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1 Introduction

Unimodular gravity (UG) is a theory which is so similar to General Relativity (GR) that one
may wonder to what extent both of them are equivalent. Recently we presented a systematic
comparison of both theories in all the regimes and situations in which a potential difference
might appear, which was still lacking [1]. We concluded that for all of the possible regimes
analyzed there, both theories are equivalent except for the behaviour of the cosmological
constant. Whereas the cosmological constant is radiatively stable in UG [2] (it is simply
an integration constant of the equations of motion), in GR it is radiatively unstable. In
this way, if one uses technical naturalness in the sense introduced by ’t Hooft [1, 3, 4] as a
guiding principle toward building theories, UG theories are much more desirable than GR
theories since the cosmological constant is technically natural.

There are mainly three arguments used to argue that the low-energy limit of string
theory is given by the effective field theory (EFT) consisting of GR coupled to some other
fields. First of all, when one analyzes the massless spectrum (leaving aside the tachyon field)
of bosonic string theory propagating on top of flat spacetime one finds that for oriented
strings it contains a graviton, a Kalb-Ramond field, and a dilaton; and for unoriented
strings it contains only a graviton and a dilaton. In principle, for computing observables
only involving massless states, one expects that one can write down an effective action
which simply involves fields that account for these massless excitations, i.e., a graviton-field
hµν , (possibly) a Kalb-Ramond field Bµν , and a dilaton field Φ. As usual, the fundamental
observable considered is the S-matrix.

Now, we come to the arguments used to argue that GR “emerges naturally” as the
low-energy description of such degrees of freedom. First of all, it has been argued that
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the only self-consistent way of coupling the graviton (massless spin-2 representation of the
Poincaré group) to itself is through GR. In that way, having a massless spin-2 field in
the spectrum, one necessarily guesses that the non-linear structure of the theory needs
to be GR up to potential higher-derivative corrections arising in the EFT. However, we
argued [1, 5] that the self-coupling of UG gravitons (those displaying linerarized WTDiff
gauge-invariance) to themselves also gives rise to the full non-linear UG in a consistent
way, although the coupling of the graviton to itself is through the traceless part of the
energy-momentum tensor, instead of the full one. Hence, this first argument does not allow
one to discern whether UG or GR is preferred from the string point of view since one is as
legitimate as the other.

The second argument comes from the analysis of string scattering amplitudes, which was
already revisited in [1]. One can compute within string perturbation theory the scattering
amplitudes for graviton asymptotic states. The result is that, to the lowest order in α′ and
at string tree level, one obtains the same scattering amplitudes obtained in GR. The point is
that UG scattering amplitudes are exactly the same as the GR scattering amplitudes [6, 7].
In that sense, GR is not preferred over UG from the point of view of scattering amplitudes
either, as it was concluded in [1].

The final argument comes from analyzing perturbatively in α′ the non-linear sigma
model that arises from coupling the string degrees of freedom to an arbitrary background
metric (or conformal structure), Kalb-Ramond field, and dilaton field generated by the string
degrees of freedom themselves. For such a model, the Weyl symmetry of the worldsheet,
which is potentially anomalous, needs to be handled carefully. However, although in flat
spacetime and zero background fields it simply constrains the dimension of spacetime to be
26 (critical dimension), in this case constraints also appear for the spacetime fields entering
the sigma model construction. Such constraints arise from imposing a cancellation of the
Weyl anomaly to make it a sensible theory. The equations that arise are basically Einstein
equations, although interpreted as β-functionals. Both GR and UG give rise to Einstein
equations, hence from this point of view we show that it is possible to write both a GR
and UG-like EFT for the massless degrees of freedom of the string. Moreover, both actions
are also consistent with the previous argument since they reproduce all the scattering
amplitudes involving massless states of the string. The only difference that seems to appear,
is that, whereas in the GR EFT the cosmological constant is a coupling constant that needs
to be set to zero, in the UG EFT it is an integration constant that needs to be set to zero.
In other words, UG contains the space of theories which is GR with all possible values of
the cosmological constant within a single theory.

