

and proliferation225. Examples of glycoproteins are: fibronectin, which presents 

an important role in cell attachment226; tenascin, involved in cell attachment 

modulation227; laminin, with a massive contribution in the structure of the 

basement membrane228,229 link protein, which stabilizes PG aggregates 

embedded in cartilage ECM230; thrombospondin, involved in cell attachment 

procedures227; osteopontin, endorses tissue calcification through calcium 

intake231; and, fibromodulin, controls collagen fibril formation232. 

 

Figure 15. Representation of the most relevant glycoproteins. Osteopontin 
and link protein are not included due to small size. 
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6. Biomechanics 

6.1. Background 

Biomechanics (from Ancient Greek: "life" and "mechanics") is the use of 

physical concepts in living beings such as people, animals, plants, and the 

fundamental functional units of life, the cells233. 

Regarding the history of biomechanics, Aristotle was the first to classify 

animals' bodies as mechanical systems, where he simplified the motion of the 

muscles by geometrical forms234. Several years later, Galileo did early analyses 

about the different evolution in bone strength related to weight235, and with 

Borrelli's calculation concerning human equilibrium, biomechanics became a 

specific science236. But it was in the sixteenth century when Leonardo Da Vinci 

established the origin of biomechanics by studying anatomy in the context of 

mechanics237. In the nineteenth century, surgeon Julius Wolff developed the law 

of bone remodeling based on mechanical stimuli238. Finally, during the 1960s, 

biomechanics was taught as part of a medical degree239. Currently, biomechanics 

is understood as a subfield of biophysics that studies the structure, operation, 

and motion of the mechanical components of biological systems, at any level, 

from complete organisms to organs, cells, and cell organell240,241. 

6.2. Basic solid mechanical concepts 

Some basic solid mechanics considerations and definitions must be 

clarified to follow the explanations below.  

A tissue is made up of atoms maintained in equilibrium at the molecular 

level by repulsive and attraction forces (Figure 16)242. There are four sorts of 

forces in nature: gravitational, electromagnetic, strong nuclear, and weak 

nuclear243. For breaking equilibrium, a non-zero force must be applied, and as a 
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result, the interatomic distance shifts, altering the geometry of the material, i.e., 

making a deformation. When atoms are placed in a specific position, the 

repulsive or attractive force (which causes atoms to move towards or away) is 

proportional to the increase in position242. This force is analogous to that 

produced by a spring. When applied to the entire body, this concept makes a 

perfect mesh of springs connecting nearby atoms, i.e., Hooke's law for 

continuum mechanics244. Hooke's linear elasticity's an excellent approximation 

to reality; however, we must keep in mind that the force-strain relationship in 

soft tissues is not linear. Furthermore, because atoms have mass, they are 

susceptible to the concept of inertia.  This grounds that the transmissions of 

these forces via tissues (i.e., among atoms) are not instantaneous, so a wave 

propagation phenomenon with a finite wave speed develops. 

Solid mechanics is part of the continuum mechanics field, and this is a 

field of mechanics that studies the mechanical behavior of materials that are 

represented as a continuous mass rather than discrete particles; these models 

were developed Augustin-Louis Cauchy245. 

A continuum model posits that the object's essence fills the space it 

occupies246. These models may be used to create differential equations that 

explain the behavior of such things using physical principles such as 

Figure 16. Elastic behaviour from the interatomic forces. 
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conservations of mass, linear momentum, and energy; together, the constitutive 

connections offer some information about the material246. Continuum mechanics 

is concerned with the physical characteristics of solids and fluids unaffected by 

the coordinate system in which they are seen. To do this, scientists use tensors, 

mathematical objects independent of coordinate systems, to express physical 

qualities247. These tensors can be represented computationally using coordinate 

systems, as explained later248. 

6.2.1. Stress in solid mechanics 

The force across a "small" border per unit area for all boundary 

orientations is stress249. Stress (Figure 17) is a fundamental number that, like 

velocity, torque, and energy, can be measured and studied without explicitly 

taking into account the nature of the material or its physical causes since it is 

formed from a fundamental physical quantity (force) and a purely geometrical 

quantity (area). 

 Stresses are represented with the letter σ for normal stressed and with τ for 

shear ones. Uniaxial normal stresses are mathematically expressed as follows: 

Figure 17. Cartesian representation of tridimensional stresses and the plane 
stress. 
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𝜎 =  
𝐹

𝐴
 ( 1 ) 

Cause stress is the ratio between force over area, it has the units of N · m-

2, but it is not uncommon to find it expressed in Pa.  

6.2.2. Strain in solid mechanics 

When rigid-body movements are not included, strain and deformation 

are linked regarding the relative displacement of body components. Depending 

on whether a strain field is defined about the body's initial or final configuration 

and whether the metric tensor or its dual is considered, different equivalent 

options may be made for the formulation of the field. 

In the cartesian coordinate system, normal uniaxial strain can be defined 

as: 

𝜀 ≝  
𝜕

𝜕𝑿
(𝑥 − 𝑿) → 𝜀𝒙 =

𝜕𝑢𝑥

𝜕𝑥
 ( 2 ) 

But, in engineering, most of the time is applied the Cauchy strain is: 

𝑒 =  
∆𝑙

𝐿
 ( 3 ) 

where ∆𝑙 is the increment in length (it can be negative), and because it is a ratio 

between length units over the same units, the result is adimensional, which is a 

reasonable condition to extrapolate results between models.  

On the other hand, shear strains are defined as the change in the angle 

between two adjacent solid boundaries (see Figure 18).  

𝛾𝑥𝑦 =  
𝜕𝑢𝑦

𝜕𝑥
+ 

𝜕𝑢𝑥

𝜕𝑦
 ( 4 ) 

In a Cartesian system, the Cauchy’s strain tensor looks like: 
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[

𝜀𝑥𝑥 𝜀𝑥𝑥 𝜀𝑥𝑧

𝜀𝑦𝑥 𝜀𝑦𝑦 𝜀𝑦𝑧

𝜀𝑧𝑥 𝜀𝑧𝑦 𝜀𝑧𝑧

] =

[
 
 
 
 
 
 

𝜕𝑢𝑥

𝜕𝑥

1

2
(
𝜕𝑢𝑥

𝜕𝑦
+

𝜕𝑢𝑦

𝜕𝑥
)

1

2
(
𝜕𝑢𝑥

𝜕𝑧
+

𝜕𝑢𝑧

𝜕𝑥
)

1

2
(
𝜕𝑢𝑦

𝜕𝑥
+

𝜕𝑢𝑥

𝜕𝑦
)

𝜕𝑢𝑦

𝜕𝑦

1

2
(
𝜕𝑢𝑦

𝜕𝑧
+

𝜕𝑢𝑧

𝜕𝑦
)

1

2
(
𝜕𝑢𝑧

𝜕𝑥
+

𝜕𝑢𝑥

𝜕𝑧
)

1

2
(
𝜕𝑢𝑧

𝜕𝑦
+

𝜕𝑢𝑦

𝜕𝑧
)

𝜕𝑢𝑧

𝜕𝑧 ]
 
 
 
 
 
 

 ( 5 ) 

6.2.3. Hooke's law 

Elasticity in solid mechanics refers to a body's capacity to withstand a 

force that causes distortion and to recover its original dimensions once the force 

has been withdrawn244. Hooke's law establishes that any variation of strain in a 

solid is proportional to the applied stress; this is true under the consideration of 

elastic deformation. The relationship between both conditions (i.e., stress and 

strain) is called Young's modulus (E), the slope of the stress vs. strain curve249.  

Thus, simplified Hooke's law in solid mechanics is defined as: 

𝝈 = 𝐸𝜺 ( 6 ) 

that in general form is: 

𝜺 =
1

𝐸
(𝝈 − 𝑣(𝑡𝑟(𝝈)𝑰 − 𝜎)) ( 7 ) 

and, in cartesian coordinates, it is represented as a tensors relationship: 

Figure 18. Planar representation of normal and shear 
strains in Cartesian coordinates. 
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[
 
 
 
 
 
𝜎𝑥

𝜎𝑦

𝜎𝑧

𝜏𝑦𝑧

𝜏𝑥𝑧

𝜏𝑥𝑦]
 
 
 
 
 

=
𝐸

(1 + 𝜈)(1 − 2𝜈)
·

[
 
 
 
 
 
 
 
 
1 − 𝜈 𝜈 𝜈 0 0 0

𝜈 1 − 𝜈 𝜈 0 0 0
𝜈 𝜈 1 − 𝜈 0 0 0

0 0 0
1 − 2𝜈

2
0 0

0 0 0 0
1 − 2𝜈

2
0

0 0 0 0 0
1 − 2𝜈

2 ]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
𝜀𝑥

𝜀𝑦

𝜀𝑧

𝛾𝑦𝑧

𝛾𝑥𝑧

𝛾𝑥𝑦]
 
 
 
 
 

 ( 8 ) 

where 𝜈 is the Poisson's ratio, defined as the deformation of a material in the 

orthogonal direction of the applied stress. 

6.3. Pressure waves 

Ultrasound (US) are mechanical or acoustic waves that differ from 

audible waves in that they are generated at frequencies above the audible ones 

(f > 20kHz) within that they are generated with frequencies above the audible 

ones (f > 20kHz) to gain temporal resolution by having minimal periods (inverse 

of frequency)250. They propagate through air, fluids, and solids. For the objectives 

of the present work, it is relevant to expose the reader's awareness of the simple 

solution of a linear ultrasonic wave propagation equation. 

6.3.1. Linear wave propagation equation 

Let there be a solid through which a one-dimensional ultrasonic wave is 

propagating in the direction of the X-axis; as shown in Figure 19, we know that 

the particles move in the same direction of the X-axis propagation x. 

As a consequence, the only non-zero component is 𝑢𝑥  ≠ 0 and 𝑢𝑦  =

 𝑢𝑧  =  0.  Following the previous explanations, it can be established that the only 

non-zero deformation is 𝜀𝑥, and applying the before mentioned Hooke's law, it is easy 

to end in the following relation: 

𝜎𝒙 =  
𝐸(1 − 𝜈)

(1 + 𝜈)(1 − 2𝜈)
𝜀𝑥 ( 9 ) 

It is known that to maintain equilibrium; the force balance must be, 
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∑𝑭𝒙 = 0 ( 10 ) 

and applying Newton's second law251, it is obtained: 

∑𝑭𝒙 = 𝑚 · 𝑎𝑥 ( 11 ) 

where m is the material mass, and a is its acceleration. Applying the relationships 

between mass and density (𝜌) and acceleration with displacement field, it is 

obtained: 

∑𝑭𝒙 = 𝜌𝑑𝑥𝐴
𝑑2𝑥

𝑑𝑡2  ( 12 ) 

that under equilibrium, it is expressed as an equilibrium equation, 

𝑑𝜎𝑥

𝑑𝑥
= 𝜌

𝑑2𝑢𝑥

𝑑𝑡2
 ( 13 ) 

Applying equations ( 2 ) and ( 9 ) in ( 13 ) the standard wave equation can 

be derived: 

𝑑2𝑢𝑥

𝑑𝑡2 =  
𝐸(1 − 𝜈)

𝜌(1 + 𝜈)(1 − 2𝜈)

𝑑2𝑢𝑥

𝑑𝑥2  ( 14 ) 

From the basic theory of differential equations252, this standard wave 

equation must have a solution of the form253: 

Figure 19. Representation of a linear planar mechanical 
wave propagation front. 
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𝑢(𝑥, 𝑡) = 𝑓(𝑥 − 𝑐𝑡) ( 15 ) 

where x is the propagation space, c is its velocity, and t is the propagation time. 

To probe the previous solution can be checked through its second 

derivative: 

𝑑2𝑢𝑥

𝑑𝑡2 = 𝑐2𝑓′′ ( 16 ) 

 

Comparing equations ( 16 ) and ( 14 ); the only possible solution is 

obtained when the value of velocity follows the following expression: 

𝑐 =  √
𝐸(1 − 𝜈)

𝜌(1 + 𝜈)(1 − 2𝜈)
 ( 17 ) 

6.4. Basic Fluid mechanics concepts 

The combined analysis of momentum, mass, and energy transfer, as well 

as the thermodynamics and kinetics of chemical processes, are all part of the 

study of transport phenomena254. In introductory biomechanics, the Navier-

Stokes equations may be used to solve most transport phenomena problems255. 

These equations are made up of a time-dependent continuity equation for mass 

conservation, a momentum conservation equation, and a time-dependent 

energy conservation equation256: 

Conservation of mass (The continuity equation) 

𝜕𝜌

𝜕𝑡
+ 𝒗 · ∇𝜌 =  −𝜌∇ · 𝒗 ( 18 ) 

where 𝒗 is the velocity field of the system. 

Conservation of momentum (Newton's second law)  

𝜌
𝜕𝒗

𝜕𝑡
+ 𝜌𝒗 · ∇𝒗 =  −∇𝐩 +  μ∇2𝒗 +  𝜌𝒈 ( 19 ) 
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with p the external pressure field and g the gravity gradient. 

Conservation of energy (1st law of thermodynamics) 

𝜌
𝜕𝑬

𝜕𝑡
+ 𝒗 · ∇𝑬 =  −∇ · 𝐪 − ∇ ·  𝜌𝒗 + ∇ · (𝛕 · 𝒗) + 𝑭 · 𝒗 + 𝑊̇ + 𝑄̇𝑝 ( 20 ) 

where 𝑄̇𝑝 is the net rate of heat production per unit time volume in the system, 𝑊̇ is the 

net rate of work produced in the system, q is the heat conduction field, F is the external 

forces, and E is the total energy transfer of the system. 

The bioengineer's mechanistic knowledge of transport mechanisms is 

essential to characterize physiological and cellular processes, build and operate 

various devices, and create novel therapeutics257. Dialysis machines, 

pacemakers, biosensors, or oxygenators are examples of biomedical equipment 

impacted by transport processes. Also, transport processes are essential in 

removing toxins from the blood, creating replacement tissues (for example, 

bioreactors (BR) for TE), and drug administration258. Molecule transport 

involves two physical phenomena: diffusion and convection259,260.  

Diffusion is the stochastic movement of molecules caused by thermal 

energy transfer from molecular collisions259. This phenomenon occurs in gases, 

liquid solutions, membranes, and interstitial tissue spaces. Diffusing molecules 

travel from locations of higher concentration to regions of lower concentration 

(i.e., through concentration gradients) as a visible result of random molecular 

mobility. Flux is the net movement of molecules through a unit area in a given 

direction per unit of time. 

Fick's first law describes the relationship between the diffusion flow and 

the concentration gradient (also known as the constitutive equation)261. Albert 

Einstein stated that diffusion was: for a 2D random distribution of molecules262: 

𝐷𝑖𝑗 =
𝑥2 + 𝑦2

4𝑡
 ( 21 ) 
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Convection is a transport mechanism caused by the overall motion of 

fluids. Fluids flow due to forces such as gravity, pressure, or shear260. Some 

definitions must be done regarding the bulk motion of a fluid. 

The fluid viscosity (µ) indicates a fluid's frictional resistance to flow. The 

frictional force required to cause motion is related to the fluid viscosity. The 

viscosity of a pure fluid is a thermodynamic function of temperature and 

pressure256.  

Density (ρ) is a material parameter describing how dense molecules are 

packed together. The density of a system is defined as the ratio of its mass to its 

volume. The density of a mixture varies with temperature, pressure, and 

composition256. 

Kinematic viscosity is the term for the density-to-viscosity ratio and is 

represented by the symbol256: 

𝜈 =  
𝜇

𝜌
 ( 22 ) 

 For simple fluids, the viscosity is a proportional coefficient between the 

shear stress and the velocity gradient (Newton's law of viscosity): 

𝜏𝑦𝑥 = 𝜇𝛾̇𝑥 = 𝜇
𝑑𝑣𝑥

𝑑𝑦
 ( 23 ) 

When a force applied to a moving fluid is withdrawn, it sometimes 

elapses before the fluid motion stops. The change in velocity over time is caused 

by a balance of viscous and inertial forces. Viscous forces slow fluid velocity, but 

inertial forces keep the fluid moving. Because viscous forces are affected by 

viscosity and inertia is affected by mass or density, the relative contributions of 

these forces vary amongst fluids. The Reynolds number (Re) is a dimensionless 

set of parameters that describes the ratio between inertial forces and viscous 

forces263: 
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𝑅𝑒 =  
𝑖𝑛𝑡𝑒𝑟𝑛𝑖𝑎𝑙 𝑓𝑜𝑟𝑐𝑒𝑠/𝑣𝑜𝑙𝑢𝑚𝑒

𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒𝑠/𝑣𝑜𝑙𝑢𝑚𝑒
=

𝜌𝑣2/𝐿

𝜇𝑣/𝐿2 =
𝜌𝐿𝑣

𝜇
 ( 24 ) 

here, L is the characteristic length, and 𝑣 is the characteristic velocity for the flow. 

A high Re indicates viscous forces are far less critical than inertial forces, 

such as a guy sprinting against the wind. On the other hand, a small Reynolds 

numbers indicates highly viscous media on which many viscous forces depend, 

such as cell migration across the interstitial fluid256.  

Therefore, regarding Re, flows can be classified as laminar or 

turbulent256. The velocity at any given site does not change with time in 

continuous laminar flow. When the flow is turbulent, however, the velocity 

swings arbitrarily due to the production and dissipation of high-energy eddies256. 

Although turbulent flow analysis is more sophisticated than laminar flow 

analysis, most fluids in human physiology are laminar258. 

In biological systems, these two processes, diffusion and convection 

control the flow of energy and momentum. 

6.5. Perfusion flow 

In physiology, perfusion is defined as fluid distribution to an organ or 

tissue through the circulatory or lymphatic systems264. All living tissues require 

adequate nutrient and oxygen support, and inadequate perfusion (ischemia) 

leads to cell death265. 

Observing TE grafts and naïve human tissues, it is widespread to find 

materials that present embedded porous media; these pores may be empty or 

filled with fluid and vary widely depending on biomaterial and synthesis 

techniques266. Micro- or nanofabricated materials may have a structure with a 

regular array of cylindrical pores267. On the other hand, sponges comprise a 

continuous solid phase with interconnecting channels or isolated pores267. A 
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granular structure, such as a sand pile, comprises solid particles and the vacuum 

space between them. The basic structure of polymeric gels is fiber matrices267. 

The interstitial pores are either isolated or linked to create hydrophilic 

channels, essential for transporting nutrients, metabolites, growth factors, 

inhibitors, modulators, and other signaling molecules in tissues. The motion of 

fluid molecules in porous media follows tortuous pathways, being tortuosity 

(𝑇 = (
𝐿𝑚𝑖𝑛

𝐿⁄ )
2

) its analytical parameter268. 

Porosity is often characterized by the specific surface (aka the surface-

volume ratio) and porosity ratio, which are defined as266: 

𝑠 =
𝑇𝑜𝑡𝑎𝑙 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎

𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒
 ( 25 ) 

and 

𝜀 =  
𝑉𝑜𝑖𝑑 𝑣𝑜𝑙𝑢𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒
 ( 26 ) 

Although porosity is a precise figure representing the bulk size of holes 

inside a material, it does not indicate how the pores are distributed or if they are 

effective for fluid transmission Figure 20. 

William Henry Darcy developed Darcy's law, the idea of fluid flow in 

porous media, in 1856269. According to the law, the fluid flow rate in a porous 

media is proportional to the pressure gradient. 

𝒗 =  −𝐾∇𝒑 ( 27 ) 

where ∇𝒑 is the gradient of hydrostatic pressure 𝐾 is a constant defined as 

hydraulic conductivity.  

In the case of incompressible and Newtonian fluids, and considering 

static fluid pressure, the hydraulic conductivity has the form of: 
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𝐾 = 
𝑘𝜌𝑔

𝜇
 ( 28 ) 

where 𝑘 is the medium's permeability and 𝜇 the kinematic viscosity of the fluid. 

Two approaches may be employed to characterize fluid flow in porous 

materials270. If the structures or pore networks are known, one method is to 

numerically solve the governing equations for fluid flow in individual pores. 

Another assumption is that a porous medium is a homogeneous substance. Darcy 

proposes three length scales in his so-called continuum approach271. The first 

one is the average pore size (𝛿). The second is the distance (𝐿) that must be 

addressed when considering macroscopic changes in physical variables. The 

continuum technique needs 𝐿 to be at least two orders of magnitude bigger than 

𝛿 such that a third length scale, 𝑙,, can exist between 𝛿 and L271. 

Thereby, perfusion flows through scaffolds are porous media transport 

problems with complex solutions. Despite clarifying some considerations used 

in Part 3 of this project, the solution of a laminar flow development through a 

pipe will be helpful. 

Figure 20. Scheme of different pore shapes. Porous materials 
present different kind of behaviour for fluid mechanics depending if 

they are: closed, dead-ended or opened at both sides. This effect 
cannot be measured by porosity ratio. 
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6.5.1. Laminar flow through a cylindrical pipe 

Once all the previous considerations are known, the volumetric flow is 

calculated by applying the conservation laws of mass and momentum: 

𝜕𝜌

𝜕𝑡
= (

1

𝑟

𝜕(𝜌𝑟𝜐𝑟)

𝜕𝑟
+

1

𝑟

𝜕(𝜌𝜐𝜃)

𝜕𝜃
+

1

𝑟

𝜕(𝜌𝜐𝑧)

𝜕𝑧
) ( 29 ) 

The constraints imposed by the problem design on the mass 

conservation law are as follows: because the medium is Newtonian, the volume 

density remains constant throughout time. At a steady state, the flow is constant 

and solely relies on the z direction (parallel to the cylinder axis). Finally, gravity 

was deemed insignificant to simplify the calculations because of the significant 

difference in the order of magnitude between the flow profile caused by 

gravitational forces and the one produced by the peristaltic pump. After applying 

the discussed constraints, the final solution for equation ( 29 ) is as follows: 

𝜕𝜈𝑧

𝜕𝑧
= 0 ( 30 ) 

The momentum conservation law is applied with the same constraints as 

in equation ( 29 ). 

𝜌
𝜕𝒗⃗⃗ 

𝜕𝑡
+  𝜌𝒗⃗⃗ ∙ 𝛻𝒗⃗⃗ = −𝛻𝒑⃗⃗ +  𝜇𝛻2𝒗⃗⃗ + 𝜌𝒈⃗⃗  ( 31 ) 

which are written in cylindrical coordinates (note that the equations already 

represent a Newtonian fluid): 

𝜌 (
𝜕𝑣𝑟

𝜕𝑡
+ 𝑣𝑟

𝜕𝑣𝑟

𝜕𝑟
+ 

𝑣𝜃

𝑟

𝜕𝑣𝑟

𝜕𝜃
− 

𝑣𝜃
2

𝑟
+ 𝑣𝑧

𝜕𝑣𝑟

𝜕𝑧
)  

=  − 
𝜕𝑃

𝜕𝑟
+  𝜇 (

𝜕

𝜕𝑟
(
1

𝑟

𝜕(𝑟𝑣𝑟)

𝜕𝑟
) + 

1

𝑟2

𝜕2𝑣𝑟

𝜕𝜃2 − 
2

𝑟2

𝜕𝑣𝜃

𝜕𝜃
+ 

𝜕2𝑣𝑟

𝜕𝑧2 ) +  𝜌𝑔𝑟  

( 32 ) 

𝜌 (
𝜕𝑣𝜃

𝜕𝑡
+ 𝑣𝑟

𝜕𝑣𝜃

𝜕𝑟
+ 

𝑣𝜃

𝑟

𝜕𝑣𝜃

𝜕𝜃
+ 

𝑣𝑟𝑣𝜃

𝑟
+ 𝑣𝑧

𝜕𝑣𝜃

𝜕𝑧
)  

=  − 
1

𝑟

𝜕𝑃

𝜕𝜃
+  𝜇 (

𝜕

𝜕𝑟
(
1

𝑟

𝜕(𝑟𝑣𝜃)

𝜕𝑟
) + 

1

𝑟2

𝜕2𝑣𝜃

𝜕𝜃2 + 
2

𝑟2

𝜕𝑣𝑟

𝜕𝜃
+ 

𝜕2𝑣𝜃

𝜕𝑧2 )

+  𝜌𝑔𝜃  

( 33 ) 



INTRODUCTION BIOMECHANICS 

57 
 

𝜌 (
𝜕𝑣𝑧

𝜕𝑡
+ 𝑣𝑟

𝜕𝑣𝑧

𝜕𝑟
+ 

𝑣𝜃

𝑟

𝜕𝑣𝑧

𝜕𝜃
+ 𝑣𝑧

𝜕𝑣𝑧

𝜕𝑧
)  

=  − 
𝜕𝑃

𝜕𝑧
+  𝜇 (

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑣𝑧

𝜕𝑟
) + 

1

𝑟2

𝜕2𝑣𝑧

𝜕𝜃2 + 
𝜕2𝑣𝑧

𝜕𝑧2 ) +  𝜌𝑔𝑧 
( 34 ) 

Because 𝑣𝑟 solely depends on r, all derivatives of 𝑣𝑟 that relies on z, t, or 

zero in equation ( 32 ). Again, gravitational forces are insignificant. In most cases, 

pipes boundaries ensure that there is a "no-slip" condition, which means that 𝑣𝑟 

is 0 at the walls of the cylindrical channel; and there is only one entrance and one 

output, resulting in 𝑣𝑧  equal to a constant along the Z direction (steady flow) and 

𝑣𝜃 and 𝑣𝑟 equal to 0. 

Applying previous concepts, equation ( 33 ) and equation ( 34 ) result into: 

− 
𝜕𝑃

𝜕𝑟
= −

𝜕𝑃

𝜕𝜃
=  0 ( 35 ) 

Thus, it is clear from equation ( 35 ) that the pressure field is independent 

of r or θ. This finding is consistent with the notion of considering the flow as bi-

dimensional. 

Finally, after applying the boundary conditions, equation 6 may be 

reduced as follows: 

𝜇

𝑟

𝑑

𝑑𝑟
(𝑟

𝑑𝑣𝑧

𝑑𝑟
) =  

𝑑𝑃

𝑑𝑧
 ( 36 ) 

It is worth nothing that equation ( 36 ) has two distinct but equal 

derivatives. The only way to solve this equation is if the pressure gradient along 

the Z direction is constant and the shear stress along the r direction is constant. 

𝐶1 =  
𝑑𝑃

𝑑𝑧
 ( 37 ) 

There are two locations in the center of the canal where the pressure may 

be felt. The pressure will be 𝑃𝐿 at the exit (𝑧 =  𝐿) instead of 𝑃0 at the entry (𝑧 =

 𝑍0). Therefore, ∆𝑃 = 𝑃𝐿 − 𝑃0. This type of function, pressure, must exist: 
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𝑃 = 𝐶1𝑟 + 𝐶2  ( 38 ) 

that can be solved as: 

𝑃 = 𝑃0 − 
Δ𝑃

L
 (𝑧0 − 𝑧) ( 39 ) 

In this instance, the pressure at the input will be highly identical to the 

pressure at the output, making Δ𝑃 ≅  0, and this is because no external forces 

are acting on the flow (the BR is in a steady state). The Z component of the 

velocity may now be derived by integrating equation ( 36 ) twice and then putting 

equation ( 39 ) into that one.  

The first integral is: 

(𝑟
𝑑𝑣𝑧

𝑑𝑟
) = −

𝛥𝑃𝑟2

2𝜇𝐿
+ 𝐶3 ( 40 ) 

and the second integral: 

𝑣𝑧 = −
𝛥𝑃𝑟2

4𝜇𝐿
+ 𝐶4 ( 41 ) 

At 𝑟 = 𝑅 (the walls), the velocity is 0 because of the no-slip condition, 

thus: 

𝐶4 =
𝛥𝑃𝑟2

4𝜇𝐿
 ( 42 ) 

Finally, the z component of the velocity is: 

𝑣𝑍 =
𝛥𝑃𝑟2

4𝜇𝐿
(1 −  

𝑟2

𝑅2
) ( 43 ) 

The volumetric flow, Q (Figure 21), can be extracted from the average 

velocity, which is 𝑣̅ =
1

2
𝑣𝑚𝑎𝑥 being 𝑣𝑚𝑎𝑥 the maximum velocity that the flow can 

reach. That is produced in the middle of the channel (𝑟 = 0). 
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𝑄 = 𝑣𝑚𝑎𝑥𝜋𝑅2 =  
𝛥𝑃𝜋𝑅4

8𝜇𝐿
 ( 44 ) 

Additionally, a fully developed channel flow has a shear stress profile of: 

𝜏𝑟𝑧 =
1

2
𝐷 (

ΔP

𝐿
) ( 45 ) 

Now that all equations have been solved, it is crucial to highlight two 

principles that allow the theoretical profile to depict the actual process 

accurately. Pousille's law, typical of a Hagen-Pouseuille flow, is represented by 

equation ( 44 ). But, for it to be true, the channel's entry length, or the minimum 

length required to create laminar flow in a Newtonian fluid, must be: 

𝐿𝑒 = 0.058𝐷𝑅𝑒 ( 46 ) 

where the channel diameter is D, and Re is the before-mentioned Reynolds 

number.  

In laminar flows, the Re must be less than 2,100. The Re for this situation 

is given by the following formula, which is dependent on the gradient of 

pressures: 

𝑅𝑒 =
𝜌𝐿

𝜇
·
1

2

𝑟2

4𝜇𝐿
𝛥𝑃 ( 47 ) 

Figure 21.  Representation of an ideal Hagen-Pouseuille flow through a 
capillary. 
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6.6. Mechanotransduction 

It is clear the extraordinary complexities of biofabrication processes, 

combined with the exceptional organization of AC tissue, where any change in its 

homeostasis results in a complicated chain of biochemical reactions that leads to 

OA. Then, why is it necessary to describe all of the physics involved? To put it 

another way, what is the connection between constitutive mechanical laws and 

cell physiology? The response could be that mechanical variables might influence 

changes in tissue homeostasis. But is it essential to explain how such mechanical 

interactions work? Finally, the aspects that alter the most in diseases are gene 

expression and protein synthesis. Although it may appear unimportant, how 

forces affect biochemical activities is essential. It is becoming increasingly clear 

that epigenetic variables, primarily mechanical and structural signals that affect 

cell activity, play a critical role in embryogenesis, tissue physiology, and various 

diseases272. These reasons have sparked increased interest in 

mechanoregulation in fields ranging from molecular biophysics and cell biology 

to human physiology and clinical medicine273–275. 

At the current time of this work, it is known that a broad group of cells is 

regulated mechanically; among them are fibroblasts276, keratinocytes277, 

chondrocytes278,279, osteocytes280, and even stem cells281,282. A growing body of 

data suggests that the primary cilium of most cell types is mechanosensitive 

and responsive, leading some researchers to conclude that it is a form of 

universal cellular mechanosensory283,284. However, well-established methods of 

cellular sensing and reactivity to mechanical stresses include cell-cell, cell-

matrix, and cell-lumen interactions285. The process of how cells translate 

mechanical stimuli into biochemical, cellular responses is called 

mechanotransduction272. 

6.6.1. Mechanoreceptors 

Mechanoreceptors are somatosensory receptors that transmit external 

stimuli to intracellular signal transduction via mechanically gated ion 
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channels286. Touch, compression, straining, and mechanical waves are typical 

external stimuli287. In the cell membrane of animal cells, it can be found next 

mechanoreceptors (Figure 22)288: 

• Stretched-activated ion channels form gaps in the cell membrane large 

enough to allow calcium and other cations to flow through. Mechanically 

generated membrane tension can open the channels depending on the 

concentration differential across the cell membrane, allowing an inflow 

or outflow of ions. Ionic balance is essential for many cellular activities 

and adds to the cell membrane's closely controlled electric potential. 

Calcium concentrations inside cells regulate intracellular signaling, actin 

polymerization, cytoskeletal remodeling, and cell motility289,290. 

• Growth factor receptors (GFRs) bind to external growth factors, 

activating numerous receptor-mediated second messenger pathways 

within the cell. GFRs have been discovered to interact with other 

mechano-sensing receptors in the cell membrane, resulting in additive or 

complementary signaling effects281,291. 

• Integrins are transmembrane receptors with two subunits (α and β) that 

perform different regulatory and signaling activities. They are crucial in 

force transmission across the cell membrane and cellular perception of 

matrix stiffness. Integrin activation for ECM binding and signaling can 

take several forms, including allosteric interactions, clustering to create 

signaling complexes, and cytoskeletal tensioning via integrin-mediated 

attachments (e.g., focal adhesions)292. They regulate cell adhesion, 

proliferation, migration, stem cell differentiation, intracellular signal 

transduction, and matrix turnover293–297. 

• G-protein-coupled receptors (GPCRs) are large proteins with seven 

transmembrane domains. Many effector proteins and chemicals attach to 

the extracellular region, causing a conformational change in the protein's 

structure. Once activated, the cytosolic part interacts with intracellular 

GPCRs to impact the signaling cascade based on the signal's specificity. 
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Mechanical stresses across the cell surface can activate these receptors, 

triggering secondary messenger cascades within the cell288,297.  

6.6.2. Tensegrity 

Although evidence establishes forces altering specific molecule routes, 

these results do not explain how cells can react to far mechanical stimuli in a few 

seconds. In nature, cells are not isolated systems but they are connected to their 

ECM and other cells, forming a dense, complex, and hierarchical network. These 

networks present a preset stress level stabilizing the entire structure, called 

tensegrity298 (Figure 23). The term tensegrity combines the words' tension' and 

'integrity,' and Buckminster Fuller used it for the first time299. At the macroscale, 

tensegrity may be observed in how pulling forces produced by muscles and 

resisted by bones maintain the form of our entire bodies300. 

Figure 22. The most common mechanoreceptors and their relationship to 
gene expression via various signalling pathways are depicted schematically. 

As previously stated, the cytoskeleton plays a critical role in the 
mechanotransduction process. 
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This tensegrity state is also maintained throughout the cytoskeleton 

thanks to microtubule architecture, permitting cells to transfer compressive 

pressures upside/down between microtubules and ECM adhesions301. 

Therefore, in rounded cells with few anchoring sites, microtubules bear most of 

the prestress, whereas the ECM carries most of the load in spread cells on highly 

sticky substrates302. The cortical cytoskeleton, which supports the plasma 

membrane, also forms another tensegrity network by incorporating multiple 

rigid actin protofilaments held in place by a geodesic (triangulated) array of 

spectrin molecules that act like tensed cables suspended from the overlying lipid 

bilayer303.  

The presence of these tensegrity networks, as well as their ability to 

channel mechanical forces across discrete molecular paths to sites deep within 

the cytoplasm and nucleus, explains how cell distortion or mechanical stress 

Figure 23. Tensegrity implies a level of prestressing of a whole fiber network 
connected from the ECM to the cell nucleus. Thanks to this phenomenon, all cells in 

the same ECM niche are connected and intercommunicated for external stimuli. 
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application to ECM and bound cell surface integrins results in changes in nuclear 

shape and induces molecular organization within nucleoli on progressively 

smaller size scales304. This coupling between integrins and the nucleus is 

mediated primarily by intermediate filaments that extend from cell surface 

adhesion sites to the nucleus and, to a lesser extent, by the actin cytoskeleton305, 

with cytoskeletal prestress governing the efficiency of this multiscale mechanical 

response306. 

The discovery that polycystic kidney disease develops due to mutation or 

deletion of the polycystin genes, which produce mechanosensitive ion channels 

that mediate urine flow sensors in kidney epithelium, highlights the significance 

of mechanical forces for organ regeneration development307. 

6.7. Finite Element Analysis 

Analytical solutions to stress analysis problems in biomechanics were 

generally limited to objects with a basic shape and exposed to simple loading 

circumstances, as was exposed above. Because biological systems are 

geometrically irregular and have intricate distributions of material mechanical 

characteristics, classical mechanics analytical solutions were rarely viable or 

valuable for biomechanical study. These new approximation procedures are 

required to solve biomechanical problems like finite element analysis (FEA), 

which is undoubtedly the most well-known. Instead of conventional mechanical 

analytical solutions, a set of simultaneous equations for an array of discrete 

simplified subdomains in FEA is numerically solved (elements). Specific 

interpolation functions (typically polynomials) are assumed within these 

individual elements, from which internal variables (e.g., strains) are piecewise 

estimated and evaluated in a discrete number of points (nodes)308.  

The early 1940s work of Courant provided the mathematical foundation 

for this conceptual approach, which saw its initial implementations in physics309 

and engineering310 in the mid-1950s. R.W. Clough (1960) is widely credited with 
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coining the term "finite element analysis," which he introduced in a mechanical 

engineering conference presentation311. The FEA technique proved suitable for 

fluid mechanics, electromagnetic field analysis, and other continuum field issues 

after initially applying it to static structural problems308. 

6.7.1. Finite element models in biomechanics 

The earliest applications of FEA to biomechanics were isotropic linearly 

elastic structural studies of bone, undertaken independently by groups in the 

United States312 and the Netherlands313. This new skill's importance to 

biomechanics science was instantly apparent: for the first time, mechanical 

stresses could be calculated in bodies with intricate forms, complex material 

compositions, and nonsymmetrical loadings. Material anisotropy and 

geometrical nonlinearity, contact and interface nonlinearity, time-variant 

loadings, adaptive behavior (material and geometrical), and fluid/structure 

interactions can be studied thanks to FEA314,315.  

Nowadays, computational modeling of the biomechanics using FEA, or 

finite element models (FEM), of living systems and their surroundings offers the 

potential to accelerate medical and biological progress. Imaging advancements 

have paved the road for patient-specific modeling316–321, which might transform 

how doctors identify and treat some illnesses. The usage of highly discretized 

geometry has been possible because of ongoing developments in high-speed 

computer technology322,323. 

FEM investigations are typically divided into five phases (Figure 24): i) 

The first stage involves the creation of specialized code, if applicable to the topic, 

and model design which implies the selection of the physics (e.g., 

electromagnetism, solid mechanics, etc.) and domains (e.g., time or frequency). 

In some studies, the design can be obtained from medical images. ii) The second 

phase (preprocessing) entails establishing the mesh shape, defining the 

material property distributions, and determining the loading. iii) Third, the finite 

element solution is computed; this is the calculation step. iv) Fourth, it proceeds 
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to a stage known as postprocessing, in which the raw output of the FE solution 

is utilized to compute variables of interest, and chosen information is visually 

presented. v) The final stage is result interpretation, which relies on analyst 

opinion. 

Mesh 

To form a mesh for FEMs is based on the mathematical discretization 

procedure, thus, an infinite-linear problem324: 

𝐹𝑖𝑛𝑑 𝒖 ∈  𝑯𝟎
𝒍  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

∀𝒗 ∈ 𝑯𝟎
𝒍 −  𝜙(𝒖, 𝒗) =  ∫𝒇𝒗 

( 48 ) 

is simplified into a finite-dimensional version 

𝐹𝑖𝑛𝑑 𝒖 ∈  𝑽 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

∀𝒗 ∈ 𝑽 −  𝜙(𝒖, 𝒗) =  ∑𝒇∆𝒗 
( 49 ) 

where 𝑽 is a finite-dimensional subspace of 𝑯𝟎
𝒍 . 

Figure 24. Flow diagram of the developing steps for a FEM. 
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Geometrically, mesh generation divides a continuous geometric space 

into discrete geometric and topological cells to create a mesh. Mesh cells 

represent discrete local approximations of a broader region; these are generated 

through computer algorithms, typically with human assistance via a graphical 

user interface (GUI). Many meshing approaches are based on the Delaunay 

triangulation principles325 and rules for adding vertices, such as Ruppert's 

algorithm326. Developing front algorithms begins at the domain perimeter and 

slowly adds components to fill the inside. The domain is partitioned into large 

subregions, each a structured mesh in block-structured meshing327.  Applied 

algebraic algorithms are primarily based on the linear interpolation function: 

𝑦 = 𝑦𝑎 + (𝑦𝑏 − 𝑦𝑎)
𝑥 − 𝑥𝑎

𝑥𝑏 − 𝑥𝑎
𝑎𝑡 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡 (𝑥, 𝑦) 

𝑦 − 𝑦𝑎

𝑦𝑏 − 𝑦𝑎
=

𝑥 − 𝑥𝑎

𝑥𝑏 − 𝑥𝑎
 

𝑦 − 𝑦𝑎

𝑥 − 𝑥𝑎
=

𝑦𝑏 − 𝑦𝑎

𝑥𝑏 − 𝑥𝑎
 

( 50 ) 

Previous relationships established an equality between slopes of lines 

[(𝑥𝑎 , 𝑦𝑎), (𝑥, 𝑦)] and [(𝑥𝑎 , 𝑦𝑎), (𝑥𝑏 , 𝑦𝑏)]. The reader can observe the simplicity and 

swiftness of linear interpolation, but the error equation ( 51 ) has to be managed 

for adequate accuracy. 

|𝑓(𝑥) − 𝑔(𝑥)| ≤ 𝐶(𝑥𝑏 − 𝑥𝑎) 𝑤ℎ𝑒𝑟𝑒 𝐶 =
1

8
𝑚𝑎𝑥⏟

𝑟∈[𝑥𝑎,𝑥𝑏]

|𝑔′′(𝑟)| 
( 51 ) 

Validation 

Because FEM is an approximation approach, it is critical to verify the 

findings' reliability; to do so, a good technique for determining if a mesh has 

mathematically converged is whether the solution will not change significantly 

with further mesh refining328,329. P-convergence330 testing is rarely used in 

biomechanical models since it entails progressively higher-order components331. 

Alternatively, a simplification of the h-convergence test332, employing multiple 

different meshes with gradually more excellent resolution but without the 

consistently systematic subdivisions practicable for simple geometric forms, is 

commonly performed333.  
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Another model validation is to compare FEA findings with direct 

consequences; the solution is proven to be acceptable and well-behaved in the 

sense of being internally consistent and providing a general consistency with 

current literature. These validation strategies strive to increase the amount of 

model confidence provided334. 

These models have provided TE with a valuable tool for predicting the 

ultimate physical characteristics of bioinks and scaffolds before production335,336  

or even how cells could behave under a particular stress regime337. Examples 

include cardiac TE, where the porosities of the scaffolds may be carefully tuned 

to get the required contraction that heart tissue manages338. Moreover, RM also 

benefits from these methods since it may adapt different implants to specific 

illnesses due to the capacity to reproduce abnormal environments339. 
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7. Biofabrication 

7.1. Background 

The term biofabrication was first used in 1994 to describe the 

biomineralization of pearls340 and, later, for the enamel deposition in mammalian 

teeth341. But, perhaps, the first biofabrication process can be traced back to 1906, 

when Ross Harrison developed tissue explants via in vitro cell culturing342. And 

it had to go through 60 years to find new advances in this technical procedure; 

an example was the obtention for 3D tissues in vitro thanks to the self-assembly 

process343. Briefly after, Gabor Forgacs' experimental observations of tissue 

surface tension344 developed the idea of tissue fluidity and Steinberg's 

differential adhesion theory, and both concepts are critical biological 

foundations of biofabrication technology345,346. Later, biofabrication was 

described as ‘the use of biological materials and systems for construction by the 

US Defense Advanced Research Projects Agency in 2003347. Recently, rapid 

prototyping for biomedical applications348 (computer-aided design (CAD)349, 

layer-by-layer additive manufacturing350) is an actual example of how 

mechanical engineering contributes to the burgeoning subject of 

biofabrication351,352. Changing raw materials from non-living to living organisms 

or tissues does not affect mechanical engineering's core function in creating 

fabrication processes and manufacturing technologies. Some thoughts must be 

considered when moving from one to the other353; these will be discussed in the 

following chapter. 

 It is commonly accepted that biofabrication implies fabricating 

organic/inorganic materials by living organisms354,355. Biofabrication has many 

distinguishing features: first, the building blocks are cells or biologics; second, 

the fabrication techniques are bio-inspired or bio-friendly; and third, the results 

are biological systems, models, or devices with transformational qualities356. 
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7.2. Definition 

To limit the definition of biofabrication, this term is applied only for TE 

purposes (see Figure 25). The natural concept of biofabrication that persecutes 

just the construction of viable constructs to fulfill biological functions is not 

sufficiently accurate for this thesis's purposes. Nevertheless, the development of 

the biofabrication term was deeply discussed and analyzed by Jürgen Groll and 

colleagues357. In there, they proposed the following definition: 

 ‘The automated generation of biologically functional pro-ducts with 
structural organization from living cells, bioactive molecules, 
biomaterials, cell aggregates such as micro-tissues, or hybrid cell-
material constructs, through bioprinting or bioassembly and 
subsequent tissue maturation processes.’ 

As an additive manufacturing process, bioprinting (also known as 3D 

bioprinting) directly derives from 3D printing technology; nevertheless, 

bioprinting is achieved when living single cells, bioactive substances, 

biomaterials, or cell-aggregates tiny enough to be printed are used for 

production358. Nowadays is considered the first centrally used methodology in 

the biofabrication field. Bioassembly, as a second primary strategy of 

biofabrication, can be defined as359: 

‘The fabrication of hierarchical constructs with a pre-scribed 2D or 3D 
organization through automated assembly of preformed cell-
containing fabrication units generated via cell-driven self-
organization or through preparation of hybrid cell-material building 
blocks, typically by applying enabling technologies, including micro-
fabricated molds or microfluidics’ 
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Aside from their working procedures, the fundamental difference 

between both technologies is their minimum fabrication unit. In contrast, in 

bioprinting, this unit can be reduced to the molecular level; it is significantly 

higher in bioassembly because it must be large enough to achieve automated 

assembly technologically357. 

In summary, biofabrication is a multidisciplinary procedure that uses 

various technologies for its implementation. Among these technologies are i) 

light-based technologies such as selective laser sintering (SLS), selective laser 

ablation, stereolithography (SLA), and two-photon polymerization (2PP); ii) 

wet-spun (WS) automated extrusion systems; iii) electrospinning; iv) 3D 

printing, and v) 3D and 4D bioprinting360. 

7.3. Biofabrication technologies 

7.3.1. Light-based technologies 

Carl Deckard patented SLS technology in Texas in 1988; he developed a 

technology that used a laser to fuse powders rather than liquids361. In particular, 

Figure 25. Scheme explaining how the different scientific technologies 
interact between them.  
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SLS employs a laser to selectively focus a light beam onto a powder bed (Figure 

26), resulting in local heat and fused material patterns. Following solidification, 

a fresh layer of powder is set down, and the process is repeated over and over to 

create a scaffold layer by layer362.  Among functional biomaterials, thermoplastic 

metals, polymers, ceramics, and mixtures are mainly used363–365. As a 

biofabrication technique, SLS has been broadly used in cartilage and bone 

TE366,367. Thanks to this methodology, it can be developed mixture scaffolds 

combining polymers with tissue inducer molecules such as hydroxyapatite368.  

Even though the process resembles thermal sintering through laser 

incidence, adding any pharmacological compound to a cell in the scaffold 

synthesis process is impossible, which is necessary to do the cell-integration 

process after the scaffold synthesis369–371.  To solve this inconvenience, surface 

selective laser sintering (SSLS), which employs an infrared laser to sinter 

powder substrates, has been developed372. Under this situation, radiation is 

absorbed by carbon microparticles dispersed on the surface of the polymer 

particles rather than by the polymer particles themselves. Additionally, 

Figure 26. Scheme for SLS fabrication technique. 
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compared to other methods, such as SLA and FFF, the downside of SLS is that the 

detail is not as refined and precise373. 

