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Abstract—Numerical solvers have been essential tools in the 

industry, R&D and other similar fields in the last two decades. 

While it is important to understand the advantages and limitations 

of most common methods and look for the best candidates in terms 

of simplicity, accuracy, and computational performance; the 

capacity to be able to simulate, with relative simplicity, complex 

physical problems and obtain results which can serve as 

validations or preliminary testing has increased efforts towards 

obtaining more efficient and stable methods. In this work, we will 

discuss our choice to utilize the discontinuous Galerkin in the time 

domain (DGTD) method by extending an available finite element 

method library, MFEM, which allows us to introduce a Maxwell's 

equations solver in all dimensions without having to implement the 

basic framework a numerical method would require. A basic form 

of a DGTD solver has been successfully implemented, with further 

development planned in the future. 
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I. INTRODUCTION 

The usage of numerical methodology to evaluate ordinary 

differential equations (ODE) and partial differential equations 

(PDE) has been one of the key areas of computational research 

in the latest decades [1][2]. Popular methods such as Finite 

Differences (FD) [3], Finite Volume (FV) [4] and Finite 

Element (FE) [5] have grown and become more capable of 

solving multitude of problems. Although their usefulness is not 

questioned, these methods are without their own shortcomings 

when studying wave problems in the time domain [6]. 

The continuous Galerkin (CG) method would have been a great 

candidate to be used in our studies of the Maxwell's equations, 

but its expensive to invert mass matrix (unless lumped) and 

potential instabilities in heavy directional stationary flow 

problems (i.e. advection-diffusion) are key critical weaknesses 

[7], invalidating the CG method as the best candidate for our 

problems. Thus, we require to look for another method which 

is more adaptable to the problem we aim to solve. Thankfully, 

by performing some modifications to the formulation, we can 

arrive at a candidate that satisfy our requirements. 

 

In this work we introduce our open-source Maxwell's equations 

solver which uses the discontinuous Galerkin in the time 

domain (DGTD) method, a tool that has the aim to offer a 

powerful simulation framework to be used in conjunction with 

OpenSEMBA [8]. Thanks to the finite element library MFEM, 

we can ease the implementation of some of the basic 

functionalities one would expect from an electromagnetic 

equation’s solver. 

 

II. DISCONTINUOUS GALERKIN IN THE TIME DOMAIN 

The Galerkin approach is a combination of the formulation used 

in the Finite Volume and Finite Element methods where the 

space for the trial and test functions is chosen to be the same for 

both, a space of piecewise polynomial functions. Unlike the 

continuous Galerkin method, and as its name implies, one of 

the key features of the discontinuous Galerkin method is the 

discontinuous nature between the elements in the 

computational domain. The discontinuous nature is achieved 

through the duplication of degrees of freedom in the interfaces 

between elements which also ensures the locality of the scheme.  

 

The weak and strong formulations can be recovered through an 

expansion of the discretized equations, which allow us to utilize 

a numerical flux employed in a similar form to that used in the 

Finite Volume method, which will be used to solve the duality 

issue on the interfaces between elements to recover a unique 

solution. The flux also offers the advantage of allowing 

upwinding, which contributes to enhance the stability of the 

method and helps with avoiding the appearance of spurious 

modes in the solution. In our specific case, the choice of flux is 

the Lax-Friedrichs flux along the normal on the faces between 

elements. 

 

Starting from the basic form of Maxwell's three-dimensional 

equations, 
 

𝜇
𝜕𝑯

𝜕𝑡
= −𝛻 × 𝑬,  𝜀 

𝜕𝑬

𝜕𝑡
= 𝛻 × 𝑯 (1) 

rewriting this expression in the conservation law form yields 
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𝑸
∂𝒖

∂𝑡
+ ∇ ⋅ 𝒇(𝒖) = 0 

 

(2) 

with the new variables being defined as 

 

𝑸 =  (
𝜇 0
0 𝜀 

) , 𝒖 =  [
𝑯
𝑬

] , 𝒇(𝒖)  = [ 
−�̂� × 𝑯

�̂� × 𝑬
]

=  [
𝑭𝑯

𝑭𝑬
] 

(3) 

 

where 𝑬 and 𝑯 are time-dependent electric and magnetic field 

vectors with their three spatial components on the x, y and z 

directions. 𝜇  and 𝜀  are the magnetic permeability and the 

electric permittivity, respectively, depending too on the spatial 

components, and �̂� is the outward normal on the faces of the 

elements. 

 

By applying Gauss' law twice to (2) and Lax-Friedrichs flux, 

we can obtain the semi-discrete scheme for all six components 

𝐻ℎ
𝑥 , 𝐻ℎ

𝑦
, 𝐻ℎ

𝑧 and 𝐸ℎ
𝑥, 𝐸ℎ

𝑦
, 𝐸ℎ

𝑧 . This is the strong form of 

Maxwell's equations. We can then rewrite the expressions in a 

way we can utilize later, as an example for 𝐻ℎ
𝑥 

 

𝑑𝐻ℎ
𝑥

𝑑𝑡
= −𝒟𝓎𝐸ℎ

𝑥 + 𝒟𝓏𝐸ℎ
𝑦

 +
ℳ−1

2𝐽
 

· ∫ (−𝑛�̂�[𝐸ℎ
𝑍] + +𝑛�̂�[𝐸ℎ

𝑦
]