The α′-expansion on its own points toward a zero cosmological constant. However,
once we include string loop corrections, the situation changes. We will revisit the Fischler-
Susskind approach [8–10]towards including the lowest order string loop correction in the
picture. In this way, an arbitrary cosmological constant is generated through the string-loop
corrections in the EFT. In this way, the EFT that we need to write down within the GR
EFT to include the string-loop corrections contains an arbitrary cosmological constant,
which is exactly what happens with the UG EFT, although in the former case it is a coupling
constant whereas in the latter it is an integration constant. In this way, we conclude that
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both the UG and the GR EFTs can account for the low-energy description of massless
string states with the only difference arising in the nature of the cosmological constant.

It is worth remarking that this analysis gives further evidence for UG as a sensible
classical theory of gravitation according to the criteria invoked by Weinberg in [11]. Ac-
cording to Weinberg, one of the key aspects that needs to be addressed to regard UG as a
reasonable classic theory of gravitation is to understand whether it can be obtained as a low
energy limit of a quantum theory of gravitation. By embedding UG within the framework
of string theory, here we answer here in the affirmative.

The remain of this article is structured as follows. In section 2 we introduce the
framework of UG, making special emphasis on the existence of a priviliged background
volume form and the existence of an additional global degree of freedom with respect to
GR. Then, we introduce a modification of GR in which a new global degree of freedom,
precisely the cosmological constant is assigned to a (D + 1)-form field, to make clear the
difference between UG and the standard formulation of GR. In section 3 we review the
basics of the quantization of strings in flat spacetimes and explain why UG and GR are
both valid as the low energy description of string theory from the point of view of scattering
amplitudes involving massless particles. In section 4 we move on to analyze strings in
general backgrounds. In subsection 4.1 we rederive the consistency conditions (Weyl anomaly
cancellation) from the perturbative α′ expansion of the sigma model. Some of the details of
the computation that are well explained in the literature and not relevant for our purposes
are skipped and we refer the reader to the literature at those points. In subsection 4.2 we
introduce the Susskind-Fischler approach for cancelling some of the divergences arising
from string loops, with the divergences of the sigma model on the trivial genus worldsheet.
The main novelty that this mechanism introduces is a cosmological-constant-like term in
the β functions. We close this section by analyzing in subsection 4.3 how these consistency
conditions can be derived from an effective action once they are interpreted as equations
of motion for the background fields. We emphasize the consistency of this approach when
computing scattering amplitudes involving the massless excitations. we close this section.
In section 5 we summarize the results and draw the conclusions that can be taken from our
analysis. We also point interesting future lines of work that seem promising in virtue of our
analysis presented here.

Notation and conventions. Our convention for the signature of the metric is (−,+, . . . ,+)
for the (D+1)-dimensional target space metric and (−,+) for the worldsheet metric. Tensor
objects will be represented by bold symbols, whereas their components in a given basis
will be written with the same (not bold) symbol and indices, e.g., the Minkowski metric η
will be represented in components as ηµν . We will use Greek letters for spacetime indices
(µ,ν, . . .) whereas we will reserve lower case latin indices (a,b, . . .) for the worldsheet indices.
Curvature quantities like the Riemann tensor are defined following Misner-Thorne-Wheeler’s
conventions [12] and we will specify explicitly the metric it depends on, e.g. Rαβγδ(g). We
also represent the (D+1)-dimensional Newton’s constant as κ2 = 16πG.
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2 Unimodular Gravity and General Relativity: matching global degrees
of freedom