On the other hand, SLA is based on photopolymerization (Figure 27), 

which is used to harden a photosensitive resin. Habitually, it was used for 

harmful molds filled with ceramic or metallic slurries after374 or for curing dental 

fillings, among other applications375,376. Charles Hull developed it in the 1980s as 

the first method for manufacturing 3D constructions using UV light to 

polymerize materials377.  Like many other technologies, SLA is being developed 

in parallel with its corresponding biomaterials, and many times, one innovation 

in one field affects the other, as is the case of photosensitive resins used for 

digital light processing (DLPTM)378,379. In addition, recent advances in photo-

crosslinker molecules and hydrogel synthesis have allowed the incorporation of 

cells inside the applied material, allowing the use of SLA for 3D bioprinting380. 

Another relevant advancement in SLA technology was the incorporation of 2PP, 

which considerably increases both spatial resolution and Z-depth incidence light, 

resulting in a lower biofabrication time381,382. 

Figure 27. Scheme for SLA fabrication technique. 
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7.3.2. Wet-spun (aka wet-spinning) 

WS of acrylic acid fibers dates from the mid-1850s by Chardonnet, when 

he synthesized cellulose nitrate fibers from a mixture of raw cotton and 

sulfuric/nitric acid solution383.  Regarding biofabrication, WS was first developed 

as a method for creating fibers from polymers produced from natural sources, 

such as chitosan and collagen, which are vulnerable to heat deterioration when 

treated by traditional fibers spinning processes384. The ability to readily include 

various treatments (e.g., antibiotics and chemotherapeutics) using drug 

incorporation methods thoroughly tested in nano/microparticle technology 

enlarged the range of polymers for WS385. Examples of those biodegradable 

polymers included such as chitin386, PLLA387,388, polyacrylonitrile389, poly(L,D-

lactic acid)390, and, poly[lactic-co-(glycolic acid)] (PLGA)391. Assembling WS 

polymeric fibers into biodegradable scaffolds with a 3D network of macropores 

suited for TE applications has also been studied using a variety of methods392.  

It is based on the extrusion of a polymeric solution through a syringe 

pump and nozzle straight into a coagulation bath (Figure 28), a non-solvent-

induced phase inversion technique393. Before the filament enters the coagulating 

Figure 28. Scheme of WS synthesis process.  
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solution, the extrusion may be carried out through a tiny air gap, known as dry-

jet or air-gap WS394. WS's key point is that it does not experience heat 

deterioration as fused deposition modeling (FDM) does, and, additionally, it 

presents higher resolution translated in lower fiber diameter395,396.  

7.3.3. Electrowiring 

The history of electrowiring (aka. electrospinning) can be traced back to 

several centuries ago when William Gilbert's initial observations of a liquid being 

attracted electrostatically in 1600. It was not until the nineteenth century that 

Christian Friedrich Schönbein created highly nitrated cellulose. The first patent 

for electrospinning was submitted in 1900 by John Francis Cooley397, and since 

then, it has been applied several times in TE and RM398–401. 

Electrospinning uses electricity to create fibers with a nano- or 

micrometer-sized diameter402. A high voltage (Figure 29) is used during the 

electrospinning process to the syringe to produce an electrically charged jet of 

polymer micro- or nanofibers once the embedded viscoelastic solution is 

released403,404. When the droplet is linked to the high-voltage power source, 

charges of the same sign will soon blanket its surface. The spherical drop form is 

unstable due to the attraction between these charges. Consequently, droplets 

deform into a conical shape (known as a Taylor cone) to overcome the surface 

tension, and a jet will emerge from the cone's tip. Charges on the fibers' surface 

provide repulsive forces that whip the liquid jet toward the collector405. The 

released liquid jet by electrospinning nanofibers causes the polymer chains 

present in the solution to stretch and glide past one another, forming the 

electrowiring characteristically nanofibers406. The polymeric solution affects the 
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distance between the needle and the collector, which is crucial for determining 

the shape of the electrospun nanofiber407,408.  

The capacity to govern fiber deposition at the scale of a single fiber 

achieved utilizing the near-field electrospinning technology, and melt 

electrospinning writing for liquid polymers, is a new achievement in the area of 

electrospinning409. Electrospinning's flexibility and a great capacity for 

producing scaffolds comparable to actual ECM make it the most promising and 

attractive technique in bioprinting approaches. Even though cells can survive 

electrospinning409, electrospinning cell-laden hydrogels have few uses410,411. 

7.3.4. Fused Deposition Modeling  - 3D printing  

3D bioprinting and 3D printing are two recent technologies with closely 

related technological development; therefore, their state-of-the-art qualities will 

be presented in the next theme regarding 3D bioprinting. 

Figure 29. Scheme of electrowiring process. 
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FDM has been widely employed to build new scaffolds and modify their 

mechanical characteristics for TE applications, encouraging results412,413. FDM 

filaments are formed by extruding molten thermoplastic polymers (Figure 

30A); a 3D scaffold is created layer by layer by depositing these filaments to 

build a layer. The CAD design serves as the overall process controller. Due to its 

relatively low melting temperature and commercial availability in medical 

grades, PCL414 has been utilized as the preferred polymer in the bulk of published 

work, but several other polymers have also been used415,416. As a result of FDM, 

several novel extrusion-based methods for producing 3D scaffolds, such as 3D 

fiber deposition methods (3DF), have been created, allowing the deposition of 

diverse materials while also creating constructs with spatially changing 

physicochemical properties (Figure 30B)417,418. 

Although FDM 3D printing technologies have considerably improved the 

functional performance of TE structures, the high temperatures required to 

create molten polymers may limit the direct integration of biological 

components using this technology413,419–421. Surface modification approaches 

Figure 30. Scheme of 3D printing techniques applied in biofabrication. A) 
Corresponds to FDM method and B) to 3DF. 
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might be used to functionalize the fibers and enable the grafting of bioactive 

compounds in specific locations422. Hydrogels containing biological components 

might be used with thermoplastic polymers to overcome the limitations imposed 

by high temperatures423,424. 
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8. Bioprinting 

8.1. Background 

Bioprinting is an innovative technology promising for fabricating 

functional tissues and organs. Currently, bioprinting is a novel, complex, and 

exciting TE technique and might overcome the lack of tissues and organs suitable 

for their regeneration and transplantation425. 3D printing, called additive 

manufacturing techniques, is based on the principle of layer-by-layer material 

addition allowing the manufacturing of different 3D complex structures. In 

contrast with the conventional making process, which is based on subtractive 

manufacturing, 3D printing implies the possibility of managing biomaterials for 

TE; generally, much more restrictive than metals and daily used plastics426. 

Bioprinting can be defined as the adaptation of 3D printing for TE, which implies 

controlling layer-by-layer stacking of biomaterials and living cells427. Thus, the 

applicability of 3D bioprinting in TE brings several advantages in contrast to 

previous manufacturing methods: rapid fabrication of scaffolds and constructs, 

controlled porosity, tailored architecture, adapted biomechanical properties, 

and the possibility to imbed drugs, cells, or other molecules to enhance the 

structure of tissue or organ to biofabricate428.  

3D printing was invented in 1986 by Charles W. Hull when he adapted 

the photo-curation process for mending tables; thus, he developed a system for 

using ultraviolet (UV)  light for stereolitography429. On the other hand, the 

invention of bioprinting dates from 1988 by Keble et al., which consisted of 

modifying a Hewlett Packard inkjet into a drop-by-drop bioprinting system. 

Further, its invention was not considered as bioprinting but as cytoscribing 

technology, a method of micropositioning cells and constructing 2D synthetic 
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tissues430. Nevertheless, it was not until the launch of a printer named Prusa i3, 

developed by Josef Průša in 2015, that the concept of 3D printing was globally 

extended431. That was in part due to the simplicity of its work and because it was 

Figure 31. Timeline of 3D bioprinting. 
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a 3D printer with open software (Replicating Rapid-Prototypers (RepRap 

project))432. Thus, the framework and firmware were completely configurable 

and without copyright protection, allowing this technology to quickly adapt to 

different fields such as metallurgy, aeronautics, the construction industry, etc. 

Despite several pieces of research about bioprinting that appeared in 1988433. 

Years after, in 1999, Odde and Renn synthesized complicated 3D patterns, which 

reached the micrometer scale, ensuring the cell viability of bioprinted product434. 

Closely in time, another modification of a Hewlett Packard printer resulted in the 

validation of inkjet-based bioprinting by Wilson and Boland435. Years later, in the 

early 2000s, the term bioink appeared for the first time to define inks used in 3D 

bioprinting436. Then, in 2010, the term ‘bioprinting’ was defined by Guillemot et 

al. They considered ‘bioprinting’ a computer-aided protocol that allows the 

precise 2D or 3D alignment patterning of biomaterials loaded with living cells to 

create bioengineered products for TE, pharmacological drug screening 

protocols, or fundamental research358. Finally, there were some developments in 

the extrusion-based technique for 3D bioprinting, but it was not until 2012 when 

Organovo Holdings Inc. (San Diego, California) developed its first commercial 

bioprinter NovoGen MMX®437,438 (Figure 31). 

Currently, 3D bioprinting represents an advanced and relatively recent 

technology that allows manufacturing 3D bioprinting-based ATMPs as organs or 

functional tissues. The development of ATMPs is focused on designing innovative 

medicinal products to regenerate damaged tissues and organs, responding to 

current limitations in the availability of organs and tissue to be 

transplanted439,440. The main goal of bioprinted organs can be the total 

replacement of a diseased (or elder) organ with a healthy artificial one that does 

not present any possible patient rejection441.  

Moreover, 3D bioprinting offers the possibility of manufacturing 

bioprinted 3D models427, obtaining a high reproducibility of in vivo 3D models of 

tissues (lab-on-a-chip) and organs (organ-on-a-chip)442,443. These 3D models 
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represent an alternative to animal models or human subjects to test new 

drugs444. Thus, bioprinted 3D in vivo models offer a revolutionary system for 

pharmacological analysis, encompassing the reduction of animal 

experimentation, high throughput drug screening, optimization of study time, 

and cost reduction, among others445.  

3D bioprinting still has some limitations, such as the standardization 

applicability protocol for clinical use, regulatory framework, the definition of the 

aseptic process, maintaining the cell viability after the bioprinting process, 

design of specific bioinks, etc446. To focus on the authentic relevancy of this 

technology, Gao et al. exposed the current limits in technology for developing 

clinically available organs nowadays, only possible for synthesizing grafts for 

saving medium/small implant regions447. On the other hand, Nie et al. related the 

pertinent aspects of 3D bioprinting in the drug discovery industry, dividing its 

implementation into mini-tissues, organ-on-a-chip models, and organ/tissue 

constructs448. Nie et al. also exposed the need to standardize the transfer process.  

8.2. Definition 

Because of the vast range of procedures encompassed by this umbrella 

term, defining 3D bioprinting is a complex undertaking. The use of this term is 

older than the definition imposed by Guillemot in 2010, perhaps due to its 

similarity with the globally accepted term 3D printing. Nevertheless, the first 

time scientists coordinated a common term for differentiating 3D printing for 3D 

bioprinting was in Manchester's First International Workshop Bioprinting and 

Biopatterning in 2004433. It was proposed the following definition: 

‘The use of material transfer processes for patterning and assembling 
biologically relevant materials —molecules, cells, tissues, and 
biodegradable biomaterials— with a prescribed organization to 
accomplish one or more biological functions.’ 
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The omission of the term 'bioink' in the preceding definition proves that 

the previous statement is unclear and cannot precisely determine which 

approach might be employed. 

The final accepted definition (that is currently used) is the one proposed 

by Guillemot et al. in 2010358, as exposed above: 

‘The use of computer-aided transfer processes for patterning and 
assembling living and non-living materials with a prescribed 2D or 3D 
organization to produce bioengineered structures serving in 
regenerative medicine, pharmacokinetic and basic cell biology 
studies.’ 

8.3. Bioinks  

Similar to the 3D bioprinting definition, the term bioink is rich in 

controversy, and it was not until 2019 (i.e., three years before the redaction of 

this memory) that scientists reached a global consensus regarding their 

terminology. Thereby, Groll and colleagues disposed of the following definition 

for bioink449: 

‘A formulation of cells suitable for processing by an automated 
biofabrication technology that may also contain biologically active 
components and biomaterials.’ 

The previous definition clearly states that a bioink must include living 

cells in its formulation. However, as will be seen later in this paper, the 

bioprinting process is multi-step, and many bioinks need post-bioprinting 

modification (e.g., application of cross-linkers)450.   



DOCTORAL THESIS DANIEL MARTÍNEZ MORENO 

84 
 

Nevertheless, they remark that bioink is not a mandatory condition to 

impose bioprinting categorization. As explained in this work, a broad branch of 

different biomaterials could not be conditioned for the previous definition of 

bioink (e.g., synthetic thermoplastic polymers, ceramics), but they are used for 

both techniques, biofabrication, and bioprinting. To solve this issue, the same 

authors also proposed biomaterial ink. This concept is used to define the 

synthesis of scaffolds for cell seeding to introduce them inside BRs451, implants, 

or to work in parallel with bioinks452; it can also be applied for those sacrificial 

biomaterials which will be dissolved in the post-bioprinting stage453. Figure 32 

shows how both formulations do not depend on their matrix content and process 

form. 

An ideal bioink or biomaterial ink presents i) a high printability, 

described as an easy a high accurate printing procedure; ii) good scalability to 

bioprint large replacement areas; iii) good mechanical properties, similar to the 

tissue that tries to replicate; iv) biodegradability and v) immunogenicity454. 

Figure 32. Representation of bioink and biomaterial ink compositions. In 
biomaterial inks, the cells are added in parallel or after bioprinting step. 
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Besides, the post-bioprinting incubation time must be considered to design a 

bioink, maintaining cell viability. 

Bioinks can be formulated from different biomaterials, which can be 

formulated in different types of matrices, such as hydrogels, tissue strands, 

decellularized ECM (dECM), microcarriers, and tissue spheroids. 

8.3.1. Hydrogels 

Hydrogels are very hydrophilic polymers that exhibit a gel-liquid phase 

due to cross-linking. They are categorized as natural (e.g., gelatin, chitosan) or 

synthetic (e.g., pluronic and PEG) based on their origin. Crosslinking is a crucial 

characteristic that characterizes the bioprinting state; it can be urged at the time 

of printing or later450. Hydrogels employ three distinct cross-linking techniques 

(Figure 33): i) physical crosslinking (no external agent required; minimum 

contamination risk); ii) chemical crosslinking (covalent bonds), which are 

mechanically the most stable; and iii) enzymatic crosslinking (fibrinogen and 

thrombin)424. Hydrogels are good options for cell encapsulation and the 

fabrication of 3D scaffolds because of their high hydrophilicity455. 

Figure 33. Representation of an arbitrary hydrogel bioink and their three 
different crosslinking methods applied in bioprinting. 
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 Comparing hydrogels to the optimal bioinks criteria reveals that bioinks 

created using hydrogels have excellent printing resolution and accuracy; also, 

the survival of cells within them is among the highest inside bioinks456.  

On the contrary, their low viscosity makes their stiffness smaller than the 

rest of the bioinks. Despite this, they could be considered the most versatile 

bioinks easy to obtain thanks to their commercial spread availability, such as the 

bioinks series from CELLINK, BioInk®, and Osteoink™ from RegenHU, Bio127, 

and BioGel from Biobot. Another remarkable case is the company Bioink 

Solutions that commercializes its Gel4GCell® bioink and its derivate compounds 

depending on the target tissue: Gel4GCell®-BMP (osteoconductive), 

Gel4GCell®-VEGF (angiogenic), and Gel4GCell®-TGF (chondrogenic). Finally, 

Tissue Strads are an evolution of hydrogels, but in this biomaterial, cells should 

be injected in hollow tubes, which present higher stiffness than conventional 

bioinks457. Their most significant benefit is their robustness of bioinks, making 

them an appropriate option for their use in TE. Despite this, they are tedious to 

bioprint458. 

8.3.2. Decellularized Extracellular Matrix 

Alternatively to hydrogels, dECM from different tissues and organs has 

been proposed as an excellent component for bioinks due to their mimeticity 

with the natural ECM (Figure 34). To replicate all the biochemical and 

biomechanical aspects of the cell niche, dECM is manufactured by removing cells 

from the surrounding material423. In contrast with the rest of the biomaterials, 

bioinks formulates with dECM present the highest biomimicry. However, its 

synthesis is expensive and labor-intensive, and they are structurally weak459. 

Thus, correlating with hydrogels, dECM resolution is lower. 
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8.3.3. Microcarriers based bioinks 

Microcarriers are arrays formulated from synthetic polymers (PEG) or 

natural polymers (cellulose) with interconnected pores in a spherical 

arrangement (Figure 35). Their function is to increase the surface exposure area 

for cell attachment exponentially to increase cell proliferation460. Thus, they 

serve as a stimulus to the final constructs, saving space and increasing cell 

density. Bioinks formulated with microcarriers are more oriented to 

manufacture ATMPs in which a proliferation process should be performed 461. 

Figure 34. Pathway for dECM bioink synthesis. 

Figure 35. Representation of a microcarrier bioink. Adhesion 
cells are attached to these microcarriers allowing high expansion of 

them. 
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These types of bioinks have a reduced cost and high availability. Nevertheless, 

they have a low printing resolution462. 

8.3.4. Tissue spheroids-based bioinks 

Tissue spheroids are sphere-like cell organization architectures with a 

diameter of less than 500 µm. They need an extremely delicate bioprinting 

procedure (Figure 36). Since the advance published by Mironov et al. in 2009, 

few kinds of research have been carried out with these structures to formulate 

bioinks463. The bioinks based on tissue spheroids present high cell-cell 

interactions; consequently, they offer one of the lowest printing resolutions 

together with microcarriers462. 

Future investigations in novel biomaterials are almost mandatory 

because they will be translated into increased simplicity during the bioprinting 

process464. Nowadays, considering production costs, manufacturing procedure, 

and cell viability, the most used bioinks are hydrogels that can be found alone or 

with biomaterial inks as supports. 

8.4. 3D bioprinting techniques  

8.4.1. Droplet-based bioprinting (DBB):  

It is the oldest technology applied in 3D bioprinting, also ‘inkjet 

bioprinting’, which was a preliminary attempt to replicate the conventional 

Figure 36. The pathway developed by Mironov to develop tubular 
structures (e.g., capillaries). 
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inkjet printers465. DBB technique manipulates the bioink through physical 

stimuli (thermal, acoustic, electro-hydrodynamic, or micro-valves) to release 

droplets with embedded cells. This methodology has drastically evolved, and it 

is used because of its simplicity, agility and versatility, and high resolution, which 

could reach almost µm scale466,467. However, due to these approaches, the 

dehydration of the bioinks involves most cells dying in the process. Therefore, 

the use of BRs is recommended in the post-bioprinting stage.  

8.4.2. Extrusion-based bioprinting (EBB):  

It is the first system and, perhaps, the most worldwide used by its 

versatility, affordability, and ability to bioprint porous constructs and 

scaffolds456. In most cases, the extruder is a sterile syringe on which external 

forces are applied to control the output of the bioink through a needle. (volume 

and position)468. An excessive extrusion pressure could alter morphology and 

cell function469. Thus, the major disadvantage of this technique is the necessity 

of a complete viscoelastic study of the bioinks before initiating the 3D bioprinting 

process470. Besides, this methodology presents an abrupt resolution of 100 µm 

in the most advanced cases.  

8.4.3. Laser-assisted bioprinting (LAB):  

This technique was based on a common practice of computer numerical 

control (CNC) in metals 471. Three different parts mainly shape this procedure: a 

donor-slide, a laser pulse, and a receiver slide. Using two different slides is 

mandatory because any direct radiation of the laser pulse onto cells will produce 

immediately cell-dead. Consequently, this process is much more complex than 

the other technologies described. It has a higher associated cost but also presents 

higher accuracy (resolution of 10-50 um); even more, there are pieces of 

evidence where only one cell per droplet was printed using LAB 472. 
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8.4.4. Laser-based bioprinting (LBB): 

Charles W. Hull invented it in 1985, and it is considered the most novel 

technology of 3D bioprinting and the one with the highest resolution (5-300 um), 

allowing the manufacture of blood capillaries or nerves473. This technique is 

called SLA, based on UV radiation or visible light to cure photosensitive 

polymers. The scaffold is expected to be printed in this technique, and cells are 

seeded after bioprinting. However, SLA times are slower than other technologies, 

and the viability of cells in the 3DBBP may be reduced by UV radiation, 

photocrosslinking toxicity, or long bioprinting times474. 

Cell viability, tissue homogeneity, and reproducibility are critical aspects 

that must be considered before deciding which technique is the most suitable for 

Figure 37. Representation of the most common bioprinting methods. 
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the biofabrication necesities465. Thus, each method should be defined and 

adapted (Figure 37).  

The latest advances in printing have allowed 3D bioprinting to evolve 

towards more complex strategies, such as 4D bioprinting, which requires 

relative intensification on post-bioprinting protocols. The 4D bioprinted 

constructs can change over time depending on the stimuli475. This evolution of 

conventional 3D bioprinting allows the manufacture of scaffolds and constructs, 

in which other bio-mimicking features improved (involved in the post-printing 

step), as could be the case of pediatric implants where the constructs need to 

grow with the patient476. Many TE types of research have led to the consensus of 

applying mechanical or chemical stimulation to the tissue-engineered constructs 

after bioprinting. These post-bioprinting processes remark the innovative 

treatment that supposes 3D bioprinting. Because bioprinted constructs are 

living, they constantly evolve and adapt.  

4D bioprinting requires biomaterials that can be re-shaped over time; 

thus, recent advances in 3D bioprinting involve using innovative materials such 

as abilities477. This effect is called the shape-morphing effect (SME), a change in 

morphology because of a preset-stimuli478. SME is a relevant aspect of bioprinted 

constructs; it allows them to accommodate and adapt to specific treatment 

regions; it also supposes a fundamental difference between conventional 

implants and bioprinted replacements or patches. This geometrical 

rearrangement is printer-independent, and it only depends on the resilience of 

the biomaterials composing the scaffolds. Typically, hybrid ones mix a more rigid 

polymer with a hydrogel479–481. 

3D bioprinting is still evolving rapidly, and numerous bioprinters have 

been commercialized482,483 (Table 1).  

Table 1. Available commercial 3D bioprinters. This table shows that the most extended 
methodology for bioprinting is the FDM model; although SLA bioprinting has a higher 
resolution than FDM, the necessary investment in developing any prototype is a vast wall 
against commercialization. 
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Bioprinter Company Country Year of 

Market 

Mechanism Technique 

nSrypt Sciperio/nScrypt USA 2002 Pneumatic 

Extrusion 

F
D

M
/E

D
M

/
E

B
B

 

3D-BioPlotter EnvisionTec Germany 2003 Pneumatic 

Extrusion 

Fab®Home Seraph Robotics USA 2006 Mechanical 

Extrusion 

Novogen MMX Organovo USA 2009 Mechanical 

Extrusion 

3D Discovery RegenHU Switzerland 2012 Pneumatic 

Extrusion 

BioFactory RegenHU Switzerland 2012 Pneumatic 

Extrusion 

The Alpha 

Bioprinter 

3Dynamic 

Systems 

UK 2013 Pneumatic 

Extrusion 

Regenovo Regenovo 

Biotechnology 

Co. Ltd. 

China 2013 Mechanical 

Extrusion 

The Omega 

Bioprinter 

3Dynamic 

Systems 

UK 2014 Pneumatic 

Extrusion 

BioAssembly Bot Advanced 

solutions 

USA 2014 Pneumatic 

Extrusion 

Inkredible Cellink USA 2015 Mechanical 

Extrusion 

BioBot 1 Biobots USA 2015 Pneumatic 

Extrusion 

Regemat 3D v1 Regemat 3D Spain 2015 Mechanical 

Extrusion 

Fab®Home MD4 Seraph Robotics USA 2016 Pneumatic 

Extrusion 

Scientist 3D printer Seraph Robotics USA N/A Pneumatic 

Extrusion 

Bio3D SYN Bio3D 

technologies 

Singapore N.A. Mechanical 

Extrusion 

Bio3D Explorer Bio3D 

technologies 

Singapore N.A. Mechanical 

Extrusion 

MicroFab JetLab II MicroFAB 

Technologies, 

Inc. 

USA 2000 Piezo Drop-on-

demand 

D
ro

p
le

t 
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Autodrop AD-P-

8000 

Microdrop 

Technologies 

Germany 2004 Piezo Drop-on-

demand 

Fujifilm Dimatrix 

Printer 

Fujifilm 

Dimatrix, Inc. 

USA 2005 Piezo Drop-on-

demand 

MicroFab JetLab 4 Piezo Drop-on-

demand 

USA 2006 Piezo Drop-on-

demand 

Autodrop Compact Microdrop 

Technologies 

Germany 2008 Piezo Drop-on-

demand 

Cluster Technology 

DeskViewer 

Cluser 

Technology Co., 

Ltd. 

Japan 2013 Piezo Drop-on-

demand 

Cell Jet Cell Printer Digilab, Inc USA 2015 Micro-valve and 

Syringe Pump 

8.5. Steps of the 3D bioprinting process 

The development of ATMPs is focused mainly on manufacturing artificial 

organs and tissues, which can be applied in regenerative medicine and advanced 

therapies as innovative medicines to repair, replace, restore or regenerate 

damaged tissue or organ in a patient484.  

The development of ATMPs involves different phases ranging from the 

design phase to administration to the patient (Figure 38). This process is 

performed in three steps: pre-bioprinting, bioprinting, and post-bioprinting. 

Figure 38. Outline of the development process of a 3D bioprinting TE graft. 
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8.5.1. Pre-bioprinting 

As with any other development process, a conceptual design phase of the 

ATMPs should be performed; each design is case-dependent and unique. During 

this phase, several aspects must be considered, such as i) the evaluation of the 

injury to define the tissue or organ to be bioprinted; ii) histological and 

physiological analysis of the target tissue/organ; iii) selection of biomaterials 

and cell types suitable for the formulation of bioink and biomaterial ink; and, iv) 

the design of the 3D structures to bioprint a construct. Designing tissues or 

organs needs to be converted into a compatibility geometry that the bioprinter 

can understand, depending on how the bioprinter works. The digital models can 

come from computed tomography (CT) or magnetic resonance imaging (MRI) 

scans456. 

8.5.2. Bioprinting 

In the bioprinting process, there are mainly two options: a) to bioprint a 

construct directly, from bioinks and biomaterial inks, which have cells embedded 

inside, or b) to bioprint a 3D cell-free scaffold from only biomaterial inks, and 

after the bioprinting process injecting cells into the bioprinted scaffold (also 

named construct)449. During this phase, several prototypes (always without 

cells) should be bioprinted to calibrate and tailor all the parameters involved in 

the bioprinting process. Once the stability of the procedure is reached, and 

prototypes are manufactured with pleasing shapes, the final constructs can be 

bioprinted.  

8.5.3. Post-bioprinting 

In this step, the maturation process of ATMPs plays a vital role in creating 

functional and living organs or tissues456. Nevertheless, it is not a mandatory step 

and, in some cases, is not applied. The maturation process requires mechanical 

and chemical stimulations over time which are applied in almost all cases by 

BRs456.  
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Once 3DBBP is manufactured, in vitro preclinical studies should be 

carried out to guarantee its safety and efficacy as medicine485. These studies 

include i) studies of biological characteristics such as viability, proliferation, 

toxicity, differentiation assays, ECM production assays486; ii) physical-chemical 

studies such as degradation, swelling, porosity, tensile studies, friction 

studies487; and iii) microbiological studies as sterility test, endotoxins assay, 

mycoplasma, and virus detection. Also, in vivo studies have to perform to 

evaluate: implant rejection, cytotoxicity, large-time response, degradation rate, 

wound healing assays, etc488. If obtained results from the in vitro and in vivo 

studies determine that the ATMP is safe and effective, its clinical evaluation could 

be studied under a clinical trial. Once the safety and efficacy of the ATMP are 

verified in humans, the registration process for its market can be started. Finally, 

if the competent health authorities approve the bioprinted graft, it could be 

implanted in patient 486. Therefore, the development of ATMPs is a complex 

process, which is based on six essential pillars: i) definition of the cell 

component; ii) formulation of adequate bioinks and biomaterial inks; iii) 

selection of bioprinter and fine-tuning the 3D bioprinting process; iv) to evaluate 

if a maturation process in a BRs is required; v) preclinical and clinical studies and 

vi) regulatory pathway to be approved and commercialization. 
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9. Bioreactors 

9.1. Background 

The bioreactor (BR) is a historical device (Figure 39) used since 

antiquity. From observation and experience, ancient societies could address 

biotechnological design issues for practical uses like wine and beer 

production489. The idea that microscopic life represents a sizeable economic 

resource came to man gradually despite some pushback from established 

scientific society490; among especially relevant themes are the description of the 

fermentation mechanisms by Pasteur491 and the role of bacteriology in disease 

propagation by Emily Roux and Robert Koch492. These contemporary cell biology 

and medicine advancements supplied the foundation for using cells' industrial 

potential493. In the twentieth century, the use of glycerol for manufacturing 

explosives, which used yeast for conversion from glucose, is an example. Another 

method is to use butyric acid bacteria to produce butanol and acetone on a big 

scale, as pioneered by Chaim Weizmann494. However, these techniques were 

quickly abandoned in favor of petroleum-based products with more significant 

process economies. 

The tale of antibiotic development is an outstanding illustration of how 

industrial biotechnology evolved through a combination of academic research 

and commercial product development. Alexander Fleming discovered the 

antibiotic property of a Penicillium culture in 1929 as part of a series of 

Figure 39. Timeline representing the most relevant advances in BR history. 
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procedures for increasing the output and activity of cultures moved into large-

scale manufacturing495. Years after, scientists could detect, stabilize, exploit, and 

select strains and use genetics and mutational approaches to build 

bioproduction in BRs to address worldwide medical demands496. 

The expanding industrial usage of animal cells in the mid-1950s gave rise 

to bioprocess with the synthesis of microbial polymers (e.g., xanthan)497. The 

next difficulty in BR engineering was large-scale cultivation due to lower cell 

densities than fungi and yeasts498. Later, the discovery by Köhler and Milstein 

(1975) of expressing monoclonal antibodies in hybridoma cell culture 

inaugurated a new era in industrial biotechnology and bioengineering499.  

Genetic engineering and technologies transformed industrial 

biotechnology by creating macromolecular products from cells500. After this 

novelty, several biotechnological companies appeared in the biotechnology 

limelight.  Cetus and Genentech were made in the early 1970s in California501. 

Biogen, Amgen, Chiron, and Genzyme joined the fray in the years that followed502. 

Recently in BR engineering, science has been concerned about cell production 

and applications with RM products and pluripotent stem cells503. Because of 

more sensitive cell types and more sophisticated development and activity, BR's 

controllability demands are higher. 

9.2. Definition 

BRs are defined by the IUPAC (International Union of Pure and Applied 

Chemistry) as devices that manage any biological process. In the biotechnology 

field, their use is standardized, unlike in TE, where its use is currently introduced 

to control and induce some biological reactions for culturing aerobic cells in 

controlled conditions504.  

TE uses BRs to offer controlled and reproducible cell and tissue 

development505. Tissue development outcomes include constructing size, 

shape/architecture, biochemical content, biological function, and morphology506. 
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While cell proliferation is required to form most tissue, a distinct cell cycle phase 

(interphase) allows cells to specialize507.  Considering this, a BR can be defined 

as: 

‘A BR is a reactor that creates an environment where cells may 
proliferate and differentiate as they would in vivo while maintaining 
appropriate nutrient concentrations and allowing for efficient mass 
transfer to the tissue.’ 

Although BRs are still in the early phases of TE, essential general qualities 

aid in the logical construction of these reactors. 

9.3. Relevant design aspects 

Concerning design (Figure 40), it may be evident that the first aspect 

could be treated to replicate synthetically the naïve tissue ECM and its 

physiological mechanisms, which implies tissue architecture, the cell-ECM and 

cell-cell interactions, and cell metabolisms508. Even more, a BR system should 

allow for aseptic feeding and sampling to reduce the possibility of infection. 

Figure 40. A schematic representation of the main aspects that a BR destined 
for TE must have. 



INTRODUCTION BIOREACTORS 

99 
 

Thus, the technology should also be built to work in a sterile environment, 

fulfilling the pre-sterilization of equipment, creating a sterile medium, and 

preserving sterility during culture509. The second aspect of the design regards 

how cells are introduced in the system (scaffold seeding) and, more importantly, 

how the system allows adequate nutrient transport that ensures cell viability and 

expansion510–512. Finally, biomechanical stimuli aspects will promote tissue 

differentiation513 once BR can comfortably accommodate cells, as explained in 

the previous chapter.  

9.3.1. Scaffold seeding 

Frequently, TE involves many cells, which must be cultivated and 

expanded from biopsy to be later incorporated into the bioink; this in vitro cell 

expansion process is long, which implies time-consuming and a high economic 

burden. Thus, using BRs for TE is a fundamental tool to enhance 

development514,515 since BRs provide a higher comprehensive level thanks to 

their monitoring and control capabilities over specific 3D cultures; thereby, 

transitioning from the laboratory benchwork to the clinics or pharma industry 

will be accelerated516. 

Seeding can be done as a separate procedure, where cells are allowed to 

adhere to the scaffold before the BR is used, or cells can be seeded directly within 

the BR. In both manners, scaffold seeding is done in batches to guarantee 

maximal cell adhesion517. The ability to evenly distribute large starting cell 

counts onto a 3D scaffold is a critical barrier for seeding518. Although static 

seeding is the most often used method, dynamic seeding has advantages. Higher 

attachment efficiencies and more uniform cell distribution on the scaffold result 

in higher-quality tissue structure and content506. Simple mixing, spinner flasks, 

and convective seeding in perfusion reactors are just a few examples of dynamic 

seeding techniques that have been 519,520. 
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9.3.2. Nutrient transport 

The typical distance between tissues and nutrient-supplying capillaries 

is 100 micrometers521. This size tissue segment, which has 500–1000 cells, is 

comparable to the size of functioning organ components. An essential 

microenvironment for tissue is a cube with 100-micrometer sides522. Based on 

this standard TE length scale, it is possible to define a microenvironment; that is 

unique due to neighboring cells, the chemical environment, and shape523–525.  For 

BRs, a porous scaffold could also be placed to simulate this microenviornment526. 

Mass transfer in TE is the delivery of nutrients and gases from their 

source to the location of the cells. As explained, the mass transfer of nutrients is 

based on convective and diffusion. The ratio of convective to diffusive transport 

is a paramount concern (Péclet number)527.  

𝑃𝑒 =
𝑎𝑑𝑣𝑒𝑐𝑡𝑖𝑣𝑒 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑟𝑎𝑡𝑒

𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑒 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑟𝑎𝑡𝑒
=  

𝐿𝑢

𝐷
 ( 52 ) 

where 𝐿 is the characteristic length, 𝑢 the local flow velocity, and 𝐷 the mass 

diffusion coefficient, for 𝑃𝑒 ≫ 1 means diffusion transport is much higher than 

convection (e.g., cartilage tissue)528. 

The nutrients first reach the cell surface, where there is a balance 

between the rate at which they are taken up and the rate at which they are 

provided through diffusion (Damkohler number)529.  

𝐷𝑎 = 
𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒

𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑚𝑎𝑠𝑠 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑟𝑎𝑡𝑒
= 𝑘𝐶0

𝑛−1𝜏 ( 53 ) 

where 𝑘 is the kinetics reaction rate, 𝐶0 the initial concentration, and 𝜏 the mean 

residence time. When this ratio is high, nutrients are digested faster than they 

can diffuse to the surface, decreasing surface concentration. When it is modest, 

absorption is sluggish, and diffusion keeps nutrient concentrations near 

constant. 
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 Another mass transfer concern is selecting an appropriate medium flow 

rate to provide a continual supply of new nutrients and the removal of 

contaminants530. Additionally, balancing the flow rate to ensure the shear rate 

influences nascent tissue and supports the nutritional demand needs is 

necessary531. Based on an average cellularity of 500 million cells per cm3, overall 

in vivo oxygen absorption rates529 of 25 − 250 
𝑚𝑜𝑙 𝑂2

𝑐𝑚3 ℎ⁄  and perfusion rates of 

0.07 
𝑚𝐿

𝑐𝑚3 𝑚𝑖𝑛⁄  may be suitable starting points522. 

9.3.3. Biomechanical stimuli 

BRs for TE applications have evolved from mechanobiology, which 

studies tissue embryology, as its functions of external stimuli and how cells 

interact with those physical signals (mechanotransduction)532,533. In previous 

chapters it was deeply exposed the relevance of biomechanics in tissue 

development and homeostasis; BRs are devices that adopt these kinds of 

stimulation in vitro; sometimes, these cultures are called ex vivo to distinguish a 

dynamic 3D culture from conventional cell cultures534,535. Different tissues, 

organs, and consecutively, each TE product requires further stimulation to work 

appropriately (thermal, pressure, electrical, ionic, pH, oxygen concentration)508. 

Concretely, mechanical inputs (fluid flow generated shear stresses) during in 

vitro growth give tissues properties more similar to in vivo structures506. Pulsed 

BRs with customizable stroke volumes and rates were employed to develop 

cardiac patches consisting of PGA or collagen536. As cultures evolve, specific 

reactors are being designed to produce stimuli. 

It is crucial to remember that the culture and tissue-specific factors are 

dynamic. The tissue culture process is not stable, and specific characteristics are 

dynamic. A BR design must provide optimum tissue or organ growth and 

development conditions. It includes a control unit (a computer or a 

microcontroller) and input and output devices that keep the culture material 

fresh537. Sometimes, it also has sensors that monitor the tissue development 

inside the BR.  
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9.4. Sensors 

Most bioprocesses are divided into cells (solid phase), disseminated in a 

liquid-medium phase, and aerated by a gas phase538. The relationships between 

these three phases are intricate. Biological components are frequently 

susceptible to environmental changes (e.g., pH, temperature, partial pressure of 

dissolved oxygen -pO2-, nutrients), which might harm cell activity or process 

repeatability539. 

For monitoring bioprocesses, three different categories of variables must 

be measured: physical variables (such as pressure, temperature, viscosity, and 

density), chemical variables (such as pH, pO2, nutrients, and metabolites), and 

biological variables (biomass, concentration, cell metabolism)540,541 (Figure 41). 

The three main categories of sensor applications are in-line, at-line, and off-

line542. In-line or in-situ sensors directly contact the process media and the 

reactor. At-line systems relied on a sample taken out of the BR and examined 

elsewhere543. If data are continually captured and the sensor signal's reaction 

Figure 41. A spider diagram of the diverse bioprocess variables and their most 
common applied sensors. 
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time is quick compared to the process dynamics, the measurement of in-line or 

at-line sensors can be regarded as on-line543. On-line sensors are not invasive but 

require that the sensor signal's reaction time has to be minimal concerning the 

dynamics of the process to have a small signal-to-noise (S/N) ratio544. Figure 42 

clarifies this classification. 

9.4.1. Gas phase monitoring 

To record exchanges in the gas phase inside the BR, semiconductors, 

electrochemical cells, and paramagnetic sensors are used. Semiconductors rely 

on the ionic conductivity of a semiconducting oxide, such as zirconia545. 

Electrochemical galvanic cells are composed of an anode and cathode, commonly 

silver and lead546. Paramagnetic sensors use paramagnetic gases' high attraction 

to magnetic fields547. The partial pressure and temperature fluctuations in the 

surroundings must be considered in these kinds of measurements. 

9.4.2. Liquid phase monitoring 

Biosensors for various analytes have been developed548. Biosensors 

enable accurate glucose and analyte monitoring549,550. Biosensors face several 

issues, including sensitivity to pH changes caused by the detecting response551. 

Figure 42. Classification of biosensors depending on their interaction with the 
BR. 
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Flow injection analysis (FIA) enables the creation of a predetermined reaction 

environment (for example, appropriate pH and dissolved oxygen content)552,553 

by introducing chemicals into the FIA carrier stream, where samples can be 

diluted and preconditioned. Convention electrochemical sensors (e.g., Clark-type 

electrodes, ISFETs, etc.) detect changes in electrical potentials553–556. The three 

most critical chemical parameters continually recorded by electrochemical 

sensors are the pO2, dissolved carbon dioxide (pCO2), and the pH value.  

Usually, optical chemosensors are made by a matrix-embedded 

indication, and the analyte interacts to form optical chemosensor devices, also 

known as optodes557. Their function is based on a light source that immobilizes 

the indicator at the sensor's tip and illuminates it through a fiber optic wire (such 

as a light-emitting diode). The analyte concentration is related to changes in the 

optical properties of the indicator, such as photoluminescence intensity, 

absorption, or reflection. The opposite fiber end is attached to a light detector, 

such as a photodiode558; a dichroic mirror or optical filter separates the light's 

excitation and emission such that only one fiber may monitor both wavelengths.  

On the other hand, spectroscopic sensors are based on the 

electromagnetic radiation emitted by molecules and their bonds; the different 

spectra measured can be found from UV to mid-infrared (MIR) and Raman 

spectroscopy559–562. In contrast with optical chemosensors, no interaction 

between the sensor and the analytes allows parallel acquisition through sensor 

arrays.  

9.4.3. Solid phase monitoring 

Previous biosensors are perhaps the simplest to produce than those 

which measure the biomass. But, because cells and ECM are part of the solid 

phase, solid phase monitoring is the most critical aspect to control in a BR. 

Optical density (OD) measurement, known as turbidity, is one of the most 

straightforward and widely used biomass monitoring procedures. In-line optical 

fiber probes based on transmission, absorption, reflection, or light scattering are 
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available563. A sinusoidal electrical field can be used to assess the impedance of 

a cell suspension564. In situ microscopy uses microscopy systems directly in a BR 

(ISM). Image-processing techniques may capture images of suspended 

organisms and automatically examine cell concentration, size, dispersion, and 

shape565. 

In medicine, ultrasonic transmissions are frequently employed. 

Ultrasonic therapy can acquire information on bioprocesses in addition to the 

well-known medical imaging, mixing, and emulsifying uses. The primary 

measuring parameters are sound velocity, attenuation, and acoustic 

impedance566. These factors may be used to identify pure liquids' chemical 

identity, the components' concentration in pure and mixed solutions, and 

particle sizes567. Sound velocity is estimated by measuring the resonance 

frequency or the time difference between different echoes over a certain 

distance568. 

9.4.4. Soft sensors 

Digital converters are attached to the sensors to convert the signal to 

binary digits to manipulate the data computationally569,570. Soft sensors combine 

a measuring component (sensor) with a software-based estimating method571. 

The software component makes predictions about process variables like 

substrate concentration and particular growth rates based on sensor data572. Soft 

sensors can gather, consolidate, and analyze all data from probes that measure 

various process factors [8]. Model-driven and data-driven soft sensors are the 

two main categories mentioned in the literature. Data-driven soft sensors are 

based on chemometric models and predict other process variables on-line using 

past process data573,574. The "First Principles" of processes, known as mass and 

energy balances, serve as the foundation for the model-driven soft sensors572.  
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9.5. Types of bioreactors 

Suspension BRs and attached BRs are the two primary categories into 

which BRs are often divided. Attached BRs reproduce bioprocesses where cells 

are bound or immobilized, whereas suspension BRs duplicate bioprocesses 

where cells are. Regarding mechanotransduction pathways, tissues react at two 

levels according to mechanical stimuli: macroscopic and microscopic. Thus, it is 

not uncommon to differentiate BRs depending on the methods of physical stimuli 

(Figure 43). 

Spinner flask BRs laid in higher nutrient support in comparison with 

purely diffusional transportal (2D cultures), which results, for instance, in an 

increase in osteoblastic marker alkaline phosphatase (ALP)575. Rotating Wall 

Vessel BRs is an extensive example of characteristical stimulation under a 

microgravity environment where small shear stresses can interact with the graft 

sources576. Perfusion BRs also produce flow shear stress without altering the 

conventional gravity; besides, depending on the flow rate, those shear stresses 

making mandatory to precisely control such parameters577–579. Hydrostatic 

Figure 43. Basic types of BRs are classified depending on the kind of 
mechanical stimuli that they exert. 
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pressure has been demonstrated to be beneficial for osteochondral tissue many 

times, and it takes place many times in our organism; BRs that use this 

mechanism should be prepared to maintain the increase in pressure without leak 

risks580–582. 

9.5.1. Bioreactors for mimicking pathological conditions and drug 

screening 

The term biomimetic microsystems (Bio-MEMS) was first described by 

Ingber et al. (2010)149, who defined this system as microchips oriented to in vitro 

drug screening processes made with poly-dimethylsiloxane (PDMS), see Figure 

44.  Different materials have already been used, like agarose583 and PMMA584. It 

is a non-toxic polymer and almost bioinert, making the perfect capsule for this 

system thanks to its transparency and biocompatibility. Depending on their 

complexity, these Bio-MEMS can be categorized into mini-tissue, organ-on-a-

chip, and tissue/organ construct448.  

Figure 44. Bio-MEMs are chip kind BRs that can simulate tissues or organs. 
SUBs are very relevant BRs to produce TE products under sterile conditions. 
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Ultimately, they are a mixture of bioprinting products, BR, and bioinks, 

which have obtained a substantial relevancy thanks to the reproducibility of in 

vivo conditions and considering that any reduction of experimental time and 

animal costs are more significant than the inversion of these techniques. 

9.5.2. Single-use bioreactors 

Single-use BRs (SUBs) are becoming increasingly popular in the 

biopharmaceutical sector585,586  (Figure 44). They have replaced traditional 

stainless steel reactor systems in many manufacturing sectors, particularly for 

producing high-value goods in small numbers587. Because sophisticated and 

labor-intensive cleaning processes become unnecessary, disposable reactor 

technology provides enhanced facility flexibility with cheaper investment and 

energy costs, and a more straightforward production provided Good 

Manufacturing Practice (GMP) criteria are fulfilled588. SUB systems are swirled, 

shaken, or pneumatically blended to ensure adequate mixing of all nutrients 

inside the reactor system and effective gas exchange into the medium. Although 

primarily employed for mammalian cell culture, yeast, and other microbes have 

been grown in disposable bag reactors589,590.  

Table 2 lists the main applications of BRs; remarkably, most of them are 

specifically designed for each experiment, making a correlation with 3D 

bioprinting, where there is a lack of standardization.  

Table 2. Compilation of the most suitable BR in RM research in the last 5 years. 

Name Tissue/Cell Biomechanics Year Ref. 