𝜕𝐷𝑘

+ 𝛼([𝐻ℎ
𝑥] − (�̂� ⋅ [𝑯𝒉])𝑛�̂�)𝒍(𝒙)𝑑𝒙 

 

(4) 

where 𝒍(𝒙) is the test function. The rest of the terms are defined 

as our operators, 𝒟𝑖, the product of the inverse mass matrix and 

the stiffness matrix in the i-direction. 𝑛�̂�[𝐴ℎ
𝑖 ], the jump matrix 

assembled on the interface between elements, multiplied by the 

normal in the i-direction and applied over the field vector 𝐴 in 

the j-direction. (�̂� ⋅ [𝑨𝒉])𝑛�̂�,  where  �̂� ⋅ [𝑨𝒉]  =

 ∑  𝑛�̂� ·𝑖 = 𝑥,𝑦,𝑧  [𝐴ℎ
𝑖 ], is similar to the previous operator, with the 

exception that we obtain three operators in the three different 

spatial directions and then they are multiplied by the normal in 

the j-direction, which is always the same as the direction of the 

field which is being time discretized. Lastly, [𝐴ℎ
𝑖 ], the jump 

matrix assembled on the interface between elements applied on 

the field vector A in the i-direction. 

 

The operators that are dependent on the 𝛼  coefficient, the 

upwind coefficient, will be referred to as 'upwind' operators, 

which only appear if 𝛼 ≠  0, whereas the rest of the operators 

that are still inside the boundary integral are referred to as the 

centered operators. It is also worth noting that if we found 

ourselves in the case of a lower dimensional problem, the six 

equations would still be applicable as some of the operators 

would evaluate to zero. 

 

III. OPENSEMBA/DGTD 

OpenSEMBA/DGTD allows for the definition of a problem 

through a mesh with defined attributes on its elements, which 

can be domain or boundary conditions, materials or special 

regions; it also allows to define the desired problem solution 

parameters such as time stepping, centered or upwind schemes; 

sources, be initial or time dependent illuminations and also data 

retrieval into some of the previously mentioned visualization 

programs or into data sets through the use of exporter or point 

probes, respectively. The code uses the MFEM library as its 

base, which stands for Modular Finite Element Methods library. 

It is an open-source library initially developed in C++ by the 

Lawrence Livermore National Laboratory (LLNL). Thanks to 

this library, the solver natively counts with up-to-date 

functionalities such as easy-to-implement parallelization, 

support for hardware devices (CUDA, HIP, …), Paraview or 

GLVIS exporting for visualization, and more features. 

 

OpenSEMBA/DGTD currently includes six Maxwell solvers, 

one for each dimensional case, with each one having Operator-

By-Operator and Global Matrix schemes. The Operator-By-

Operator scheme keeps each of the previously mentioned 

operators as individual sparse operators, which are multiplied 

by the correspondent direction field vector, then all solutions 

are added; the Global Matrix scheme assembles the operators 

in a global sparse matrix which is then multiplied in a single 

step with a global field vector. The Global Matrix scheme 

allows for a spectral study of the eigenvalues of the problem for 

stability purposes and the calculation of an optimal time 

stepping value through the use of the Power Method. These two 

schemes offer identical results. 

 

The user can choose between Centered and Upwind fluxes in 

all solvers, and they all can define PEC, PMC and SMA 

conditions on their boundaries, although SMA requires the use 

of Upwind flux globally to be utilized. The setups can be 

illuminated with an initial Gaussian in all dimensions. 

Additionally, a time dependent travelling wave can be also used 

for illumination thanks to an extension of Total-Field Scattered-

Field conditions which allows for illumination through the use 

of ‘interior’ boundaries. The previously mentioned 

characteristics are summarized in Fig. 1. 

 

 
Figure 1. OpenSEMBA/DGTD problem definition. 



 

In order to validate our implementations, multiple tests were 

added with the purpose of verifying the assembly of the 

different required operators, which must match the expected 

analytical results or those obtained through other code. These 

tests include matrix-to-matrix element checks for Mass, 

Stiffness, Flux and Penalty matrices, the two latter ones also 

include verifications for zero, one or two normal directions. 

 

  
                      (a)                                                       (b) 
Figure 2. Paraview visualization of simulated examples. (a) 2D Radar Cross 

Section with order 3 elements to adapt to curves. (b) Single element Total-Field 

Scattered-Field source load on a 3D 8x1x1 grid. 

Additionally, the validation of the PEC, PMC and SMA 

boundaries has been performed through the solution analysis of 

1D, 2D and 3D metallic resonant boxes. All validations can be 

verified by running the different test suites upon code 

compilation. The code and tests have been designed with the 

Unit Testing philosophy in mind, to allow for stable code 

refactorizations. More complex setups can be simulated as seen 

in Figure 2. 

IV. CONCLUSIONS 

OpenSEMBA/DGTD is a work-in-progress Maxwell’s 

Equations solver and the simulations performed through the use 

of the previously mentioned tests verify the behavior of the 

simulation against analytical results or through the use of 

energy and boundary analysis.  

 

At the time this work is being developed, a feature which aimed 

to implement Interior Boundary Face Integrators for general use 

has been implemented by the Dept. of Electromagnetism of the 

University of Granada, further improving the functionalities of 

the MFEM library. 

 

Ultimately, OpenSEMBA/DGTD offers a free, open-source 

alternative for students and researchers alike, based on the 

discontinuous Galerkin in the time domain scheme. 
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