Custom-Made Bone Perfusion 2017 
Beşkardeş et 

al.591 

Very Large-Scale Liver-

Lobule (VLSLL) 
Liver organ on a chip 2017 

Banaeiyan et 

al.592 

Liver Acinus 

MicroPhysiology 

System (LAMPS) 

Liver Oxygen tension 2017 
Lee-Montiel 

et al.593 

Two-leaflet model 

valves 
Heart Pulsed flow, valves 2018 Hu et al.594 
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Custom-Made Bone Hydrostatic Pressure 2018 
Stavenschi 

et al.595 

Custom-Made Heart Valves Perfusion 2018 
Amadeo et 

al.596 

Custom-Made Ear cartilage Perfusion 2018 
Duisit et 

al.597 

Custom-Made 
Ostoearthritis 

Screening 

Microenvironment 

(Perfusion, shear strain) 
2018 

Nichols et 

al.598 

Custom-Made Cartilage Bioacoustofluidics 2018 
Jonnalagadd

a et al.599 

Instron HP bioreactor 

(Tissue Growth 

Technologies, 

Minnetonka, MN) 

Nucleus 

Pulposus 
Hydrostatic Pressure 2018 Shah et al.600 

Custom-Made HUVECs Perfusion, 2P-FLIM 2018 Shen et al.601 

Custom-Made Ewing Sarcoma Mechanical Loads 2018 

Marturano-

Kruik et 

al.602 

Hydrostatic Pressure 

Bioreactor 

(TGT/Instron, USA) 

Bone Marrow Hydrostatic Pressure 2018 
Reinwald 

and El Haj603 

Custom-Made Cornea 
Flow exchange and Air-

liquid phase 
2018 

Schmid et 

al.604 

Custom-Made Lungs Gas exchange 2018 
Engler et 

al.605 

Custom-Made 
Vascular tissue 

(MSCs) 
Rotatory Perfusion 2018 

Stefani et 

al.606 

Custom-Made Cartilage Knee simulation 2018 
Vaineiri et al 

607 

T-CUP perfusion 

bioreactor 
Cartilage Perfusion 2019 

Vukasovic et 

al.608 

Custom-Made and 

Spinner Flask 
Bone 

Shear Strain and 

Perfusion 
2019 Tsai et al.609 

BOSE, TA Instruments® Cartilage Perfusion 2019 
Theodoridis 

et al.610 

PLLA-MTA membrane 

bioreactor 
Neuronal-like Capillary feeding 2019 

Morelli et 

al.611 

Custom-Made Heart Dynamic stretch 2019 Beca et al. 612 

Custom-Made Bone Perfusion 2019 
Yaghoobi et 

al.613 
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Custom-Made 
hiPSCs (cell 

expansion) 
Capillary feeding 2019 

Greuel et 

al.614 

Benchtop Bioreactor 

System 
hPDCs Perfusion and sensors 2019 

de 

Bournonvill

e et al.615 

Advanced 

microphysiological 

systems (MPSs) 

Liver Microfluidic 2019 Bale et al. 616 

PBS‐0.1 MAG (PBS 

biotech®) 

MSCs (cell 

expansion) 
Rotatory Well 2019 

de Sousa 

Pinto et al. 

617 

Custom-Made 
Tumor 

constructs 

Perfusion and Metabolic 

monitoring 
2019 

Karami et al. 

618 

Custom-Made 
MSCs (cell 

expansion) 

Shear Perfusion 

Bioreactor 
2019 

Gharravi et 

al. 619 

Custom-Made 

T1 murine 

breast cancer 

cells 

Perfusion compatible 

with: FLIM and MRS 
2019 Cox et al. 620 

TC-3 Bioreactor System 

(Ebers Medical 

Technology, ESP) 

Seketal muscle Stretch 2019 
Turner et al. 

621 

3DHFR perfusion 

platform 
Bone Marrow Perfusion 2019 

Allenby et al. 

622 

Custom-Made 

Mouse Tail 

Tendon 

Fascicles 

(MTTFs) 

Tensile Load 2019 
Raveling et 

al. 623 

Cardiac Valve 

Bioreactor 
Heart Valves 

Hydrodynamic 

Performance 
2019 Tefft et al. 624 

Cyclic Strain Bioreactor Tendon Strain 2020 
Deniz et al. 

625 

Custom-Made Cartilage Perfusion 2020 Silva et al. 626 

Custom-Made Heart Perfusion 2021 
Cetnar et 

al.627 

Custom-Made Bone Perfusion 2021 
Zhang et 

al.628 

LiveBox1 bioreactor 

(IVTech, Massarosa, 

Italy) 

Follicles Microfluidic 2021 
Mastrorocco 

et al.629 

Custom-made 
Periodontal 

Ligament 
Laminar flow 2021 Lin et al.630 
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Custom-made: CyMAD Hydrogels Magnetic compression 2022 
Czichy et 

al.631 

Custom-made Bone Fliud dynamic 2022 
Mainardi et 

al.632 

Non specified Cartilage Hydrostatic Pressure 2022 Zhao et al.633 

Custom-made Bone Loading 2022 
Zhang et 

al.634 

Sartorius Ambr 250 

modular bioreactor 

MSCs (cell 

expansion) 
Automated Bioreactors 2022 Ho et al.635 

Custom-made Cardiac Tissue Perfusion 2022 
Zhang et 

al.636 

Custom-made 
Spheroids (cell 

expansion) 
Automated Bioreactor 2022 

Kronemberg

er et al.637 
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10.Cartilage 

10.1. Main aspects 

Since cartilage is a flexible and avascular kind of connective tissue, it is 

believed that nutrients enter its cells by diffusion from the synovial fluid, which 

is a fluid containing a lot of blood plasma and joint tissue molecules (HA, 

PRG4)638. The developed and specialized version of chondroblasts, 

chondrocytes, are the cells that makeup cartilage. Similar to other tissues, 

chondrocytes arise from MSCs through a process called chondrogenesis639. 

Depending on its composition and physiology, three types of cartilage 

can be observed in a human adult: hyaline cartilage is a translucent tissue 

composed of type II collagen and chondroitin sulfate that can be found in the 

articular joints, the nose, larynx, and the trachea640. Fibrocartilage is a mixture 

of white fibrous and cartilaginous tissue, resulting in a more rigid than hyaline 

cartilage but also has some elastic behavior641. The ECM of the fibrocartilage has 

type I and II collagens in contrast with hyaline cartilage. Furthermore, it is the 

only cartilage structure that does not present perichondrium642. It is widespread 

that when a scar is produced in a joint, fibrocartilage is formed to substitute the 

damaged hyaline cartilage643. Elastic cartilage (aka yellow cartilage) is very 

similar to hyaline cartilage, but its ECM contains large quantities of elastin, a very 

elastic protein644. It can be found in the larynges and external ear. 

10.2. Anatomy 

Anatomically, cartilage is a translucent, elastic tissue that varies in color 

from pale blue to yellow-white depending on subtype and collagen content 

(Figure 45). A layer of thick fibrous tissue covers the bulk of the cartilage, 

termed the perichondrium, except for the articular surfaces645. The 
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perichondrium's primary duties are to protect the bones, nourish the cartilage, 

and promote cartilage formation646. The perichondrium protects bones from 

short- and long-term injury, reduces friction, promotes suppleness in various 

body regions, and restricts outward expansion when the cartilage is crushed646. 

The fibrous perichondrium also includes blood arteries, which strengthen and 

nourish cartilage through long-distance diffusion, promote cell renewal, and 

speed up recovery after injury. 

Because of perichondrium presence, all nutrients are delivered through 

diffusion; even the most significant animals follow this criterion, which restricts 

the thickness of cartilage surfaces to a few millimeters645. Due to pigment 

deposits from aging and dryness, cartilage changes from blue-white to yellowish 

and opaque as it matures. Radial collagen fibers that pass from the underlying 

bone into the cartilage via a challenging 3D interface are what hold the cartilage 

Figure 45. Image of human cartilage tissue. Graphical representations expose and 
example of hyaline cartilage in the knee joint. Chondroblasts are embedded in the 

perichondrium. 
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to the underlying bone. However, the cartilage's specific collagen fibers do not 

penetrate the subchondral bone. 

In addition, the inner layer of the perichondrium contains 

chondroblasts, cartilage-producing cells that aid in cartilage development 

(Figure 45). Chondroblasts generate the extracellular matrix, which is made up 

of a variety of elements that give cartilage its structure and strength. 

Chondroblasts also mature into chondrocytes, the cartilage's building blocks. At 

the edge of the cartilages, immature chondrocytes have an elliptic shape with a 

long axis parallel to the cellular surface. The curve becomes rounded as the frame 

turns inward. 

Additionally, isogenous groupings of up to eight cells may include 

chondrocytes—cellular grouping results from the mitotic cell division of 

individual chondral cells647. The uneven form of cartilage is caused by the 

contraction of chondrocytes and their matrix during histological growth, which 

pulls the cells back into the capsule. Chondrocytes serve as factories for creating 

collagen and consistently fill the oblong lacunae seen inside tissues647. 

10.2.1. Histology and surface characterization 

Cartilage tissue under a microscope can be observed using histological 

dyes such as Alcian blue or specific antibodies against proteoglycans, 

chondroitin, keratan sulfate, or type I and II collagen stain photomicrographs of 

histological sections of various sample cartilages648.  Another highly used dye for 

marking collagens is Sirius Red649. The significance analysis of microarrays 

(SAM) approach has also been utilized by researchers to identify samples of 

chondrocytes with limited chondrogenic ability650. These samples showed more 

significant amounts of insulin-like growth factor 1 and catabolic genes 

(aggrecanase 2, matrix metalloproteinase 2). Regarding membrane markers, 

flow cytometry examination revealed a considerable distribution of CD44, 

CD49c, and CD151 in chondrocytes with better chondrogenic ability. 

Furthermore, the data showed that CD151 and CD44 had the potential to identify 
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more chondrogenic clones. The tissues produced by chondrocytes with brighter 

CD49c or CD44 signal expression contained more type II collagen mRNA (3.4-

fold max) and GAG/DNA (1.4-fold max) than non-brightened cells650. 

10.3. Cartilage functions 

Numerous roles of cartilage include its capacity to withstand 

compressive stresses, increase bone resiliency, and offer support to bony regions 

where flexibility is required651. Because physical properties depend widely on 

the ECM composition, each kind of cartilage has a different function. Hyaline 

cartilage creates a robust surface with less friction; additionally, it does a great 

job of resisting compressive stresses at bone articulation points652. Elastic 

cartilage delivers flexibility and is pressure resistant653. Fibrocartilage can 

struggle with high tensions and compressions642. 

Regarding general cartilage properties, endochondral ossification is 

required for skeletal development, particularly in preexisting cartilaginous 

models. The diaphysis, the area of a long bone between two ends that grows into 

the bone's shaft, is where the main ossification center first occurs in long 

bones654. Chondrocytes expand and hypertrophy at ossification sites, where 

cellular necrosis and matrix calcification occur655. The SOX9 transcription factor 

and the coactivator-associated arginine methyltransferase 1 (CARM1) play other 

roles in the regulation of osteochondral ossification656,657. Long bones elongate 

at the junction of the diaphyseal and epiphyseal bones. Elongation is intimately 

connected to the proliferation of cartilage plates, which are made of collagen and 

chondral matrix and participate in endochondral osteogenesis and postnatal 

development658. 

Chondrocytes frequently operate in low oxygen situations because it is 

an avascular tissue659. In contrast to the bulk of body cells, which use aerobic 

respiration to fuel cellular activity, hyaline chondrocytes use lactic acid 

fermentation to give energy660. Hyaline chondrocytes employ anaerobic 
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glycolysis to metabolize glucose, which results in the production of lactic acid at 

the end of the process. The deep-stored chondrocytes obtain the nutrients 

required for glycolysis via the perichondrium646. Two primary processes 

regulate nutrient movement: i) diffusion (as above exposed) and ii) occasional 

compression and decompression pumping of cartilage661. 

The chondral function also depends on proper endocrine balance662. 

Somatotropin, also known as hypophyseal growth hormone, primarily controls 

cartilage development663. This hormone encourages the liver's synthesis of 

somatomedin C, which indirectly aids in forming chondrocytes. Growth hormone 

(GH), thyroxin, and testosterone speed up the creation of chondral proteoglycans 

made of sulfated GAGs664,665.  

10.4. Pathophysiology 

As early exposure, chondrocytes maintain homeostasis, playing between 

the production and breakdown of ECM components. Chondrocytes produce 

these elements and the enzymes that break them down under the influence of 

environmental variables, polypeptide growth factors, and cytokines666. Any 

slight alteration in this delicate equilibrium will end in a specific pathology. 

Under pathological conditions, cartilage surfaces degrade mechanically and 

chemically, producing cartilage wear particles (CWP).  

Joint biomechanics can also be affected by trauma to the synovial joint, 

such as meniscal tears, ligament ruptures, or cartilage damage667,668. Production 

of CWPs prevents the systematic breakdown of such particles, which causes 

inflammation and triggers the release of degradative enzymes by 

chondrocytes669,670. The ECM water content rises due to homeostatic disturbance 

while its proteoglycan content falls due to a decrease in type II collagen 

production and an increase in the breakdown of preexisting collagen; this change 

weakens the collagen network666. Depending on the origin of cartilage 
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degradation, the involved pathways and the affected cartilage can be 

distinguished by different pathologies (Figure 46): 

• In rheumatoid arthritis (RA), the body's immune system targets the 

synovial cells. RA often impacts both sides of the shoulders, wrists, 

fingers, knees, hips, feet, and ankles body671. It is a chronic, progressive 

autoimmune condition that damages joint tissue by causing 

inflammation. Anti-inflammatory drugs like aspirin or ibuprofen are 

often used in treatment671. RA patients may receive treatment with 

more potent immunosuppressants such as methotrexate and 

cyclosporine672. Other drugs, such as TNF-α, explicitly work to decrease 

inflammatory cytokines672. Additionally, surgery and more advanced 

gene therapy medications are options for treatment. 

 

• Injuries to the cartilage can result in perichondritis, also known as 

perichondrium injury673. Microtraumas to the perichondrium tissue, 

such as piercings, insect bites, or burns, resulting in inflammation and, 

rarely, an infection commonly cause this674. Some symptoms, such as 

pain, redness, and swelling, may require medical intervention674. 

 

• Achondroplasia is an autosomal dominant condition often resulting in 

dwarfism and defective endochondral ossification, turning cartilage 

into bone675. 

 

• Costochondritis, an inflammation of the cartilage that connects the 

ribs to the sternum, is a common cause of chest discomfort676. 

• Also possible are cartilage-based tumors, which can be benign or 

cancerous. Although these tumors seldom penetrate already-existing 

cartilage and often develop in the bone, they can do so677. Chondromas 

are benign tumors, whereas chondrosarcomas are malignant tumors678. 
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• In osteoarthritis (OA), the whole articular joint is affected679. OA is less 

commonly considered a disease and is viewed as the consequence of 

"wear and tear" since it affects the most stressed joints (the knees, 

elbows, and hips)680,681.  The importance of this pathology in this work 

will be deeply discussed in the following chapter. 

10.5. Chondrogenesis 

Chondrogenesis is the process through which cartilage is produced from 

the mesoderm germ layer682; Figure 47 represents a scheme of the whole 

process. The β-catenin levels control the percentages of lineage commitment to 

chondrogenesis and osteogenesis in the Wnt signaling system. This early 

development is when bone morphogenic proteins (BMPs) first appear. 

Endogenous chondrocyte development is regulated by: growth differentiation 

factor  5 (GDF5), HOX gene proteins, TGF-β, and other signaling molecules aided 

by BMPs683. 

The cells in early mesenchyme are stellate or polymorphous, forming a 

network filled with a jelly-like, amorphous intercellular material684. MSCs can 

develop in various ways, but when destined to become cartilage, they form 

condensations due to multiple changes in the morphology of the component 

cells685. These cells grow spindlier or rounder, and the cytoplasmic to nuclear 

volume ratio decreases. MSCs appear to 'dedifferentiate' in producing such 

condensations, now known as cartilage blastemata686. The blastema cells 

subsequently secrete a homogenous hyaline intercellular material comprising 

Figure 46. Most relevant pathologies present in cartilage tissues. 
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fibrils with a similar refractive index as the hyaline binding substance, which is 

not visible in conventional histological preparations686. The increased sulfated 

mucoprotein is linked to the formation of intercellular material in growing 

cartilage687,688. As cartilage grows, it takes on various characteristics, including 

fibrous, hyaline, and elastic properties, which are dictated mainly by the fibers' 

makeup in the intercellular material.  

The blastema's peripheral cells condense to produce a bilaminar 

perichondrium, the outer layer becoming fibrous. Simultaneously, the inner 

develops as a layer of densely packed, spherical, or polymorphous cells known 

as chondroblasts, responsible for the cartilage rudiment's appositional 

formation. Matured chondroblasts are chondrocytes distinguished from other 

cells because they can synthesize large amounts of chondroitin sulfate 

proteoglycan and type II collagen689. Chondrocytes are stable cells and are not 

thought to 'dedifferentiate' into pluripotent690. Since juvenile cartilage cannot 

grow by mitosis after initial chondrification, it grows primarily via evolving into 

a more mature condition. Cartilage's size and mass do not considerably alter 

after initial chondrification since there is little cell division in cartilage651. 
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Figure 47. Graphical representation of the chondrogenic process and the 

endochondral ossification process.  
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10.5.1. Biochemistry of chondrogenesis 

From the biochemical point of view, chondrogenesis occurs due to the 

condensation of MSC that expresses type I, II, and IV  collagens, as well as the 

differentiation of chondroprogenitor cells684. These cells proliferate thanks to 

overexpression of type VI collagen and matrilin 1, which are under the control of 

the parathyroid hormone-related protein (PTHrP)/Ihh axis691. During limb 

development, chondrocytes at the ends of the opposing bones stop their 

multiplication,  resulting in hypertrophy and apoptosis and promoting 

endochondral ossification655. Endochondral ossification occurs when calcified 

hypertrophic cartilage is resorbed and replaced by bone. The hypertrophic zone 

is distinguished by the expression of type X collagen and matrix calcification692.  

Converting a non-vascularized and hypoxic tissue, such as cartilage,  into 

bone; matrix remodeling through metalloproteinases (MMPs, 9,13 and 14)693 

and vascularization through vascular endothelial growth factor (VEGF)694 are 

necessary. Sox9 and Runx2 are critical transcriptional regulators required for AC 

development and hypertrophic maturation656,695. Additionally, Sox9 directly 

inhibits Runx2, and TGF-β and BMP signals differently control Wnt/β-catenin 

signaling by activating Runx2696. Epidermal growth factor receptor  (EGFR) 

signaling controls endochondral ossification in the growth plate697. TGFα, its 

ligand, inhibits the phenotype of articular chondrocytes by triggering the Rho-

associated protein kinase (Rho/ROCK) and mitogen-activated 

protein/extracellular signal-regulated kinase (MEK)/extracellular-regulated 

kinase (ERK) signaling pathways698. 

Due to the complexity of biochemical routes and metabolic cascade 

regulating chondrogenesis, below are explained the main molecules (or tissue 

growth factors, TFG) involved in chondrogenesis: 

Indian hedgehog (Ihh). The discovery of the PTHrP/Ihh feedback loop 

contributed significantly to our understanding of growth plate regulation699. The 

interaction between PTHrP and Ihh determines when chondrocytes leave the 
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proliferative zone and enter the hypertrophic zone700. When the diffusion 

distances between PTHrP-producing cells become too long, the effector cells are 

no longer sufficiently stimulated by PTHrP, resulting in a delay in proliferation 

and the synthesis of Ihh, a hedgehog family member699. 

Fibroblast Growth Factor (FGFs). Regarding skeletal development, the 

most common FGF members found in developing human cartilage are FGF1, 

FGF2, FGF17, and FGF19701. Multiple FGFs and FGFR2 are expressed in 

condensing mesenchymal cells during the early stages of endochondral bone 

formation, which is thought to stimulate SOX9 expression702. In the human 

growth plate, FGFR3 is expressed by proliferating chondrocytes703, whereas 

FGFR1 is found in pre-hypertrophic and hypertrophic chondrocytes704. 

Bone morphogenetic proteins (BMPs) are a group of TFG-β 

superfamily that promote ectopic cartilage and bone development. The Ihh-

PTHrP signaling loop incorporates BMPs705. They can induce Ihh expression, 

increasing chondrocyte proliferation. In the perichondrium, BMP2, BMP 3, 

BMP4, BMP 5, and BMP 7 are expressed; hypertrophic chondrocytes express 

BMP2 and BMP 6, whereas proliferating cells express BMP7706. Furthermore, 

BMP pathways restrict FGF signaling by limiting the expression of FGFR1 

(fibroblast growth factor receptor 1)707. A BMP concentration gradient inside the 

development plate may be a crucial component responsible for the spatial 

modulation of chondrocyte proliferation and differentiation708. 

Sox9. Sox proteins belong to the High-Mobility-Group (HMG) 

superfamily of DNA-binding proteins whose sequence is at least 50% similar to 

the sequence of the HMG domain of the sex-determining region on the Y 

chromosome of humans and other709,710. In chondroprogenitor cells, the genes 

Sox9, Sox6, and Sox5 coexpress, and there is solid evidence that these genes are 

essential for bone production711,712. Sox9 is required for mesenchymal cell 

clustering during early embryonic development713 to express many extracellular 

matrix components, particularly types II, IX, XI, collagen, and aggrecan689. Later 
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in development, Sox9, mediated in part by Sox5 and Sox6, is required for 

chondrocyte proliferation and the alignment of proliferative clones into columns 

parallel to the longitudinal axis of the developing bone, indicating their 

importance in the growth plate proliferative zone711. The previous statement is 

further supported by the fact that the Sox5, Sox6, and Sox9 genes are silenced in 

hypertrophic chondrocytes712. Sox9 suppresses the transition of proliferating 

chondrocytes into hypertrophic chondrocytes in the proliferative zone of the 

growth plate and is thus implicated in the regulation of future endochondral 

ossification711; even, though there are pieces of evidence of BMP regulation by 

Sox9689. For all these reasons, Sox9 has a crucial function in the chondrogenesis 

of isolated human articular chondrocytes714. 

Runx2 promotes chondrocyte terminal differentiation, making room for 

ossification715. Previous research demonstrates that Runx2 and Runx3 

interactions with Ihh signaling are crucial for chondrocyte proliferation and 

differentiation716. 

10.6. Articular cartilage 

AC is specialized hyaline cartilage with a 2-4 mm thickness. The ECM of 

AC can retain high quantities of water due to its abundance of sulfated GAGs, 

which possess strong hydrophilicity and negative charges717. This property is 

intrinsically connected with the primary function that AC has, namely allowing 

movement without friction and counteracting the impact of compression forces 

applied onto the joint638. Given that AC is a viscoelastic "composite" dominated 

by two phases (gel and solid), it can respond to mechanical stimuli in two 

different ways: i) by deforming the porous matrix, which implies an increase in 

the number of contact points and a decrease of contact stresses; ii) by releasing 

interstitial fluid through the porous matrix consequently raising the lubrication 

of AC718. Concerning biomechanics, a deep comprehension of the ECM 

components of AC is required beforehand: 
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10.6.1. Cartilage collagens 

AC contains different collagens classified as fibril-forming or non-fibril-

forming; types II and XI create fibrils, while types VI, IX, and X do not but 

contribute to the ECM structure. Type II collagen fibrils contribute to cartilage 

tensile strength719. In vitro studies have presented how MSCs at early stages start 

synthesizing type I collagen, and after, once cell aggregates are formed, it is 

gradually exchanged to type II720. The thickness of its fibrils is controlled by the 

other collagen types and changes with cartilage depth; those less common 

collagens are crucial for the biomechanical behavior of the whole structure721. 

Type II collagen is the most prevalent in AC, accounting for 90-95% of the 

matrix's collagen. Type VI collagen is a type of microfibrillar collagen that creates 

elastic fibers and is found primarily in the pericellular zone of chondrocytes722. 

Type IX collagen is fibril-associated collagen with interrupted triple helices that 

may serve as a bridge between collagen fibrils and aggrecan723,724. Type X 

collagen is network-forming collagen, and while its function is unknown, it is 

mineralized in the calcified cartilage zone. Type XI collagen regulates fibril 

diameter and is attached to type II collagen to produce a mesh. The collagen 

fibrils are held together by cartilage oligomeric matrix protein (COMP), a 

100,000-kDa protein found in cartilage and tendons with numerous binding 

sites725. 

10.6.2. Proteoglycans 

Other vital molecules involved in the composition of the ECM are the PGs, 

mainly aggrecan and, in lesser amounts, biglycan, decorin, and others (e.g., 

fibromodulin, lumican)216. These uncommon PGs have been involved in the 

arrangement of the AC natural structure thanks to several interactions with type 

II collagen and TGF-β and keeping the fixed charge density constant which 

regulates water concentration726. 

Aggrecan comprises a high molecular weight core protein with 

connected GAG side chains, primarily chondroitin sulfate and keratan sulfate. Its 
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geometry seems a cylindrical comb because SO42– and COO– groups repelled each 

other. This specific kind of GAG is primarily expressed in cartilage tissues, 

forming a dense network in addition to hyaluronan. This network is essential to 

understand AC biomechanical behavior due to its role in the Gibbs-Donnan 

effect.  

Gibbs-Donnan effect 

According to the Donnan ion distribution law, there are always more 

charged particles in the tissue than in the bathing fluid727. The fixed-charge 

density (FCD) of aggrecan pulls cations from the fluid phase due to its overall 

negative charge727. As a result of this difference in ion concentration, a positive 

osmotic pressure, known as Donnan osmotic pressure, is created, causing the 

matrix to expand728. This swelling force is counteracted by crosslinked collagen 

fibrils containing aggrecan; the collagen is put under strain, causing the cartilage 

to curl up729. When cartilage is compressed, the interstitial water gets pressured 

and bears a large percentage of the stress730. Cartilage tries to equilibrate the 

load levels by adapting osmotic pressure731. When the load is removed, fluid 

returns to the aggrecan network. 

Aggrecan is involved in the two principal functions of the cartilage from 

a biomechanical point of view: i) together with other molecules (i.e., chondroitin 

sulfate), it modulates the fluid pressurization (water permeability) of the 

tissue. Thus, the structure can be maintained, and the articular surface resists 

deformations allowing adequate lubrication via Donna osmotic pressure 

effect732; ii) the concentration of aggrecan increases through the superficial zone 

and this gradient is correlated with the amount of extracellular water retention 

that inhibits external compressions733.  

10.6.3. Glycosaminoglycans 

In AC, keratan sulfate and chondroitin sulfate are the primary forms of 

GAGs734; both present a high ratio of sulfated groups (SO42–). Disaccharide units, 

sulfation, and amino acid epimerization are differences between chondroitin and 



DOCTORAL THESIS DANIEL MARTÍNEZ MORENO 

126 
 

keratan sulfate within their own family. In addition, chondroitin sulfate is about 

20 kDa735, whereas keratan sulfate chains are between 5 and 15 kDa736. The 

biosynthesis and regulation of GAGs are both poorly understood. It has been 

demonstrated that cartilage contains more keratan sulfate as people age737. The 

depth of the cartilage also has an impact on the two GAG ratios. They reduce 

cartilage inflammation, possibly interacting with aggrecan in regulating the 

Donnan osmotic pressure738. 

10.6.4. ECM organization of AC 

AC is structured in a superficial zone, a transitional zone, a deep zone, 

and a calcified layer, all with distinctive compositions and cell populations 

(Figure 48). The superficial zone protects the rest of the layers from shear 

stresses and is in direct contact with the synovial fluid. Chondrocytes composing 

this region segregate a glycoprotein called superficial zone protein (SZP), 

conforming to a mucosa that reduces articular friction739. Next to the superficial 

zone is the middle (transitional) zone.; its main action is to serve as a bridge 

between the superficial zone and deep zones740. In contrast with the layer above, 

collagen is obliquely oriented (compression resistance) among the tissue, 

whereas chondrocytes have a spherical shape and are highly dispersed and 

scarce741. The deep zone is the bulk responsible for opposing any compressive 

force. Collagen fibrils are arranged perpendicular to the tissue surface. Even 

Figure 48. AC zones and their different cell distribution and ECM organization. 
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more, chondrocytes have columnar orientation parallel to collagen fibers741. This 

region is also characteristic because its high PGs concentration implies low water 

concentration. Finally, a calcified layer attaches the cartilage to the adjacent 

bone742. 

In summary, ECM variations can be explained as water, and PG contents 

increase inversely with depth, from 84% to 40-60% and 15 to 25-20%, 

respectively. At the same time, the collagen content varies from 86% to 67% at 

the AC surface741.  

10.6.5. Mechanical aspects of AC 

According to this biphasic hypothesis, cartilage comprises an 

incompressible, porous-permeable solid and incompressible viscous fluid743. 

When cartilage is loaded, the fluid-flow drag of the interstitial fluid with the 

concrete matrix balances the force exerted on the cartilage727. When modeled 

using biphasic theory, an indentation test generates three independent 

variables: the equilibrium compressive modulus, the Poisson's ratio, and the 

permeability. Thus, human AC has an aggregate modulus ranging from 0.53 MPa 

to 1.34 MPa, a Poisson's ratio ranging from 0.00-0.14, and a permeability ranging 

from 0.90 · 10-15 m4/Ns to 4.56 · 10-15 m4/Ns 744. The pore size of the solid matrix 

varies in a range between 30 to 60 Å745.  Nevertheless, AC cannot be considered 

isotropic, depending not only on the joint but even on the zone of AC, as its 

properties differ; Table 3 summarizes those variations. Also, AC mechanical 

properties are not equal between spaces, which has sense due to the exerted 

loads being also different746. 

As explained earlier, one cartilage function is to reduce articular joint 

friction. Physically speaking, the squeezing film lubrication model suggests that 

loaded cartilage deforms to increase the load-bearing surface and decrease the 

movement of the lubricating fluid film747. Tensile hoop stress arises at the 

cartilage surface due to the radial movement of the interstitial fluid in the 
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cartilage layer, making the presence of surfactants like glycoprotein-I necessary 

to reduce those shear loads748. 

Conclusively, AC is a very complex biomaterial from the biomechanical 

point of view, and it is evident that their adequate homeostasis also depends on 

external-internal physical equilibrium. 

 

Table 3. Mechanical properties of different AC joints. HA = aggregate modulus; νs = 
Poisson’s ratio; h = thickness; µs = shear modulus. 

Joint HA (MPa) νs h (mm) µs (MPa) 

Knee749 0.60±0.2 0.06±0.07 3±1 0.28±0.07 

Ankle750 1.1±0.4 0.03±0.05 1.2±0.3 0.5±0.2 

Hip744 1.2±0.6 0.05±0.06 1.3±0.4 0.6±0.3 

Elbow751 0.8±0.3 0.07±0.08 1.1±0.3 0.4±0.1 

 

  



INTRODUCTION OSTEOARTHRITIS 

129 
 

11.Osteoarthritis 

11.1. Background 

OA is the most representative degenerative disease related to the joints. 

It has been estimated that 250 million people worldwide suffer from knee OA 

(2012), a significant cause of pain and disability in adults752. The Global Burden 

of Disease (GBD) estimated that OA approximates 0.6% of all disability-adjusted 

life-years (DALYs) and 10% in musculoskeletal conditions753. The pathological 

pathway leading to OA consists of a chronic low-grade degradation of AC, which 

is the primary driver of ongoing joint degeneration754. In such a way, OA should 

not be considered a disease but a typical end of multiple secondary pathways 

related to aging, possible traumas, obesity, and their correspondence altered 

biomechanics of the joint755. More and more researchers have supported this 

idea, which could seem ambitious in the last few years. Ganz et al. in 2008 first 

introduced the suggestion that the early steps of the OA process are related to 

biomechanical aspects of the cartilage tissue756; recently, other authors have 

experimentally confirmed this statement757. 

Inside the biomedical research community, it is globally accepted that 

biomechanical properties of the tissue behave as a function of the ultrastructural 

organization, which depends on the biochemistry and cell-cell and ECM-cell 

interactions758 to such an extent that any slight alteration in these properties will 

drastically alter tissue biomechanics759. The central axis of the development of 

OA is a precedent of mechanical derangement that produces low-grade damage 

in the AC760. Thus, from the biomechanical point of view, three stages can be 

established in OA development: i) the proteolytic breakdown of the ECM, ii) the 

fibrillation and erosion of the cartilage surface, and iii) the beginning of synovial 

inflammation761. 
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11.2. Definition 

As a "whole joint" disease, OA causes pathologic changes in all tissues, 

including AC degradation, thickening of the subchondral bone, the production of 

osteophytes, synovial inflammation, and meniscal and ligament degeneration. 

The cartilage at the joint surface, where mechanical forces like shear stress are 

most prominent, shows the earliest alterations762. The ordinarily dormant 

chondrocytes undergo a phenotypic change, becoming "active" cells that 

proliferate, form clusters, and produce more matrix proteins and enzymes that 

break down the matrix763. 

Kellgren and Lawrence documented the first official attempts to create a 

radiographic categorization scheme for OA in 1957764. Kellgren looked at the 

inter- and intraobserver reliability of radiographic changes associated with 

rheumatism seen in the hand765 after researching rheumatism in coal miners at 

the Bedford Colliery in North West England766. KL attempted to create a 

categorization method with an accompanying set of standardized radiographs 

for OA of diarthrodial joints after establishing a significant discrepancy among 

various observers. Although a general description that includes cartilage lesions, 

osteophytes, bone marrow lesions (BMLs), synovitis, and effusion has been 

established (Figure 49)767, there is currently no accepted definition of OA 

analyzing the pathology under MRI. Thus, the standard KL definition establishes 

that the following statements must be observed:  

For radiology764,768: 

1. It is necessary to form osteophytes on the joint margins or, 
in the case of the knee joint, on the tibial spines. 

2. Periarticular ossicles; were found chiefly on the distal and 
proximal interphalangeal joints 

3. Narrowing of joint cartilage associated with sclerosis of 
subchondral bone 

4. Small pseudocysts areas with sclerotic walls situated 
usually in the subchondral bone 

5. The altered shape of the bone ends in the head of the femur 

For MRI767: 
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1. Definite osteophyte formation 
2. Full-thickness cartilage loss 
3. Subchondral bone marrow lesion or cyst not associated with 

meniscal or 
4. ligamentous attachments 
5. Meniscal subluxation, maceration, or degenerative 

(horizontal) tear 
6. Partial thickness cartilage loss (where complete thickness 

loss is not present) 
7. Bone attrition 

11.3. Development of OA 

Concerning genetics, OA presents polymorphisms or mutations in 

asporin, GDF5, secreted Frizzled-related protein 3 (sFRP3), deiodinase 2 (DIO2), 

and mothers against decapentaplegic homolog 3  (Smad3) genes that may affect 

OA susceptibility769. These genes produce chemicals in the TGF-, BMP-, and Wnt 

signaling pathways (which maintain chondrocyte homeostasis and 

differentiation). In case of disruption, it would cause chondrocytes to reenact a 

molecular developmental program, including the expression of markers of 

chondrocyte hypertrophy, like COL10A1, MMP-13, and Runx2769. In OA cartilage, 

modifications in gene expression patterns unrelated to changes in DNA 

sequences have also been noted. Through processes involving microRNA and the 

epigenome, these modifications enable the cell to react quickly to environmental 

changes770,771. Numerous studies have started investigating whether changes in 

the expression of specific miRNAs impact cartilage homeostasis772,773 as opposed 

to the OA disease state since miRNAs might have multiple downstream targets774. 

Figure 49. Radiography of a healthy knee joint VS. an OA knee joint. Image 
obtained by perimissions of Shivanand et al. 768. 
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AC surfaces degrade mechanically and chemically in an osteoarthritic 

environment, producing CWPs. Injuries to the synovial joint, such as meniscal 

tears, ligament ruptures, or cartilage damage, can significantly alter the 

biomechanics of the joint, leading to increased instability and roughness of the 

surface667,668. The degree of the illness has been linked to changes in cartilage 

particle number and characteristics, including size and roughness669,670. These 

early degradations result in cartilage thinning, worsening cartilage thickness, 

and superficial layer fibrillation, which, over time, resulted in the collapse of the 

AC (Figure 50)679. After this severe event, chondropathy develops a condition 

that exposes the underlying subchondral bone plate. Current research on the 

variety of cellular response patterns that define osteoarthritic cartilage 

degradation has concentrated on apoptotic chondrocyte death and the processes 

that underpin it775. 

11.3.1. Biochemical and biomechanical pathways 

Synovitis is a frequent symptom of RA. The primary site of cartilage 

breakdown by proteinases produced primarily by the synovium is the junction 

between the cartilage and the overlying synovial pannus also has a high presence 

in OA776. Inflammation is a significant risk factor for both cartilage loss 

progression and disease signs and symptoms777. Synovitis has been associated 

Figure 50. Osteoarthritis mechanical feedback cycle. 
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with progression in OA778; it is unclear if synovitis precedes the beginning of 

symptomatic OA779,780. Figure 51 shows a schematic of the whole process 

regarding this question. Many studies have shown how the homeostatic balance 

of healthy cartilage is disrupted and leads to sickness. Proteolytic degradation of 

cartilage matrix proteins threatens cartilage's excellent physical properties, such 

as elasticity, compressive resistance, and tensile strength781. In addition to 

biomechanical stressors, pharmacological and genetic factors have a role in the 

genesis and development of AC in OA775. They contribute to the breakdown of 

chondrocyte-ECM connections, which alters cell metabolism782. Chondrocyte 

matrix gene expression is changed in OA because it contains collagen molecules 

(types X, III, VI) absent in healthy adult AC783. 

At the beginning of OA, mononuclear cells infiltrate the synovial 

membrane and release proinflammatory mediators such as interleukin 1β (IL-

1β), TNF, and chemokines in early and late-stage OA disease780. Synovial 

effusions in the joint can be seen via magnetic resonance imaging or US784. In 

patients with traumatic meniscal injury but no radiographic signs of OA, the 

synovium retrieved following arthroscopic meniscectomy is frequently 

inflammatory and has rising inflammation scores785. Therefore, shear stresses 

produced by friction between the adjacent bones of the articulation increases786. 

Anterior cruciate ligament (ACL) rupture is associated with an increased risk of 

developing OA in life787.  
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Figure 51. Schematic representation of the diverse biochemical and biomechanical 
pathways affecting OA joints. 



INTRODUCTION OSTEOARTHRITIS 

135 
 

A study of the high abundance synovial fluid proteome found distinct 

patterns in healthy people compared to patients with early OA who underwent 

arthroscopy after medial meniscus injury and patients with late-received total 

joint replacement788. According to these studies, low-grade synovitis manifests 

preclinical disease throughout the early posttraumatic period and may impact 

long-term prognosis789. 

Growth of bone spurs thereby progresses during disease development, 

leading to articular inflammation and joint pain667. In this state, the presence of 

IL-1β and TNF-α790 induces the synthesis of other inflammatory factors like 

cyclooxygenases (COX-1, COX-2)791; mitogen-activated protein kinase 

(MAPK)792, as the Iκ-1 and -2 kinases793. Abnormal mechanical stress on cartilage 

induces catabolic and additional inflammatory processes via intracellular 

signaling pathways similar to those generated by oxidative stress, inflammatory 

cytokines, and matrix damage products794–796. Inflammatory cytokines also 

lower the expression of numerous genes associated with the differentiated 

chondrocyte phenotype, such as aggrecan (ACAN) and type II collagen 

(COL2A1)795. Canonical NF-β (p65/p50) and stress-induced and MAPK signaling 

must be activated for chondrocytes to create MMPs, a desintegrin and 

metalloproteinases with thrombospodin motifs (ADAMTSs), and inflammatory 

cytokines797. 

Articular chondrocytes from OA patients exhibit phenotypic plasticity 

similar to MSCs undergoing hypertrophic chondrogenesis798; it may be a direct 

consequence of activating specific receptors in OA chondrocytes due to the 

positive feedback amplification event by innate immune responses799–801. Some 

receptor activator molecules are the alarmins, particularly S100A4, A8, A9, A11, 

and HMGB1, which activate RAGE and TLRs to cause inflammation-associated 

matrix degradation and increase reactive oxygen species (ROS) via upregulating 

cytokines and chemokines802,803. OA chondrocytes also express chemokine 

receptors, including CXCR3, CXCR4, CXCR5, and CCR6804, as well as chemokines 
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like IL-8805, macrophage inflammatory protein 1 (MIP)-1β798, GRO806, monocyte 

chemotactic protein 1 (MCP-1)807, and RANTES808 which may play essential roles 

in catabolic pathways and chondrocyte hypertrophy. Toll-like receptors (TLRs) 

and OA chondrocytes express the receptor for advanced glycation end products 

(RAGE); the secreted damage-associated molecules may act as TLR or RAGE 

ligands to activate inflammatory and catabolic processes in AC809–811. Further,  

TLR2 and TLR4 lead to increased expression of inflammatory and catabolic 

genes such as MMP-3, MMP-13, and NOS2 via the cytosolic adaptor myeloid 

differentiation factor 88 and subsequent N-B signaling812. MMP-13 inhibits the 

β-activating inhibitor of kinases (IKKα and IKKβ)813,814 and produces changes in 

the expression and cellular localization of regulators such as Runx2, β-catenin, 

and Sox9814.   

Thus, the early try to restore cartilage homeostasis results in the leakage 

of proteoglycans and the breakdown of type II collagen, which starts at the 

cartilage surface815. Consequently, the water concentration increases, implying a 

critical reduction of the tensile strength of the ECM782. The posterior step is 

aggrecan degradation produced by aggrecanases 1 and 2 (ADAMTS4 and 5), a 

family of the ADAMTs attached to type 1 thrombospodin (TS1)816–818. The 

collagen network was partly shielded from destruction by the collagenases 

MMP-1, 8, and MMP-13 (collagenases I, II, and III) until the proteoglycan layer 

was removed when the collagen network degraded. In addition, discoidin 

domain receptor 2 (Ddr2) is overexpressed in OA condition, and OA 

chondrocytes expressing this receptor probed and induced expression of MMP-

13, accelerating the type II collagen proteolysis819, causing an irreversible point 

that ends in AC total degradation820.  
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12.Cartilage Tissue Engineering 

12.1. Background 

Concerning AC treatment history (Figure 52), Pridie's resurfacing 

approach (1959) was used to treat AC abnormalities for the first time, which was 

motivated by the fact that entire thickness defects could be repaired821. After the 

first identification of bone marrow MSCs822, some bone marrow stimulation 

procedures, such as subchondral drilling823 and arthroscopic abrasion824, were 

developed. After, the microfracture technique became popular because of its low 

cost, short and uncomplicated procedure, and brief recovery period825–828. 

Younger patients had a stronger proclivity to repair, most likely owing to MSC 

regeneration potential diminishing with age829. 

Graft transplantation for the treatment of cartilage disorders became 

popular in the 1970s830,831. It resurfaced as an autograft or allograft in the 1990s, 

depending on the origin of the graft832–834. Autologous grafting has significant 

downsides, such as a shortage of accessible tissue and donor site morbidity835. 

Oppositely, allografts can be employed for more substantial defect sites, but they 

also raise the prospect of graft against host immunological responses and the 

chance of organ rejection836. Mosaicplasty has been used to enhance the 

integration of two tissues in treating minor to medium-sized abnormalities837–

839. This procedure involves drilling several tiny full-thickness flaws into which 

autografts from a non-load-bearing donor site are implanted837. Due to the 

difference in mechanical properties between cartilages, naïve joint properties 

are not achieved840. The chondral grafts fail to integrate correctly in lateral and 

bottom integration when the subchondral bone is not connected841. 

Brittberg and colleagues presented the first cell transplantation 

procedure for AC repair in 1994: autologous chondrocyte implantation (ACI)89. 
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The original procedure involves transplanting in vitro culture-expanded 

chondrocytes from a biopsy collected from a non-load-bearing region under a 

periosteal flap. Re-operation rates owing to periosteal graft hypertrophy ranged 

between 10 and 20%842,843, with some instances reaching almost 40%844. This 

inflammation replaced the periosteal flap approach with a collagen membrane 

to reduce the problem845–847. Chondrocyte transplantation is considered the gold 

standard in AC healing for patients with substantial injuries (up to 12 cm2) or 

when microfracture fails848–850. The second-generation ACI (MACI) uses a 

bioabsorbable 3D scaffold and is employed as a cell carrier for implantation into 

the location of the defect851. 

Alternative to conventional ACI, a non-culture-based technique is used to 

transport chondrocytes to the site of damage852. A similar amount of cartilage 

was manually chopped and integrated into a fibrin-coated polymeric scaffold as 

was utilized for the ACI. The device was implanted in a full-thickness chondral 

defect model from a goat852. 

Frisbie et al. (2009) demonstrate in a horse knee joint chondral lesion 

that ECM may be generated from cadaveric cartilage cubes (DeNovo Natural 

Tissue)853. This procedure's first human case report described pain alleviation, 

full defect filling, and virtually complete healing of preoperative subchondral 

bone edema after 2 years postoperatively854. The interim findings of prospective, 

Figure 52. Time-line of CTE. 
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single-arm cohort research were compared to the outcomes of microfracture and 

first-generation ACI855. In 2017, an allogenic MSCs one-step method can give 

proof of stable repair tissue while significantly lowering the cost of an ACI 

treatment856. The Instant MSC Product Accompanying Autologous Chondron 

Transplantation (IMPACT) trial employed in situ qualifying fibrin glue 

containing allogeneic MSCs in a 90:10 or an 80:20 ratio with autologous 

chondrons857. 

However, existing bioengineered neocartilage is far from ideal compared 

to mature equivalent. The remark mentioned above is that it is challenging to 

design a construct that accumulates anisotropy and homogeneity in its structure, 

resulting in typical AC mechanical qualities858. The original AC is replaced with 

mechanically inferior fibro-cartilaginous tissue in these ways840,859, and all of the 

treatments reported thus far have failed mechanically, which may limit the 

intervention's efficacy860. As a result, the primary difficulty in bringing cartilage 

TE (CTE) to the clinic is to develop biomechanical qualities of the final implant 

that are similar to natural tissue. 

12.2. Cell source: mature chondrocytes or MSCs? 

Autologous chondrocytes are not the best cellular source for making this 

autologous explant since the percentage of these cells inside the AC is less than 

5%, among other drawbacks. In addition, during the time of in vitro expansion, 

monolayer cell cultures present an overexpression of type I collagen and 

versican in lieu of type II collagen and aggrecan production861. This process, by 

itself, results in a reorganization of the microfilament structure of the 3D ECM, 

implying that biomechanical stresses of the microstructure, which are crucial for 

the correct tissue performance, change862.  

On the other hand, MSCs have demonstrated a real potential in 

differentiating healthy chondrocytes863. In addition, MSCs promote 

chondrocytes' resilience when co-cultured in vitro864. But not everything in the 
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field of MSCs is an advantage. Nowadays, no conventional cell therapy approach 

is approved for therapeutic interventions865, although the use of MSCs derived 

from the umbilical cord for AC treatment has been approved within the last year. 

Even more, the differentiation potential of MSCs is age-dependent, being a 

limitational factor for autologous implants866. 

12.3. Biomaterials for cartilage tissue engineering 

Among biomaterials applied in CTE, it can be found synthetic polymers 

like PLA867 and PCL868, polysaccharide gels like agarose869,870 and alginate871,872, 

as well as protein-based materials such as collagen, gelatin, and fibrin gels873–

876.  

Materials have been created as macroporous structures to allow cell 

seeding into their porous sections, hydrated polymeric networks, and hydrogels, 

enabling cell embedding. The influence of the synthetic network composition is 

crucial in the early moments of chondrogenesis when chondrocytes have not yet 

formed their matrix877. The creation and accumulation of a cartilage ECM are 

influenced by network density, degradation, and stiffness, which vary 

significantly878–881. The impact of matrix structure and mechanical factors in a 

controlled environment has been studied using synthetic hydrogels. Despite this, 

these blank matrices do not fully replicate ECM's chemical and biological 

properties. An appealing approach is to improve the function of natural materials 

by adding AC ECM components such as collagen882,883,  HA884,885, and chondroitin 

sulfate886,887. Chitosan, a polycationic polysaccharide, has shown various 

interesting therapeutic features, including the potential to increase GAG 

synthesis and promote aggrecan and collagen type II formation888,889.  

The natural evolution of previous technology is that the actual cartilage 

ECM for regeneration might be provided by dECM material890. MSCs embedded 

in dECM grafts have already probed their in vitro capacities to induce 

chondrogenesis regarding cell proliferation and type II collagen gene 
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expression891. In addition to dECM molecules, TGF-β3 has been used in these 

materials (as microparticles) to stimulate chondrogenesis892,893. Crosslinking 

collagen or combining natural ECM components with synthetic polymers is 

thought to be beneficial in solving the weak mechanical properties of dECM 

grafts894–899. Another disadvantage of the ECM cartilage-derived scaffold is cell 

contraction during in vitro culture, implying the use of physical and chemical 

crosslinkers in the mixture900. Thus, although dECM gels have demonstrated high 

potential, more research is needed to evaluate the therapeutic uses of this 

biomaterial method892. 

12.3.1. Scaffold architecture 

Chondrocytes are implanted in their lacuna inside normal AC, where they 

maintain a spherical shape and no stress fibers are present. Chondrocyte 

separation from AC and traditional monolayer cultures result in phenotypic 

alterations linked with cytoskeleton modifications during tissue processing. In 

2D monolayer culture (Figure 53), chondrocytes resemble fibroblasts in form 

and feature stress fibers in their cytoskeleton901–903. Scientists have discovered 

that most chondrocytes within sponge scaffolds retain their spherical shape904, 

implying a correlation between this cellular arrangement and the surface area of 

tiny scaffold fibers and fiber distance904. On aligned electrospun nano- and 

microfibrous PCL scaffolds, cell orientation and chondrogenic ability of human 

MSCs were examined. Cells seeded on nanofibrous PCL scaffolds revealed 

dramatically increased GAG deposition and type II collagen mRNA expression904. 

Type I and type II collagen fibers were used to create a five-layer scaffold (by 

electrospinning) that encouraged the migration and differentiation of human 

BM-MSCs905.  
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Elisseeff's group was the first to show that the interaction of 

chondrocytes from various zones influences tissue-produced products' 

biological and mechanical aspects906. To stimulate MSC proliferation and 

differentiation, bi-zonal cartilage TE was recently performed utilizing a 

thermoresponsive hydrogel based on chitosan-g-poly(N-isopropyl acrylamide). 

Results exposed a precise alignment of the cells recreating the macroscale of AC 

tissue907. An AC layer-mimicking gel reinforced with nanofibers of PLA and 

hydroxyapatite has shown upregulation of Sox9 and PRG4 in the superficial 

layer-mimicking gel, the maximum expression of type II collagen, aggrecan, and 

GAG content in the mid-layer-mimicking gel, and calcified cartilage in the final 

gel908. Conclusively, any approach mimics the cartilage compositional and zonal 

structure presents a higher potential for practical clinical application909–911. 

Figure 53. For CTE, it is very important to adequate the architecture of the 
final graft because it will affect cell metabolism. 
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12.4. Biomechanics for in vitro cartilage development 

The articular chondrocyte is the mechanical unit of cartilage that governs 

genetic responses under physiologic joint loadings, such as shear stress, osmotic 

pressure, compression, tension, and hydrostatic pressure279. It is contained in a 

chondron, a thin pericellular matrix (PCM) within the AC ECM that transfers 

stresses between the cartilage and the surrounding environment912. 

Mechanosensors in chondrocytes and osteoblasts include transient 

receptor potential vanilloid 4 (TRPV4), Piezo1, and Piezo2913–915. Bone and 

cartilage tissue are very related, and both present an acute mechanosensitivity 

to maintain homeostasis: suppression of Piezo 1 is related to osteoporosis916, and 

TRPV4 mediates the anabolic response of chondrocytes to osmotic or mechanical 

stress917. The differential orientation of chondrocyte primary cilia in AC vs. those 

in epiphyseal cartilage suggests the possibility of directed mechanical signals for 

proliferation and directional synthesis of ECM in response to compression912,918. 

In health and illness, chondrocytes are exposed to various mechanical stresses 

and can respond precisely to different mechanical stimuli to control metabolism 

and matrix synthesis278,279,912. 

Among all possible mechanical stimuli applied to cartilage cells in TE, the 

most reliable ones are hydrostatic pressure, direct compression, and the 

application of fluid shear stresses. Dynamic, cyclic, and hydrostatic pressure 

have all been demonstrated to increase the transcription and translation of the 

ECM proteins aggrecan and type II collagen, whereas static compression 

decreases both919,920. A similar effect is observed under shear stresses where 

excessive stress deregulates NFkB921,  whereas, under controlled shear stresses, 

higher ECM synthesis is observed922. Thus, a deeper understanding of these 

mechanisms is necessary to success the objectives of this work. 
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12.4.1. Hydrostatic Pressure 

AC is a highly hydrated tissue (70-80% of water content), so the 

entrapped water will “resist” the deformation when applying external 

compression. Translated to the cells, this results in an over-exerted force that 

will be homogeneous along the whole cell surface producing isotropic 

deformation and hydrostatic pressure (HP)580. Regarding how HP and cartilage 

interact, various studies have suggested a direct correlation between the HP 

stimulation on the cells and the behavior of cell membrane channels923. Despite 

the fact that HP does not imply a measurable deformation in the cartilage tissue, 

it interacts with the transporter proteins compressing the void spaces created 

by the folding orientations of these complexes924.  

It has been found that the Na/K pump is dramatically constrained under 

a static HP load (2.5-5 MPa) or even completely suppressed under 50 MPa923,925. 

It also inhibits Na/K/2Cl transport activity. On the other hand, Browning et al. 

showed that Na/H pump activity was increased, and they also found that HP 

modulates the phosphorylation of the pump925. Mizuno discovered that 

exercising an HP in the middle zone of the cartilage results in an expansion of the 

intracellular calcium concentration (Ca2+) due to the stretching of activated 

calcium channels926.  

The usual range of stresses affecting any given common lie between 3-10 

MPa, but can reach up to 18 MPa, the maximum measured stress at the hip joint 

927. In addition, the frequency of these stresses when walking is 1 Hz in 

humans928. Some authors have studied the relevance of these parameters by 

applying an HP in the TE of cartilage tissue. For instance, studying responses of 

monolayer cultures to HP, Suh et al. identified an increase of 40% in proteoglycan 

synthesis after applying 0.8 MPa alternating function times929. In addition, 

Jortikka et al. demonstrated that the GAG absorption rises due to an HP at 5 MPa 

and 0.5 Hz (dynamic compression) in contrast with static compression930. 
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Dynamic HP has also promoted a higher synthesis of aggrecan and type II 

collagen mRNAs in mature chondrocytes (monolayer cultures)931.  

Concerning 3D matrices, the conclusions that can be drawn are slightly 

different compared to in vivo observations. Applying similar parameters to 

Jortikka’s group, Parkkinen et al. showed a high increase in the incorporation of 

GAGs, but at much lesser rates932. Another exciting discovery from 3D scaffolds 

is that adult and juvenile cell lines (chondrocytes) respond differently to 

mechanical stimuli (3-7 MPa at 0.25 Hz). Adult cells showed increased GAGs and 

typed II collagen production, while immature cells only presented increased 

GAGs synthesis. This result implies collagen synthesis is much more sensitive to 

HP than GAGs933. Elder et al. showed that static HP (5 or 10 MPa) was beneficial 

to scaffold-less explants to develop GAG and collagen synthesis, consequently 

implying a higher compression stiffness of the generated ECM934. Thus, it can be 

argued that there are no clear responses or accurate controls concerning the 

timing for HP application580.  

Also, HP has a differentiation role exercised on MSCs. A research group 

studied how the HP (0.1 MPa at 0.25 Hz) increased GAG and collagen 

concentrations in bone marrow MSCs (BMMSCs) compared with the control 

cases935. Other authors showed the rise of chondrogenesis markers Sox9, 

aggrecan, and type II collagen mRNAs in this model936. More interestingly, it has 

been demonstrated that HP leads to chondro-induction in other cell lines like 

fibroblasts, where applying these forces leads to doubling the production of GAG 

and collagen937.  

Together with HP, the delivery of TGFs, like TFG-β1 and TFG-β3, 

significantly helps the matrix construction in MSCs. For instance, TFG-β1 with 

HP almost double ECM production and biomechanical properties (compressive 

and tensile stiffness)938. Another relevant pathway of applying HP over 

chondrocytes is the proliferation of pro-inflammatory signals, like IL-6, MMP-2, 

and MCP-1939. 
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12.4.2. Mechanical loads 

Mechanical loads can be essentially explained as direct contact between 

two surfaces. In AC, the regular loads range from 0.5 to 8 MPa940. In the same 

manner that HP does, interstitial fluid supports the external compression via 

liquid pressurization941. This fact is responsible for increasing the stiffness of AC 

under dynamic loads743. Nevertheless, Armstrong et al. proved that interstitial 

fluid pressurization only supports 33% of the compression load942; thus, the 

“solid” ECM supports the rest of the percentage of stresses.  

Perhaps because of its simplicity and ease of use, applying uniaxial stress 

over tissue surface is the most extended experimentation of mechanobiology943. 

This technique shows how physical stresses interact with the integrin receptors 

attached to the cell membrane activating G proteins and the adenosine 3’,5’-

cyclic monophosphate  (cAMP) signaling cascade944. Furthermore, it has been 

reported that the phospholipid membrane can activate G proteins under 

biomechanical stimulation by itself945.  

Mechanical stimuli directly interact with actin polymerization and 

depolymerization. Protein kinase A (PKA) phosphorylates Sox9 protein in adult 

chondrocytes, which enhances its transcriptional activity946. In addition, Yoon et 

al. showed how PKA regulates chondrogenesis in MSCs in a PKCα-dependent 

manner947. Juhász et al. determined that the chondrogenic response to 

compression regimes is related to elevated pSox9 levels.  This result may be 

derived from increased PKA enzyme activity from mechanically induced 

cartilage colonies. They also observed Sox9 and cAMP response element-binding 

(CREB) expression and phosphorylation rise after mechanical stimulation948. 

External forces increase the quantity of Ser211 (a specific phosphorylated form 

of Sox9) directly involved in ECM synthesis. Furthermore, Sox9 is activated by 

CREB due to physical interactions at the Ser133949.  Mechanical stimuli trigger 

the cAMP-PKA-dependent, the heterotrimeric Gαs-subunit, cAMP, and the 

transcription factor CREB950.  
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The mechanism behind how chondrocytes interact with external forces 

is still a hypothesis and is yet to be fully supported by experimental observations. 

Nevertheless, there is strong evidence that primary cilia, a sensory organelle, 

links the mechanical and chemical cues951. The primary cilium has also been 

observed in chondrocytes, MSCs, and arthritic chondroprogenitor cells (CPCs) 

used as mechanosensor952. These cilia from chondrocytes are aligned with the 

ECM to respond to external forces. Wann et al. stimulated mutated chondrocytes 

(without cilia formation) and found these chondrocytes were insensitive to 

loading stimuli918. In addition, Farnum et al. demonstrated a difference in the 

orientation of chondrocyte cilia between load-bearing cartilage and non-load-

bearing one953. 

In contrast with other cells with cilia, the primary cilium in chondrocytes 

is essential for modulating the downstream process, which is called intra-

flagellar transport (IFT), but not for early mechanoreception. These regulatory 

pathways are associated with type II and IV collagen, G proteins, Ihh, Ca2+ 

channels, connexins, purine, cAMP, and the PKA pathway954. For instance, in the 

case of Ca2+ channels as polymodal TRPV-4, which is present in the chondrocyte 

cilia955, were induced by mechanical loading in porcine articular chondrocytes956. 

Another important example of a membrane receptor of the cilia is the case of 

connexin 43, a mechanosensitive ATP-release channel957. Thanks to these 

previous discoveries, it is possible that mechanical stimulation activates signal 

transduction of the focal adhesion complexes (e.g., integrins), activating 

adenylate cyclase to promote PKA by cAMP948,958. Also interesting is the finding 

that OA chondrocytes and healthy chondrocytes have differences in cilia length, 

which may act as a new biomechanical marker. In addition, it was proven that 

the length of cilia depends on Ilβ954.  Rich et al. also found how chondrocyte cilia 

respond within minutes to changes in osmolarity, which implies an adjustment 

in cilia length959. 
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The role of the interstitial fluid in AC is so critical that it is considered a 

biomarker for OA960. The interstitial fluid acts as low mechanical shear stress 

over the chondrocytes producing stimulations previously discussed941. 

Perfusion flows (PFs) are applied in cartilage TE to mimic this natural in vitro 

interaction. Pazzano et al. demonstrated that after applying a PF, the 

chondrocytes were aligned in the same direction of the flow, resulting in an 

advantageous cartilage TE961. In previous studies, PF is a reliable tool for growing 

cartilage and bone TE962. 

Recent literature remarks on tailoring the flow velocity to acquire 

chondrogenesis and enhance cell viability. Low flow velocity (10 µm/s and 7 

µm/s) is appropriate for the early stages of the process to protect matrix 

deposition in the porous scaffolds and the type II collagen and GAGs synthesis963. 

After that, it is advisable to develop a slow increase in velocity (from 7 to 19 

µm/s)964.  

Perfusion systems are also beneficial for treating OA. It has been found 

that PF decreases the hypertrophic regime of the pathological ECM. The 

synthesis of type I collagen under this bioengineered protocol is reduced even 

more; adult arthritic chondrocytes displayed initial steps of redifferentiation965.  

12.4.3. Ultrasound 

Low-intensity pulsed US (LIPUS) is an acoustic wave that produces 

mechanical stimuli over cells, and FDA approves them for clinical therapy and 

bone fracture healing966. The applicability of LIPUS (< 1 W/cm2) for bone fracture 

healing has been demonstrated for several years967. LIPUS enhances calcium 

deposition and the synthesis of the BMP-2968. Moreover, LIPUS is also beneficial 

for fibroblasts, osteoblasts, and chondrocyte proliferation in vitro and in vivo969. 

Furthermore, there is evidence that LIPUS promotes the gene expression of type 

II collagen970 and improves the synthesis of chondrogenic ECM971.  

Revising previous literature about LIPUS cell responses, several 

mechanotransduction routes are involved in chondrocytes: the 



INTRODUCTION CARTILAGE TISSUE ENGINEERING 

149 
 

integrin/P13K/AKT pathway972, the integrin-mediated p38 MAPK pathway973, 

and the integrin-FAK/Src/p130Cas/CrkII/Erk pathway974.  

Recently, Nishida et al. found a positive feedback pathway that implied 

MAPK and the CCN family member 2, also known as connective TGF (CCN2)975. 

Alterations modulate this TGF in the cytoskeleton of fibroblasts and 

osteoblasts976. Specifically, it is known that CCN2 is expressed via actin 

polymerization. The same researchers have proven how CCN2 interacts with β- 

and γ- actin in vitro in human chondrosarcoma-derived chondrocytic cell line 

(HCS)977. In addition to the previous metabolic path, MAPK signaling is involved 

in the CCN2 induction under LIPUS stimulation978; LIPUS promotes the Ca2+ 

influx through TRPV4, a BKca channel that activates MAPKs to induce CCN2 

synthesis.  Consequently, LIPUS stimulates two different ways the CCN2 

Figure 54. Schematic representation of the biomechanical pathways involved 
in cartilage synthesis. Hydrostatic Pressure (HP) enhances Ca2+ and Na+ channels 

and the Na+/K+ pump which interacts with PKA that regulates chondrogenesis 
(Sox9/CREB). Shear stress induced by flow stimulate the primary cilium of 
chondrocytes that also plays a key role in the Sox9/CREB cycle. Finally, US 

stimulation activates the TRPV4 channels and actin polymerization that induces 
chondrogenesis as well 
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molecule through actin polymerization and MAPKs, which in turn increases 

chondrogenesis (Col2a and Acan over-expression).  

LIPUS has also shown therapeutic results on OA, inhibiting protein 

expression of type I collagen and bone sialoprotein and the gene expression of 

hypertrophic Col X979. In addition, LIPUS suppresses IL-1β (which implies 

MMP13 and ADAMTS 5, OA markers) and helps with chondrocyte migration, 

proliferation, and differentiation966. 

In conclusion, in the last few years, many researchers have shown 

biomechanics' great benefits of biomechanics (Figure 54) in treating AC 

disorders (i.e., OA).  

12.5. Future Perspectives of CTE 

Thanks to all the previous investigations done in cartilage TE, it is not 

uncommon to find many diagnostic or analytical devices used in the clinic to 

clarify the biomechanics of the whole musculoskeletal system before applying 

any treatment or to avoid possible lesions. Namely, Auckland Bioengineering 

Institute (2014) developed an open software platform to cover all mechanisms 

behind the biomechanical behavior of the human body980. Furthermore, it would 

be interesting to modulate neo-cartilage biogenesis from the biomechanical 

point of view to control tissue development and tailor it for any application. The 

possibility of reproducing these biomechanical patterns in an ex vivo model for 

cartilage TE is also an attractive target. The use of BRs as a medical tool for tissue 

formation is highly recommended, not only for studying cartilage development 

but also as therapeutic devices to develop ATMPs for OA treatment (Figure 55) 

for reducing inflammation and promoting ECM synthesis in the implanted 

area981.  
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Figure 55. Basis of Biomedical Engineering of the future of 
cartilage tissue engineering. 
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13.Motivation 

13.1. Clinical development process 

The early stages of clinical development occurred much time before, in 

a long process called preclinical development982. Broadly, preclinical analyses 

are divided into screening, choice of "lead treatment compound," in vitro assays 

(i.e., synthesis, viability, etc.), in vivo assays (e.g., toxicology), scale-up, and 

clinical promotion983. This time-consuming process could take many years; 

even worse, the success ratio (i.e., commencing a clinical development) of any 

preclinical medicine is thought to be 250,000 targets to 1 successful candidate 

(i.e., 0.004‰)984. Moreover, the "survivors" of the previous sieve are just the 

starter points of the clinical development process, which implies a more 

extended pathway than the previous one. It is divided into four phases with an 

increased level of complexity between them. The final number of products 

(Figure 56) that reaches the clinics is less than 10%985; it is evident that 

something is not working correctly, but what? 

Figure 56. The current drug development process has an acute bottleneck that 
is still unsolved. 
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13.2. No time for old drugs 

For the past ten years, the pharmaceutical industry's yearly output has 

practically flatlined986. Clinical trial attrition rates have also risen sharply987,988, 

and government regulations and market goals are getting more stringent989–991. 

At each step of development, the number of candidate therapeutical products 

necessary to obtain approval for a single new medicine grows986. Because there 

are few unresolved health issues, most new medications will compete with 

current ones. Several new approaches appear to have a little extra benefit over 

established therapies992. It seems reasonable to explain these tendencies due to 

high-risk early inversions993 and the previous crisis periods that occident has 

suffered994. The effectiveness of new medications against placebos has been 

found to have decreased with time which makes the problem worse995. 

Medication copyright expirations weaken major pharmaceutical firms' financial 

positions and limit their ability to create new medications996. Drug prices are 

rising so much that important drugs are becoming inaccessible in the developing 

world, Europe, and the United States997. It is common to find that support for the 

pharma industry has been reduced998. 

Contemporary biomedical innovations rely on public-private 

collaborations, where universities (i.e., research groups) grow the company 

interests to remedy this dearth of private investment999. Despite this, the number 

of novel medications developed by university spin-offs has been disappointing, 

causing the extinction of most of these early small companies1000,1001. The few 

surviving brands do that due to appealing products, not their relevancy1002. 

Moreover, the expenditure incurred by university transfer offices to maintain 

their intellectual property is much higher than the return1003. In reality, patents 

from prior medication research have been transferred. Businesses and 

academics are attempting to cover the treatment implementation: the discovery 

process, the product, the formulation (if any), the delivery, and the application 

techniques1004. In terms of numbers, the pharmaceutical business has the most 
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applications to the European Patent Office (EPO)1005. So, the reader maybe asking 

why there is no correlation between the number of patents and the discovery of 

new treatments (see Figure 57)986. 

13.3. A paradigm shift 

Pharmaceutical and biotechnology industries are aware of their current 

situation; the times for the old paradigm— one target, one drug, one effect—are 

over1006. As explained during the introduction, simplifying biomedical problems 

lead to misleading critical information1007. In vitro models with full-length 

proteins interacting with their usual protein partners must adequately address 

the complexity exhibited in vivo. Additionally, many diseases with significant 

unmet treatment need still lack distinct therapeutic targets today. Identifying 

these spots that influence specific illness-related characteristics may be the most 

promising path for disease modification or mitigation1008. Phenotypic screens 

reveal chemicals that impact an observable cellular feature by simultaneously 

acting on a previously unknown target or multiple targets1009.  

These advancements will encourage using model systems that better 

mimic human in vivo circumstances throughout the early stages of drug 

discovery1010. Furthermore, nontraditional pharmacological target groups, 

Figure 57. Evolution pipeline of ATMPs divided in different techniques. Figure 
exposed with permission of the European Federation of Pharmaceutical Industries and 

Associations (EFPIA)986. 
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including scaffolding, regulatory, and structural proteins, are presenting more 

and more alluring potential for altering cellular function, and it is now feasible to 

build medicines with focused poly-pharmacology1011,1012. As mentioned above, 

BRs can be a beneficial tool to fulfill these objectives. 

Since the last decade, the scientific world has been trying to exchange the 

previous concept of stratified medicine for personalized medicine. 

Personalized medicine was minted in 2008 by the President's Council of 

Advisors on Science and Technology (PCAST)1013.   A correlated solution of 

personalized medicine is ATMPs, just one year before they were regulated25. 

Even though the regulatory part of customized medicine has been around for 

more than 10 years (at the time of this paper), its global implementation is far 

from perfect. Because the ATMP value proposition is built on a long-term or 

curative impact, the patient follow-up period required to demonstrate such 

efficacy is substantially longer than a conventional trial duration1014. Cost-

effectiveness ratios may be problematic in some situations due to a lack of 

comparative data or surrogate outcomes, which may be compounded by data 

extrapolation1015. 

Recently, this idea has evolved into a precision medicine concept 

(Figure 58); it refers to tailoring medical therapy to a patient's genetic makeup 

and particular illness features1016. Nevertheless, industry and academia need to 

realize that the difference between radical change and toasting in the sun often 

lies in small acts. Therefore, to advance precision medicine from idea to reality, 

the fundamental paradigm shift relies on change "simplicity" by "diversification". 

To do that, multidisciplinary research that involves, by necessity, inter-, and 

intra- collaborations will be mandatory.  

13.4. Multidisciplinary: the role of bioengineering 

The term translational medicine was developed with precision medicine 

to accelerate the abovementioned problem. Translational Medicine (TM) is 
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defined by the European Society of Translational Medicine (EUSTM) as an 

interdisciplinary branch of the biomedical field supported by three main pillars: benchside, 

bedside, and community. The goal of TM is to combine disciplines, resources, expertise, and 

techniques within these pillars to promote enhancements in prevention, diagnosis, and 

therapies1017. It arose as a response to the last paradigm change, but lacking a 

scientific backbone is a significant problem in TM's current growth; 

consequently, the problem is still unsolved. The definition and evaluation of 

crucial indications in the translational process, known as biomarkers, is a 

significant component. Biomarkers are the primary tools for predicting efficacy 

and safety in the animal-to-human transition1018. Biomarkers and other 

translational research methodologies have applications beyond pharmaceutical 

development into medical devices1019. 

The engineering industry and biomedical institutions have developed 

biomedical engineering professionals to ensure that their products are safe, 

Figure 58. Precision medicine involves one hypothetical scenario where every 
person will receive a personalized and specific treatment. 
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effective, and function as intended for the patient's benefit1020. They can convert 

clinical development to a more industrialized state thanks to varied engineering 

disciplines such as mechanical, materials, signal processing, and market 

analysis1021. Biomedical engineers comprehend clinical medicine's significant 

problems and challenges, whereas clinicians respect the quantitative and 

systems components of biomedical research and education1022,1023. Furthermore, 

medical devices are becoming "smarter," with the ability to conduct complete 

monitoring, alert, and control functions that define clinical best practices. This 

"smart gadget" revolution is spreading BME into ever-expanding fields of 

creative and professional practice, extending healthcare services beyond 

hospitals1024,1025. 

Concerning this ‘new try to rearrange different modalities of science 

together’ to induce a higher speed development in TM (and RM), it is essential to 

remark that the way of treating the problem also differs. Conventional 

biomedical science is based on analytical procedures or cause-effect studies, but 

multidisciplinary research will let, as a direct consequence, in system research 

(Figure 59). Furthermore, two essential aspects of systems must be clarified: i) 

The System is something besides, and not the same, as its elements1026. ii) System 

behavior does not depend on exogenous factors but on intrinsic parts of itself. 

By necessity, to understand systems, it is more relevant to be aware of the 

connections among parts than just focus on isolated factors1027. 
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Further, precision medicine has to affront the expense of new tailored 

treatments compared to conventional ones, and big pharmaceutical 

corporations have little interest in gathering genomic, proteomic, or 

metabolomic data from massive clinical trials. As a result, their products have a 

tiny market1028. After all, we live in a society with preestablished rules, and it is 

also relevant for researchers to manage those rules during their treatment 

development.  

 

Figure 59. A system envelops a complex connection web: green arrows 
represent, multidisciplinary connections, black arrows the interdisciplinary ones, 

and the blue circle is the transdisciplinary field of biomedicine. 
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13.5. A bioreactor for cartilage 

The introduction covered the history of RM and how it relies on TE to 

achieve significant advances in clinical practice. We have seen how it has gone 

from being an advanced science, self-absorbed by rapid and unattainable 

growth, to a more mature area, aware of its limitations but excited about its 

incredible feats and possibilities. It is curious to see how today we are closer to 

the dreams of the 1970s and, on the contrary, we think we still have a long way 

to go. We have also seen the importance of selecting an appropriate biomaterial 

for the treatment we want since the behavior of the cells, tissue, organ, and 

patient depends on its interactions. Moreover, how external forces shape, 

stimulate, and characterize us, and how the complex interconnections these 

stimuli have with the cells, thanks to mechanotransduction, modulate tissue 

development.  

Subsequently, we have immersed ourselves in the latest advances that 

bioengineering and biomedicine have brought to the field of TE, developing new 

complex manufacturing systems within biofabrication and bioprinting. The 

latest technological advances allow us to adapt technologies as old as BRs into 

complete agents specialized in stimulating and expanding RM. After, we better 

understand what cartilage is at the cellular and tissue level and the development 

of such severe pathologies as OA, where we have seen how biomechanics 

profoundly influences its progression. Furthermore, we have finished with a 

summarized state-of-the-art of how RM and TE are trying to alleviate this 

pathology. 

Now, with all this knowledge gathered and updated, we can expose the 

idea of this project which is nothing more than adding a new treatment for OA. 

One where aspects such as biomechanics, biomaterials, simplicity, and 

engineering take relevance. Beyond creating a fictitious and pretentious 

solution, we are looking for one that is practical and oriented to today's clinic. 
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The cell-material interaction is the earliest contact of cells with their 

surroundings. As a result, the first feature that must be modified for CTE is the 

scaffold (if applied). Three main conditions can be customized for scaffold 

manufacturing: the biomaterial, the microstructure, and the topography. Scaffold 

biomechanics has been a required element in the CTE process since Engler's 

studies on matrix elastic and MSC differentiation in 2006106. 

In recent years, the application of BRs in TE has been almost 

standardized, as shown in chapter 10. However, due to the complexity of the 

modality (modeling of biological systems), there is still no consensus on BR 

design and function applied to cartilage TE. Therefore, it was decided to use low-

shear stress to induce mechanical stimulation for simplicity. Chondrocyte cilia 

are membrane receptors for ATP-release channels, connexins, purine, cAMP, and 

the PKA pathway954. 

The use of this kind of stimulation directly implies two conditions: i) the 

design of a perfused BR and ii) the synthesis of a porous scaffold that allows cell 

growth at the same time that lets the fluid flow through it. Thus, using a hydrogel 

was impossible because it does not allow fluid convection, and the risk of scaffold 

degradation is almost inevitable. Consequently, it was selected as a synthetic 

polymer; the development of these polymer cartilage grafts will be discussed in 

Part I and Part II.  

The second design aspect of our treatment was based on "oriented to 

today's clinic." Thus, adopting an autonomous system that could induce 

chondrogenesis and monitor the cartilage synthesis process was considered. As 

explained in chapter 7, nowadays, the variety of sensors applied in BRs is wide. 

Nevertheless, not all can monitor a 3D graft oriented to human transplantation 

without invasion. That explains the decision to use an on-line ultrasonic sensor 

because it was a relatively low-cost technique that could be implemented and 

already proved its functionality in vivo1029. 
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“It is difficult to say what is impossible, for 
the dream of yesterday is the hope of today 
and the reality of tomorrow.” 

“Es difícil decir qué es imposible, el sueño de 
ayer es la esperanza de hoy y la realidad del 
mañana.” 

Robert H. Goddard 



HYPOTHESIS 

163 
 

14.Hypothesis 
Because of its inherent properties, AC is extremely sensitive to injury and 

has a low capability for regeneration. As part of the OA clinical syndrome, 

progressive deterioration of AC causes joint discomfort and dysfunction. OA is 

one of the ten most debilitating illnesses in developed nations, with significant 

socioeconomic consequences. As a result, the demand for innovative treatment 

techniques has grown in recent years, including TE solutions.  

Biofabrication is a rapidly evolving technology that has demonstrated 

tremendous applicability for RM. Its use, however, has needed the selection of 

biocompatible biomaterials that can provide support when utilized with cells. 

Biomechanics has proven relevant in inducing biochemical responses in tissues 

and cells in recent decades. These interactions are mainly exerted in two ways: 

cell-biomaterial interactions that depend on biomaterial mechanical properties 

and external stimuli exerted by external forces. BRs are increasingly used 

devices to increase and improve the ex vivo tissue production for ATMPs. They 

benefit from better nutrient transport and induce cell differentiation through 

mechanotransduction pathways. Even these devices can be designed as simple, 

user-friendly, and “smart” to be more adapted to current clinics. 

CTE is based on three pillars: i) cells, ii) 3D structures to support cell 

implantation, and iii) stimuli. All of them work together to create a viable 

treatment solution for AC. 

The following hypothesis will be validated in this work: 

1. Adipose-derived stem cells are multipotent, highly proliferative somatic 

cells with chondrogenic differentiation1030. Furthermore, using 3D culture 

systems creates an appropriate cell niche, promoting development toward 

a mature chondrocyte phenotype. OA patients' Infrapatellar Fat Pad-
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Derived Mesenchymal Stem Cells (IPFP-MSCs) can be tailored to healthy 

and viable AC grafts. 

2. Previous works by Engler and colleagues demonstrated the differentiation 

capacities of matrix elasticity106. Therefore, it is demonstrable that IPFP-

MSCs can also be modulated for chondrogenesis regarding mechanical 

scaffold properties that depend on the following: 

a. Scaffold micro- and macro-architecture, i.e., porosity. 

b. Biomaterial elastic bulk properties. 

3. It seems sensible to propose that adapting scaffold surface topography will 

induce IPFP-MSCS chondrogenesis. It was demonstrated by Ross Harrison 

how surface biomaterial properties influence cell migration1031. Since then, 

cell-material surface interactions have proved high relevancy in 

conditioning cell expansion and differentiation1032,1033.   

4. In conjunction with creating biomechanical stimulations promoted by a 

BR, the 3D cultures discussed in points 1, 2, and 3 will significantly 

facilitate tissue growth under ex vivo conditions. From the literature, it can 

be extracted how biomechanical stimulation causes MSCs to develop 

cartilage by phosphorylating Sox9 via PKA, cAMP, Ser133, and CREB946–950.   

5. It is proposed to use US technology as an on-line sensor monitoring to 

analyze tissue growth ex vivo. The US has been used in medical imaging for 

more than 70 years. Even LIPUS has also probed in vivo their capacity to 

monitor the evolution of ECM1029.  
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“The architect of the future will be based on 
imitation of nature, because it is the most 
rational, durable and economical of all 
methods.” 

“El arquitecto del futuro se basará en la 
imitación de la naturaleza, porque es la 
forma más racional, duradera y económica 
de todos los métodos.” 

Antoni Gaudí i Cornet 
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15.Objectives 
The main objective of this thesis was to bioengineer a biomimetic tissue 

based on the bioprinting of a 3D biological construct (scaffold+cells) that meets 

the main conditions of healthy AC and to mature it in an ex-vivo BR system that 

simultaneously measures at real-time the AC differentiation of the biomimetic 

construct. 

For this aim, the work has been divided into three chapters, each one 

with different specific objectives: 

15.1. Specific Objectives of Chapter I 

1. To obtain, characterize and expand MSCs from OA-affected patients and 

subjects undergoing liposuction. 

2. To generate AC biomimetic constructs using the biofabrication 

technique. 

3. Optimize the bioprinter parameters and the scaffold architecture by 

modifying porosity and filament orientation to adapt it for CTE. 

4. To evaluate and correlate the resulting mechanical properties of the 

biomimetic construct with naïve human AC. 

15.2. Specific Objectives of Chapter II 

5. To improve the microarchitecture and topography of scaffolds to reduce 

biomaterial hydrophobicity via chemical functionalization. 

6. To analyze the cell-material interaction depending on topography. 

7. To evaluate the chondrogenic potential of the fabricated biomimetic 

scaffolds. 
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15.3. Specific Objectives of Chapter III 

8. To design and fabricate a perfusion-based BR that promotes ex-vivo 

chondrogenesis. 

9. To develop a system based on LIPUs that can monitor biomimetic 

scaffold AC maturation in the proposed BR in real time. 

 

 

  



 

 
 

 

 

 

 

  

Pore geometry influences 
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infrapatellar mesenchymal stem 

cells in biofabricated 3D 

thermoplastic scaffolds useful for 

cartilage tissue engineering
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“What we observe is not nature itself, 
but nature exposed to our method of 
questioning.” 

“Lo que observamos no es la naturaleza 
en sí, sino la naturaleza expuesta a 
nuestro método de interrogación.” 

Werner Heissenberg 
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16.Abstract of Chapter I 
The most pressing need in CTE is creating a biomaterial capable of 

tailoring the complex extracellular matrix of the tissue. Despite the standardized 

use of PCL for osteochondral scaffolds, the pronounced stiffness mismatch 

between the PCL scaffold and the tissue it replaces remarks the biomechanical 

incompatibility as the main limitation. The present work was focused on 

designing and analyzing several geometries and pore sizes and how they affect 

cell adhesion and proliferation of IPFP-MSCs loaded in biofabricated 3D 

thermoplastic scaffolds. The 1,4-butanediol thermoplastic polyurethane (b-

TPUe), a novel biomaterial for CTE, and PCL were studied to compare their 

mechanical properties. Three different geometrical patterns were included: 

hexagonal (H), square (S), and triangular (T); each one was printed with three 

different pore sizes (PS): 1-, 1.5-, and 2 mm. Results showed differences in cell 

adhesion, cell proliferation, and mechanical properties depending on the 

geometry, porosity, and type of biomaterial used. Finally, the microstructure of 

the two optimal geometries (T1.5 and T2) was deeply analyzed using multiaxial 

mechanical tests, with and without perimeters, µCT for microstructure analysis, 

DNA quantification, and degradation assays. In conclusion, our results showed 

that IPFP-MSCs-loaded b-TPUe scaffolds had higher similarity with cartilage 

mechanics and that T1.5 was the best-adapted morphology for CTE. 

Keywords: cartilage tissue engineering, polycaprolactone, 1,4-

butanediol thermoplastic polyurethane, rheology, microstructure, porosity, 

infrapatellar mesenchymal stem cells. 
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Figure 60. Graphical abstract of Chapter I. Porosity is an important feature in 

biomechanics and cell-biomaterial interaction.  
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17.Background for Chapter I 
TE is a multidisciplinary research area focused on assembling functional 

constructs that restore, maintain, or improve damaged tissues or whole 

organs115. TE is based on three essential pillars: cells, biomaterials, and external 

stimuli. In this context, 3D bioprinting is a manufacturing methodology that uses 

biomaterials, cells, proteins, DNA, drugs, and growth factors to ease the 

restoration and regeneration of injured organs. Among the vast diversity of 3D 

bioprinting strategies, DBB, EBB, and LBB are the most commonly used428. Each 

has its strengths and weaknesses: high cost, accuracy, or time-consuming. 

Perhaps the main difference between the standard 3D bioprinting 

manufacturing methods is the ability to control the microstructure geometry 

accurately. In tailoring fibers, it is essential to consider their chemical 

composition and spatial arrangement because the spatial distribution directly 

modifies the biomechanical behavior of construct1034.  

Interestingly, how cells interact with the material also depends on the 

fiber distribution. Thus, controlling the pore interconnectivity, size, and scaffold 

geometry are pivotal to achieving a suitable cell maturation and extracellular 

matrix formation to succeed in 3D bioprinting-based tissue engineering 

purposes1035. Even more, tailoring porosity (e.g., pore size, geometry, and 

orientation), the interconnectivity of the whole scaffold is controlled, and the 

surface chemistry is the parameter that determines the behavior of nutrient 

flow1036. EBB is possibly the easiest way to parametrize the fiber orientation, 

thanks to the possibility of customizing the layer degree lay-down pattern. More 

precisely, changing fiber orientation during printing will modify the 

microstructure's final arrangement without modifying the material's chemical 

structure1036. On the other hand, traditional methodologies like gas foaming, salt-

leaching, or cross-linking provide high porosity, but the resulting porous 

interconnectivity depends on several factors that make mandatory the precise 

control of porous distribution, size and geometry1037,1038. 
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One of the most widely used thermoplastic biomaterials for CTE is PCL, 

which contrary to conventional thermoplastic materials with high melting 

temperatures (above 200ºC), presents a relatively low glass transition 

temperature (60ºC) that is attractive in bioresorbable polymers1039. Its thermal 

stability is also remarkable since its decomposition temperature is around 

350ºC, whereas other aliphatic polyesters only have a gap of 20-30ºC from their 

melting point1040. Among mechanical aspects, PCL is one of the most flexible 

biomaterials (Young’s modulus, E ≈ 16 MPa in the solid state) and is relatively 

easy to work with1041. Moreover, b-TPUe is a biomaterial with no prior studies in 

TE. Compared with other TPUs (petrochemical-based), b-TPUe uses bio-based 

chain extenders, increasing their biocompatibility and biodegradability, and, at 

the same time, their thermal and mechanical properties are improved200,1042. 

Also, b-TPUe is closer to the viscoelastic properties of the cartilage with a storage 

modulus (𝐺′) of 9.6 MPa and a damping factor (tan 𝛿) of 0.181043. 

Previous studies reported an array of mechanical and biological analyses 

of the porous architectures of scaffolds 1044–1047. Most conclude that porosity 

depends on two principal aspects: the tissue composition and the cell used1048–

1050; however, no conclusive results were reported about the geometry. The main 

focus of the present study was to investigate and clarify which geometry and 

pore size tailor the conditions optimally for cell adhesion and proliferation of 

IPFP-MSCs. IPFP-MSCs have probed their massive chondrogenic potential1051–

1053, which is the tissue that needs to be replaced. In addition, they do not produce 

type X collagen (cartilage hypertrophy) when exposed to chondrogenic 

differentiation1054. 

Moreover, IPFP-MSCs maintain chondrogenic potential more 

significantly times than chondrocytes obtained from OA patients1055. Also, 

comparing IPFP-MSCs with bone-marrow MSCs, they produced higher 

cartilaginous ECM; and, comparing with synovium-derived stem cells, IPFP-

MSCs under hydrostatic pressure1056 or dynamic compression and a gradient 
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oxygen tension presented higher chondrogenic response1057. Finally, IPFP-MSCs 

cultured inside decellularized cartilage grafts also showed cartilage ECM 

synthesis and the zonal architecture, resembling native tissue1058. 

For this purpose, we used the first-time b-TPUe as 3D bioprinting 

material compared to PCL. For each biomaterial, three different geometries 

(triangular, square, and hexagonal) and three ranges of PS (1, 1.5, and 2 mm) 

were used. Compression mechanical tests and µCT technology analyzed patterns 

from the mechanical perspective. Besides, the biological behavior of IPFP-MSCs 

was evaluated using Alamar blue assay, DNA content, and environmental 

scanning electron microscopy.  

This article's complex structure (see Figure 86) suggests the necessity of 

mixing several material properties with its cell response. Due to many treated 

variables and samples, non-adequate samples were reduced after preliminary 

studies. Thereby: nine different geometries were proposed for the proliferation 

assay, and each was analytically studied. After, some of those geometries were 

discarded to simplify deeper analyses, reducing the sample number. Finally, 

selected geometries were exposed to mechanical assays, microarchitecture 

analyses, viability tests, and cell-material interaction inquiries.  
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18.Materials and methods for 

Chapter I 

18.1. Bioprinter setup 

REGEMAT 3D V1 bioprinter (Regemat 3D S.L., Granada, Spain) was used 

to represent the EBB technique, and the software REGEMAT 3D DESIGNER was 

used to build scaffold geometries. PCL was obtained from Esun Industrial Co Ltd 

(Shenzhen, China) and b-TPUe from Recreus Inc (Elda, Spain). Their 

manufacturer parameters are detailed in Table 5.  

The layer height (LH = 200 µm), the scaffold diameter (14 mm), and the 

number of perimeters (2 perimeters of 0.4 mm of thickness) were kept constant. 

No bottom or top layers were created to ensure that the cells attach to the 

filaments. Retract Speed was 20 mm/s; Perimeter/Skirt Speed 10 mm/s; Infill 

Speed 12 mm/s for PCL and 25 mm/s for b-TPUe. Finally, different PS (1, 1.5, and 

2 mm) and printing patterns were arranged to modify the porosity. Table 6, it is 

represented the main parameters used to obtain the desired geometries: 

hexagonal (H), square (S), and triangular (T). Melting points corresponded with 

manufacturers' ones. 

18.2. Isolation and culture of IPFP-MSCs  

IPFP-MSCs were obtained from patients with the osteoarthritic knee 

during joint replacement surgery. Ethical approval for the study was obtained 

from the Ethics Committee of the Clinical University Hospital of Málaga, Spain 

(ethics permission number: 02/022010 Hospital Virgen de la Victoria, Málaga). 

Informed patient consent was obtained for all samples used in this study. IPFP-

MSCs isolation and characterization were performed as previously 

described1059,1060, where samples were extracted directly from OA patients. The 

IPFP was mechanically and enzymatically (collagenase type I; Sigma-Aldrich) 
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disaggregated at 37 °C heated ovens, where they remained under stirring for 2 

h. When cells were isolated, the excess of collagenase was eliminated with 

washes (10% phosphate-buffered saline (PBS) fetal bovine serum (FBS; Sigma-

Aldrich) and 1% antibiotic penicillin/streptomycin (P/S)), and the obtained 

pellet was resuspended in culture medium (DMEM (Sigma-Aldrich), 20% FBS, 

1% P/S) and it was transferred to a cell culture flask (75 cm2). Afterward, IPFP-

MSCs were incubated at 37 ºC, and 5% CO2 with DMEM high glucose (Sigma‐

Aldrich, St Louis, MO, USA) supplemented with 20% FBS (Lonza, Basel, 

Denmark) and 1% of penicillin/streptomycin (Sigma‐Aldrich, St Louis, MO, USA). 

At 80% of confluency cells were sub-cultured. 

18.3. Cell adhesion and proliferation assays in 3D 

scaffolds 

For cell-seeding experiments, PCL and b-TPUe scaffolds were sterilized 

as follows: i) first, scaffolds were introduced in glass tubes of 30 mL, rinsed out 

with 50% ethanol/water solution for 10 min; ii) after, scaffolds were introduced 

into 70% ethanol/water solution for 24 h. iii) Next day, dried scaffolds were 

deposited onto Petri dishes, and they were washed with phosphate-buffered 

saline (PBS) (0.01 M). iv) Then, they were irradiated with UV light for 40 min. iv) 

Immediately after, scaffolds were fitted inside 24 healthy plates and immersed 

into DMEM high glucose (Sigma‐Aldrich, St Louis, MO, USA) supplemented with 

10% FBS (Lonza, Basel, Denmark) and 1% of penicillin/streptomycin (Sigma‐

Aldrich, St Louis, MO, USA) overnight. All the previous steps and the printing 

protocol were carried out inside a sterile laminar hood. 

Subsequently, to compute similar conditions 2 × 105 cells were seeded 

onto the scaffolds. The data acquisition intervals were done at day 1(d1), day 7 

(d7), day 14 (d14), and day 21 (d21); at those times, scaffolds were introduced 

in a new 24-well plate to avoid data contamination of viable cells that were 

attached to the well bottom.  
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The proliferation rate of IPFP-MSCs in 3D constructs was assessed by 

colorimetric alamarBlue® (BIO-RAD) assay. Samples were withdrawn from the 

incubation media, rinsed with PBS, and immersed in alamarBlue® for 3 h. The 

alamarBlue® reduction pattern was analyzed using a fluorescence spectrometer 

(Ex 530-560 nm / Em 590 nm BIO-TEK synergy4 HT). After that time, the 

samples were repositioned in a new 24-well plate with 200 µL of fresh culture 

media.  

18.4. Porosity estimation and surface/volume ratio 

The porosity (𝑃) and surface/volume (𝑆 𝑉⁄ ) ratios were theoretically 

calculated, assuming the fibers had a cylindrical shape. 𝑃 was also 

experimentally determined from the relative density 𝜌𝑟 as follows: 𝑃 = 1 − 𝜌𝑟 . 

The relative density was obtained by dividing the experimental density by the 

theoretical density. More detailed information is described in the supplementary 

material and methods section.  

18.5. Wettability 

The degree of scaffold hydrophobicity is one of the principal biomaterial 

properties determining cell interaction1061. Wettability was estimated by 

measuring the contact angle (CA) of a deposited water droplet (100 µL of 

distilled water) over a planar section of each material. An orthogonal image was 

captured after 2 seconds, and the contact angle was measured with ImageJ.  

18.6. Angle Frequency 

To compute the number of angles that appeared by the superposition of 

fibers in the different geometries, the Angle Frequency (𝐴𝐹) (𝐴𝐹 =

 
𝑛 𝐴𝑛𝑔𝑙𝑒𝑠

𝑛 𝑇𝑜𝑡𝑎𝑙 𝐴𝑛𝑔𝑙𝑒𝑠⁄ ) was calculated. Thus, this ratio implies which geometry 

had higher angles and how the difference was concerning other conformations.  
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18.7. Mechanical testing of the scaffolds 

Mechanical tests were carried out using two different devices to explore 

a wide strain range of deformations. A commercial rheometer (MCR302, Anton 

Paar, SE Germany) was used to explore the small strain range (below approx. 

0.2). To explore the mechanical behavior in a more extensive strain range (from 

approx. 1 to 20), a Universal Testing Machine (Shimadzu Autograph AGS-X) was 

used. 

The rheometer was operated with a parallel plate geometry. The 

experimental protocol consisted of four steps. In the first step, a cylindrical 

scaffold was placed on top of the bottom plate of the rheometer, and the upper 

one was displaced downwards from the “lift position” to the “initial position” hs 

= Hs (≈ 5 mm). The initial position was always more prominent than the thickness 

of the scaffolds tested. During this step, the upper plate never touches the 

scaffold; therefore, data are not recorded. In the second step, the upper plate was 

displaced downwards at a constant velocity (10 µm/s) to compress the scaffold. 

The third step began when the normal force reached a value of FN = 40 N. At this 

point, the plate undergoes a small amplitude strain oscillation (strain amplitude 

𝛾0 = 10-5 % and excitation frequency 𝑓 = 1 Hz) during 10 s to explore the linear 

viscoelasticity of the scaffold under shear kinematics. In the fourth step, the 

upper plate was displaced upwards at 10 µm/s. All steps were performed in 

triplicates at 25º C. The Young’s modulus was calculated from the compression 

interval -as the slope of the linear portion of the stress-strain curve (i.e., X-Y 

strain) by linear fitting- while storage and loss moduli were obtained from the 

shear interval -in the viscoelastic linear region (strain < 0.01)-. 

A Universal Testing Machine was used to explore the mechanical 

properties of the scaffolds in the extensive strain regime. For this aim, scaffolds 

with a cubic shape were fabricated and tested in compression along two axes: 

the Axial ‘out of plane’ direction (i.e., orthogonal to the print plate) and the Radial 

‘in plane’ direction (i.e., parallel to the print plate).  
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18.8. Characterization of the microstructure throughout 

µCT technology  

µCT was applied in triangular geometries for PS of 1.5 and 2 mm (T1.5 

and T2) To analyze the scaffolds' porosity and microstructure in deeper detail. 

For each material and PS, three samples were used and analyzed inside an Xradia 

510 Verse (Zeiss) for 24 hours with an acquisition voltage of 40 kV at 3W. The 

emitting distance was 50 mm, whereas the detector distance was 91 mm, and the 

pixel size was 12.1 µm. The magnification objective was 0.4  and the exposure 

time was 18-22 seconds. 

18.9. DNA quantification 

The 4′, 6-diamidino-2-phenylindole (DAPI, Sigma‐Aldrich, St Louis, MO, 

USA) assay was used to study the DNA content. Briefly, 50 µL of papain-digested 

sample harvested from 3D scaffolds at d7, d14, and d21 were added into a 96-

well plate and combined with 50 µL of DAPI dye. Afterward, the absorbance at 

358 nm was read at 461 nm. The DNA standard from Calf Thymus (Sigma‐

Aldrich, St Louis, MO, USA) was used to determine the DNA content of the 

samples.  

18.10. Environmental scanning electron microscope 

(ESEM) 

The scaffolds were imaged with an FEI Quanta 400 microscope (Thermo 

Fisher Scientific-FEI, Fremont, CA, USA) with an Everhart-Thornley detector (E-

TD) for dry and conductive samples in high vacuum mode and a gaseous SE 

detector (GSED) for wet samples in the environmental model. Cell-laden PCL and 

b-TPUe scaffolds with triangular morphology were analyzed at 2 weeks. 

Afterward, they were fixated with 2% glutaraldehyde for 2 hours at room 

temperature, and then they were rinsed in 0.1 M cacodylate buffer and incubated 

at 4º C. The pressure curve adopted for the measurements was 720-1067 Pa.  
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18.11. Statistical Analysis 

All graphed data represented the mean +/- SD from at least three 

experiments. All the statistics were performed with n = 3 in OriginLab Pro ™. For 

mechanical curves and because of simplicity, linear interpolation applying 

average was performed over all samples. A two-tailed Students T-test was done 

to compute statistical significance among geometries, and homoscedasticity and 

normality tests were done before meaning comparison. In graph 

representations, P-Value less than 0.05 was represented */#; P-Value < 0.01 with 

**/## and P-Value < 0.001 ***/###. 
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19.Results and discussions from 

Chapter I 

19.1. Fabrication approach 

Among different options, thermoplastic polymers can be easily printed 

using the extrusion EBB technology by fused deposition modeling (FDM) 

consisting of a nozzle with a heater that melts a thermoplastic filament and 

deposits it in a controlled and organized manner, layer-by-layer, on a surface1062. 

The REGEMAT 3D software allows the possibility of tailoring several parameters 

about the scaffold arrangement. In contrast with other EBB-based bioprinters, it 

does not apply mesh restrictions configuring patterns slightly different from 

conventional 3D printers, as could be the triangular and the hexagonal1063. In 

contrast with other standard software, it takes a 3D volume (in STL format) and, 

from such a model, makes the lamination1064. Moreover, this software directly 

configures the mesh distribution to facilitate the presence of symmetries1063.  

Our study investigated three patterns (triangular, square, and hexagonal) 

and three porosity sizes PS (1, 1.5, and 2 mm). Figure 61A-C shows the layer 

arrangement for the three different geometries. The triangular geometry 

presents more possible orientations (4), whereas hexagons only present one. 

Together with the theoretical porosity, the cylindrical approximation allows us 

to obtain the available surface (i.e., the exposed material surface for cell contact) 

for the hypothetical volume (see Figure 87) that would take the scaffold in the 

case of presenting null porosity (see Table 7). With all previous considerations, 

the early defined geometries were fabricated for each biomaterial (Figure 61D-

E).  
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A good computer design that controls the thermal conductance and 

viscosity of the polymer will result in a better fidelity of the final patterns. 

Comparing Figure 61D and Figure 61E, it can be distinguished that b-TPUe 

presents thinner filaments in comparison with PCL, possibly due to the high 

thermal conductance of PCL1040. Another relevant effect affecting the final design 

is the stability of the pillars formed because of the fibers' superposition (see 

Table 6). Thus, it is essential to control the initial CAD parameters and the 

printing properties to ensure an optimal scaffold architecture1065. 

19.2. Cell Adhesion/Proliferation assay 

In the previous literature, it has been described several factors that 

increase cell adhesion and proliferation in 3D bioprinted scaffolds1066. Among 

others, PS, interconnectivity in the scaffold microstructure, and surface 

conformation are key determinants521,1067,1068. The exchange of nutrients and 

cues depends on porosity and interconnectivity1046. Also, surface conformation, 

hydrophilicity, and PS increase biointegration 196. Here, the interaction of IPFP-

MSCs (see Figure 88 for MSCs characterization) with the two biomaterials (PCL 

and b-TPUe) was analyzed to characterize their cell adhesion and proliferation 

profile.  

Figure 62 represents the fold increase proliferation of the AlamarBlue® 

assay for each geometry in both PCL and b-TPUe scaffolds in IPFP-MSCs-loaded 

scaffolds; the proliferation rate decreased from d1 to d7 and increased up to d21 

for all geometries. When the fluorescence units were normalized (fold increase) 

concerning the values obtained on day 1, it was observed that square and 

Figure 61. A-C) STL models of the scaffolds of each layer-down topography (PS 1.5 
mm). In A) layers 1,2,3,4 are inserted periodically one on top of the next one. B) The 
hexagonal pattern only has one layer which is repeated along Z axis. C) In the Square 
pattern there are two different layers intercalated repeatedly. D-E) Cross-sectional 
images of the fabricated scaffolds. Scale bars correspond to 2 mm in all cases. 
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triangular conformations showed similar proliferative levels on day 21, except 

the hexagonal geometries for PS 1 and 2 mm that showed higher values (Figure 

62A). Figure 62B and -C shows the raw fluorescence units of b-TPUe obtained 

from the AlamarBlue® reduction assay for d1 and d21, respectively.  

  

Figure 62. A & D) Normalized Proliferation assays for b-TPUe and PCL materials, 
respectively. B) Absorbance of fluorescence emitted at 590 nm for b-TPUe at day 1. C) 
Same as B at day 21. E) Absorbance of fluorescence emitted at 590 nm for PCL at day 1. 
F) Same as E at day 21. P-Value less than 0.05 was represented *; P-Value < 0.01 with ** 
and P-Value < 0.001 ***. Brackets means significance different with the rest of PS inside 
the same geometry. ↪ next page 
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Four conformations, T1.5, H1.5, S1.5, and S2, displayed higher adhesion 

at the starting point (Figure 62B); however, at day 21, all geometries achieved 

high fluorescence levels when comparing PS for each geometry, being H2 the one 

with significantly higher values. (Figure 62C).  

On the other hand, Figure 62D represents the fold increase proliferation 

curves for PCL. As observed, very different behavior is found when compared 

with b-TPUe. For all geometries, the proliferative response increases from d1 to 

d7 and afterward decreases until d21 with ratio values similar to d1. Despite this 

difference in behavior, there is a shared similarity for PS 2 mm, which seems to 

present a higher proliferative response than the rest of the PS, regardless of 

spatial conformation. Figure 62E and -F present the raw data from PCL 

reduction assays at d1 and d21. The triangular geometry is associated with 

higher metabolism levels in both cases, implying much higher adhesion. 

Similarly to b-TPU, S2 and H2 also reached very high fluorescence levels when 

comparing PS for squares and hexagons. 

Overall, cell adhesion in PCL scaffolds was larger than b-TPUe at d1 (see 

Figure 62B and -E). This result is the lower contact angle in PCL (90±1º) than b-

TPUe (111±2º), demonstrating a more hydrophilic character of PCL than b-TPUe. 

These results are in good agreement with previous publications in the literature. 

In particular, Metwally et al. established that wettability influences cell adhesion 

and found an inverse correlation between the contact angle and cell 

proliferation1069. 

However, it is remarkable that, in contrast to PCL, the proliferation rate 

is more extensive for b-TPUe on day 21. These results suggest a better 

proliferative response for b-TPUe in the long term compared to PCL scaffolds. 

The higher proliferation response for large PS could be explained by the higher 

interconnectivity of the pores allowing a better diffusion of the culture 

medium1070. Conclusively, although the cell adhesion results differ depending on 

the biomaterial, triangular patterns with large PS showed better response. This 
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effect is remarkable in PCL, making this geometry the adequate candidate for 

optimal cell adhesion.  

19.3. Correlation of proliferation with experimental 

porosity and S/V ratio 

Based on previous investigations, it can be noticed that the biochemistry 

and the microstructure of the biomaterial surface affect cell adhesion and 

proliferation 1071. Also, it is expected that a higher available surface for cell 

attachment would result in a higher cell adhesion level1072. Two parameters were 

used to quantify the surface available for cell attachment: the experimental 

porosity and the surface-to-volume (S/V) ratio. In Table 7, results for the 

theoretical porosity (under the approximation that cylinders can represent the 

fibers) are presented together with the experimental porosity (obtained from 

𝜌𝑟). As observed, a very good agreement is found between the two values 

suggesting that: i) the scaffolds almost preserved the original computer design; 

and, ii) the theoretical model is a good approximation. S/V ratios were also 

calculated using the cylindrical approximation and included in the Table 7. The 

largest S/V ratio is found for the triangular pattern.  
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In an attempt to look for correlations between the proliferation rate and 

the physical characteristics of the scaffolds (porosity and S/V ratio), Figure 63A 

and -B were done. Figure 63 shows the Alamar Blue® reduction fluorescence at 

days 1, 7, 14, and 21 for all the patterns investigated as a function of the porosity 

(Figure 63A) and S/V ratio (Figure 63B). The fact that the curves are essentially 

flat in Figure 63 demonstrates that neither the porosity nor the S/V ratio is the 

driving factor for cell adhesion and proliferation. Instead, geometry plays a key 

role; in particular, triangular patterns are associated with a more significant 

proliferation rate in PCL.  

To better understand why the triangular pattern is associated with a 

more prominent proliferation, in Figure 63C, we show the ratio of the number 

of angular vertices in a particular scaffold concerning the others. In Figure 63D 

is shown a schematic representation of the geometrical unit cells with their 

corresponding angles. Given Figure 63C, the number of angular vertices is larger 

for patterns with more proliferation. Also important is to note that the 

connectivity angles in a triangular pattern are also smaller (45º (T) < 90º (T, S) 

< 120º (H)) hence favoring water entrapment by surface tension1067. From the 

observation of Figure 63C, the higher values for the triangular geometry could 

explain their good proliferation at day 21 in both materials.  

Based on all these results, it can be concluded that the triangular 

geometry is superior to the rest in terms of cell adhesion and proliferation.  

Figure 63. A) Fluorescence units (590 nm) from AlamarBlue© assay for b-TPUe and 
PCL scaffolds against their experimental porosity at days 1, 7, 14 and 21 (n=3). B) 
Fluorescence units (590 nm) from AlamarBlue© assay for b-TPUe and PCL scaffolds 
against their S/V ratio at days 1, 7, 14 and 21 (n=3).   C) Angle frequency (AF) for each 
geometry as obtained from the frequency resulted by dividing the number of angles for 
each geometry by the total number of angles for all geometries. D) Infographic scheme 
of how stresses was applied on the scaffolds together with the representation of PS and 
the different printed angles which affects in cell adhesion. 
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19.4. Mechanical testing 

Since these biomaterials and geometrical structures have a potential 

translation for osteochondral replacements, in this section, we analyze both the 

compression and shear properties of the scaffolds. Good mechanical behavior is 

critical for cellular proliferation, as Nam et al. exposed. They showed how 

stiffness changes in the fibers without altering the microstructure, inducing the 

expression of different gene expressions1073. Raw compression curves for the 

scaffolds are shown in Figure 89 and Figure 90. These curves are obtained with 

the rheometer to explore the low strain regime and the Universal Testing 

Machine to explore the extensive strain regime. The compression modulus can 

be obtained from these curves by fitting the linear region.  

Compression modules are summarized in Table 4. As observed, the 

modulus strongly depends on the technique employed in its determination. In 

particular, the modulus measured with the rheometer is always more significant 

than the one measured with the Universal Testing Machine. Moreover, in 

consonance with manufacturers' data, b-TPU is softer than PCL and, therefore, 

more appropriate for biomedical applications; the modulus of b-TPU is closer to 

that of cartilage around E = 10 kPa. Generally speaking, a decrease in PS is 

associated with increased stiffness of the scaffold1044,1068. However, for the 

scaffolds investigated in this work, PS has a minor influence on the compression 

modulus. 

Figure 64 shows the stress versus strain curves under compression tests 

using the Universal Testing Machine. Two critical observations are as follows: i) 

out-of-plane measurements generally give larger moduli than in-plane 

measurements, and ii) specimens with a perimeter generally give larger moduli 

than samples without a perimeter.  
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The mechanical behavior of the scaffolds under shear is summarized in 

Table 1. In this table, we show the storage modulus. As observed, a very similar 

value is obtained independently of the direction (in-plane or out-of-plane), 

material (PLC or b-TPU), or porosity (PS). The only relevant feature was the 

presence or absence of a perimeter surrounding the scaffold, even though 

previous works also reported an influence of PS1043; scaffolds with perimeters 

exhibited a larger shear modulus. 

Table 4. Mechanical properties of the optimal scaffolds (i.e., triangular patterns with PS 
1.5 and 2 mm) in the in-plane / out-of-plane. Erheo corresponds to Young’s modulus 
obtained from the rheometer in the 2nd step of the measuring protocol. EUTM 
corresponds to Young’s modulus as obtained from the Universal Testing Machine. Grheo 
corresponds to the Shear (storage) modulus obtained from the rheometer in the 3rd step 
of the measuring protocol. 

With 

Perimeter 
PCL   b-TPU 

 1.5 2 1.5 2 

𝐸𝑟ℎ𝑒𝑜* 

6400 ± 900 

/ 1500 ± 700 

kPa 

2200 ± 100 

/ 8040 ± 40 kPa 

350 ± 10 / 

970 ± 90 kPa 

1000 ± 70 / 

1400 ± 200 kPa 

𝐸𝑈𝑇𝑀**  
47 ± 8 / 

140 ± 20 MPa 

250 ± 40 / 

150 ± 10 MPa 

0.32 ± 0.02 

/ 11 ± 2 MPa 

0.36 ± 0.05 

/ 10 ± 0.5 MPa 

𝐺𝑟ℎ𝑒𝑜*** 
4.2 ± 0.5 / 

3.9 ± 0.2 MPa 

4.2 ± 0.5 / 

4.3 ± 0.3 MPa 

4.5 ± 0.4 / 

0.4 ± 0.1 MPa 

3.1 ± 0.6 / 2 

± 1 MPa 

     

     

Without 

Perimeter 
PCL b-TPU 

 1.5 2 1.5 2 

Figure 64. A-H) Stress-strain curves for the optimal architectures in comparison with 
the average curve from Cartilage samples. A-D) Samples with perimeters. E-H) Samples 
without perimeters. Each curve corresponds to the average curve applying linear 
interpolation (n=3). 
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𝐸𝑟ℎ𝑒𝑜 

* 

1.1 ± 0.1 / 

0.6 ± 0.5 MPa 

0.099 ± 

0.003 / 0.6 ± 0.1 

MPa 

0.14 +- 0.04 

/ 0.67 ± 0.04 

MPa 

0.04 ± 0.01 

/ 0.11 ± 0.02 

MPa 

𝐸𝑈𝑇𝑀** 
1.0 ± 0.3 / 

2.0 ± 0.4 MPa 

1.10 ± 0.06 / 

1.2 ± 0.3 MPa 

2.0 ± 0.6 / 

0.3 ± 0.1 MPa 

1.7 ± 0.6 / 

1.5 ± 0.3 MPa 

𝐺𝑟ℎ𝑒𝑜*** 
3 ± 2 / 0.4 

± 0.3 MPa 

1.0 ± 0.9 / 5 

± 1 MPa 

0.07 ± 0.03 

/ 0.3 ± 0.05 

MPa 

1.0 ± 0.9 / 

1.3 ± 1 MPa 

 

19.5. Characterization of the microstructure 

A deeper study of the microstructure was also performed to understand 

the apparent differences between candidate geometrical morphologies. In 3D 

bioprinting, there are differences between the computer design and the final 

printed scaffold. So, µCT technology is an outstanding tool for probing the actual 

architecture of the fibers inside scaffold1074. Considering previous results, the 

microstructure was characterized in T1.5 and T2 geometries for both 

biomaterials. Figure 65A to -D represents a cross-section corresponding to the 

middle plane in the axial direction of the scaffolds to analyze the fibers' 

disposition and the “empty-space” across those fibers1075. The distance (in 

different colors) between the pillars produced by filament conglomeration can 

be appreciated in sagittal sections. Although apparently, there were no 

significant differences among PCL geometries and b-TPUe; however, a deeper 

analysis showed that b-TPUe presents a lesser distance for both PS, which seems 

to be related to its higher regularity in fiber distribution. 

On the other hand, the analysis of the porous interconnectivity (orange 

ellipses) in the sagittal middle planes showed that. The accuracy in printing 

perfect cylindrical fibers was almost lost at PS of 2 mm, although for b-TPUe, they 

present higher resolution and homogeneity. Also, there is more homogeneity in 

the fiber disposition in b-TPUe, resulting in continuous lines in the coronal 



CHAPTER I PORE GEOMETRY INFLUENCES CARTILAGE TISSUE ENGINEERING  

195 
 

planes (Figure 65A and -C). Those irregularities imply direct consequences 

because a higher irregularity is proportional to lower space, and higher 

irregularity implies less isotropy, which derives in poor mechanical 

toughness1076. Nonetheless, although the differences between T1.5 and T2 were 

lower in the b-TPUe; however, these influenced proliferation rates at day 1, as 

appreciated in Figure 62D, indicating the necessity of high printing resolution 

to enhance cell viability and ECM synthesis1077,1078. 

Further, the analysis of the estimated porosity with image segmentation 

confirmed our previous results, showing that PS 2 mm had higher porosity than 

PS 1 mm and that b-TPUe has a higher porosity than PCL at the same PS (Figure 

65E).  

19.6. DNA Quantification 

Once it was established that triangular geometries with PS 1.5 and 2 mm 

combined good optimal mechanical properties and an excellent proliferative 

response, cell analysis was continued to elucidate the most suitable combination 

of geometry and PS for IPFP-MSCs. For this purpose, DNA quantification was 

used since it is a more rigorous technique for measuring the real amount of 

viable cells inside the 3D scaffolds1079.  

The DNA content for each geometry at d7, d14, and d21 was determined 

(Figure 65F). Interestingly, on day 7, the DNA content was higher in b-TPUe in 

contrast with the proliferation curves, and in T1.5 for PCL, the DNA content was 

significantly lesser than in the rest of the samples. These results suggest that at 

early stages, more cells were attached to b-TPUe but with a lower metabolism, 

indicating a possible poor cell-biomaterial interaction1080. Moreover, DNA 

increased in a time-dependent manner up to day 21 for both biomaterials in T1.5 

and decreased for T2. These results agree with those obtained in the 

microstructure study since the accurate pillar distance was lowest for triangular 

geometry and lesser PS in each material. From the DNA quantification assay, it 
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can be extracted that this final configuration, b-TPUe T1.5, has a better viability 

response. A foremost requisite for RM applications is maintaining the cell 

viability of biofabricated scaffolds over time1081.  Perhaps it is very important to 

consider how minor mechanics variants also directly affect cell viability1078,1082. 

In agreement, our results probed that both geometry and porosity modify 

mechanics and the microstructure and how both parameters influence cell 

proliferation and viability. Moreover, we demonstrated that IPFP-MSCs-loaded 

b-TPUe scaffolds are suitable to maintain growth and viability up to day 21, 

which makes it a good candidate for cartilage tissue engineering as previously 

has been proved for other polyurethane scaffolds with regenerative 

properties1077.  

  

Figure 65. A-D) µCT cross-sectional images (coronal and sagittal middle planes) of T1.5 
and T2 geometries. Inside orange circles are presented the ‘pilars’ formed because of 
filament superposition among layers. Color bars represents the real distance among 
those ‘pilars’ (which should be PS), in the legend they are aligned for comparing sizes 
between samples. Orange bar corresponds to T1.5 b-TPUe, red bar T1.5 PCL, green bar 
T2 b-TPUe and blue bar T2 PCL. E) Porosity ratio obtained from segmentation image 
analysis from µCT technique for b-TPUe and PCL, geometries: T1.5 and T2. P-Value less 
than 0.001 was represented with *** for b-TPUe and with ### for PCL. (n=3) F) DNA 
content for PCL and b-TPUe in T1.5 and T2 geometries. P-Value less than 0.05 was 
represented *; P-Value < 0.01 with ** and P-Value < 0.001 *** among equal material. P-
Value < 0.001 ### with respect the rest of cases. G) ESEM images of b-TPUe T1. In the 
amplified picture, it is localized what seems ECM from ifpMSCs. b-TPUe seems to 
present some rugosity at microstructure, and, consequently there are found more cells 
attached. ↪ next page 
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19.7. Study of interactions between cells and biomaterials 

by ESEM 

All previous results evidenced that cell viability and proliferation were 

better at d21 for T1.5 b-TPUe and T2 PCL. Then, the interactions between IPFP-

MSCs and both biomaterials by ESEM were analyzed, a technique that enables 

the investigation of both cell and material surface morphology in hydrated 

conditions1083. ESEM images on day 21 revealed that IPFP-MSCs attached to the 

T1.5 b-TPUe scaffolds (Figure 65G) actively produced a dense ECM that covered 

the surface and enhanced their integration with the material. On the other hand, 

T2 PCL showed less ECM production and areas with lesser cells attached to the 

biomaterial surface (Figure 91).  

In future work, it will be interesting to assess whether changes in pore 

size or geometry will increase or decrease the chondrogenic potency of the 

scaffold. Heang Oh et al. demonstrated a slight influence on the diameter of 

cylindrical pores1084. However, a lack of cartilage control of induced 

chondrogenic MSCs prevents an accurate comparison to extrapolate a real effect 

on how geometry influences chondrogenesis. Contrarily, Singh et al. showed the 

importance of scaffold stiffness for chondrogenesis1085 and evidenced that 

growth factors (like TFβ-3) deeply induce this process. Thus, although geometry 

can optimize the cell niche and ECM production, a combination of tailored 

scaffold biomechanics with specific growth factors should be recommended for 

cartilage tissue engineering. However, it would be interesting to analyze the 

possible effects of geometry in the chemical cues’ doses. Despite this, such 

analyses are out of the scope of this research.  

19.8. Conclusions 

This work completed an extensive study using two different biomaterials 

(b-TPU and PCL) oriented to CTE applications. We demonstrated how the pore 

geometry and PS of biofabricated IPFP-MSCs-loaded scaffolds affected the final 
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cell viability and adhesion. To fulfill this purpose, EBB was done with both 

biomaterials tailoring different aspects of their microstructure to quantify the 

relationships between porosity, design, and mechanical properties. We 

confirmed that geometry is a crucial parameter for cellular interaction with the 

biomaterial because of PS and fiber orientation, as suggested by our analysis of 

the S/V ratio and AF. Thus, it was demonstrated that higher interconnectivity of 

fibers and, as a consequence of higher exposed angle frequency, presents higher 

biointegration.  

It was shown that decreasing the PS increased the stiffness of the scaffold 

independently of the biomaterial. Besides, it is the first time that the vast 

importance of the perimeter in scaffolds rigidity was exposed, making this aspect 

of scaffold architecture a key factor for good cell integration and biomechanical 

properties. A deeper analysis playing with the perimeter of cribbed architectures 

(T1.5 and T2) was inspected, making the T1.5 b-TPUe the optimum geometry 

and biomaterial for IPFP-MSCs. In summary, our data suggest the necessity of 

designing the pore geometry and the scaffold microstructure to optimize better 

3D constructs for applications on CTE. Consider this will improve the reliability 

of a good biointegration of 3D constructs in regenerative medicine of cartilage 

injuries. 
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“Unlike the Industrial Revolution, the Biomimicry 
Revolution introduces an era based not on what 
we can extract from nature, but on what we can 
learn from her.” 

“A diferencia de la Revolución Industrial, la 
Revolución de la Biomímesis introduce una era 
basada no en lo que podemos extraer de la 
naturaleza, sino en lo que podemos aprender de 
ella.” 

Janine M. Benyus 
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20.Abstract of Chapter II 
Osteoarthritis has a tremendous socioeconomic impact and mainly 

affects AC, a tissue with reduced self-healing capacity.  In this work, we 

functionalized 3D printed b-TPUe scaffolds, and IPFP-MSCs were used as the 

cellular source. Since b-TPUe is a biomaterial with mechanical properties similar 

to cartilage but does not provide the desired environment for cell adhesion, 

scaffolds were functionalized with two methods, one based on type I collagen 

and the other in 1-pyrene butyric acid (PBA) as principal components. Alamar 

Blue and confocal assays displayed that PBA functionalized scaffolds support 

higher cell adhesion and proliferation for the first 21 days. However, type I 

collagen functionalization induced higher proliferation rates and similar cell 

viability than the PBA method. 

Further, both functionalization methods induced ECM synthesis and the 

presence of chondrogenic markers (Sox9, Col2a, and Acan). Finally, SEM images 

probed that functionalized 3D printed scaffolds presented much better 

cell/biomaterial interactions than controls and confirmed early chondrogenesis. 

These results indicate that the two methods of functionalization in the highly 

hydrophobic b-TPUe enhanced the cell-biomaterial interactions and improved 

the chondro-inductive properties, which has excellent potential for application 

in cartilage tissue engineering. 

Keywords: bioprinting; scaffold; functionalization; osteoarthritis; type I 

collagen; 1-pyrenebutyric acid 
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Figure 66. Graphical abstract of Chapter II. Scheme of the whole 
procedure followed in Part II. 
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21.Background for Chapter II 
RM persecutes the total or partial regeneration of human cells, organs, or 

tissues to restore or establish normal function1086. On the other hand, TE is a 

branch of RM based on three pillars: cells, biomaterials, and bioactive 

molecules115. OA, an irreversible and multifactorial disease, is among the 

different pathologies that can benefit from the RM. The low regeneration rate in 

OA is a consequence of the cartilage characteristics, which is an avascular tissue, 

not lymphatic, and without nerve endings1087. OA leads to pain and loss of joint 

function due to AC  loss1088. It is one of the most common joint disorders resulting 

from a combination of risk factors, where age and obesity are the most 

prominent, concerning most frequently in the knees642. Until current knowledge, 

there is no OA treatment for stopping or slowing its progression, being surgical 

alternatives the treatment of choice1089.  

In the last decades, several TE cartilage products like the MACI, 

Hyalograft® C, NeoCart®, NOVOCART® 3D, Cartipatch®, etc., have tried to 

mimic AC1090. However, most of these therapies involve fibrocartilage formation. 

To improve the efficacy of such TE procedures, novel approaches, like 3D 

biofabrication, are developing to introduce stem cells and avoid the drawback of 

autologous chondrocytes therapies into a 3D matrix and culture them in vitro for 

more extended periods, 4–6 weeks1090. The 3D matrices are scaffolds that serve 

as 3D structures to support autologous cells until they synthesize their matrix 

components temporarily1091. This fact allows the creation of a relatively mature 

tissue in vitro before implantation, with biochemical integrity similar to healthy 

AC, since the presence of matrix around the cells is known to enhance donor cell 

retention1092 and protect cells from inflammatory agents1093. Also, scaffolds meet 

specific requirements such as i) the presence of an adequate surface (roughness 

and hydrophilicity) to improve cell adhesion, ii) an internal structure (porosity, 

pore size and structure, and fiber diameter) that supports cellular adherence, 

proliferation, and differentiation, as well as diffusion of nutrients, oxygen, and 
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wastes, iii) and also possess mechanical and biochemical properties similar to 

target tissue1094. Scaffolds can be manufactured with biomaterials, materials 

intended to interact with biological systems to evaluate, treat, increase, or 

replace tissues, organs, or functions of the body.  

A considerable problem related to biomaterials is how hydrophobicity 

and lack of biological recognition sites on the material's surface provide an 

unfriendly environment for cell adhesion1095. Previous functionalization studies 

focused on modifying biomaterial surfaces have been developed to improve cell 

adhesion. Further, surface modifications play a role in cell migration, 

proliferation, and differentiation of stem cells1069. Therefore, cell adhesion 

enhancement would improve cell-biomaterial interaction1096. Several 

functionalization methods were used based on interacting components with cell 

membrane proteins. For example, the surface can be functionalized with the 

peptide RGD1097, with 1-pyrene butyric acid (PBA)1098, or with different 

components present in the ECM like fibronectin or collagen1099.  

Synthetic polyesters, like b-TPUe, have received considerable attention 

for cartilage TE due to their appropriate mechanical properties, such as the 

highly elastic recovery capacity1100. However, its hydrophobicity does not 

provide the desired cell adhesion and proliferation environment. Hence, this 

study aimed to set up two different functionalization methods based on the 

biomaterial coating with type I collagen and PBA, probing how it can reduce the 

hydrophobicity of b-TPUe, improving cell-biomaterial interaction. Two methods 

were selected to compare a traditional coating method (type I collagen) adapted 

from literature1099  with a new methodology (PBA) with reduced costs and good 

results obtained from making graphene biosensors1098. Both methodologies 

evaluate the efficacy of functionalization by AFM)and ninhydrin reagent.  

Then, the biological efficacy of both functionalization methods was 

analyzed by seeding IPFP-MSCs and performing the subsequent metabolic 

activity and viability studies. Together with cellular studies, ECM secretion was 
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analyzed through PCR, GAG quantification, and SEM to verify the chondrogenic 

potential of both functionalized methods.  
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22. Materials & methods for 

Chapter II 

22.1. Sample processing 

The IPFP-MSCs were extracted directly from osteoarthritic patients of 

the Hospital Universitario de Málaga, Spain. Ethical approval for the study was 

obtained from the Ethics Committee of the Clinical University Hospital of Málaga, 

Spain (ethics permission number: 02/022010 Hospital Virgen de la Victoria, 

Málaga). Informed patient consent was obtained for all samples used in this 

study. Hoffa's fat pad was harvested inside the capsule, excluding vascular and 

synovial regions. The isolation and culture protocols of IPFP-MSCs were done 

according to López-Ruiz et al.1053. IPFP-MSCs were characterized following the 

established criteria of the International Society for Cellular Therapy (ISCT) (see 

Supplementary 1.1)51. 

22.2. Printing of 3D scaffolds 

The desired scaffold was designed using the Cura 3D program, and its 

printing with the Monoprice Mini V2 bioprinter inside a class II laminar flow 

cabinet was carried out. The bioprinter was cleaned in 70 % ethanol and left 

overnight under UVs. 

The scaffolds were designed to fit a multiwell 48-well plate. Therefore, 

they took cylindrical geometry: a diameter of 10 mm, a height of 2 mm, and a 

layer height of 200 µm. The extruder's movement speed was set at 14 mm s-1, 

and the working temperature was 230 ºC. Finally, the flow rate (the speed at 

which the filament travels through the extruder) was determined at 1 mm s-1. 

To ensure the complete sterility of the scaffolds, they were placed in a 

Petri dish and washed with 20 %, 50 %, and 70 % ethanol. After washing, UV 
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radiation was applied for 1 hour on both sides. A new wash with 1% PBS of 

antibiotic (P/S) was carried out to remove the remaining ethanol. Finally, the b-

TPUe scaffolds were immersed in PBS 1% antibiotic and incubated until 

functionalization protocols. 

22.3. Functionalization with PBA 

Scaffolds were placed in a multi-well plate and immersed in a 10 % 

isopropanol solution of 1,6-hexanediamine for 30 minutes at room temperature 

for the PBA functionalization method. After, scaffolds were rinsed in 1-pyrene-

butyric acid (PBA; Sigma-Aldrich) at 5 mм DMSO (Sigma-Aldrich). Finally, 

several washes were done with PBS115,1086. 

22.4. Functionalization with type I collagen 

Scaffolds were immersed in urea (Sigma-Aldrich) for 24 hours at room 

temperature 1099. Subsequently, the type I collagen of calfskin (0.1 % in 0.1м 

Acetic Acid) (Sigma-Aldrich) was added overnight. After, 0.625 % 

glutaraldehyde in 0.6м monopotassium buffer at pH 7.4 was used in the first 

functionalization processes1099. Then, a second functionalization protocol was 

tested to improve cell adhesion. For this purpose, glutaraldehyde concentration 

was reduced from 0.625% to 0.16 % and used in the same buffer. This reduction 

of glutaraldehyde was made to ensure cellular viability1101. Finally, for each 

glutaraldehyde pump, 0.2 м and 0.5 м glycines were added for 10 minutes to 

block the unreacted functional groups of glutaraldehyde. 

22.5. Magnifying glass and AFM 

They were studied before (control) and after surface modification at a 

macroscopic and microscopic level for surface identification of modified 

samples. Samples were introduced in different solutions for 24h: MilliQ water 

(control), 70% and 100% ethanol, in isopropanol, and 0.6 м monopotassium 

buffer at pH 7.4. For this study, samples were cleaned before being used. Leica 
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Si9 magnifying glass was used to study scaffold surface properties in different 

conditions macroscopically. At the microscopic level, AFM NX20 analyses were 

performed without additional pretreatment.  

22.6. Immunofluorescence of type I collagen and PBA 

after the functionalization process  

Indirect immunofluorescent visualization of type I collagen was 

performed to probe type I collagen in the b-TPUe biomaterial surface after the 

functionalization method. Collagen-functionalized scaffolds were treated with a 

primary antibody against type I collagen (Sigma-Aldrich) and a secondary 

antibody (Thermofischer). PBA possesses autofluorescence, so no staining was 

necessary, and scaffolds were observed before and after the functionalization 

process (λex = 340 nm and λem = 405 nm).  Images were obtained using a 

confocal microscope (Nikon Eclipse Ti) and analyzed with Image J software (v. 

1.52i, USA). 

22.7. Seeding of the scaffolds with cells 

IPFP-MSCs suspension (7 x 105 cells) was pipetted onto each scaffold and 

incubated for 4 h at 37 ºC to allow cell attachment. The cell-seeded scaffolds were 

transferred into new low attachment 48-well culture plates with 1 ml of medium. 

After, all samples were incubated under a 5% CO2 atmosphere at 37 ºC for 21 

days. The culture medium was replaced every 2 days. 

22.8. Metabolic activity 

The metabolic rate was assessed by colorimetric Alamar Blue assay 

(Thermo Fisher Scientific) following the manufacturer's instructions on days 1, 

3, 7, 14, and 21 days after seeding. Cell-free 3D scaffolds were used as controls, 

and data were normalized to the appropriate control. The fluorescence intensity 

was measured using a plate reader (Synergy HT, BIO-TEK).  
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In addition, DNA was also determined at days 1, 7, 14, and 21 in collagen 

and PBA samples to check the difference in adhesion and Alamar blue reduction 

among functionalization protocols. DNA content was also approximated with 

DAPI, but the extraction protocol was different: samples were inserted in 

different Eppendorf tubes, and 1 mL of distilled water was added to induce 

osmotic lysis at 37ºC for 1 h. Immediately after, the tubes were transferred to -

80ºC for 1 h. This protocol was adapted from the one proposed by Sika et al. and 

was not used to estimate DNA concentration1102. 

22.9. Cell Viability 

The Live/Dead assay (Thermo Fisher Scientific) was used following the 

manufacturer's instructions to evaluate the viability of IPFP-MSCs before and 

after the bioprinting process on days 1, 7, and 21. The scaffolds were observed 

using a confocal microscope (Nikon Eclipse Ti) for visualization and image. 

Images were analyzed with Image J software (v. 1.52i, USA). 

22.10. DNA and GAG quantification 

Scaffolds (n=3) were digested with papain (25 uL ml-1 in FBE) after 1 day 

and 21 days in culture with DMEM Glutamax (Thermo) 1% P/S, 10% FBS. GAG 

quantification was approached using dimethyl methylene blue (DMMB) 

colorimetric assay, whereas DNA content was estimated using a fluorometric 

marker (DAPI staining). The standard curve for the GAG protocol was used using 

a gradient curve of Chondroitin sulfate (Sigma), and the DNA standard curve was 

done using DNA from Calf Thymus (Sigma-Aldrich). 

22.11. Cartilage gene expression 

RNAs for type II collagen, aggrecan, and type I collagen (as a control) 

were analyzed using PCR assays to determine the cartilage gene expression. 

Primer sequences were used as in previous works1030. 
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Scaffolds were cultivated for 21 days with an initial cell concentration of 

2 x106 cells per scaffold. Both functionalized cases were studied under standard 

medium (DMEM, 10% FBS, and 1%P/S) and chondrogenic medium (DMEM 

1%PS, 1% ascorbic acid, 1% proline, 1% insulin transferrin serum-ITS, 1% of 

transforming growth factor-beta 3, TGFB3, and 0.1% dexamethasone). After, 

total messenger RNA (mRNA) from attached IPFP-MSCs was extracted using 1 

ml RNAzol RT (Sigma) per Eppendorf/scaffold (n=3) at day 21. Then, mRNA was 

reverse transcribed into cDNA using the Reverse Transcription System kit 

(Promega) following the manufacturer’s protocols. Finally, a quantitative real-

time polymerase chain reaction (qRT-PCR) was executed using an SYBR green 

master mix (Promega) under the company’s instructions. Gene expression levels 

were normalized to the housekeeping gene glyceraldehyde 3‐phosphate 

dehydrogenase (GADPH) and showed a fold change relative to the value of 

control IPFP-MSCs at day 0. 

22.12. Scanning electron microscopy 

The scaffolds were imaged with an FEI Quanta 400 microscope (Thermo 

Fisher Scientific-FEI, Fremont, CA, USA) with an Everhart-Thornley detector (E-

TD) for dry and conductive samples in high vacuum mode. Samples were 

incubated for 21 days (2 x106 cells per scaffold) and then fixed with 2% 

glutaraldehyde overnight at room temperature. The next day, they were rinsed 

in 0.1 M cacodylate buffer and saved at 4ºC. Then, samples were prepared for 

SEM following standard protocols: i) several washed with PBS, ii) dehydration 

series with ethanol (30-100%), iii) they were critically point dried in an Emscope 

CPD 750, iv) mounted on aluminum SEM stubs, and v) sputter coating with a 

conductive material (gold-palladium alloy, Sputter Coater 108 Auto).  

22.13. Statistical analysis 

Under each condition, three experiments were performed to assess 

variability (n=3, data representation corresponds to mean ± SD). The data were 
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processed and represented using the software Origin 9.0 (OriginLab 

Corporation, Northampton, MA, USA). Homoscedasticity was verified on all data 

(Shapiro-Wilk). The Student's two-tailed t-test was applied to analyze the data 

with a confidence interval of 0.05. If any, outliers were neglected with the IQR 

(interquartile range) procedure, where the ANOVA test compared multiple 

samples, and means were compared employing a two-tailed Bonferroni Test 

with a confidence interval of 0.05.  In figures, p-values < 0.001 are represented 

with ‘***’, < 0.01 ‘**’, and < 0.05 ‘*’.  

  



DOCTORAL THESIS DANIEL MARTÍNEZ MORENO 

214 
 

23.Results from Chapter II 

23.1. Characterization and verification of 

functionalization protocols on b-TPUe 

Functionalization methods involve some aggressive reagents, so 

evaluating their effect on the biomaterial is necessary. The surface topology of b-

TPUe scaffolds was investigated using a magnifying glass and AFM1103, to probe 

any macrostructure and/or microstructure surface variation of the fibers 

derivate by functionalization processes.  

For this purpose, b-TPUe scaffolds were immersed in different solutions 

for 24 hours: MilliQ water (Figure 67A), which establishes the control; 70% 

ethanol (Figure 67B) used in the sterilization of the scaffolds; isopropanol used 

in the 1,6-hexanediamine (Figure 67C) solution involved in the first step of PBA 

functionalization; and, finally, 0.6 M monopotassium buffer at pH 7.4, where 

glutaraldehyde (Figure 67D) was dissolved, a fundamental step in 

functionalization with type I collagen.  AFM showed no perceptible surface 

modification in the monopotassium buffer; however, effects produced by etOH 

70% and isopropanol increased rugosity, but no degradation appeared 

(variation less than 100 nm as can be seen in the legend bars of Figure 67B and 

-C)1104. In addition, Supplementary Figure S1 shows no significant difference 

applying 100% EtOH or 70% EtOH.  

Scaffolds already functionalized with collagen (Figure 67E) and PBA 

(Figure 67F) were analyzed under AFM to compute the presence of any surface 

modification. Figure 67E probed how collagen fibers were aligned surrounding 

the scaffold’s filaments adding rod-likely patterns of 150 nm in diameter. Figure 

67F confirmed the presence of external material attached to the b-TPUe surface. 

In this case, PBA formed small mountains of 200-400 nm in height.  
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In addition, the power spectra density (PSD) was performed by AFM to 

compute quantitively any possible exchange in surface patterns1105. Figure 67G 

shows buffers effects over scaffolds vs. control, whereas Figure 67H compares 

functionalized scaffolds concerning control. Here, it is interesting that the 

glutaraldehyde buffer does not modify the rugosity of scaffold fibers. In contrast, 

EtOH 70% and 2-prop buffers showed an increase in the height of rugosity, 

manifested at frequencies lesser than 1 micron. Following previous 

consideration, collagen functionalization increased the height of rugosity at 

frequencies higher than 1 micron, inducing those collagen fibers to be 

distributed over the scaffold surface, letting less than 1 micron between each 

fiber. Further, comparing PSD curves from PBA functionalization buffer and 2-

propanol buffer shares similar tendencies, implying no significant 

microstructure modification of scaffold beyond the apparition of 400 nm peaks 

that were not found under 2-prop buffer. 

Surface roughness was evaluated at the macroscopic level through 

images taken with the Leica Si9 magnifying glass, but no differences were found 

(Figure 68A). After comparing these pictures with previous results, it can be 

estimated that any variation perceived by AFM does not modify scaffold 

microstructure or fiber integrity. In 70% EtOH and 2-prop buffers, some brighter 

points for control and glutaraldehyde buffer can be distinguished, which is 

explained by curves from Figure 67G. In addition, it can be appreciated that the 

size of such points is larger in 2-prop than 70% EtOH as the PSD shows (Figure 

67G). 

Figure 67. AFM topography analyses. (A-F) Height images captured from AFM for, (A) 
Mili Q water as control, (B) ethanol 70% (mixed with Mili Q water), used to sterilized 
scaffolds, (C) 2-propanol 100% buffer, used to diluted hexamethylenediamine 
(necessary to PBA functionalization) and (D) KH2PO4 0.16 % Glutaraldehyde buffer 
used to crosslinked collagen fibers in the collagen type I functionalization. (E) Height 
images for collagen functionalized scaffolds, whereas (F) exposes a PBA functionalized 
fiber. In all cases, the ROI was 5x5 µm. (G) PSD curves from AFM buffer analyses 
compared with control. (H) PSD of functionalized scaffolds versus control. 
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Regarding verification of functionalization protocols, with AFM (Figure 

67E and -F), immunofluorescence assays were performed to check the final 

result. Since the PBA functionalization method consists of two steps, the 

amination process and PBA addition, to prove that the binding PBA is possible, it 

is necessary to check the previous amination of the scaffolds (see chapter 34, 

theme 34.1). 

As can be seen in Figure 68B, the ninhydrin standard curve follows a 

dose-response trend, with the following equation1104 :  

𝑦 =
𝐴1 + (𝐴2 − 𝐴1)

1 + 10(𝑙𝑜𝑔𝑥0−𝑥)·𝑝
 (𝑅2 = 0,988) ( 54 ) 

where: A1=2,626; A2=100,640; logx0=34,587 

This trend corresponds to the sigmoid or Hill model1106, one of the two 

commonly used pharmacokinetic models to correlate the pharmacological 

response with drug concentrations. This model follows the following equation: 

𝐸 =
𝐸𝑚𝑎𝑥 · 𝐶𝑦

𝐶𝐸50
𝑦

+ 𝐶𝑦
 ( 55 ) 

where 𝐸𝑚𝑎𝑥 would be the 𝑉𝑚𝑎𝑥, 𝐶𝐸50 the 𝐾𝑚, corresponding to the Michaelis-

Menten equation, and γ a parameter. 

B-TPUe scaffolds treated with 1,6-hexanediamine through the addition 

of ninhydrin showed an average absorbance significantly increased (p < 0.001) 

compared with non-aminated scaffolds, allowing to verify that the amination 

process was efficient (Figure 68C). To finalize with PBA, Figure 68D displays 

the autofluorescence of b-TPUe without functionalization and after PBA 

treatment, and it can be distinguished the mountain patterns shown in the AFM 

as brighter fluorescence points. 
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Also, an immunofluorescence assay was performed to visualize the 

components of the functionalization. Immunofluorescence in Figure 68E to 

check type I collagen presence (in green) shows the previous homogeneity 

distribution with no difference between fluorescence points. The collagen can be 

appreciated over fibers at different focal planes indicating that collagen 

functionalization was produced on the whole scaffold.  

In conclusion, results showed differences in the roughness of the 

material depending on the condition to which they were subjected, but no 

apparent degradation was observed, and, more importantly, it can be established 

that functionalization succeeded in both cases.  

23.2. Evaluation of cell metabolic activity and cell viability 

in PBA and type I collagen functionalized-scaffolds  

Functionalization processes aim to improve the superficial properties of 

b-TPUe since it is a highly hydrophobic material. The reduction of 

hydrophobicity and the addition of different components to the surface of the 

scaffolds can enhance cell-biomaterial interaction and consequently maintain 

cell viability and increase proliferation rate. For this purpose, IPFP-MSCs were 

seeded in the functionalized b-TPUe scaffolds, and metabolic activity was 

measured to assess cell attachment and proliferation using the Alamar Blue 

reagent (Figure 69A). 

Figure 68. Macroscopic and microscopic characterization. (A) Images captured by 
magnifying glass under transmitted light from different buffers. Control was Mili Q 
water, 70% ethanol mixed with Mili Q water, pure isopropanol, and KH2PO4 0.16 % 
Glutaraldehyde buffer. (B) Ninhydrin standard absorbance curve is done by a 
spectrophotometer. (C) Ninhydrin assay for aminnated scaffolds (scaffolds embedded 
inside hexamethylenediamine 2-prop buffer) and control (naïve scaffolds). (D) Confocal 
images from autofluorescence of bTPUe scaffolds functionalized with PBA, and control 
(non-functionalized). (E) Confocal images from immunohistochemistry scaffolds, 
Immunolabeling as type I collagen functionalization, and control as naïve scaffolds. 
Magnifying was 10X. 
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IPFP-MSCs were isolated from osteoarthritic patients and expanded until 

low passages 3-6. IFPF-MSCs were characterized (Figure 93) using the 

guidelines proposed by the ISCT51. After that, IPFP-MSCs (700,000 cells per well) 

were seeded over scaffolds and incubated for 4 h at 37ºC; then, a fresh medium 

was applied. The progression of metabolic activity was monitored for 21 days for 

all conditions. In the case of type I collagen, we did additional studies to adjust 

the concentration of glutaraldehyde (Figure 94). Results on day 3 confirmed that 

the optimum glutaraldehyde concentration for collagen functionalization was 

0.16 %. 

On day 1, the difference in metabolic activity and, therefore, in cell 

proliferation was found between all conditions (p < 0.001) (Figure 69A). Both 

functionalization methods presented higher metabolic activity than controls. 

Moreover, type I collagen-functionalized scaffolds (0.16% of glutaraldehyde) 

showed higher metabolic activity than PBA-functionalized scaffolds with a high 

statistically significant difference (p < 0.001). On day 3, metabolic activity 

increased in control and PBA-functionalized scaffolds while it was maintained in 

type I collagen-functionalized scaffolds (p < 0.05) (Figure 69A). Although at day 

3, the control showed an increase in its Alamar blue reduction, the metabolic 

levels dropped again, and they remained the rest of the days (Figure 69A). On 

day 7, metabolic activity increased in type I collagen-functionalized scaffolds 

while PBA-functionalized was preserved (p < 0.05). Even so, both 

functionalization methods continued to show a higher metabolic activity 

compared to the control. In contrast, on day 14 and day 21, the decreasing trend 

continued in type I collagen-functionalized scaffolds, whereas the PBA method 

expressed maintenance (day 14) or increase (day 21) of proliferation compared 

with both collagen functionalization and control (p < 0.001). 
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Further, to clarify if metabolic responses were in concordance with 

cellular content in the scaffolds, the Alamar Blue reduction fold increase curve 

was plotted (Figure 95A), and the DNA fold increase curve was obtained (Figure 

95B). The metabolic ratio (over DNA content) from Alamar Blue reduction 

versus DNA fold increase1107 for functionalized scaffolds shows a correlation 

between the increase of metabolic activity and DNA content, where PBA 

functionalized scaffolds presented a higher ratio comparing with  type I collagen-

functionalized scaffolds at day 21 (Figure 69B). 

On the other hand, images obtained from the b-TPUe scaffold samples 

under different conditions using confocal microscopy corroborated the results 

obtained with the Alamar Blue assay and Alamar Blue reduction fold 

increase/DNA fold increase. The feasibility study was performed on days 1, 7, 

and 21 after cell seeding (Figure 69C-K). Results were correlated with 

proliferative assays, with an increase in cell adhesion at day 1 significantly higher 

in type I collagen scaffolds (Figure 69E) than in control (Figure 69C) and PBA 

functionalization (Figure 69D). It can be appreciated that cells were found 

included in the regions between fibers, something that does not happen in other 

cases. Also, on day 7, viability continued to keep in both functionalized scaffolds 

(Figure 69G and -H), and even more, cell proliferation allowed those cells to 

colonize the entire surface of the fibers. 

On the contrary, the control (Figure 69F) did not present living cells on 

most scaffold surfaces. Finally, on day 21 (Figure 69I and -K), the viability was 

preserved with very poor viability on control. In contrast, the cell distribution 

Figure 69. Metabolic and cell proliferation of bTPUe functionalized scaffold loaded with 
IPFP-MSCs. (A) Alamar Blue reduction fluorescence response (λ = 570 nm) for bTPUe 
scaffolds without treatment (control), PBA functionalized scaffolds, and type I collagen 
functionalized scaffolds at days 1, 3, 7, 14, and, 21. (B) Alamar Blue reduction/DNA fold 
increase (obtained by dividing Supplementary Figure S4A BY S4B) curves for PBA 
functionalized scaffolds and type I collagen functionalized scaffolds along 21 days. 
(n=3) (***, p < 0.001; *, p < 0.05; N.S., not significance), (C-K) Confocal images from 
Live/Dead assay (Thermo Fisher Scientific) of naïve bTPUe scaffolds as control and 
both functionalization protocols. Magnifying was 10X. 
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over PBA functionalized and type I collagen functionalized scaffolds was slightly 

different, whereas in the PBA case, cells surrounded fibers; in type I collagen 

seems to grow, forming clusters.   

23.3. Evaluation of the chondrogenic potential of 

functionalized scaffolds 

Considering the results from metabolic assays and cell viability, we 

evaluated if cells were producing a chondrogenic matrix. Consequently, GAG 

quantification vs. DNA concentration was calculated (Figure 70A-C), and gene 

expression by PCR was carried out (Figure 70D).  

For GAG quantification, scaffolds were seeded over 21 days inside a 

common cell medium. GAG determination showed significant differences 

between functionalized samples and controls (Figure 70A, p < 0.001). Although 

control scaffolds presented a similar number of cell content (Figure 70B), no 

GAG content was extracted from these scaffolds. After 21 days, although GAG 

concentration decreased for both functionalization methods, they exhibited 

higher results than the control. Moreover, PBA-functionalized scaffolds 

displayed a significantly higher GAG content than type I collagen functionalized 

scaffolds. Using a more precise DNA extraction method (papain buffer solution 

assay) showed that in the type I collagen functionalization method, there was a 

significant reduction of DNA content from day 1 to day 21; however, in PBA 

functionalization, no difference was founded along time (Figure 70B), which is 

in concordance with Figure 95B. 

Moreover, type I collagen functionalized scaffolds had higher DNA 

concentrations on both days (p < 0.001). DNA content from controls was not 

negligible, but, in any case, it was significantly less than functionalization 

methods. Additionally, the absence of any GAG on both days declares that cells 

attached to bare filaments do not produce ECM (PBA, p < 0.05; Collagen, p < 

0.001). 
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Nevertheless, the representation of the ratio between GAG vs. DNA 

concentrations (Figure 70C) showed a significant difference in functionalized 

scaffolds with control samples (p < 0.001). Besides, PBA functionalized scaffolds 

presented a higher ECM synthesis ratio than type I collagen functionalized 

scaffolds; however, in type I collagen samples synthesis ratio was preserved 

along the 21 days, whereas, in PBA protocol, that production was reduced (p < 

0.001). 

Functionalized scaffolds were treated with chondrogenic and regular 

mediums for 21 days to explore the chondro-inductive potential. Gene 

expression results (Figure 70D) showed that functionalized scaffolds present 

higher chondrogenic potential than controls (p < 0.001), except for Sox9 in 

differentiated medium cases and PBA and aggrecan (Acan) in differentiated PBA, 

where no significant differences were found. Surprisingly, in functionalized 

scaffolds cultivated with a traditional medium, the gene expression for type II 

collagen, Sox9 and Acan were higher than in those cultured in the medium of 

differentiation, implying no need to use additional growth factors. Collagen type 

I functionalized scaffolds with standard medium highlighted over the rest of the 

cases with almost 10000 times more type II collagen expression and 1000 times 

more Acan than control (p < 0.001). Moreover, type I collagen expression in 

functionalized scaffolds was significantly lesser than in the control (Figure 70D, 

p < 0.001).  

Conclusively, GAG/DNA ratios and gene expression assays indicate that, 

in contrast with control scaffolds, functionalized scaffolds produced more ECM 

and are chondro-inductive.  
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23.4. Analysis of cell morphology and ECM appearance by 

scanning electron microscopy 

After confirming that functionalized scaffolds showed high cell viability 

during 21 days and could produce ECM without any additional growth factor, cell 

morphology and ECM appearance were evaluated by SEM assays after 21 days 

(Figure 71). Figure 71A, -D, -G and -J represent control scaffolds at different 

magnifications, where it can perfectly distinguish the presence of living cells 

attached over the surface of the scaffold, but those cells presented a poor 

cell/biomaterial interaction (Figure 71G and -J). It can be pointed out that no 

presence of ECM was found correlatively with ECM expression results. 

In contrast, PBA functionalized scaffolds (Figure 71B, -E, -H, and -K) 

exhibited higher cellular content than the control, and there was a high presence 

of ECM forming a homogeneous surface that covered scaffold fibers. Figure 71K 

shows how differentiated IPFP-MSCs interact with each other, and Figure 71H 

shows how cells are immersed in a dense ECM and expanded over it. 

Figure 70. Chondro-inductive properties of bTPUe functionalized scaffold loaded with 
IPFP-MSCs. (A) GAG concentrations obtain through papain assay for naïve bTPUe 
scaffold and both functionalization protocols on day 1 and day 21. (B) DNA 
concentrations were obtained through papain assay for naïve bTPUe scaffolds and both 
functionalization protocols on day 1 and day 21. (C) GAG/DNA ratios for naïve bTPUe 
scaffolds and both functionalization protocols at day 1 and day 21 (n=3). (***, p < 0.001; 
*, p < 0.05; ###, p < 0.001; ^^^, p < 0.001). (D) Gene expression fold increase obtained 
through qPCR. Control used were IPFP-MSCs cultured at day 0. PBA was scaffolds 
functionalized with PBA under normal cell medium, PBA Dif was the same scaffolds 
under chondrogenic medium, both at day 21. Collagen scaffolds were collagen type I 
functionalized scaffolds under normal medium, Collagen Dif was same scaffolds under 
chondrogenic medium, both at day 21. Col2 was COL2A1. Sox9 was the Transcription 
factor SOX-9. Acan was Aggrecan. Col1 was COL1A1. (n=3) (***, p < 0.001; *, p < 0.05; 
###, p < 0.001; ^^^, p < 0.001; N.S., Not Significance). Black bars correlated 
chondrogenic markers of functionalized scaffolds versus control. N.S: implies exception 
in previous correlation. Blue # correlates control concerning others. Grey bars correlate 
PBA with PBA Dif. Green bars correlate Collagen with Collagen Dif. 
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Type I collagen scaffolds had more cells and a significant amount of ECM 

(Figure 71C, -F, -I, and -H). All the scaffold surfaces were covered by cell content 

ECM and cells. More interestingly, differentiated IPFP-MSCs produced ECM over 

angles that formed fiber cross-sections. In Figure 71L, a cell with a chondrocyte-

like appearance with a spherical shape and some cilium embedded in ECM can 

be found. Moreover, a much more natural cell-biomaterial response than in other 

cases was observed, with cells growing through naïve scaffold fibers (Figure 

71I).  

In summary, SEM assay confirmed all previous results where control 

scaffolds presented very few cells with apoptotic-like morphology, and 

functionalized methods showed an increased cell number with chondrocyte-like 

morphology and with a considerable amount of ECM evolving both cells and 

scaffolds.  
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Figure 71. SEM images from control, PBA functionalized and type I collagen 
functionalized scaffolds at day 21. (A-E) Control images, where (B) shows a 

magnification of a viable cell. (E) shows poor cell-biomaterial interaction. (F-J) 
PBA images, (F) clearly show the presence of ECM over scaffold fibers, (G) 
represents cell-cell interactions. (J) Shows cell-ECM interactions. Collagen 

images, where (I) shows the presence of ECM over scaffold surface, (K) shows 
cell-biomaterial interaction and ECM preserved morphology and, (L) shows a 

chondrocyte-like cell. 
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24.Discussions from Chapter II 
The elasticity and stiffness of the 3D scaffolds are essential for forming 

AC tissue since it is subjected to cyclic mechanical forces due to corporal 

movement1108. The pore size and scaffold fiber geometry are important factors 

that regulate previous characteristics in scaffolds. Wang et al. assume that large 

pore sizes increase ECM production of chondrocytes1109, a fact that was 

contrasted by the previous literature1048,1110. Similarly, it has been established 

that a pore size between 370 to 400 µm is the optimum for chondrogenesis1084. 

In this work, we also used a similar pore size (375 µm) that, together, high 

interconnectivity of scaffold fibers along different layers is essential for 

conditioning cartilage biomechanics and creating an adequate cellular niche for 

cell differentiation1111.  

The polyurethane (PU) family has been used as a scaffold biomaterial for 

cartilage TE due to its proper tensile strength, high elasticity, and good 

biocompatibility1112–1115. It has been previously demonstrated1112 the adequate 

properties of PU for cartilage substitutes, including their viscoelastic 

behavior1108,1112 and the high elastic recovery (> 99% recovery)1115. However, its 

high hydrophobicity makes it necessary to adapt its surface to improve cell-

matrix interfaces to ensure good cell adhesion and differentiation1116,1117 or by 

specific surface properties, including topography1118, potential, and 

charge1119,1120.  

In the present work, 3D scaffolds were printed with b-TPUe, a 

thermoplastic polyurethane filament comprising methylene diphenyl 

diisocyanate (MDI) and 1,4-Butanediol, where PU structure consists of three 

complex monomers: a macrodiol, a diisocyanate, and a chain extender, based on 

which several different PU materials can be synthesize1121. In previous works, we 

have demonstrated the biocompatibility of b-TPUe1122  and its similar cartilage 

mechanical behavior1111. The 3D-printed b-TPUe scaffolds were functionalized 
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using two type I collagen and PBA methodologies to improve their biological 

properties. In each functionalization method, the solutions to which the material 

was subjected were diverse, and they exerted an effect on the microstructure of 

the b-TPUe scaffolds. At the macroscopic level, no differences were observed on 

the surface; however, AFM analysis showed differential effects in the material's 

roughness. This superficial characteristic was more remarkable when scaffolds 

were subjected to 70% ethanol and isopropanol than in other conditions. The 

roughness obtained does not significantly alter its properties because its 

increase was less than 1 nm. In addition, in previous literature, it has been 

described that an increase in roughness implies a decrease in hydrophobicity1072.  

Functionalization with components in the ECM is recurrent and mainly 

offers good results1123. The chondrogenesis process begins with MSCs, cell 

proliferation, and differentiation towards chondrocytes occur, finally giving rise 

to hypertrophy and ossification1124. As differentiation proceeds, a matrix rich in 

fibronectin and type I collagen is replaced with one containing type II collagen 

and aggrecan as the main components1125. This statement is why type I collagen 

was used to functionalize the 3D-printed b-TPUe scaffolds. 

Also, functionalization with PBA was performed. Hinnemo et al. reported 

interesting results using PBA to attach it non-covalently to graphene through π-

π stacking, a common approach to non-covalently attaching functional groups 

1098. No use of PBA over PU surfaces has been previously published, and the only 

use of PBA with application in TE was done by Luo et al. in 2015 1126. The PBA 

consists of a pyrene group that contains π electrons and a carboxylic group that 

can be used to facilitate further functionalization. In the present study, b-TPUe 

has not had a high density of delocalized π-electrons like graphene, so it is not 

possibly to establish a π-π stacking between b-TPUe and PBA1098. For this reason, 

firstly, the amination process must establish amino groups in the b-TPUe surface 

and be possible later the interaction between amino groups and PBA by the 
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carboxylic group. Finally, π-π stacking will be able between PBA and aromatic 

amino acids of membrane cell proteins. 

Collagen has been coated successfully onto numerous hydrophilic 

biomaterials. Despite the hydrophobic characteristic of b-TPUe, developing a 

method that reduces its hydrophobicity and allows coating with collagen was 

necessary. For this reason, type I collagen functionalization was a more complex 

protocol than PBA, and there were several steps involved. Firstly, urea was 

necessary to reduce hydrophobicity through the deposition of polysaccharides 

and proteins to achieve the binding of collagen subsequently1127. Type I collagen  

must be cross-linked to be used as a functional replacement in vivo due to its high 

degradation rate and low biomechanical strength1128. This fact was obtained 

when glutaraldehyde was decreased in the protocol, where the absence of it 

presented an inadequate metabolic cell response. As it is known, glutaraldehyde 

can become toxic if it is not used in the right concentration and if its unreacted 

functional groups are not blocked1129. Consequently, different concentrations of 

glutaraldehyde and glycine (a blocking agent) were tested to optimize the 

accurate concentration that did not compromise cell viability, and, at the same 

time, the tertiary structure of type I collagen was preserved. An optimal 

concentration of 0.16% of glutaraldehyde and 0.5 м of glycine was found to 

ensure cell viability and preservation of collagen tertiary structure.  

In the study of the topographic properties of our 3D printed b-TPUe 

scaffolds, the AFM results showed how PBA increased the global rugosity height, 

but frequencies observed in the PSD curves were considerably lesser than 

control and collagen functionalization. Consequently, the heterogeneity of this 

functionalization method is higher. Contrary, type I collagen fibers had an 

estimated diameter of 300 nm1130; therefore, they reached a high level of 

homogeneity. 

Further results showed an increase of cell adhesion in functionalized 

scaffolds opposite to native scaffolds, implying that our methodology overpasses 
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the first issue of this research1131. Even PBA scaffolds increase cell proliferation 

over 21 days; type I collagen functionalized scaffolds only preserved that 

proliferation over 7 days to reduce at days 14 to 21 abruptly. Moreover, DNA 

content was measured to verify if changes in cell proliferation were in agreement 

with cellular metabolism. The ratio between Alamar Blue reduction fold increase 

and DNA fold increase indicated that in PBA, a decrease in cell content was not 

associated with a decrease in cell metabolism, which suggests that the increase 

in metabolism activity is in part due to an increase in ECM synthesis as was found 

in GAG/DNA ratio and SEM, as previously described1132. 

 Thereby, both functionalized methods reached good cell viability values 

for 21 days with no apparent difference between them, and obtained results 

were considerably higher than the previous works1111,1122. Nevertheless, PBA is 

an inexpensive reagent and a fast process of functionalization that allows 

obtaining functionalized b-TPUe in 2 hours instead of 3 days, which could be 

used to manufacture b-TPUe directly coated with PBA. 

In addition, it was shocking to verify that functionalized scaffolds did not 

need any particular medium to induce chondrogenesis. These results concord 

with literature where type I collagen induced chondrogenesis1128, even in the 

case of PBA scaffolds where this ability has not been probed before. This effect 

was confirmed in confocal and SEM assays where living cells were easily founded 

at the corners formed by fiber’s crosslinking between scaffold layers; thus, IPFP-

MSCs were more condensed in those regions, a factor that facilitates 

chondrogenesis1133. Regarding Col type II and Sox 9 expression, it is interesting 

to verify how the samples with greater production also presented higher Acan 

production1134. It is known that in healthy cartilage, chondrocytes are constantly 

remodeling their ECM, and they use their pericellular matrix for such 

purpose1135. Our results concorded with previous criteria obtained by other 

researchers in literature1136. Zhang et al. analyzed the importance of scaffold 

geometry for enhancing in vivo osteogenesis and chondrogenesis without any 
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additional implementation of cell content before scaffold implantation1137, and 

also how additional non-physiological materials such as bredigite increased 

cellular proliferation and ECM synthesis1138, which is in concordance with our 

results. The importance of biochemical cues inside in vivo niche and all the 

proteomic pathways developed by inflammatory processes present in 

osteoarticular disorder, such as OA, are essential for regulating cell proliferation 

and differentiation1139.  As discussed in a previous work1140, cartilage is trying to 

remodel at the initial stages of OA with no positive result, and the tensile strength 

is reduced782. Applying biomaterials that avoid such biomechanical instability 

would be highly beneficial for cartilage repair; thereby, a good functionalization 

method and an adequate geometry should promote chondrogenesis avoiding the 

use of chondrogenic medium. 

Finally, SEM images concord with all previous results, showing poor cell-

biomaterial interaction and, apparently, no cell-cell interactions in non-

functionalized scaffolds. Our functionalized methods satisfy cellular demand for 

a suitable attachment and the cell-cell interactions1141, a critical factor for 

adequate biomaterials. In addition, it seems that either PBA as type I collagen  

induces chondrogenic differentiation, which results in concordance with other 

research for osteointegration1141. IPFP-MSCs culture for 21 days changed their 

characteristic MSC morphology (more elongated and planar) to a spherical 

conformation embedded in a matrix with some cilium952,953,959 indicating what 

seems differentiation into chondrocyte-like morphology1142. Moreover, it was 

found how differentiated IPFP-MSCs tented to expand their ECM to the fiber’s 

crosslinking regions; an aspect described before1111.   

24.1. Conclusions 

In this work, we have adapted, for the first time, not one but two different 

possible methods for bTPUe functionalization in a biomaterial with mechanical 

properties similar to cartilage1111,1112,1115,1143  but with high hydrophobicity. Both 

of them presented improved IPFP-MSCs adherence, proliferation, and chondro-
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inductive properties. Thus, 3D printed b-TPUe scaffolds treated with 1,6-

hexanediamine and PBA or type I collagen showed improved cell-biomaterial 

interaction with increased cell adhesion and proliferation after 21 days. More 

importantly, IPFP-MSCs attached to the functionalized scaffold increased the 

chondrogenic differentiation potential even without additional differentiation 

medium or other growth factors. In addition, SEM images remarked the wide gap 

in cell/biomaterial interaction between functionalized scaffolds and not 

functionalized ones.  

Regarding the surface modification motifs, AFM displayed an increase in 

rugosity of both methods, although the patterns differed. SEM images showed 

how cells adapt better to such patterns; consequently, the functionalized 

scaffolds significantly increased their adhesiveness and cell properties. Although 

we probed both type I collagen and PBA functionalization methods, we 

recommend the PBA functionalized procedure due to its reduced cost in reactive 

prices and time-consuming.  

In summary, the improvement in surface properties of 3D printed b-

TPUe scaffolds favoring cell-biomaterial interaction and its chondrogenic 

properties results in a biomaterial with a highly compliant nature and elastic 

recovery capacity similar to cartilage, which can overcome the limitations of the 

current scaffold-based approaches. Nonetheless, further in vivo experiments 

must be done to demonstrate the clinical potential of cartilage TE. 
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“When a distinguished but elderly scientist states 
that something is possible, he is almost certainly 
right. When he states that something is 
impossible, he is very probably wrong.” 

“Cuando un científico distinguido, pero de edad 
avanzada afirma que algo es posible, es casi 
seguro que tiene razón. Cuando afirma que algo 
es imposible, es muy probable que esté 
equivocado.” 

Arthur C. Clarke 
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25.Abstract of Chapter III 
Osteoarthritis is a significant socioeconomic illness that mainly affects 

articular cartilage, a tissue with a low capacity for self-healing and, hence, an 

ideal target for regenerative medicine and tissue engineering. To date, non-

effective interventions have been developed to treat cartilage injuries.  

To solve this problem, a novel bioreactor that creates viscous shear 

stresses by flow perfusion has been designed for inducing ex vivo maturation of 

biomimetic 3D cartilage scaffolds. IPFP-MSCs were used as a cellular source of 

the functionalized 3D scaffolds made of b-TPUe. DNA quantification, 

extracellular matrix determination, and metabolic assay confirmed the 

chondrogenic differentiation induced by our bioreactor without any conditioned 

medium. 

On the other hand, to control the biomechanical stimulation on IPFP-

MSCs, a low intensity ultrasonic transmission system has been developed and 

embedded in the bioreactor. Combined with a FEM, the tissue growth and 

differentiation can be deconvoluted in real time from the recorded ultrasonic 

propagation and interaction across the graft. This complex interaction is 

reconstructed by the FEM based on the pulse wave speed, viscous and 

multiphasic pore-elastic geometrical dispersion across the graft. 

In conclusion, this is the first time a low-shear stresses-based bioreactor 

can induce and monitor chondrogenic evolution in real time. 

Keywords: scaffolds; infrapatellar fat pad, mesenchymal stem cells; b-

TPUe; cartilage; osteoarthritis; bioreactor; biomechanics; ultrasound; inverse 

problem and finite element model (FEM) 
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Figure 72. Diagram of the work framework from Chapter III.  
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26.Background for Chapter III 
RM aims to restore or establish normal function by entirely or partially 

regenerating human cells, organs, or tissues1086. Living cells, biomaterials, and 

bioactive cues are the three pillars of TE, a subset of RM115. Among the various 

illnesses that can benefit from the advances in TE is OA, an incurable and 

complex disorder. The pathogenic process leading to OA is characterized by 

persistent low-grade AC deterioration, which is the primary cause of continuous 

joint degeneration754. As such, OA should not be regarded as a disease but rather 

as the common endpoint of several secondary pathways associated with age, 

possible traumas, obesity, and the resulting changes in the biomechanics of the 

joint642,1144. Because AC is an avascular tissue with no lymphatic system and 

nerve endings, OA patients have a limited regeneration rate, making TE an 

accurate tool to revert that with techniques such as biofabrication1087. Due to the 

loss of AC, OA causes pain and loss of joint function1088. No known treatment for 

OA can stop or decrease its progression; surgical treatments are the go-to 

option1089. Numerous TE based-products and treatments have attempted to 

simulate AC for a few decades (some of them are still in clinical trials), including 

ACI, the MACI, NeoCart®, NOVOCART® 3D, Cartipatch®, and Spherox1145–1147. 

However, clinical, surgical treatments such as ACI or MACI lack long-term 

effectiveness1148–1150. Another example is mosaicplasty, a treatment for focal 

chondral lesions which relatively acceptable results for the first 2 years but fails 

after (≈ 55 %)1151. 

A mechanical derangement that causes low-grade injury to the AC is the 

primary driver in the development of OA760. As a result, three distinct stages may 

be identified from a biomechanical perspective: i) the proteolytic breakdown of 

the ECM of AC, ii) the fibrillation and erosion of the AC surface, and iii) the onset 

of synovial inflammation1152. A typical mechanical stimulation for AC is 

mechanical loads, described as direct interactions between two surfaces in the 

form of stresses varying from 0.5 to 8 MPa1153. On the other hand, frictional loads, 
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exerted by interstitial fluid, increase cartilage liquid pressurization inducing 

hydrostatic pressures941; this contributes to the increase in AC stiffness under 

dynamic stresses743. On the other hand, the "solid" ECM sustains the remaining 

proportion (66 %) of the compression load942.  

Scaffolds for TE applications have been created using synthetic materials 

such as PLA1154, PCL1155,1156, and polylactic-co-glycolic acid (PLGA)1157,1158. These 

materials do not easily imitate the mechanical properties of real tissue1159,1160. 

Therefore, the relevancy of novel biomaterials that affront such efforts, like b-

TPUe, is pretty promising TE targets for OA1122. Despite this, it is crucial to ensure 

adequate cell-biomaterial interaction, reducing these synthetic polymers' 

hydrophobic behavior. A reasonable manner of abording this problem is surface 

modifications, for example, with RGD peptides1097, with PBA1098, or with various 

ECM elements like fibronectin or collagen195.  

Mesenchymal stem cells can develop into the chondrogenic lineage1161–

1165 and have a high rate of in vitro proliferation while retaining their capacity for 

multipotent differentiation1166, making them pretty attractive as therapeutic 

agents1167. The infrapatellar fat pad is one of the sites from which multipotent 

cells can be isolated1053; therefore, IPFP-MSCs are a reliable cell source for AC 

TE1168. Before, it was probed how biomechanical stimulation induced 

chondrogenesis from MSCs by phosphorylation of Sox9 through PKA, cAMP, 

Ser133, and CREB946–950. So, any pathway that involves the transmission of 

signals from mechanical stimulation to electrochemical activity is called 

mechanotransduction1169. The mechanosensory TRPV4, piezo1, and piezo 2913–

915 are found in chondrocytes and osteoblasts—bone tissue and cartilage tissue 

exhibit acute mechanosensitivity to maintain homeostasis. For example, 

osteoporosis is linked to the inhibition of Piezo 1, and TRPV4 regulates the 

anabolic response of chondrocytes to osmotic or mechanical stress916,917946–950. 

Although the exact mechanism of action is still unknown, some evidence points 

to primary cilia as a potential mechanosensory for shear forces951,952. Then, 
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developing novel devices that induce biomechanical stimulation for 

chondrogenesis has excellent potential in the TE of OA. In fact, in the past ten 

years, the use of BR to physically stimulate bone or cartilage tissue has become 

standardized1170–1173. 

In this paper, a novel BR that promotes chondrogenesis from IPFP-MSCs 

has been designed and tested. Moreover, an inverse problem based on cross-

correlation algorithms forms based on finite element models has been used to 

quantify tissue growth and differentiation in real-time using LIPUS1174.  

  



DOCTORAL THESIS DANIEL MARTÍNEZ MORENO 

242 
 

27.Materials and methods for 

Chapter III 

27.1. Bioreactor design and construction 

A novel BR has been designed to support perfusion flow through scaffold 

fibers with the capacity to control scaffold elasticity through pulsed US. All 

designs were performed by Fusion 360TM Education License (Autodesk Inc.). BR 

parts in direct contact with cells were made in PMMA in the Centro de 

Instrumentación Científica (CIC, UGR). The rest of the parts were 3D printed with 

our laboratory facilities. The US adapter pieces were printed in white resin in 

Form 3B (Formlabs Inc.), and the pad of bTPUe was printed in an Artillery X1 

(Artillery Inc.). Due to its sterility, a one-use infusion set from CareFusion was 

applied for the fluid channels. The flow was influenced by a peristaltic pump 

(Watson Marlow, 400 FD/D2). A tube bore of 0.5 mm was selected due to their 

flow rate regime: 0.05-3.3 mL ∙ min-1, and an Arduino Uno Rev3 was chosen for 

regulating the flow rate and periodicity through an H-bridge.  

On the other hand, for the pulse US, contact transducers of 1 MHz were 

applied (Olympus v103-RM). For generating the 20V sinusoidal pulse waves 

each 10 ms, the RIGOL DG1022Z (Rigol Inc.) was programmed. The signal 

obtained by the receiver transducer was preamplified by an Olympus TRPP 

5810; after, the signal was captured with an oscilloscope MSO6054A (Agilent 

Technologies Inc.). A direct trigger connection between the wave generator and 

Oscilloscope was installed to ensure correct timing between the wave generator 

and the final captured signal.  

To calibrate the flow rate, a weighing method was computed where a 

precise balance was used. The BR with a blank scaffold was mounted, and 

distilled water was applied as fluid for measurements. For pressure waves, the 
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setup for recording the pressure amplitude of the P-wave exerted by the 

transducer was a high-sensitivity hydrophone (ONDA HNR-0500). Finally, the 

Arduino Uno and the Oscilloscope were controlled via a USB port and VISA 

protocol with a Raspberry Pi 3. 

27.2. Cells isolation and culture 

IPFP-MSCs were directly extracted from patients with OA after the 

approval from the Ethics Committee of the Clinical University Hospital of Malaga, 

Spain (ethical approval number: 02/022010 Hospital Virgen de la Victoria, 

Málaga). Informed consent from patients was obtained for all samples used in 

this study. Hoffa's fat pads were harvested from the inside of the capsule without 

the vascular and synovial areas. The isolation and culture protocol of IPFP-MSCs 

was according to López-Ruiz et al.1053. IPFP-MSCs were characterized according 

to the established criteria of the ISCT (Supplementary Figure 4)51. 

27.3. Printing 3D scaffolds 

The required scaffold was designed using the Cura 3D program, and its 

printing was carried out in a class II laminar flow cabinet using the Monoprice 

Mini V2 Bioprinter (Monoprice). The bioprinter was thoroughly cleaned in 70% 

ethanol and under UV radiation overnight. 

The holder was designed to fit inside a multiwell 6-well plate. Therefore, 

they adopted a cylindrical geometry: 24 mm in diameter, 5 mm in height, and 

200 µm in layer height. The movement speed of the extruder was set to 14 mm/s, 

and the working temperature was set to 230 °C. Finally, the flow rate (the speed 

of the filament passing through the extruder) was determined to be 1 mm/s. The 

scaffold's infill geometry and porosity were extracted from previous work (Pore 

size ≈ 375 µm)1111.  

To ensure the complete sterility of the scaffolds, they were placed in Petri 

dishes and washed with an increasing gradient of 20%, 50%, and 70% ethanol. 
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After washing, scaffolds were irradiated by UV on both sides for 1 h and then 

rewashed with 1% antibiotic PBS (P/S) to remove any residual ethanol. 

27.4. Scaffolds functionalization  

Scaffolds were placed in a multiwell plate and immersed in a 10 % 

isopropanol solution of 1,6-hexanediamine for 30 min at room temperature. 

After, they were rinsed in PBA (Sigma-Aldrich) at 5 mM DMSO (Sigma-Aldrich). 

Finally, several washes were done with PBS115,1086. 

27.5. Seeding cells in scaffolds 

IPFP-MSCs suspension (1 x 106 cells·mL-1) were pipetted onto each 

scaffold and incubated for 4 h at 37 ºC to allow cell attachment. The cells-loaded 

scaffolds were transferred into new low attachment 48-well culture plates with 

1 mL of medium. All samples were incubated under a 5% CO2 atmosphere at 37 

ºC for 14 days. The culture medium was replaced every 2 days in control 

scaffolds, whereas the medium was perfused for BR scaffolds. 

27.6. Metabolic activity 

The metabolic rate was assessed by colorimetric Alamar Blue assay 

(Thermo Fisher Scientific) following the manufacturer's instructions on days 1, 

3, and 7 after treatment (i.e., 8, 10, and 14 days after seeding). Cells-free 3D 

scaffolds were used as controls, and data were normalized to the appropriate 

control. The fluorescence intensity was measured using a plate reader (Synergy 

HT, BIO-TEK). 

27.7. DNA and collagen quantification 

Scaffolds (n=3) were digested with papain (25 µL ∙ mL-1 in FBE) after 14 

days in culture with DMEM Glutamax (Thermo) 1 % P/S, 10 % FBS. Control 

scaffolds were maintained inside multi-chamber wells of 6 wells, where cell 

medium was exchanged every 3 days. On the other hand, BR´s scaffolds were 
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cultured inside the system for 7 days, after 7 days of previous standard cell 

culture, to ensure adequate cell adhesion. DNA content was estimated using a 

fluorometric marker (DAPI staining), and a DNA standard curve was done using 

DNA from Calf Thymus (Sigma-Aldrich). 

For collagen quantification, scaffolds were digested in pepsin (1 mg ∙ mL-

1) buffer in acetic acid (0.5 N) for 48 h at 4 ºC, followed by adding a 1 mg ∙  mL-1 

pancreatic elastase solution at 4 °C for 24 h. Finally, samples were neutralized 

with 1 M Tris base, and the supernatant was collected for further assays. 

Collagens were quantified using Sirius Red assay. Samples were placed in 

microcentrifuge tubes and were embedded in Sirius Red buffer (0.1 % in picric 

acid) for 1h RT. Then, the tubes were centrifuged for 15 min under 13,000 rpm, 

and the supernatant was discarded. Then, the pellet was resuspended in 250 µL 

of NaOH 0.1 M. Finally, the absorbance supernatant was measured in a 

microplate reader at 540 nm (Synergy HT, BIO-TEK) for standard collagen from 

calf skin was used (Sigma). On the other hand, to quantify type II collagen, a 

commercially available type II collagen ELISA kit (Chondrex) was used according 

to the manufacturer's instructions and measured at 490 nm on a microplate 

spectrophotometer (Synergy HT, BIO-TEK). 

27.8. Immunofluorescence 

CelltrackerTM Green (Thermoscientific, 1:1000) was added to the pellet 

before cell seeding for 30 min at 37º C. After 14 days, scaffolds were fixed with 

4% PFA in PBS for 30 min at RT. Samples were treated with a primary antibody 

against type II collagen (Abcam, 1:200), type I collagen (Abcam, 1:200), and 

Aggrecan (Abcam, 1:200). Then, they were incubated with AlexaFluor 645 

(Abcam, 1:500). Images were obtained using a Nikon Eclipse Ti microscope and 

analyzed with Image J software.  
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27.9. Scanning electron microscopy (SEM) 

Samples were incubated for 21 days (2 x 106 cells per scaffold) and then 

fixed with 2 % glutaraldehyde overnight at room temperature. The next day, they 

were rinsed in 0.1 M cacodylate buffer and stored at 4°C. Samples were then 

prepared for SEM according to standard protocols: i) washed several times with 

PBS, ii) dehydration series with ethanol (30-100 %), iii) they were critical point 

dried in Emscope CPD 750, iv) mounted on aluminum SEM Top stubs and v) 

sputter coating with conductive material (gold-palladium alloy, Sputter Coater 

108 Auto). Finally, samples were imaged using an FEI Quanta 400 microscope 

(Thermo Fisher Scientific-FEI, Fremont, CA, USA) with an Everhart-Thornley 

detector (E-TD) for dry and conductive samples in high vacuum mode. 

27.10. Statistical Analysis 

Three experiments were performed in each condition to assess 

variability (n = 3) and data representation corresponds to mean ± standard 

deviation. Data were processed and presented using Origin 9.0 software 

(OriginLab Corporation, Northampton, MA, USA) and were validated for 

homoscedasticity (Shapiro-Wilk test). Student's two-tailed t-test was used to 

analyze data with a confidence interval of 0.05. If present, outliers were ignored 

using the IQR (interquartile range) method, where multiple samples are 

compared using the ANOVA test, and means are compared using the two-tailed 

Bonferroni test with a confidence interval of 0.05. In the figure, p-values <0.001 

are indicated by "***", <0.01 "**", and <0.05 "*". 

27.11. In silico model 

A computational model using Multiphysics FEM software was used to 

evaluate and understand the effect of the pressure wave exerted by US in the 

culture. For that purpose, a set of synthetic signals were obtained through an 

inverse problem, where different model parameters were swept. In addition, 

shear stresses employed by the laminar flow were also modeled (COMSOL 
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Multiphysics). A 2D model was applied to reduce computational time and 

memory consumption. The plane of the simulation was the XZ middle plane of 

the BR.  

The Multiphysics tool was employed to model the piezoelectric effect of 

the transducer to reproduce the transducer behavior. Due to patent protection, 

the materials employed for the piezo and the matching layer were unknown; 

after early trials, PZT-5H for the piezo and Armco iron was selected due to their 

similarity. The transducer's thickness was established as 13 mm, and its 

reference impedance to 50 Ω (Olympus v103-RM, the same diameter was used). 

For charge conservation, the relative permittivity (𝑫 =  𝜖0𝜖𝑟𝑬) as a dielectric 

model was chosen. No initial voltage was estimated, letting as input the following 

electric potential: 𝑉(𝑡) = 𝑉0 ∗ sin(𝜔0𝑡)|
𝑇0
0

, where V0 = 20 V and T0 = 1 µs. On the 

other hand, linear elastic material was selected with isotropic behavior for the 

solid mechanics' response of the transducer. A fixed restriction was exerted in 

the outer boundary of the piezo to avoid motion in such a direction. A stress-

charge form to describe the constitutive relation was applied to the properties of 

the piezoelectric material. All parameters and geometries of the transducer were 

reconstructed by an inverse problem using materials such as water and PLA with 

known speed, sound, and density from the literature. 

The wave propagation was modeled with the Acoustic Pressure tool, 

whereas the transitory model was linear elastic depending on the speed of sound 

and density of each material. A converge study was done for ∆𝑥 (maximum mesh 

size, using triangular mesh) to ensure adequate wave propagation, and density 

and speed of sound parameters were obtained through the inverse problem. An 

acoustic-structure boundary condition was used for boundary intersection. The 

model was performed in the time domain to obtain a comparable signal with the 

experimental one; the time-dependent variable (t) varied in a range from 0 µs to 

50 µs (same range as experimental time windows), ∆𝑡 =
𝑇0

40⁄ . Transition layers 
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were marked as interior impedances where 𝑍𝑖 = 𝜌𝑚 ∙ 𝑐𝑚, where 𝜌𝑚 and 𝑐𝑚 are 

parameters from the reflective material.  

Finally, a boundary probe was attached to the receiver transducer for 

obtaining the final electrical modeled signal. No initial potential was computed 

for the receiver piezo, and as outer potential was selected, the floating potential 

was.  
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28.Results from Chapter III 

28.1. Perfusion bioreactor with pulsed ultrasound 

characterization  

A novel BR was designed to promote perfusion flow and to exert direct 

shear stresses on the cell surface among scaffold fibers to induce chondrogenesis 

(Figure 73A). The final construction material was Polymethyl methacrylate 

(PMMA) because of its effortless sterility, transparency, and economical 

manufacturing prices. The BR is mainly composed of 3 different pieces: the 

culture chamber cylinder (Figure 73B) and the input and output cylinders (IO 

cylinders, Figure 73C). The geometry of the cell chamber consisted of a middle 

ring of 24 mm to save the IPFP-MSC-loaded 3D scaffold and a total length of 45 

mm, were only 5 mm corresponded to scaffold size and rest distances (20 mm 

per side) were selected to avoid the near field effect of the US signal.  

Thereby, IO cylinders were 30 mm diameter rods of PMMA and 40 mm 

in length, and they were perforated from the cell contact face to make fluid 

channels (Figure 96). The viable length of the IO cylinders allows fully 

developed laminar flow. When a fluid enters a pipe, the minimum length to be 

fully developed must fulfill the following: 
𝐿

𝐷
= 4.4𝑅𝑒

1
6⁄ . The fluid applied in this 

research was culture medium (Dulbecco’s modified eagle medium (DMEM) high 

glucose, 10% fetal bovine serum (FBS), which is Newtonian (𝜌 = 1009 𝑘𝑔 ∙

𝑚−3;  𝜇 = 0.93 𝑚𝑃𝑎 ∙ 𝑠)1175 with Re = 4.6. Thus, L to fulfill previous conditions is 

22.7 mm; IO cylinders present a pipe length of 35 mm, higher than necessary, 

before reaching the scaffold chamber. On the other hand, the near field length 

was (N): 𝑁 = 
𝐷2𝑓

4𝑐
⁄  = 15.4 mm with c = 2730 m ∙ s-1 (longitudinal sound 

velocity of PMMA) and D the diameter of the transducer.  
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Regarding transducer coupling, a simple system of a hollow cylinder with 

a restriction ring was designed to retain the transducer and a bTPUe pillow that 

exerts enough pressure to acquire a precise signal (Figure 73D). Figure 73E 

schematically represents the electronic BR assembly. Oscilloscope MSO6054A 

(Agilent, USA) was programmed to capture each signal between 30 µs to 50 µs; 

the such period was manually established the first time once a time of flight 

(TOF) of scaffold signals (approximately 35 µs) was shown. The caption interval 

was set to 5 minutes to save memory and to allow enough time for signal transfer 

Figure 73. Bioreactor (BR) design. (A) Final design (cell chamber and 
transducers coupled) renderization. (B) Render image of cell chamber BR and 
input and output (IO) cylinders. (C) IO channels render images. (D) The visual 

concept of the transducer with the coupling system. (E) (a) represents the 
Olympus preamplifier that was connected after the recording oscilloscope (b) 

and the receiver transducer (c); (d) the cell chamber and BR heart; e) 
transmitter transducer, which was directly connected to the wave generator 

(f); (g) Raspberry PI that is uncharged of received the signals from the 
Oscilloscope and to control the Arduino board; (h) Arduino Uno that regulates 

pump rotation speed and flow rate; (i) peristaltic pump that exerts the 
laminar fluid flow through the bioreactor; (j) the medium reservoir with a 

0.22 µm filter for O2 and CO2 exchange. 
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between the Oscilloscope and the Raspberry Pi (Raspberry Foundation, UK), and 

capture signals were the average of 200 measured signals with 8-bit resolution. 

In addition, to ensure good communication between Arduino UNO (Arduino Inc., 

Italy), the microcontroller that regulates the pump (programmed in C++), and the 

Raspberry Pi, which was then applied computer unit (Python), a parser library 

was applied (ParserLib by LuisLlamas). 

 Figure 74A and -B show the whole BR assembly and the electronic 

circuit regulating the peristaltic pump. All components shown in Figure 74A 

were sterilized with Biozidal ZF (WAK – Chemie Medical GmbH) and ethanol 

70%, followed by UV light ON inside the laminar hood. After, the BR was coupled 

and initialized at flows, not over 0.5 𝑚𝐿 ∙ 𝑚𝑖𝑛−1 to ensure no cell damage.  

Figure 74C to -E represent experimental parameters obtained directly 

from the BR. Figure 74C corresponds to two arbitrary US signals recorded in the 

Raspberry; the red one resembles a scaffold seeded with cells, whereas the black 

one is the blank control (i.e., functionalized scaffold without cells). The amplitude 

of the cell signal was almost double that blank signal; the rebounds closer to the 

primary signal (approx. 40-45 µs) were also more attenuated in the cell signal. 

Figure 74D represents the incident pressure exerted by the P-waves produced 

by the transmitter transducer; notice that although our wave generator had a 

limit output amplitude of 20 V, to verify linear response of exerted pressure 

concerning input excitation voltage, a curve from 0 to 50 V was computed.  

The obtained pressure was extracted through the manufacturer’s 

datasheet formula: 𝑃 = 0.35
𝑉𝑚

10
−

254
20

+6
 (Onda’s Hydrophone Calibration, with 𝑉𝑚 

the mean voltage), applying linear regression R2 = 0.99 with 𝑃 = 72.6 ∙ 𝑉𝑚 +

43.8. For experimentation procedures, it was selected an excitation voltage of 

𝑉𝑝𝑝 = 20 V, where an acoustic pressure of 1509 Pa was obtained in an immersion 

tank with abovementioned hydrophone. A weighing protocol was used to 

calculate the flow rate, where voltage variations from 5 V to 24 V (in steps of 0.5 
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V) were applied. The extracted results showed flow rates below 1 mL·min-1 if the 

power supply was lower than 12 V.  

Figure 74F-a to the -F-d showed a microfluidic model through scaffold 

fibers (represented as circles) with two different flows. The scaffold was 

represented as a matrix of circles, where each circle had a diameter of 200 µm, 

and they were separated between them by 600 µm cause of the printing layer 

pattern. Mesh element size was adapted to 100 µm caused is ½ of the fiber 

diameter. The cylindrical approximation of the fibers was demonstrated in the 

previous work1111. The cell medium density (ρ =1.009 g·cm-3) and dynamic 

viscosity (µ = 0.93 mPa·s) can be retrieved from prior literature1175. Reynolds 

number was calculated as 𝑅𝑒 =  
𝜌𝑢𝐷ℎ

𝜇
= 4.6 ≪ 2300, where u is the input flow 

speed (at 0.8 mL·min-1 u = 106.1 µm·s-1; at 0.5 mL·min-1 u = 66.31 µm·s-1) and 𝐷ℎ 

is the input diameter height, which was 4 mm. The obtained Re is less than 2300, 

which is regarded the upper limit for laminar flows, whereas turbulent flows 

develop when Re numbers exceeds 29001176,1177. 

According to model results, the flow rate obtained can be translated by 

weighing to actual flow speeds incident over cells: a) 0.5 𝑚𝐿 ∙ 𝑚𝑖𝑛−1corresponds 

to flows below 800 𝜇𝑚 ∙ 𝑠−1 and b) 0.8 𝑚𝐿 ∙ 𝑚𝑖𝑛−1 to flow speeds below 

1000 𝜇𝑚 ∙ 𝑠−1. Notice that although the flow speed is higher between fibers close 

to the fiber surface (i.e., cell location), the flow speed decreased lower half of the 

maximum value (Figure 74F). From the model, it can be extracted that 

maximum shear rates are 10 mPa at 0.5 𝑚𝐿 ∙ 𝑚𝑖𝑛−1 (b) and 16 mPa at 0.5 𝑚𝐿 ∙

𝑚𝑖𝑛−1 (d).  
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28.2. Acoustic Pressure Wave Propagation Model 

A complex and novel 2D model applying Multiphysics FEM (COMSOL 

Multiphysics®) was developed to understand the mechanical behavior of the BR 

US system. Figure 3 shows the representation of the model and the physics 

behind its comportment. Figure 75A represents the XY plane visualization of the 

whole geometry, where the modeled plane corresponds to a transversal section 

in the middle of the BR. This plane was selected in both models (P-wave 

propagation and fluidic dynamic model) because flow channels have no axial 

symmetry.  

To validate the present model, the BR was assembled in two different 

manners: without any scaffold (and filled with water) and with a solid disk of 

PLA (and filled with water). In previous literature, both density and speed sound 

have been obtained1178. PMMA speed sound was empirically calculated to 2630 

m·s-1. Figure 97 represents the level of correlation between the water (Figure 

97A and -C) model and the PLA (Figure 97B and -D) model. A signal correlation 

(comparing synthetical signals with experimental ones) higher than 80% was 

obtained in both cases.   

In summary, the signal originated in the transmitter transducer as a 

mechanical P-wave (Figure 75B shows mechanical displacement in the X 

direction, Y displacement was negligible); the total displacement goes from −25 ∙

10−5 𝜇𝑚 (3B. a) at 𝑡 =
𝑇0

2⁄  to 25 ∙ 10−5 𝜇𝑚 (3B. b) at 𝑡 = 𝑇0 . After that, the P-wave is 

propagated through the acoustic pressure module (Figure 75C), where 

Figure 74.  BR final arrangement and global parameters. (A) Photography of the final 
assembly of the BR inside a laminar hood. (B) Photography of the Arduino circuit that 
controls the peristaltic pump. (C) Output signals recorder by Raspberry PI. Red 
represents the functionalized scaffold with seeded cells, and in black, the same scaffold 
without cells. (D) Pressure amplitude of P-Wave vs. Voltage amplitude exciting 
transducer. (E) Results from flow rate calibration, Flow rate vs. Voltage amplitude of 
peristaltic pump. (F) A 2D fluid dynamic model in FEM to evaluate the incidence flow 
speed (a and c) over scaffold fibers and their corresponding shear stresses (b and d) 
depending on the flow rate. Two flow rates are represented 0.5 mL·min-1 and 0.8 
mL·min-1. 
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dependent variables were material densities and material sound speeds (𝜌 and 

𝑐𝑠 Respectively): 
1

𝜌𝑐2

𝜕2𝑝𝑡

𝜕𝑡2 + ∇ ∙ (−
1

𝜌
(∇𝑝𝑡 − 𝒒𝒅)) = 𝑄𝑚  , where 𝑄𝑚 is the Monopole 

Domain Source, 𝒒𝒅 is the dipole domain source, and 𝑝𝑡 = 𝑝 + 𝑝𝑏, where 𝑝𝑏 is the 

background pressure field. Notice that interior impedance, a boundary condition 

that simulates the reflection/transmission phenomena, depends on both 

parameters (𝜌 and 𝑐𝑠 respectively). Thus, the attenuation of the signal will 

depend on the density and sound speed of the scaffold domain. For the external 

boundaries that represent the walls of the BR −𝐧 ∙ (−
1

𝜌
(∇𝑝𝑡 − 𝒒𝒅)) = 0.  

 Figure 753C-a, which corresponds to 𝑇0
2⁄  , the P-wave is partially 

developed; in Figure 75C-b is fully developed and shows that the P-wave contact 

the scaffold domain at t = 15 µs (Figure 75C-c); at t =18 µs (Figure 75C-d) at the 

middle of the scaffold domain, implying that the primary wave travels through 

the scaffold domain in 6 µs approximately. Next, at 34 µs, the main wave reaches 

the receiver transducer (Figure 75C-e), and at t = 50 µs (last experimental time), 

there are only rebounds obtained from different boundary conditions (Figure 

75C-f). As done in the transmitter transducer, Figure 75D shows the 

displacement in the X direction of the mechanical P-wave over receiver 

transducer domains. The P-wave is fully developed at t = 35 µs, and rebound 

waves are transmitted at t = 40 µs. Finally, Figure 75E represents an US wave 

obtained by the proposed model as a floating potential of the receiver. 

A 2D model was chosen because it drastically reduces the computational 

time, the memory requirements, and the representation complexity. All previous 

parameters are essential to computing inverse problem studies where 

parametric sweeps are performed. Contrasting the previous model that 

describes the microfluidic flow, in this model, porosity has not been modeled due 

wavelength of the US P-wave through the scaffold domain is much higher than 

the pore size1179: 𝜆𝑆𝐷 = 
𝑐𝑆𝐷

𝑓0
⁄ , 𝑐𝑆𝐷 > 1480 𝑚 ∙ 𝑠−1, 𝑓0 = 1 𝑀𝐻𝑧; 𝑡ℎ𝑢𝑠, : 𝜆𝑆𝐷 > 1.48 
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mm and the 𝑃𝑆 < 400 𝜇𝑚 (SD: scaffold domain, PS: pore size, cSD means the 

sound speed of the scaffold domain, f0 = cutoff frequency). Mesh element size was 

selected through parameter sweep to verify model convergence (Figure 98); it 

was established that an element size below 400 µm was sufficient to acquire a 

stable signal. In Figure 98G to -J, no significant variance over amplitudes in mesh 

sizes below 400 µm can be appreciated. Rest of parameters 

(𝑖. 𝑒. 𝑐𝑃𝑀𝑀𝐴,  𝑐𝐻2𝑂 ,  𝜌𝑃𝑀𝑀𝐴, 𝜌𝐻2𝑂) were reconstructed through inverse problem.  

 

 

  

Figure 75. FEM model of P-wave propagation phenomena. (A) 2D representation of the 
different domains of the FEM model. (B) Thermal image of the “u” component of the 
displacement of the transmitter ultrasound transducer (i.e., X component) at t = 0.5 µs 
(a) and t = 1 µs (b). (C) P-wave propagation at different times: (a) t = 0.5 µs, (b) t = 1 µs, 
(c) t = 15 µs, (d) t = 18 µs, (e) t = 34 µs, and (f) t = 50 µs. (D) Thermal image of the “u” 
component (i.e., X component) of the displacement of the receiver ultrasound 
transducer at t = 35 µs (a) and t = 40 µs. (b). (E) The final electrical modeled signal was 
obtained from the FEM model. ↪ next page 
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28.3. Viability and chondrogenic characterization 

Alamar Blue reagent was used to detect metabolic activity in the PBA 

functionalized bTPUe scaffolds after seeding IPFP-MSCs. Different flow regimes 

and flow rates were performed (Figure 76A) to evaluate cell proliferation and 

viability. 

IPFP-MSCs were isolated and grown from OA patients until passages 3 to 

5. IPFPF-MSCs were identified using the standards recommended by the ISCT51 

(Figure 99). Following this, 106 cells·mL-1 were seeded over scaffolds and 

incubated for 4 h at 37ºC before receiving new media (DMEM Glutamax, 10% 

FBS, 1% P/S). Scaffolds with cells were cultivated for 1 week in a 6-well plate to 

ensure adequate cell-scaffold integration. After, scaffolds were introduced inside 

the BR for another week, while control cell-loaded scaffolds were maintained in 

the well plate that week. All conditions' metabolic activity was tracked on days 

1,3, and 7 of BR experimental time.  

Results indicated a different response in cellular metabolism as a 

function of flow rates (Figure 76A). Following literature recommendations530, a 

continuous flux of 0.5 mL·min-1 was probed with negative results. Next, a discrete 

(1 h of work separated by each 6 h) form of the previous flow rate was applied 

to reduce the exposure stress over cells; negative results were obtained with a 

dramatic reduction of cell metabolism at day 3. On the other hand, once the flow 

rate was increased to 0.8 mL·min-1, the metabolism increased similarly with 

respect control scaffolds. In fact, at day 7 in BR 0.8 mL·min-1, the metabolism 

continued its growth compared to the rest of the conditions, reaching almost 

double the rate of day 1. Consequently, the following experiments were 

performed with a flow rate of 0.8 mL·min-1.  
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Figure 76. (A) Alamar Blue assay with different flow rates and control. Values were 
normalized for day 1. (B) DNA quantification at day 7 of experimentation of control and 
BR 0.8 mL·min-1. (C) General collagen quantification with Sirius Red assay of the control 
and BR samples (0.8 mL·min-1). (D) Collagen type II quantification using Elisa kit for 
both control and BR (0.8 mL·min-1) samples. (E) SEM images at day 7 of both scaffolds 
and scale bars are expressed in microns. (* means p-value < 0.001; cont. = continuous 
perfusion flow, disct. = discrete perfusion flow). 
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Additionally, DNA quantification for BR scaffolds and control one was 

carried out to see if changes in metabolic activity were associated with 

differences in cell density. The results presented in Figure 76B show a clear 

difference between BR samples and control ones, with a significant increase in 

BR scaffolds (p < 0.001) (see a standard curve in Figure 100A). Concerning ECM 

synthesis, both general collagen quantification based on Sirius Red dye (see the 

standard curve in Figure 100B) and type II collagen quantification were exerted. 

Figure 76C shows similar results to DNA content and a much higher collagen 

presence in BR samples (p < 0.001). On the other hand, a much higher type II 

collagen concentration (see the standard curve in Figure 100C) in BR samples 

in comparison to control one (p-value < 0.001) was obtained (Figure 76D).  

SEM and immunofluorescence techniques were applied to verify the 

increased amount of ECM in 3D scaffolds included in BR. SEM results showed 

that scaffold fibers in both samples were covered by cells (Figure 76E). 

Nonetheless, in the control scaffold, there were empty spaces between cells. 

Something different happened on BR samples where scaffold fibers were entirely 

covered by cells and ECM. Additionally, IPFP-MSC shape differed between 

control and BR samples; BR ones displayed a more circular cellular shape. 

Nevertheless, cell viability and adequate cell-biomaterial interaction were 

shown in both cases.  

In addition to SEM images, AFM was applied to characterize the rugosity 

of the surface of the scaffold fibers between cells. In Figure 4F it can be observed 

enhanced contrast images of a region of interest (ROI) of both conditions. Results 

express an observable increase in rugosity in quantity and size of grain in BR 

scaffolds than control samples. Even more, the presence of some fibrils 

(collagen) is manifested in BR cases. The power spectral density (PSD) profile of 

the average of three samples was computed in Figure 76G to quantify the degree 

of exchange in rugosity. Curves show a higher signal power in BR samples than 

in control ones, implying the presence of higher structures attached to the 
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scaffold surface, as observed previously in Figure 76F. Finally, typical roughness 

parameters as the root mean square gradient (Sqd) and the developed interfacial 

ratio (Sdr) were also computed, founding a statistical difference (p< 0.001) 

between control samples and BR condition, implying that the rugosity of the 

scaffold increased with the exerted perfusion flow. 

Figure 77A and -B correspond to images without primary antibody 

(negative) to verify if the secondary antibody presented no corresponding 

interactions for immunofluorescence images. Alexa Deep Red was selected as the 

secondary antibody to avoid scaffold autofluorescence. Thus, each ECM protein 

was represented separately (Figure 76C and -D). Results clearly expressed the 

abundant presence of all the common AC ECM proteins and high cell viability on 

BR samples: type I collagen, type II collagen, and aggrecan. BR scaffolds 

presented much higher expression of type II collagen and aggrecan, with a few 

amounts of type I collagen. In contrast, control scaffolds presented much lower 

cellular content, no aggrecan proteins, and a much higher content of type I 

collagen. Conclusively, from quantification assays, SEM, and 

immunofluorescence, it is demonstrated the active chondrogenic induction 

potential of the BR over IPFP-MSCs. 

  

Figure 77. Immunofluorescence merges images without primary antibody (i.e., 
negative) of the control sample (A) and BR sample (B). (C) Control and BR samples with 
primary type II collagen antibody + 2nd Ab and primary aggrecan antibody + 2nd Ab. Cell 
Tracker™ green is represented in green. Secondary Ab (Alexa 647 nm) is shown in red. 
In blue, the DAPI marker is represented. ↪ next page 
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28.4. Biomechanical correlation analysis 

Since US are a valuable non-invasive characterization method, in this 

research, LIPUS (1 MHz) were employed to study the mechanical evolution of the 

scaffold for one week inside the BR. Free-cells (blank) scaffolds were also 

evaluated with US and replying to the same conditions as ex vivo 

experimentation to neglect any background information. Figure 78A and -B 

show arbitrary signals for cell-seeded and blank scaffolds of each experimental 

day. In both cases, a decrease in the Vp was observed after 24 hours of treatment, 

accomplished with a signal delay. The presence of this phenomenon in both 

conditions implies a no-cell-dependent behavior. On the other hand, it can be 

observed how Vp increased from day 2 to day 7 in cell-loaded scaffolds (from 1.3 

V to 2.1 V), whereas, in blank scaffolds, no substantial variance was revealed 

(0.04 V to 0.043 V). 

Figure 78C represents the evolution of signal amplitudes over time; in 

blank conditions, no significant difference was observed during one week of 

experimentation. Although a decrease in amplitude from day 1 to day 3 was 

observed in both cases, only in cell-loaded scaffolds was an appreciable increase 

in amplitude. Another important consideration, which can also be observed in 

Figure 78A, -B, and -C, is the significant difference in amplitude value on all days 

(p < 0.001). The same difference was evident for the computed ToF signal 

(Figure 78D), where blank scaffold signals were slightly slower than cell-loaded 

ones (p < 0.001). In summary, results observed in Figure 78C and -D imply that 

received US signals expressed considerable differences when cells were seeded 

in the scaffolds.  
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Raw recorded data does not comprehensively predict the ECM synthesis 

rate. As explained, computational models were developed to describe the fluid 

dynamics and the P-wave propagation phenomena. Thanks to such models, it can 

be estimated how the fluid could affect the cells if scaffold fibers fatten over time. 

The idea behind the previous argument is expressed in Figure 78E, where three 

different fiber diameters are proposed: an initial fiber diameter of 200 µm, an 

intermediate of 250 µm, and a final estimated diameter of 300 µm 

(approximately the one obtained from the SEM images). It is not uncommon to 

confirm that shear stresses (𝜏 = 𝜇
𝜕𝑢

𝜕𝑦
, with 𝜇 the dynamic fluid viscosity) will 

increase directly proportional to the fiber diameter; notably, there is a range 

from an initial 4-7 mPa to a final 8-10 mPa. But more important is the presence 

of high shear stresses in the orthogonal direction of fluid flow once the diameter 

fiber overpasses the diameter of 250 µm.  

Figure 78F shows the BR output flow speed, which is very similar to 

Figure 6E in that the boundary probe recorded data as instant flow speed (at the 

axial origin point) and output flow velocity magnitude. Previous magnitudes 

were compared to an estimated increase in scaffold fiber diameters (FD). Both 

magnitudes are shown to be connected and exhibit distinct patterns. The output 

velocity decreased linearly for FD 360 µm, although the instantaneous speed 

increased from 200 to 320 µm. For FD > 320 µm, the output flow speed began to 

decline slightly, but at FD = 360 µm, there was a sharp drop followed by a 

tendency change. This observation implies that when the FD exceeds 340 µm, the 

Figure 78. (A) P-wave arbitrary signals obtained from the cell content scaffolds during 
BR experimentation. (B) P-wave arbitrary signals obtained from the blank scaffolds (no 
cells) during BR experimentation. (C) Amplitude evolution curve of average amplitude 
signals. (D) Time of flight (ToF) curves. (E) Thermal 2D images of fluid shear stress 
(CFD) model using different scaffold fiber diameters. (F) Output Flow speed from the 
BR vs. the scaffold fiber diameter (FD) in black; and the instant velocity of the middle 
point (X = 0, Y = 0) inside the scaffold domain. (G) Density evolution along time of BR 
cell content in scaffold samples and blank scaffolds obtained by cross-correlation 
empirical signals with synthetical ones. (H) Speed of sound of scaffold domain (cSD) 
(scaffold + water) obtained by cross-correlation. (*: P-value < 0.001). 
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permeability of the scaffold decreases and the fluid channel may not cross the 

scaffold but rather passes around the scaffold walls. 

P-wave propagation models must consider the mechanical behavior of 

three different materials (PMMA, water, and bTPUe). Thus, the final electrical 

signal representing the ultrasonic pulse envelops all such parameters making it 

a very complex task to extract information from that. Again, the computer model 

helped focus on the reconstructive parameters that had more variability over 

time. Thereby, for P-wave propagation it can be highlighted the speed of the 

longitudinal wave: 𝑐𝑝 = √
𝐸(1−𝜈)

𝜌(1+𝜈)(1−2𝜈)
 →  𝑐𝑝 = √

𝐾

𝜌
 , E = Young’s Modulus, and 

𝐾 = 
𝐸(1−𝜈)

(1+𝜈)(1−2𝜈)
. The previous equation estimates that the final signal obtained 

by receiver transducers will mostly depend on the scaffold’s sound speed and 

density. 

With that in mind, a set of signals varying 𝑐𝑆𝐷 (sound speed of Scaffold 

Domain) from 1300 to 1600 m·s-1 and 𝜌𝑆𝐷 (density of Scaffold Domain) from 

1000 to 1400 kg·m-3 were synthetically created. After that, empirical signals 

obtained from the BR ex vivo experiments were compared with such a set of 

signals. After each empirical signal was cross-correlated, (𝑓 ⋆ 𝑔)(𝑥) ≝  ∑ 𝑓𝑗
∗𝑔𝑖+𝑗𝑗 , 

with each synthetical signal generated with the computational model. Every 

synthetical signal was tagged with its corresponding 𝜌𝑆𝐷 and 𝑐𝑆𝐷 . Then, it was 

estimated that the maximum cross-correlation (and always > 80%) was the most 

acceptable density and sound speed value.  

In Figure 78G and -H such extracted parameters (𝑐𝑆𝐷 and 𝜌𝑆𝐷) are 

shown. Figure 78G indicates two pieces of evidence: the first is that no 

significant density variation was observed in blank scaffolds; the second is an 

increase in the scaffold domain densities over time in cells-seeded scaffolds. The 

non-average curve was computed in cells-seeded scaffolds to show the capacity 

to record different growth patterns. On the other hand, Figure 6H shows the 

sound speeds of both cells-seeded scaffolds and blank ones. Average values are 
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represented due to much lesser variation (SD < 1%) of this parameter than 

density. The figure shows again a significant difference between blank scaffolds 

and cell content ones (p < 0.001), being higher the 𝑐𝑆𝐷 of cells-loaded scaffolds. 

It is essential to considerate that: 𝑐𝑇𝑃𝑈 = 1740 m · s−1 and 𝑐𝐻2𝑂 = 1480 m ·

s−1from literature are pretty close to the obtained by our experimentation and 

model1180. Moreover, the porous ratio of printed scaffolds was 0.3, seeing 𝑐𝑆𝐷 =

 0.3 ∙ 𝑐𝑇𝑃𝑈 + 0.7 ∙ 𝑐𝐻2𝑂 = 1558 𝑚 · s−1 . From this can be extracted that the 

results obtained from the model are highly accurate and that a higher sound 

speed implies less water content in the scaffold domain. 
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29.Discussions from Chapter III 
OA is a gradual and degenerative condition based on the loss of 

functionality in cartilage tissue, which has a limited ability for regeneration. The 

great potential of RM products will therefore be advantageous to OA's long-term 

treatment1145. For RM development, the applied biomaterial properties are 

significant. For instance, the stiffness of 3D bioengineered scaffolds is essential 

for forming AC tissue because it is subjected to cyclic mechanical pressures from 

bodily activity1108. So, prior characteristics of scaffolds are significantly 

influenced by scaffold fiber geometry and pore size1048,1109,1110. Every joint in the 

musculoskeletal system relies on connective tissues (such as cartilage)1181; AC 

experiences baseline amounts of mechanical strain within their constituent 

fibers due to growth and swelling1182. These strains provide local cells with 

biophysical signals, ultimately affecting cellular phenotype and function1183. 

Here, we drew inspiration from the cartilage ECM, their physical stimuli, and 3D 

TE principles to develop an alternative to preceding therapeutic strategies. 

 Previous works have studied the benefits of perfusion flows over MSCs and 

chondrocytes1173,1184–1186. But, even nowadays, there is no clear definition of 

standard conditions for such mechanical cues. Despite this, it is interesting to 

remark that those studies relate perfusion flows with the primary cilia 

stimulation1187 and the IFT of chondrocytes, which involves the TRPV4 

channels914. This transport regulates the gene expression of type II and type IV 

collagen, G proteins,  Ihh, Ca2+ channels, connexins, purine, cAMP, and the PKA 

pathway among others954,1188.  

Most of the previous literature only expresses the quantities of flow 

rates530,1173; in contrast, this article exposes this magnitude and the exerted shear 

stresses thanks to FEM results. In addition, it was modeled by two-phase fluid 

dynamics in the BR filing, where no significant turbulences appeared, and the 

exerted shear stresses were very similar to the last ones. Moreover, those planar 
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representations also expose the regions of higher stresses, implying that not all 

scaffolds will suffer the same regime of loads. A small region close to the corners 

of the IO channels has the highest tensions, whereas the rest of the scaffold 

suffers from minor stimulation. As a result, homogeneous (i.e., isotropic) 

stimulation over the whole scaffold in BR experimentation cannot be assumed, 

as some previous literature claims530,1184.  

Further, FEM analysis also enhances global comprehension, causing its 

possibility to simulate estimated evolutions of our study case. A hypothesis of FD 

increases over time was assumed and it was evident that shear stresses 

increased with the diameter of scaffold fibers (from 6 mPa to 10 mPa). Previous 

parameters are lower than those applied in the previous research530,1185,1189,1190, 

but it is essential to control precisely the evolution of those shear stresses 

because it can cause possible cell damage1173,1185,1191,1192. On the other hand, if 

insufficient perfusion flow is exerted, poor nutrient transport will likely result in 

cell death, as possibly happened with flow rates of 0.5 mL·min-1. Extrapolating 

these observations and comparing them with the simulation obtained our work, 

it can be concluded that as the FD increases, the flow through the scaffold 

decreases and, consequently, the nutritional intake decreases. This 

consideration concurs with results obtained by the cross-correlation model of 

the experimental P-waves, where a limit of ρ was observed.  

Concerning the biological assays, where the metabolism of scaffolds 

inside the BR was analyzed together with their chondrogenic potential to 

generate cartilage-like structures, it can be extracted the following statements. 

Once the input flow rate was optimized, that is, the final continuous 0.8 mL·min-

1, it was observed how the cell metabolism increased earlier than in control 

scaffolds, reaching almost 200 % of growth. Meanwhile, in the control scaffold, 

cell metabolism was reduced from day 3 to day 5. Cell metabolism is highly 

determined by nutrient transport, and perfusion flows enhance metabolite 

intake, promoting that increase in metabolism 1193,1194. Our results show that the 
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cell metabolism increased, and the cell content was significantly higher, 

indicating that cells were expanded under the BR stimulation protocol. The 

available collagen quantification assay and the obtained type II collagen values 

prove the chondrogenic potential of the scaffold embedded inside the BR. In 

previous studies1195, we already demonstrated the chondrogenic potential of 

PBA functionalized scaffold at 21 days, and comparing the current obtained 

values at day 7 of experimentation inside the BR; it is observed that in less 

manner, there is the presence of collagens and increased production of type II 

collagen. These results indicate that our BR drastically enhances the 

chondrogenic potential of cell-loaded scaffolds.  

Image techniques (SEM and immunofluorescence) corroborated the 

presence of cells attached to the scaffold fibers in both control and BR samples. 

In control samples, how cells preserved their elongated and planar MSC 

morphology could be distinguished, and some ECM surrounding cells could also 

be observed. In contrast, the MSC morphology was lost in BR samples, presenting 

a rounder shape embedded in a matrix with some cilium952,953,959 typical 

chondrocyte-like morphology1142. Besides, the ECM in the BR samples was 

considerably higher than in the control samples, and the scaffold filaments seem 

to be wholly covered by such a matrix. Previous results obtained by SEM 

experiments were confirmed by AFM analyses, where a higher rugosity was 

obtained in the BR samples, and the presence of similar AC ECM1196 was found 

together with thicker fibers, which are a marker of healthy AC1197. 

Finally, BR samples' immunofluorescence was performed to detect 

specific chondrogenic ECM proteins. Both collagen type I, collagen type II, and 

aggrecan were observed in BR and control samples. For controls, much lower 

amounts were observed for collagen type II and aggrecan, and an increased 

expression of type I collagen was detected. In contrast, BR samples showed 

higher levels of viable cells attached to the fibers, a lower expression of type I 

collagen, and higher amounts of both type II collagen and aggrecan, implying 
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chondrogenesis1198. Even more, immunofluorescence images displayed how 

these proteins were distributed between cells along the BR scaffold fibers, 

whereas control samples concentrated on the interlacing of fibers. In previous 

literature, MSCs express type I collagen and hyaluronan1199, an early stage of 

precartilaginous condensation; the digestion of type I collagen matrix; and the 

expression of N-cadherin, tenascin-C, and other adhesion proteins regulated by 

TFG-β, Wnt/β-catenin and Sox9 signaling pathways713,1200–1203. Finally, 

precartilaginous ECM is converted into AC ECM rich in collagen type II and 

aggrecans1204,1205. 

Moreover, the expression of Sox9 and Col2a11195 is correlated in 

chondrogenesis with collagen type II synthesis1198. Here, there was quantified 

and observed after BR stimulation the increased expression levels of collagen 

type II and the overexpression of such genes. In conclusion, our results indicate 

that PBA functionalized scaffolds embedded inside the BR enhance cell 

proliferation and chondrogenesis, reducing the differentiation times compared 

to previous research and without the necessity of an additional chondrogenic 

medium. 

Besides, this work was centered on considering the chondrogenic effect 

that fluid low-shear stress can induce in IPFP-MSCs and on developing a compact 

system that analyzes both growth and differentiation in real-time. The final goal 

was to obtain an autonomous system that could predict and quantify the viability 

of the cartilage-like graft implant. In the past, monitoring BRs using different 

techniques based on light have been applied for directly analyzing the cell 

behavior1171,1206; however, they only provided a qualitative measurement 

retrieved from several sensors that would require external verification but did 

not infer a quantitative result that would establish the tissue growth over time. 

BR sensor application types are often categorized as in-line, at-line, or off-line. 

In-line or in-situ sensors are directly connected to the BR (invasive), whereas at-

line systems rely on a withdrawn and evaluated outside sample. On-line 
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measurement of in-line or at-line sensors occurs when data is continuously 

captured and the sensor signal response time is short compared to the process 

dynamics. Every other measurement is regarded as off-line, implying a temporal 

lag from biological activities1207. Here, we focused on on-line systems (at-line 

sensors) due to their lack of contamination. Among the themes that can be found 

are: optical chemo-sensors1208,1209, spectroscopic sensors1210,1211, impedance 

spectroscopy sensors1212,1213, ultrasonic sensors566,1214, and free-floating wireless 

sensors1215.  

LIPUS has been applied for quantifying the densitometry of scaffold 

samples inside BR over time in rheumatological studies1216, but this is the first 

time that an ex vivo system has been built to quantify scaffold chondrogenesis in 

real-time. In our BR, the application of US transducers for exerting the excitatory 

P-wave and recording the final emitted pulsed together with a FEM model that 

predicts possible physical events was done. In our system, the scaffold domain 

(SD) was considered a homogeneous domain formed by the mixture of water and 

bTPUe (with attached cells and ECM). This approximation is based on the link 

between the size of the FEM element to be examined and the excitation 

wavelength, being its ratio crucial for deriving information from the received 

wave in the field of non-destructive evaluation utilizing ultrasonic waves. When 

the wavelength is more significant than the element's size to be examined, data 

from the medium, which is thought to be homogeneous, is obtained1179. 

However, when the wavelength is smaller than the element's size to be 

characterized, mechanical data from the element in question is recognized in the 

received wave. The scaffold has been treated as a homogenous medium without 

modeling it because the excitation wavelength (~1.5 mm) is larger than the size 

of the pores (400 µm) or the fiber diameter (200 µm). This consideration has 

been demonstrated by the findings obtained in the BR. In this instance, the 

interaction of the wave with the assumption of the scaffold as a homogenous 

medium result in the validation of the obtained wave information. Thus, based 



CHAPTER III CARTILAGE-LIKE TISSUE BY A LOW SHEAR STRESSES-BASED BIOREACTOR  

273 
 

on the mechanical characteristics of both the scaffold's bioprinting material and 

its printing percentage, as well as the mechanical properties rebuilt with the 

culture model, the obtained velocity of the wave is estimated to correspond to 

the empirically recorded ToF. 

 Results extracted from the BR assays showed that the amplitude of the cells-

loaded scaffolds was higher than in blank scaffolds, implying that the stiffness of 

the seeded scaffolds was higher1215. A shared characteristic between cells-loaded 

scaffold samples and blank samples was the decrease of amplitude from day 1 to 

day 3, indicating an external cause of such phenomena and probably due to 

plastic deformation of the materials exerting the contact tension of the 

transducers. On the other hand, the ToF value is a non-adequate parameter for 

tissue expansion prediction because its variations are much lower than the rates 

of cell proliferation and ECM synthesis. More interesting is the absence of 

considerable near rebounds in study samples compared with blank scaffolds, 

implying smaller pore sizes. Our empirical signals differentiate between 

measuring the scaffold with cells attached to their fiber surface and no cells 

attached (blank). Thus, applying a FEM to induce big data analysis tools as signal 

cross-correlation is an accurate tool for expanding the information of extracted 

results and, in this case, transforming a qualitative approximation into a 

quantitative one. 

Moreover, since an apparent increase in the scaffold domain density was 

obtained over time into the BR, and this was not due to any degradation in bTPUe 

after 14 days1122, this result can be only explained by ECM synthesis and cellular 

proliferation. As a consequence, it is probed that our system can determine tissue 

development in real-time. In addition, cellular scaffolds' noticeable sound speed 

increase indicates that the K component of the speed sound equation increased 

higher than the density increase, implying a higher Elastic modulus (E) or lower 

viscosities (v). Perhaps the most exciting result is the asymptotic value of 1300 

kg·m-3 obtained by cells-loaded scaffolds, which could be explained as causing a 



DOCTORAL THESIS DANIEL MARTÍNEZ MORENO 

274 
 

decrease in nutrient support associated with higher shear stresses. But 

curiously, the obtained value is similar to literature results for collagen (1.3 g·cm-

3)1215, suggesting that the final reached density is mainly composed of collagen. 

29.1. Conclusions 

In this work, we have developed a unique BR that, when compared to 

static cultures, improves chondrogenesis through fluid-low shear stresses. Our 

BR boosts the growth of IPFP-MSCs seeded in bTPUe scaffolds functionalized 

with PBA and induces increased ECM production with a high type II collagen 

content. SEM and confocal imaging prove scaffolds stimulated by the BR 

increased cell presence and AC ECM. The results not only agree with our earlier 

research1195, but they also suggest a significant improvement over it. To confirm 

that our AC grafts display a similar conformation to naive AC tissue, long-term 

evaluation, in vivo experiments, and histological assays would be advised in 

further research. Using FEM to analyze the current fluid dynamics reveals the 

need to regulate the initial flow rate and modify it over time to accommodate 

tissue growth. 

Additionally, a system that can independently track the rise in tissue graft 

density over time and determines that graft speed of sound has been developed 

using inverse problem characterization through FEM. As a result of the fact that 

both metrics are closely associated with an increase in material stiffness and 

collagen content, it can be concluded that our method can monitor tissue growth 

over time. In summary, we have developed a BR for the first time to induce 

chondrogenesis in cells-loaded scaffolds and measure tissue growth in real time. 

Although further studies are necessary, our results suggest the great potential of 

our BR as a medical device in AC bioengineered therapeutic strategies.  
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“The most radical revolutionary will 
become a conservative the day after the 
revolution.” 

“El revolucionario más radical se 
convertirá en conservador al día 
siguiente de la revolución.” 

Hannah Arendt 
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30. Final discussions 

30.1. Overarching concerns 

As predicted throughout this work, OA is an attractive target for TE due 

to its pathological training that is both persistent and irreversible1145. A basic 

PUBMED search for "osteoarthritis" yields more than 100,000 papers18, 

including over 80,000 from the recent two decades18. To put it into context, 

"cancer" has about 3 million publications1217, while "cardiovascular disease" has 

over 1.5 million (in the last 20 years)1218. OA appears to be much less relevant; 

however, when compared to specific diseases such as "breast cancer" (> 300,000 

results)1219 or "diabetes" (> 650,000 results)1220, the attention gap is much 

reduced. It is also worth noting the findings for RM, 94,297, and TE, 

174,8221221,1222. These findings have two immediate consequences. The first is 

that OA appears to be significantly relevant for RM and TE. The second is 

dependent on the high intricacy of innovation. 

This work has focused on biomechanics to impose innovation in the 

experimental process. This fact is pretty exposed in the different chapters; the 

first two were oriented toward scaffold structure and biomechanics, while the 

third chapter focused on tissue biomechanics. Mechanics are complex due to 

their highly required abstraction capacity and mathematical background. 

Nevertheless, biomechanics is even more difficult because we do not know 

precisely physical cell interactions yet1223. Moreover, to make matters worse, we 

do not have sufficiently developed technology to measure mechanical responses 

at the cellular level. A powerful image that exposes this gap in humankind's 

knowledge is cell mechanical sensitivity. In fact, cells sense pressures lesser than 

1 mN1224, where simultaneously, they can resist loads of more than 1 kN1225. No 

sensor made by humankind can be so sensitive and robust simultaneously. 

Through the introduction, it was described how biomechanics regulates 

chondrogenesis. It is well known that MSCs produce TGF-β1 in response to the 
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interaction of shear and dynamic1226,1227. Additionally, previous research probed 

that MSCs secrete stromal-derived factor-1 (SDF-1) in response to low levels of 

shear stress, resulting in enhanced MSC migration in vitro1226. Also, the 

mechanical strain has boosted MSC angiogenic capacity by inducing VEGF 

production1226. Mechanical loading increased the secretion of factors such as 

MMP-2 and essential fibroblast growth factor (bFGF) but did not influence VEGF 

production during the subsequent loading1228. It is possible to infer that a large 

body of data illustrates how mechanical stimuli impact MSC gene expression and 

modify chondrogenesis; nevertheless, all prior studies have been based on 

results acquired. 

Science should not depend on the results acquired but on what can be 

done with those results. It is mandatory to understand that "data" and 

"information" are not the same1223. We could let the message of this work in 

something so simple as "biomechanical stimuli induce chondrogenesis". 

However, this oversimplification will not provide information on the next steps 

because there will be questions without answers. What is the limit in 

biomechanics to induce chondrogenesis, and where does osteogenesis begin? 

Why do some loads kill cells and others induce tissue regeneration? Why can 

tissue development be acquired without mechanical stimuli? Is biomechanics an 

additional sophisticated tool to conventional RM methodologies? Or, in contrast, 

is it a mandatory step? Nevertheless, tissues do not have external 

pharmacological molecules in standard physiological conditions. 

30.2. The role of microstructure 

Mass transfer restrictions significantly impede the therapeutic use of RM 

implants1229–1231. In general, cells must be within 100-200 µm of a blood 

vasculature to acquire adequate oxygen and nutrients and maintain optimal 

activity1232. As previously mentioned, Darcy's law explains how porosity affects 

diffusion; and nutrient transport271. For reviewing concepts, porosity is the void 

space ratio over material-filled one1233. Therefore, previous literature analyzes 
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how porosity could affect cell behavior, e.g., cell migration and orientation1234,1235 

(Figure 79). These investigations show how lower porosities cause higher cell 

aggregations, whereas they exhibited reduced proliferation1236. However, 

increasing the PS is not easy; large pores may risk the mechanical stability of the 

polymer network due to the excessive void1237,1238. This problem has appeared in 

our results, where the mechanical strength of FD over 2 mm resulted in less 

stable grafts. 

Concerning studies that regarded different PSs, it is common to find that 

each study focused on single materials. For instance, angiogenesis analyses were 

done using other hydrogels (e.g., HA-methacrylate, PEG, or GelMA), and results 

exposed that PS differed a lot between materials with a global range between 10 

to 250 µm1239–1241. In contrast, chondrogenesis—the topic of study—has 

demonstrated a completely different degree of PS (250-500 μm)1242. 

Furthermore, as discussed before, the PS obtained in our experimentation 

fulfilled the conditioning of approximately 380 μm.  

Further, osteogenesis is a highly related process in CTE, and 

understanding which kind of microstructure induces it is relevant to tailor graft 

properties. PSCs developed into osteoblasts in bone morphogenetic protein-2 

Figure 79. Word cloud of the role of microstructure. 
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(BMP-2)-containing hydrogels with pore sizes ranging from 100 to 600 µm1243. 

In contrast, HBMSCs developed into osteoblasts using 92% porosity silk fibroin 

scaffolds with pore sizes around 900 µm1244. Interestingly, chondrogenesis was 

seen in PGA scaffolds with a 97% porosity and fiber thickness of ~15 µm1245.  

In light of the external investigations studied, it seems relevant to 

establish the lack of consensus among them on what would be most appropriate 

for tissue growth1239–1245. It appears that more than the size of the pore, what is 

relevant is the manufacture of the scaffold. However, all of them conclude that 

there is a direct relationship between porosity and cellular response. What is not 

so obvious is to establish what this relationship is. We analyzed two different 

materials using the same manufacturing method to find such a relation. It was 

surprising to discover how we did not find a direct relationship between PS and 

cell adhesion, nor did we notice differences in proliferation. Nevertheless, we 

found that angles produced by the cross-section of fibers were more relevant 

than PS. 

On the other hand, comparing the results from Chapter II with Chapter I, 

it can be extracted, at least in large PS, that cell attachment is more relevant 

depending on the scaffold topography than the fiber distance. Previously, it was 

studied how cell adhesion, contact guidance, migration, and general gene 

regulation were affected by topography1246–1250. Further, fiber diameter will 

profoundly affect the porosity and PS, which result in influence cell morphology 

and proliferation1251–1253.  

How substrate affects cell adhesion has been studied so far; from the 

physical point of view is a multivariable problem where different aspects, like 

hydrophobicity, participate1254. Again, proposing that a higher hydrophilic 

material will perform better cell-biomaterial interactions is common sense. 

However, that is not necessarily the truth; a significantly stiff material, although 

hydrophilic, could not present an adequate cell expansion medium. In our work, 

we have demonstrated how seeding protocols are relevant at the end; cells 
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behave as a liquid in this step of graft synthesis. Another relevant criterion that 

most articles do not take into account is tortuosity1255. This phenomenon will 

affect nutrient transport dramatically under dynamic seeding. Therefore, 

porosity studies regarding conditions, tortuosity, and dynamic feeding could 

highlight deeper relations between porous and cell behavior.  

In this study, fiber distributions with higher tortuosities present a higher 

number of zones that allows liquid retention (thru surface tensions) and, 

consequently, higher cellular concentrations. At the same time, only adapting 

stiffness and microstructures was not enough to acquire optimum cell-

biomaterial interactions. That was the decisive reason for proposing the two 

functionalization methods adopted in Chapter II. The efficiency of this 

methodology in increasing hydrophilicity on polymer materials has been 

discussed before1256. Again, our results showed a dramatic difference in cell 

adhesion and proliferation applying these procedures.  

30.3. Tissues as dynamic systems 

Heraclitus said: "No man ever steps in the same river twice, for it is not 

the same river, and he is not the same man1257." Cells and growing organisms are 

also susceptible to changes. Cytoplasmic fluxes, mainly, are involved in 

asymmetric cell division and occur during amoeba migration1258,1259. Previously 

it has been demonstrated how rotational cytoplasmic streaming is mediated by 

Figure 80. Word cloud of tissues as dynamic systems. 
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myosin-coated organelles interacting with an organized actin cortex on the inner 

wall of plant cells1260. Furthermore, the hydrodynamic description of active gels 

demonstrates that the cytoskeleton is susceptible to spontaneous flows1261,1262 

(Figure 80). 

Regarding the previous assumption, scientists could conclude that no 

external stimuli are required because cells are in constant motion. Nevertheless, 

using traditional 2D cultures already implies a biomechanical interaction based 

on cell-material responses. Culture flasks are commonly made of polystyrene 

because they are cheap and highly resistant. In addition, polystyrene's Young 

modulus varies between 3000-3600 MPa1263, whereas human cells offer one 

below 2 kPa1264. This vast difference in magnitude order negatively affects the 

cells. As explained several times in this work, it is naïve to reduce cellular 

behavior to just one parameter. Thus, the real question should be why scientists 

still use polystyrene for cell culturing instead of asking for the necessity of 

external physical stimuli.  

Biomechanics is all around us; it describes us from conception to our last 

breath. It is present when a newborn's first cry reacts to air entering their new 

lungs1265. It is also present when a patient requires treatment for a lesion1266. 

Biomechanics is also heavily implicated in cancer development1267,1268. The first 

time a body manifests itself in a system, it is exposed to the stimuli that 

characterize that system1269. It is absurd to question whether external 

mechanical stimulation is reasonable or necessary. However, we must first 

comprehend how they affect us, how we may engage with them, and how we can 

adapt to them. 

This work has exposed the diverse ways of mechanical stimuli for both 

chondrocytes and MSCs to induce AC maturation. Even some of these apports 

have presented a high concordance with the obtained results in Chapter III. For 

instance, Miyanishi et al. discussed how HP promoted chondrogenesis in both 

conditions, using TFG-β3 and without it1270. Another relevant example is the 
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results obtained by Schätti et al., where applying compression and also shear 

stresses induce chondrogenesis, again without TFG-β31271. Nevertheless, both 

used other chondrogenic medium factors like FGF, ascorbic acid,  or ITS1272–1274. 

Additionally, Schätti et al. did a precondition of MSCs to induce 

chondrogenesis. Nonetheless, they did not obtain a substantial increase in using 

mechanical stimuli to employ a chondrogenic media. Shear stresses created by 

our BR have rapidly increased ECM production and AC indicators without any 

chondrogenic medium factor. The chondrogenic response of our graft was 

already demonstrated in Chapter II. Therefore, BR's chondrogenic capacity 

results from a process that began with the microstructure customization of CTE 

grafts and ended with the BR. 

TERM's ultimate goal is to discover the chemicals and structures that 

mediate this cascade of multiscale activities in somatic organs during 

mechanotransduction. In Chapter III, a physical property-based monitoring 

approach was created and compared with traditional biochemical markers, such 

as immunofluorescence. The findings could be construed as a novel 

incorporation of a conventional imaging technique (echographies) in an ex vivo 

system. Looking deeper, however, the potential for discovering new 

physiological markers is more extensive due to this mechanical research. 

30.4. Future perspectives 

To face the new challenges ahead of us after this project, we must first 

analyze the repercussions of our research on the different fronts to be addressed. 

We can divide these fronts into technical, biological, ethical, and clinical 

applications. 

30.4.1. Technical implications 

Although, as with the first approach, technology may appear to be the 

most restricting element. The fundamental restriction in TERM research is cell 



DOCTORAL THESIS DANIEL MARTÍNEZ MORENO 

284 
 

expansion, which was also the most significant in our findings. Obtaining the 

required cell concentrations for these tests was difficult and time-consuming. 

The research community has tried to solve this problematic applying down-

scaling processes during the last decade. This change in the way of studying is 

reflected in the published articles. Again, using PUBMED, the results using 

"biomems"1275 are more than the double applying "bioreactor AND tissue 

engineering"1276. In the case of the present work, downscaling will reduce 

procedure times for analyses and open the applicability of other biomedical 

imaging techniques, such as luminescence and fluorescence. 

Concerning electronics, our prototype, based on Raspberry Pi and 

Arduino Uno, does not fulfill the current regulations (in Spain, based on Royal 

Decree 908/1978)1277. Medical electrical (ME) equipment and systems must be 

designed and constructed under the general requirements of DIN EN 60601-

11278. One of the main requirements imposed in the previous order is the 

protective earth (PE) connection. Therefore, our prototype does not comply with 

present regulations, although high-class insulations were not required because 

they would not be directly connected to the patient. Consequently, the electronic 

manufacture must be modified under these concerns, and circuits should be 

exchanged by a Printed Circuit Board (PCB)1279. 

Finally, tools such as Deep Learning (DL) will help the level of 

information our system can manage1280. However, establishing the training 

architecture for DL in the healthcare sector is difficult because of the 

requirement for a vast quantity of data. Our model required a powerful computer 

and more than a month of sophisticated computations. Feedforward neural 

networks (FNNs)1281  combined with customized multilayer perceptrons (MLPs) 

might significantly reduce time consumption1282. Furthermore, there is much 

study on this network in the Python programming language1283. The benefits of 

these networks in helping microcontrollers have already been demonstrated, 
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even without suitable sensors1284, manifesting the valuable information these 

networks create by themselves. 

30.4.2. Biological implications 

From a biological point of view, the most relevant goal has been to induce 

early chondrogenesis without additional growth factors. Nevertheless, markers 

like collagen type X production and the Sox9 expression along long periods 

should be considered to analyze if this chondrogenesis is maintained over time. 

Even analyses of calcium deposition for late chondrogenesis must be done under 

mechanical stimuli to understand better the stress limit at MSCs can be 

stimulated to avoid osteogenesis. On the other hand, regarding histological and 

in vivo assays. The obtention of histological samples from polymer scaffolds 

biofabricated by FDM is not an easy task597 since the risk of scaffold 

disintegration is high. To solve this issue, studies involving the mixture of 

scaffold polymers with embedded hydrogels are applied1285,1286; thus, 

subsequent studies should study this possibility. 

Even though we have talked severally about inducing chondrogenesis 

because of mechanical stimuli, we have done a considerable branch of assays 

trying different experiments tracking the response of mechanotransducers 

together with their metabolic reaction would increase the overall obtained graft 

response. As explained in theme 10, chondrocytes present several known 

mechanosensors like TRPV4, Piedo1, Piezo2, and the primary cilia912–915,918. 

Measuring the over- or underexpression of these complexes in real-time is 

challenging, but the calcium concentration [Ca2+] in the intracellular space can 

be measured via ratiometric fluorescence imaging1287. These [Ca2+] gradients and 

post-quantification mechanosensors' expression, together with our methods to 

measure the density, would better understand which force levels manifest the 

limits of chondrogenesis and the starting points of osteogenesis1288,1289. 
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30.4.3. Ethical implications 

This project involves diverse bioethical constraints because human cells 

are the prime material for all experiments1290. Although stem cells do not exert 

an immune response, using them in any bioprinting therapy, including cells 

taken from the patient, includes dangers such as tumor formation, 

immunological reactions, unpredictable cell behavior, and long-term health 

implications unknown1291,1292. Reports of kidney lesions or osteogenic corpuscles 

around a patient's eye are two examples of these consequences involving 

MSCs1293,1294.  

TERM therapies will be particularly customized and created to target a 

single patient's specific ailment (and only that patient). Testing safety in a 

randomized clinical study on a distinct set of non-specific volunteers would be 

ineffective and unethical1295–1297. A patient waiting for a biofabricated graft 

would be their test subject or "guinea pig" for their biofabricated transplant1298. 

Ethical problems and questions remain: since 3D biofabricated items (tissues) 

are now exempt from regulation. Again, regarding ethics, our methodology to 

induce a cartilage graft by stimulating MSCs without growth factors will 

presumably reduce the risk of unexpected future pathologies. 

30.4.4. Clinical application 

As the final objective of this work is to develop an accurate and applicable 

ATMP, it is crucial to be aware of the current protocols and regulations required 

for its implementation in the medical system. In the EU, somatic cell therapy 

medicinal products (SCTMP) and tissue-engineered products (TEP) are 

distinct1299. SCTMP is supplied to humans to treat, prevent, or diagnose a disease 

by its cells' pharmacological, immunological, or metabolic effects. TEPs are also 

products made up of created or modified cells that cause regeneration, repair, or 

replacement in native tissue through the production of paracrine factors1300. 

Thus, our product would be released following TEP regulations. 
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Concerning the Spanish context, the approval of ATMPs not made 

industrially is governed by Royal Decree 477/2014, issued on June 131301. 

According to this, goods created and used following the Hospital Exemption must 

adhere to quality standards, be approved by the appropriate state body (in Spain, 

this would be the Agencia Española de Medicamentos y Productos Sanitarios, 

AEMPS), and fulfill national traceability and pharmacovigilance criteria. 

Fortunately, there are pre-established collaboration networks imposed by the 

Instituto de Salud Carlos III, like Advanced Therapie Network (TERAV), to 

simplify these procedures1302. 

Finally, regarding the necessary preclinical animal experimentation, in 

2018, the Dutch government hurled a new program evaluating the actual 

necessity of the experiments1303. Nevertheless, if ATMPs work with already 

studied and approved biomaterials and naïve human cells. Understandably, 

previous regulations could not be adequate for these kinds of products1303. 

Further, the biomechanical properties of cartilage differ drastically among 

species746,750. Thus, should any mouse model be representative of the human 

joint?  

30.5. Closing argument 

The conclusion of a Ph.D. thesis is usually a time for introspection. A 

doctorate thesis aims to demonstrate the doctoral student's technical, didactic, 

and research abilities. However, we cannot disregard the necessity to construct 

a watershed moment in the field of study. One rationale for developing this 

work's comprehensive introduction was to demonstrate that what has been 

done in this work is not a "reinvention of the wheel" but rather a tiny next step. 

Moreover, it is only via earlier studies that we may produce unique and helpful 

information that future researchers will use. Recognizing that the final result 

would not have been feasible without the initial chapters' accomplishments is 

critical. That is why, even if future obstacles appear complex and 

insurmountable, our experience has shown us that with time, teamwork, and 
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planning, we will be able to overcome them. After all, we are attempting to 

replicate something that nature already accomplishes. Only by fully 

comprehending it will we be able to recreate it and lead it to nurture possible 

new remedies. 
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“Remember, always, that everything you 
know, and everything everyone knows, is only 
a model. Get your model out there where it 
can be viewed. Invite others to challenge your 
assumptions and add their own.” 

“Recuerda siempre que todo lo que sabes, y 
todo lo que todo el mundo sabe, es sólo un 
modelo. Exponga su modelo donde pueda ser 
visto. Invita a los demás a cuestionar tus 
hipótesis y a añadir las suyas.” 

Donella H. Meadows 
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31. Conclusions 
1. The porosity obtained from modifying the construct's microarchitecture 

utilizing bio- and 3D printing processes may be predicted analytically. 

This characteristic enables better control of cell distribution and 

modeling. 

2. A porosity of less than 70% is detrimental to cell expansion, being a 

porosity of 70%-80% ideal for providing both good initial adhesion and 

subsequent nutrition loading to allow proper proliferation. 

3. The porosity value is not directly proportional to the proliferation of the 

construct, with more critical parameters such as the tortuosity of the 

pores or the distribution of the fibers, as well as the interconnections 

between threads of different layers, which help to retain the medium and 

promote more outstanding adhesion, being more relevant. 

4. The mechanical properties of the scaffolds are determined by the 

material's bulk properties, the distribution of the fibers, the existence 

and number of perimeters, and the presence of bases.  

5. Regardless of the material, microarchitecture is critical for the adherence 

and proliferation of IPFP-MSCs. The geometry of T1.5 and the b-TPUe 

material offer a better alternative for the CTE than the other variables. 

6. The construct's surface topography is critical in matching the cell-

material interaction. Protocols for functionalizing b-TPUe based on type 

I collagen and PBA that do not compromise the material's or the 

construct's integrity exponentially increases cell adhesion and 

proliferation. 
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7. Both functionalization protocols generate IPFP-MSC chondrogenesis to 

the same or greater level without requiring extra chondrogenic media. 

8. A sterilizing and matching BR capable of creating shear stresses and low-

intensity pulsed US has been devised and manufactured. 

9. Stimulating low-intensity shear stresses produced by perfusion-flow 

friction increases cell proliferation of IPFP-MSCs connected to the PBA-

functionalized b-TPUe construct. 

10. Mechanical stimulation also increases the formation of cartilage ECM, 

GAG, and type 2 collagen, which promotes chondrogenesis. Furthermore, 

this mechanical stimulation reduces type 1 collagen formation, implying 

a more hyaline cartilage-like matrix. 

11. Our BR and b-TPUe-based construct with T1.5 geometry and PBA 

functionalization considerably improve IPFP-MSC chondrogenesis 

without needing a conditioning medium. 

12. US-created pulsed mechanical waves present a technology capable of 

assessing in real time the fluctuations in the biomaterial-cell construct 

density via applying a FEM model relevant to the specified BR. 
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32. Conclusiones 
1. La porosidad obtenida al modificar la microarquitectura del constructo 

utilizando procesos de bioimpresión e impresión 3D puede predecirse 

analíticamente. Esta característica permite un mejor control de la 

distribución y modelado celular. 

2. Una porosidad inferior al 70% es perjudicial para la expansión celular, 

siendo una porosidad del 70%-80% ideal para proporcionar tanto una 

buena adhesión inicial como una posterior carga nutritiva que permita 

una correcta proliferación. 

3. El valor de la porosidad no es directamente proporcional a la 

proliferación del constructo, siendo más relevantes parámetros como la 

tortuosidad de los poros o la distribución de las fibras, así como las 

interconexiones entre hilos de diferentes capas, que ayudan a retener el 

medio y promueven una adhesión más destacada. 

4. Las propiedades mecánicas de los andamios vienen determinadas por las 

propiedades del material a granel, la distribución de las fibras, la 

existencia y número de perímetros y la presencia de pilares.  

5. Independientemente del material, la microarquitectura es crítica para la 

adherencia y proliferación de las IPFP-MSCs. La geometría de T1.5 y el 

material b-TPUe ofrecen una mejor alternativa para el CTE que el resto 

de variables. 

6. La topografía de la superficie del constructo es crítica para la interacción 

célula-material. Protocolos de funcionalización del b-TPUe basados en 

colágeno tipo I y PBA que no comprometan la integridad del material ni 

del constructo aumentan exponencialmente la adhesión y proliferación 

celular. 
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7. Ambos protocolos de funcionalización generan condrogénesis IPFP-MSC 

al mismo o mayor nivel que con el uso de medios condrogénicos 

adicionales. 

8. Se ha ideado y fabricado un BR esterelizable y modular capaz de crear 

tensiones de cizallamiento y US pulsado de baja intensidad. 

9. La estimulación de tensiones de cizallamiento de baja intensidad 

producidas por la fricción perfusión-flujo aumenta la proliferación 

celular de IPFP-MSCs conectadas al constructo b-TPUe funcionalizado 

con PBA. 

10. La estimulación mecánica también aumenta la formación de ECM de 

cartílago, GAG y colágeno tipo 2, lo que promueve la condrogénesis. 

Además, esta estimulación mecánica reduce la formación de colágeno 

tipo 1, lo que implica una matriz más parecida al cartílago hialino. 

11. Nuestro constructo basado en BR y b-TPUe con geometría T1.5 y 

funcionalización PBA mejora considerablemente la condrogénesis IPFP-

MSC sin necesidad de medio acondicionador. 

12. Las ondas mecánicas pulsadas creadas por US presentan una tecnología 

capaz de evaluar en tiempo real las fluctuaciones en la densidad del 

constructo biomaterial-célula mediante la aplicación de un modelo FEM 

relevante para la BR especificada. 
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“Curiosity will conquer fear even 
more than bravery will.” 

“La curiosidad vence al miedo 
más fácilmente que el valor.” 

James Stephens 
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33. Printing settings 
The adaptability of various 3D printing and bioprinting processes for 

biofabrication was explored in the introductory section. However, the intricacy 

of the entire process could not be revealed to avoid over-extension of such apart. 

As a result, in this appendix, certain essential features of the 3D printing and 

bioprinting processes are presented to elucidate how the various factors impact 

the scaffold's microarchitecture. 

33.1. The slicing step 

The slicing algorithm is critical in additive manufacturing. It can produce 

goods with detailed customizable features with no more labor than routine 

production procedures. The slicing input is a standard STL file typically used to 

represent CAD models in 3D printing process planning1304. 3D Systems created 

Figure 81. The slicing step is divided in two main steps: i) the STL-file formation 
and ii) the GCODE formation. 
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the STL format in 1987 to facilitate the transfer of 3D CAD models to its 

stereolithography equipment (SLA) machines1305. Several companies and people 

have proposed modifying the standard throughout the years but to no result. An 

STL file is a collection of triangular facet data that defines the surface of a three-

dimensional object. Each facet forms part of the object's border between its inner 

and outside (see Figure 81), and it is mathematically defined by its three 

vertexes and its average vector (which follows the right-hand rule). Even the 

finite set of triangles that conforms to the STL file must satisfy the following 

conditions: i) each edge is shared by at most two triangles. ii) A vertex shared by 

any number of triangles. iii) Connectivity: each triangle has at least one point in 

common with another triangle. iv) Knot-to-knot property: if a second triangle 

shares a vertex, it is also a vertex of the second triangle. v) No piercing, no 

overlapping: no triangle has an intersection with the interior of any other 

triangles1306. 

A slicer program is just software (e.g., Cura, Repetier, and Slic3r) that 

applies the slicing algorithm in the STL file already obtained1307–1310. A slicing 

algorithm is a technique for transforming each triangle facet into its line 

segment. The contour generation method can join these line segments to form 

contour lines1311. Facets in STL format are arbitrary and can be oriented in any 

direction (see Figure 81), implying different mathematical 

approximations1312,1313. Because a line segment only requires two other points, 

each interaction must be handled correctly. Finally, the slicing stage produces a 

G-code file, a sequence of instructions that a Computer Numerical Control (CNC) 

machine must follow to create the final 3D construct. The G-Code documentation 

(http://reprap.org/wiki/G-code) explains the whole collection of G-codes in 

detail. It may appear inconvenient, but understanding the G-code language is 

critical for particular constructions and, more specifically, for some 3D 

bioprinters. 
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33.2. Parameters affecting the printing process 

Although, as one might think, the printing (or bioprinting) process by the 

user ends when they send the STL file for being converted into a GCODE, that is 

not necessarily true. For printing accuracy and structural characteristics of 

printed products, parameter settings in slicing software are just as important as 

the printer's designing parameters and the material's attributes1314,1315. 

Additionally, printing variables like extrusion rate and nozzle speed are 

essential for effective printing1316.  

33.2.1. Layer height 

Every 3D printing process is based on additively manufacturing objects 

one layer at a time. In slicing software, the Layer height parameter determines 

the height (and consequently the overall quantity) of the slices or layers. In other 

words, the layer height parameter is primarily adjusted in G-code by modifying 

the Z-axis parameter. At the most basic level, when a part is printed with a 

reduced layer height, it has a smoother surface and can generate finer features 

Figure 82. Diagram of layer height and its relation with the critical layer height. 
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with more precision, but the print time is longer. Thicker layer heights result in 

quicker printing. Because the nozzle/needle diameter restricts the diameter of 

extruded filament, layer height is generally connected to it (Figure 82). The 

following equation relates the relationship between the layer height and the 

nozzle/needle diameter1317,1318: 

ℎ𝑐 =
𝑉𝑑

𝑣𝑛𝐷𝑛
 ( 56 ) 

where ℎ𝑐 is the critical layer height, 𝑉𝑑 is the extruding speed, 𝑣𝑛 is the moving 

speed of the printhead, and 𝐷𝑛 is the nozzle/needle diameter. 

 Concerning equation ( 56 ), three different states can happen (see Figure 82); 

if 𝐿ℎ = ℎ𝑐  is the optimal situation, if 𝐿ℎ < ℎ𝑐  the sampe’s diameter decreases, 

and, if 𝐿ℎ < ℎ𝑐  the filaments settled unevenly on the underlying layer, and the 

fiber diameter is expanded1309,1319. 

33.2.2. Nozzle speed 

The nozzle speed is a setting that governs the nozzle's movement velocity 

while printing curves, infills, bridges, and support materials. This field 

determines the value of the G-code F instruction. Proper nozzle speed settings 

improve printing efficiency and print quality. 

Similarly to the layer height, it is established a critical nozzle speed by: 

𝑣𝑁 =
4𝑄

𝜋𝐷𝑛
2 ( 57 ) 

where 𝑣𝑛 is the critical nozzle speed, and 𝑄 is the filament extrusion rate.  

 And again, equation ( 57 ) imposes three different conditions affecting the fiber 

morphology: i) where 𝑣𝑖 = 𝑣𝑁, being the optimum condition, and consequently, 

the printed fiber diameter will correspond to 𝐷𝑛. ii) with 𝑣𝑖 < 𝑣𝑁  implies that 

filament extrusion is quicker than printhead displacement; as a result, fiber diameter is 

higher than 𝐷𝑛 and the fibers would not present cylindrical morphology. iii) 𝑣𝑖 >
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𝑣𝑁 , the opposite case as the previous one where fiber will present smaller diameters than 

the nozzle one1320.  

33.2.3. Extrusion rate 

The extrusion rate is a parameter in FDM 3D printing that controls the 

pace at which slurries are extruded per second. This parameter setting governs 

the E-axis, linked to the actuator’s speed exerted force over the filament or 

bioink1321. According to the above sections, the printer's extrusion rate positively 

correlates with critical layer height and nozzle speed.  

Furthermore, a linear relationship was discovered between the extrusion 

rate and the diameter of the printed filament1320. With high extrusion rates (over 

0.004 cm3·s-1), the filament diameter was higher than the crucial nozzle 

diameter, suggesting that the slurry had spread throughout the substrate surface 

before it was set1322. On the other hand, with a low extrusion rate (below 0.002 

cm3·s-1), the release of material would be inconsistent, implying the presence of 

wholes or poorly printed filaments1322 when the extrusion rate parameter is 

fixed; however, the pressure necessary for the actuator to successfully extrude 

materials of varying viscosity differs1323. In other words, the impact of other slice 

characteristics, material viscosity, and printer settings should be considered 

while determining the extrusion rate. 

33.2.4. Infill 

Infill allows a component to be printed faster in direct proportion to the 

degree of infill. Most FDM slicer programs produce pieces with a 20% infill by 

default, which is sufficient for most 3D printing applications. A prototype with a 

high degree of the form may be created with a very low infill (10%), saving both 

money and time1324. The four most popular infill forms are i) rectangular, the 

most common infill design for FDM printing. It has strength in all directions and 

prints quickly. The printer must conduct as little bridging over the infill pattern 

as possible. ii) triangular, employed when strength in the direction of the walls 

is required. Printing triangular infill takes longer. iii) Wiggle is a fantastic choice 



DOCTORAL THESISDANIEL MARTÍNEZ MORENO 

302 
 

for softness, twisting, or compression designs. iv) honeycomb, a typical infill. It 

is compelling, offering strength in all directions1325.  

Rep 

Fiber distance (FD) is crucial since it influences scaffold pore size. The 

shortest distance (see Figure 83) between the axes of two filaments within the 

same layer constitutes this design parameter1326. Small lengths between 

filaments, however, may be troublesome if two contiguous filaments connect. 

Repeated layers 

Scaffolds with two repeating layers have a lower elastic modulus than 

those with alternating layers; longer holes along the compression axis result in a 

mechanically weaker structure1043. The number of repeated layers used 

considerably impacts pore size1327, but more studies regarding this phenomenon 

must be done1328. 

Figure 83. Scheme of different infill arragements. Image adapted from that one 
published by Domingo et al. 1044 
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Deposition Angle (or lay-down patterns) 

Scaffolds with a 2-angle pattern have a higher compressive modulus and 

maximum stress than those with a higher number of angle patterns (see Figure 

83). A decrease in the amplitude of the deposition angle between struts of 

neighboring layers suggested a greater contact area, resulting in a reduction of 

the 3D structure's local stress1329. As a result, the minor lay-down pattern 

filaments can readily move apart from one another when the scaffolds are 

squeezed, enhancing the deformability of the scaffold1330.  

Although deposition angle could seem a minor parameter, 3D scaffolds 

must endure mechanical loads in weight-bearing applications such as bone. Cell 

adhesion/proliferation, vascularization, and tissue ingrowth require proper 

pore size and interconnectivity. A scaffold not mechanically compatible with the 

original tissue may induce tissue resorption and aberrant growth1331. 

33.3. Future outlook 

Custom software has been built in certain circumstances to provide more 

precise control over specific features of the additive printing nozzle location and 

route142. Simply put, a 3D printer or bioprinter is just a robot that can insert 

material in a particular site. Therefore, there is much room for entirely new and 

creative structures to be created1332,1333. Scaffolds, for example, might be created 

by carefully planning the arrangement of filaments1334. 
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34. Piezoelectric effect 
Piezoelectricity is derived from Greek, meaning "electricity through 

pressure" (Piezo means pressure in Greek). Hankel offered this term in 18811335 

to describe a phenomenon noticed a year previously by the Curie brothers1336. 

They discovered that positive and negative charges occurred on various regions 

of the crystal surfaces when they assembled the crystal in different orientations, 

which had previously been analyzed based on its symmetry. 

34.1. Piezoelectric effect 

Before applying external stress to the material, the gravity centers of 

each molecule's negative and positive charges coincide. As a result, the external 

effects of negative and positive charges are mutually cancellable. As a 

consequence, a molecule that is electrically neutral arises. When pressure is 

applied to the material, its internal reticular structure can deform, causing the 

separation of the molecules' positive and negative gravity centers and the 

generation of small dipoles (see Figure 84). The confronting poles within the 

material cancel each other out, and the distribution of a connected charge 

Figure 84. Scheme of piezoelectric effect. 
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develops on the material's surfaces. This polarization produces an electric field, 

which may be utilized to convert mechanical energy used in material 

deformation into electrical energy. 

In a primary method, the generated connected charge's surface density 

correlated with the applied pressure:  

𝑷𝑃 ∝ 𝑑𝑻 ( 58 ) 

where 𝑃𝑃 is the piezoelectric polarization vector, d is the piezoelectric strain coefficient, and T is 

the applied stress. 

But for the technological industry was more relevant the reverse process 

anticipated by Lippmann (1881) a year after their discovery1337. That is, if one 

arbitrarily refers to the generation of an electric charge, and thus of an electric 

field, due to stress in specific materials and under certain laws, there would also 

exist a reverse piezoelectric effect in which the application of an electric field, 

under similar circumstances, would cause deformation in those materials. 

Mathematically the reverse piezoelectric effect is formulated as follows: 

𝑺𝒑 = 𝑑𝑬 ( 59 ) 

where Sp is the strain produced by the piezoelectric effect and E is the electric 

field magnitude. 

Considering the plastic properties of the material, ( 59 ) can be formulated 

as: 

𝑷𝑝 = 𝑑𝑇 = 𝑑𝑐𝑆 = 𝑒𝑺 ( 60 ) 

𝑻𝑝 = 𝑘𝑆𝑝 = 𝑘𝑑𝑬 = 𝑒𝑬 ( 61 ) 

where k is the material elasticity constant (𝑻 = 𝑘𝑺). 
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34.1.1. Electric Displacement 

The reverse piezoelectric effect is the ability of speakers to convert 

electrical information into sound. And in the case of the USs, US transducers also 

are based on this effect. According to the theoretical foundations, when an 

external electric field E is applied between two electrodes where a material of 

dielectric constant ε exists, an electric displacement towards those electrodes is 

formed, the size of which is unknown556: 

𝑫 =  𝜀𝑬 ( 62 ) 

And in the case of piezoelectric materials, the electric fields also imply 

induced strains, which will also induce an increase in the material's polarization. 

Consequently, the total electrical displacement of a piezoelectric material under 

an external electric field is: 

𝑫 =  𝜀𝑬 + 𝑷𝑝 =  𝜀𝑬 + 𝑒𝑑𝑬 = 𝜀𝑬̅ ( 63 ) 

where 𝜀  ̅is the effective dielectric constant. 

34.2. Ultrasonic transducers 

Ultrasonic transducers can be defined as devices that produce 

mechanical waves (US) from electrical pulses, i.e., they transform electrical 

energy into mechanical energy and vice-versa1338,1339. They can be split into five 

components (Figure 85): i) A crystal/ceramic element (piezoelectric material). 

ii) positive and negative electrodes. iii) a damping block adhered to the piezo's 

back. iv) a matching layer, the interface between the piezo and the material to 

analyze. v) an electrical insulation layer. 

Most transducers are narrow-band (a few percent bandwidths) and 

broad-band (30-70% bandwidth). Broad-band transducers are commonly 

employed in detection, measurement, and control applications ranging from 
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non-destructive testing or imaging, using extremely brief ultrasonic pulses 

(typically three or four cycles), frequencies in the range of 0.5-50 MHz. Narrow-

band transducers are used for low-frequency applications (20-100 kHz) at very 

high intensities1340. 

The basic structure of transducers constructed for optimal impulse 

response consists of a piezoelectric ceramic plate vibrating in its thickness mode, 

bonded to a backing block and a wear plate1341. The piezoceramic element's 

acoustic impedance is similar to that of the backing block, which is comprised of 

Figure 85. Cross section of an ultrasound transducer and its components. Image 
courtesy of Dr Rachael Nightingale, Radiopaedia.org, rID: 54040 
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a high-loss material. The core frequency of their bandwidth, which roughly 

matches those of the resonance, is used to identify transducers. Energy 

transmission is selective, which impacts the transducer's spectrum properties. 

Applications of these technologies involve flaw detection and imaging, including 

non-destructive testing and medical diagnostics. Compared to other medical 

imaging modalities, ultrasonography offers significant benefits. It gives real-time 

pictures, is portable, and can thus be transported to the patient's bedside. It is 

far less expensive than other imaging technologies and does not employ 

dangerous ionizing radiation1342. 

 Two modalities for US imaging are applied: through transmission and 

pulse-echo.  

• A transmitter and receiver are situated on opposing sides of an 

ultrasonic test item to achieve adequate acoustic coupling in the through-

transmission approach1343. Any defect or impedance change in the path 

of the US beam causes a dip in or a total lack of the received signal. This 

approach is not suited for identifying the placement of targets in the 

material. 

• A brief pulse of ultrasonic waves is transmitted to an object via the pulse-

echo method, and echoes return from flaws, discontinuities, or 

borders1344. There is a so-called dead zone in this latter approach because 

the input voltage of the transmitted pulse saturates the transducer in the 

receiver mode. 

Further, ultrasonic transducers can measure materials and systems' qualities, 

characteristics, or particular parameters. Lynnworth (1975) has thoroughly 

evaluated the industrial applications in which the propagation of low-intensity 

US is affected by the medium's factors, condition, or quality1345. Several methods 

for measuring ultrasonic velocity and attenuation have been developed for 

years1346.



ANNEX III SUPPLEMENTARY MATERIAL C1  

309 
 

35. Supplementary Material C1  

35.1. Workflow of Chapter I 

  
    

          

             

                                   

             

              

           

                            
              

        

          

 
  
 
  
  
 
  

 
  
 
  
  
 
 

Figure 86. Nine different geometries were proposed for the proliferation assay, 
each one was carefully studied. After, some of those geometries were discarded 

to simplify deeper analyses, reducing sample number. Finally, selected 
geometries were exposed to mechanical assays, microarchitecture analyses, 

viability tests and cell-material interactions inquiries. 
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35.2. Volume ratio and surface/volume 

The volume occupied by the filaments within the scaffold, the volume 

ratio, was calculated as described in this section.  

For simplicity, the filaments were considered perfect cylinders in shape 

aligned in parallel within a limiting circumference (see Figure 87A). As a result, 

the length of each filament depends on its position inside the circumference. 

Given Figure 87A, this relation applies: 

𝑙𝑓 = −2𝑟 + 𝐷𝑠 = 𝐷𝑠(1 −
𝑟

𝑅𝑠
) ( 64 ) 

Here, 𝑙𝑓 is the length of the filament, 𝐷𝑠 is the diameter of the scaffold and 

𝑅𝑠 is the scaffold radius. Thus, at 𝑟 = 0, the length of the filament corresponds to 

the diameter of the scaffold whereas, at  𝑟 = 𝑅𝑠 it can be estimated that there is 

no filament. 

Equation ( 64 ) only works well for triangles and squares. The 

approximation is different in the case hexagons (see Figure 87B). Again, 

filaments were considered as cylindrical rods but at this time, but they were not 

straight lines. The number of hexagons in each filament was calculated 

decomposing them into triangles and equation ( 65 ) was used again to 

approximate the length of the filament. The number of hexagons included in such 

a filament was calculated dividing the length by the apothem as follows: 

number of hexagons (𝑛ℎ𝑒𝑥) =  
𝑙𝑓

2 ∙ αℎ𝑒𝑥
 ( 65 ) 

Here, 𝛼ℎ𝑒𝑥 is the apothem of the hexagon and it depends on the pore size. 

In addition, the bioprinter software vary twice the apothem (e.g. hexagonal 

porosity of 1 mm, means 𝛼ℎ𝑒𝑥 is 0.5 mm). Because to close a hexagon it is needed 
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two filaments, the assumption of calculating half of the total result was applied. 

In addition, instead of using the length of the filament (𝑙𝑓) it was applied the 

length of the hexagon sides (lhex), and, knowing that each hexagon has 3 sides 

printed: ℎ𝑠 = 𝑛ℎ𝑒𝑥 ∙ 3 (again, it is considered half of the total). Knowing how the 

software distributes the filaments, it was analyzed how many filaments were 

printed in each layer; they are represented in Supplementary Table 2.  

With this, the volume occupied by the scaffold is given by: 

𝑉𝑠𝑐𝑎 = 𝜋𝑅𝑠
2 ∙  𝐻𝑠 ( 66 ) 

And the volume occupied by a single filament: 

V𝑓𝑖𝑙 = 𝑁𝑓 ∙ 𝜋𝑅𝑓
2 ∫ 𝑙𝑓(𝑟) 𝑑𝑟 ( 67 ) 

Figure 87. A) Scheme of fiber distribution and dependency of fiber length as a function 
of scaffold radius (Rs). B) In the hexagonal geometry, the real length of the filaments 

was slightly larger than square and triangular conformations. It was extracted 
calculating the number of hexagons approximating a straight filament divided by the 

apothem (αhex). lf : length of the filament. Ds: scaffold diameter. 
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The total volume occupied by the filaments is: 

V𝑇𝑓𝑖𝑙 =  𝑁𝑓 ∙   𝜋𝑅𝑓
2  ∫ Ds (1 −

r

Rs
)𝑑𝑟

𝑅𝑠

0

 ( 68 ) 

And finally, from the definition of the volume ratio 𝑉𝑟𝑎𝑡𝑖𝑜 =
𝒱𝑇𝑓𝑖𝑙

𝑉𝑠𝑐𝑎
 one can 

get the porosity 𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦 =
𝒱𝑝𝑜𝑟𝑒

𝑉𝑠𝑐𝑎
= 1 − 𝑉𝑟𝑎𝑡𝑖𝑜. 

For calculating the S/V ratio the previous 𝒱𝑓𝑖𝑙  was used together with the 

Surface of the filaments S𝑓𝑖𝑙 = 𝑁𝑓 ∙ 2𝜋𝑅𝑓 ∫ 𝑙𝑓(𝑟) 𝑑𝑟. 

𝑆
𝑉⁄ =

S𝑓𝑖𝑙
𝑉𝑠𝑐𝑎

⁄  ( 69 ) 

 

35.3. IPFP-MSCs characterization 

Both protocols are extracted from Jimenez et al. 2018 G. Jiménez, M. 

Hackenberg, P. Catalina, H. Boulaiz, C. Griñán-Lisón, M.Á. García, M. Perán, E. 

López-Ruiz, A. Ramírez, C. Morata-Tarifa, E. Carrasco, M. Aguilera, J.A. Marchal, 

Mesenchymal stem cell’s secretome promotes selective enrichment of cancer 

stem-like  cells with specific cytogenetic profile., Cancer Lett. 429 (2018) 78–88. 

https://doi.org/10.1016/j.canlet.2018.04.042: 

35.3.1. Flow cytometry analysis 

The immunophenotype was analyzed by flow cytometry (Supplementary 

Figure 2A). Cells were washed and resuspended in PBS with 2% bovine serum 

albumin BSA (Sigma, St. Louis, MO), and 2 mM ethylenediaminetetraacetic acid 

(EDTA, Sigma). Cells were incubated in dark for 30 minutes at 4º C with the 

appropriate fluorochrome-conjugated monoclonal antibodies. Markers used 

were: CD73-APC, CD90-FITC, CD105-PE, CD34-PE, CD45-PerCP, and CD133-APC 

(Miltenyi Biotec). All cells were washed in PBS and analyzed in a FACS Canto II 

cytometer (BD Biosciences). 
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Figure 88. A) FACS markers for stemness. B) Differentiation capacity. Controls were IPFP-
MSCs with DMEM, 10%FBS and 1%P/S. Differentiated mediums were: Osteogenic medium 
applied was StemMACS OsteoDiff 130-091-678, Miltenyi. Adipogenic medium applied was 

StemMACS adipoDiff 130-091-677, Miltenyl. Chondrogenic medium applied was DMEM 
supplemented with 10 ng/ml TGF- ß1, 0.1 µM dexamethasone, 40 µg/ml L-proline, 50 

µg/ml L-Ascorbate-2-Phosphate, and 50 mg/ml ITS. (Scale bar = 110 µm). 
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35.3.2. Differentiation assays  

MSCs isolated from lipoaspirates were plated at 2 x 103 cells/cm2 in 

DMEM (Sigma) containing 10% FBS (Gibco) with penicillin and streptomycin at 

100 µg/ml (Sigma) and allowed to adhere for 24 hours. The culture media was 

then replaced with specific inductive media. For adipogenic, osteogenic and 

chondrogenic differentiation, cells were cultured for two weeks in Adipogenic 

MSCs Differentiation Bullet Kit, Osteogenic MSCs Differentiation Bullet Kit 

(Lonza) and NH ChondroDiff Medium (Miltenyi Biotec), respectively. 

Differentiated cell cultures were stained with Oil Red O (Amresco) for adipogenic 

differentiation, Alizarin Red (Lonza) for osteogenic differentiation or Toluidine 

Blue (Sigma) for chondrogenic differentiation (Figure 88). 

35.4. Mechanical analysis 

In this section we show stress-strain curves as obtained with the 

Rheometer and the Universal Tensile Machine (UTM). 

  

Figure 89. A-B) Stress vs. Strain curve of cube b-TPUe scaffold under compression 
pattern in the rheometer and UTM for Triangular geometry and PS 1.5 mm, A) ‘in 
plane’, and B) ‘out of plane’. C-D) Stress vs. Strain curve of cube b-TPUe scaffold under 
compression pattern in the rheometer and UTM for Triangular geometry and PS 2 
mm, C) ‘in plane’, and D) ‘out of plane’. E-F) Stress vs. Strain curve of cube PCL scaffold 
under compression pattern in the rheometer and UTM for Triangular geometry and 
PS 1.5 mm, E) ‘in plane’, and F) ‘out of plane’. G-H) Stress vs. Strain curve of cube PCL 
scaffold under compression pattern in the rheometer and UTM for Triangular 
geometry and PS 1.5 mm, G) ‘in plane’, and H) ‘out of plane’.  (n=3) ↪ next page 



ANNEX III SUPPLEMENTARY MATERIAL C1  

315 
 

 

    

    

    

G   



DOCTORAL THESISDANIEL MARTÍNEZ MORENO 

316 
 

 

0,05
0,10 30 40 50

1E+04

1E+05

1E+06

1E+07

b-TPUe T1.5 'in plane' | without perimeters

 UTM

 Rheometer

S
tr

e
s
s
 (

P
a

)

Strain

0,01
0,02

0,03
0,04 30 40 50 60 70

1E+04

1E+05

1E+06

1E+07
b-TPUe T1.5 'out of plane' | without perimeters

 UTM

 Rheometer

S
tr

e
s
s
 (

P
a

)

Strain

0,05
0,10

0,15 20 30 40 50 60 70 80

1E+04

1E+05

1E+06

1E+07
b-TPUe T2 'in plane' | without perimeters

 UTM

 Rheometer

S
tr

e
s
s
 (

P
a

)

Strain

0,05
0,10

0,15 10 15 20 25 30 35 40 45 50 55

1E+04

1E+05

1E+06

1E+07
PCL T1.5 'in plane' | without perimeters

 UTM

 Rheometer

S
tr

e
s
s
 (

P
a

)

Strain
0,05

0,10
0,15 15 20 25 30 35 40 45

1E+04

1E+05

1E+06

1E+07
PCL T1.5 'out of plane' | without perimeters

 UTM

 Rheometer

S
tr

e
s
s
 (

P
a

)

Strain

0,05
0,10

0,15 10 15 20 25 30

1E+04

1E+05

1E+06

 UTM

 Rheometer

S
tr

e
s
s
 (

P
a

)

Strain

PCL T2 'in plane' | without perimeters

0,05
0,10

0,15 15 20 25 30 35 40

1E+04

1E+05

1E+06 PCL T2 'out of plane' | without perimeters

 UTM

 Rheometer

S
tr

e
s
s
 (

P
a

)

Strain

    

    

    

G   



ANNEX III SUPPLEMENTARY MATERIAL C1  

317 
 

 

35.5. ESEM 

 

PCL PCL 

PCL PCL 

Figure 91. ESEM images of PCL, although there are cells attached to the fibers, it 
seems to be a coating layer above the scaffold. Possibly due to material degradation 

because of the assay. 

Figure 90. Same as previous figure without perimeters (n=3). 
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35.6. Supplementary Tables 

Table 5. Manufacturer parameters for b-TPUe (Recreus Inc.) and PCL (Esun Inc.). 

Physical Properties b-TPUe PCL 

Melting point 200-240 ºC 60-140º C 

Density 1.14 g/cm3 1.16 g/cm3 

Elongation at break 665% 11% 

Tensile strength 42 MPa 18 MPa 

Tensile modulus (E0) 350 MPa 483 MPa 

Shear modulus (G0) 10 MPa 1 GPa 

 

Table 6. Depending on the pore geometry, the number of filaments differs. Quadrangular 
and triangular geometries share the way to bio-print, with the only difference on the 
printing angle (0º/90º in quadrangular, 0º/45º/90/135º in triangular). In both cases, 
the porosity size means the distance between each filament (considering these ones 
parallel to each other). About the triangular shape, the porous size is a quarter of the 
corresponding square geometry. The porosity size in hexagonal geometry corresponds 
to twice the apothem. Ht = triangular height. layern = odd layer. layer2n= even layer. ahex 
= hexagon apothem. 

Geometry Porosity size 
Number of filaments by 

layer 

Triangular/Quadrangular 

1 mm (ℎ𝑡 = 500 𝜇𝑚) 
𝑙𝑎𝑦𝑒𝑟𝑛 = 5 𝑓𝑖𝑙𝑎𝑚𝑒𝑛𝑡𝑠 

𝑙𝑎𝑦𝑒𝑟2𝑛 = 6 𝑓𝑖𝑙𝑎𝑚𝑒𝑛𝑡𝑠 

1.5 mm (ℎ𝑡 = 750 𝜇𝑚) 
𝑙𝑎𝑦𝑒𝑟𝑛 = 4 𝑓𝑖𝑙𝑎𝑚𝑒𝑛𝑡𝑠 

𝑙𝑎𝑦𝑒𝑟2𝑛 = 5 𝑓𝑖𝑙𝑎𝑚𝑒𝑛𝑡𝑠 

2 mm (ℎ𝑡 = 1000 𝜇𝑚) 
𝑙𝑎𝑦𝑒𝑟𝑛 = 3 𝑓𝑖𝑙𝑎𝑚𝑒𝑛𝑡𝑠 

𝑙𝑎𝑦𝑒𝑟2𝑛 = 4 𝑓𝑖𝑙𝑎𝑚𝑒𝑛𝑡𝑠 

Hexagonal 

1 mm (𝒶ℎ𝑒𝑥 = 500 𝜇𝑚) 20 𝑓𝑖𝑙𝑎𝑚𝑒𝑛𝑡𝑠 

1.5 mm (𝒶ℎ𝑒𝑥 = 750 𝜇𝑚) 13 𝑓𝑖𝑙𝑎𝑚𝑒𝑛𝑡𝑠 

2 mm (𝒶ℎ𝑒𝑥 = 1000 𝜇𝑚) 10 𝑓𝑖𝑙𝑎𝑚𝑒𝑛𝑡𝑠 
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Table 7. Main geometrical parameters obtained both theoretically and experimentally 
in order to compare the validation of the filament distribution hypothesis. Thickness of 
the wall corresponds to the presence of two perimeters for cylindrical scaffolds, each one 
makes 400 µm. Length of the wall corresponds to the side length of the geometrical 
patterns; they were calculated from the pore sizes. In the case of triangles, they 
correspond to (√2∙PS)⁄2; squares to PS and hexagons to PS/√3. Size ratios express the 
tension that will suffer the ‘porous cells’ against the pressured absorbed by the scaffold’s 
walls. Experimental relative density was obtained by dividing the experimental density 
by the manufacturer’s density. Finally, the theoretical porosity was obtained applying 
the methodology early exposed. 
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36. Supplementary Material C2 

36.1. Characterization and verification of 

functionalization protocols on b-TPUe 

 

 

 

  

Figure 92. AFM topography analyses. (A-B) Height images captured from AFM 
for, A) ethanol 70% (mixed with Mili Q water), used to sterilized scaffolds, B) 

ethanol 70% (mixed with Mili Q water), used to sterilized scaffolds C) PSD 
curves from AFM ethanol buffers analyses. 
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36.2. MSCs characterization  

MSCs were trypsinized, washed, and resuspended in PBS with 1% bovine 

serum albumin (BSA; Sigma-Aldrich). Cells were centrifuged followed by the 

addition of fluorochrome-conjugated monoclonal antibodies for CD73, CD90, 

CD105, CD34, CD45, and HLA-II and CD133 (Miltenyi Biotec) according to 

manufacturer’s instructions and incubated at 4 °C, in the dark, for 12 min. After 

adding BSA, cells were centrifugated and resuspended in PBS and analyzed by 

flow cytometry in a FACSCanto II cytometer (BD Biosciences). 

MSCs isolated from lipoaspirates were plated at 2 x 103 cells/cm2 in 

DMEM (Sigma) containing 10% FBS (Gibco) with penicillin and streptomycin at 

100 µg/ml (Sigma) and allowed to adhere for 24 hours. The culture media was 

then replaced with specific inductive media. For adipogenic, osteogenic, and 

chondrogenic differentiation, cells were cultured for two weeks in Adipogenic 

MSCs Differentiation Bullet Kit, Osteogenic MSCs Differentiation Bullet Kit 

(Lonza), and NH ChondroDiff Medium (Miltenyi Biotec), respectively. 

Differentiated cell cultures were stained with Oil Red O (Amresco) for adipogenic 

differentiation, Alizarin Red (Lonza) for osteogenic differentiation, or Toluidine 

Blue (Sigma) for chondrogenic differentiation (Figure 93).   

  

Figure 93. A) FACS markers for stemness. B) Differentiation capacity. Controls were 
IPFP-MSCs with DMEM, 10%FBS and 1%P/S. Differentiated mediums were: 
Osteogenic medium applied was StemMACS OsteoDiff 130-091-678, Miltenyi. 
Adipogenic medium applied was StemMACS adipoDiff 130-091-677, Miltenyl. 
Chondrogenic medium applied was DMEM supplemented with 10 ng/ml TGF- ß1, 0.1 
µM dexamethasone, 40 µg/ml L-proline, 50 µg/ml L-Ascorbate-2-Phosphate, and 50 
mg/ml ITS. (Scale bar = 110 µm). ↪ next page 
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36.3. Preparation of the ninhydrin standard curve. 

Aminolysis and ninhydrin treatment. 

For the ninhydrin (Sigma-Aldrich) standard curve, it was carried out the 

preparation of solutions of 1,6-hexanediamine in isopropanol at different 

concentrations (100 mg/mL; 50 mg/mL; 25 mg/mL; 12.5 mg/mL; 6.25 mg/mL 

and a blank of 0 mg/mL) and then, in a multiwell plate, 50 µL of each solution 

and 50 µL of 2 M ninhydrin were added. Finally, the plate was incorporated into 

the plate reader and the absorbance was adjusted to 560 nm. The scaffolds were 

placed in a multiwell plate and immersed in a 10 % 2-propanol solution of 1,6-

hexanediamine for 1 hour at 37 ° C. It was washed with distilled water and dried. 

They were immersed in a solution of ninhydrin in 1 Methanol for 1 minute.  

 

 

 

  

Figure 94. A), B) Metabolic activity study carried out on days 0 and 3 using the 
Alamar Blue  reagent. FF scaffolds have been functionalized with collagen using 
different concentrations of glutaraldehyde (0%; 0.16% and 0.625%) and glycine (0M, 
0.5M, 0.2M, respectively). The positive control has only been seeded without previous 
functionalization. (*** p <0.001). Images obtained with the confocal microscope 
Nikon Eclipse Ti after the treatment of FF scaffolds with the LIVE/DEAD® 
cytotoxicity/viability kit. C) Positive control. D) 0% glutaraldehyde and 0M glycine E) 
0.16% glutaraldehyde and 0.5M glycine. F) 0.625% glutaraldehyde and 0.2M glycine. 
↪ next page 



ANNEX IV SUPPLEMENTARY MATERIAL C2  

325 
 

36.4. Metabolic activity & Viability of Collagen with and 

without Glutaraldehyde  
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Figure 95. A) Alamar Blue fold increase obtained normalizing Alamar Blue reduction 
assay fluorescence raw results by day 1. B) DNA fold increase obtained by 

normalizing fluoresnce raw results by day 1. (n=3) (***, p < 0.001; *, p < 0.05; N.S., 
not significance). 
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37. Supplementary Material C3 

37.1. Design concepts 

 

 

 

Figure 96. (A) Front view of Input/Output (IO) channels, (B) Profile view of IO 
channels. (C) Profile view of Scaffold chamber and IO channels. Ultrasound (US) field is 

represented in orange whereas the perfusion flow are represented in blue. 
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37.2. Model validation 

  

Figure 97. (A) Pearson coefficients obtained from Pearson correlation between water 
experimental signal and FEM (Finite Element Model) synthetical signals. (B) Pearson 

coefficients obtained from Pearson correlation between PLA (polylactic acid) experimental 
signal and FEM (Finite Element Model) synthetical signals. (C) Comparison of 

experimental water signal with the modeled one. (D) Comparison of experimental PLA 
signal with the modeled one. (ρ = Pearson coefficient) 
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Figure 98. Modeled signals of our pressure wave sweeping mesh size (∆x), each step 
was 100 µm; thus, the parametric sweep varied form 1 mm to final 100 µm. 
(∆x=distance of mesh size,is equal in both directions X and Y 

Figure 99. (A) FACS markers for stemness. (B) Differentiation capacity. Controls 
were IPFP-MSCs with DMEM, 10%FBS and 1%P/S. Differentiated mediums were: 
Osteogenic medium applied was StemMACS OsteoDiff 130-091-678, Miltenyi. 
Adipogenic medium applied was StemMACS adipoDiff 130-091-677, Miltenyl. 
Chondrogenic medium applied was DMEM supplemented with 10 ng/ml TGF- ß1, 0.1 
µM dexamethasone, 40 µg/ml L-proline, 50 µg/ml L-Ascorbate-2-Phosphate, and 50 
mg/ml ITS. (Scale bar = 200 µm). ↪ next page 
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37.3. MSCs characterization 
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37.4. Quantification Standard Curves 

  

Figure 100. (A) Standard curve of DNA quantification. DNA content was estimated using a 
fluorometric marker (DAPI staining) and DNA standard curve was done using DNA from Calf 

Thymus (Sigma-Aldrich). (B) Standard curve of general collagen quantification. Collagen 
content was measured via Sirius Red assay, absorbance supernatant was measured in a 

microplate reader at 540 nm (Synergy HT, BIO-TEK), for standard collagen from calf skin was 
used (Sigma). (C) Standard curve of type II collagen quantification following manufacturer’s 

protocols by Chondrex. (R2 is the coefficient of determination for linearity, 1 means 
completely linearity, 0 means no linerarity). 
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