It is well accepted that metric theories of gravity, those in which the fundamental object
describing the gravitational field at a given point is a metric, are suitable for describing
gravitational experiments to great accuracy [13]. The metric at a given point of the spacetime
is completely specified by the lightcone at that point up to a conformal factor. Although
the conformal structure of the spacetime is allowed to fluctuate both in UG and GR, the
difference arises in the conformal factor. Whereas in UG the conformal factor is fixed to be
a fiducial (non-dynamical) volume form that we represent as ω = 1

(D+1)!ω(x)dx0 ∧ . . .∧ dxD

and hence it does not have any dynamics, in GR it is also dynamical like the lightcone itself.
Naively, one could conclude that this reduction in the number of independent compo-

nents of the metric may lead to a reduction of the independent degrees of freedom of the
theory. However, it reduces the gauge symmetries of the theory to only transverse diffeo-
morphisms (those preserving the background volume form) and hence it is not surprising
that the theory displays the same number of local degrees of freedom as GR does. Actually,
it displays an additional global degree of freedom associated with the cosmological constant.
In this section we will introduce the basic formulation of UG, emphasizing the presence of
this new additional global degree of freedom. Furthermore, we will present a formulation
of GR closer in spirit to UG, since the cosmological constant appears as a combination of
an arbitrary integration constant and the renormalized cosmological constant entering the
action and we still have the invariance under the full set of diffeomorphisms.

Let us begin with the standard formulation of UG. UG is a theory in which the
group of gauge transformations is WTDiff (Weyl rescalings of the metric and Transverse
Diffeomorphisms) instead of the whole group of Diffs (Diffeomorphisms), see [1] for further
details. In order to define such a theory, we need to use the non-dynamical volume form that
we have already introduced ω. It is useful to introduce the Weyl-invariant auxiliary metric

g̃µν = gµν

(
ω2

|g|

) 1
D+1

. (2.1)

In this way, every curvature scalar built from the auxiliary metric g̃µν inherits the invariance
under Weyl rescalings and is also invariant under transverse-diffeomorphism transformations
by construction. The simplest action principle that one can think for an UG-like theory
is the UG version of the Einstein-Hilbert action:

SUG = 1
2κ2

∫
dD+1xωR (g) . (2.2)

We can also add a coupling to some matter fields which need to couple to the auxiliary
metric, i.e., the matter action will be of the form Sm (g̃,Φ), so that it remains Weyl-invariant
(note that the matter fields are not affected by Weyl transformations). The equations of
motion of this theory are the traceless Einstein equations:

Rµν(g̃)− 1
D + 1R(g̃)g̃µν = κ2

(
Tµν(g̃)− 1

D + 1T (g̃)g̃µν
)
. (2.3)
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Upon using the Bianchi identities, they become Einstein equations with the cosmological
constant entering as an integration constant [1]

Rµν(g̃)− 1
2R(g̃)g̃µν + Λg̃µν = κ2Tµν(g̃), (2.4)

provided that ∇̃µTµν (g̃) = 0.
It is clear that the Weyl invariance is trivial in the sense that its gauge fixing is trivial,

we simply need to fix the volume form given by the determinant of the metric
√
|g| to be

the background volume form. Actually, this can be done also at the level of the action. The
result is still a local action for the metric which does not contain any mention to the Weyl
symmetry. In that sense, the resulting action is the most minimalistic action that one can
conceive for a metric field. If one tried to make a gauge fixing of the remaining degrees
of freedom, one would end up with a non-local action for the actual physical degrees of
freedom encoded in the field gµν .

In this way, it seems clear that both theories display the same number of local degrees
of freedom of GR, except for the cosmological constant that we will analyze now. To put it
in other words, leaving aside the cosmological constant, from the point of view of initial
conditions, the same amount of initial data are needed to specify a solution to the equations.
The cosmological constant in this case appears with a difference, it is an additional global
degree of freedom. The simplest way to see this is from the point of view of such constant
being an integration constant. This means that it is a constant that parametrizes the space
of solutions, which is separate from the initial data required in GR. In that sense, it is a
constant to be fixed by initial conditions which makes the space of solutions of UG bigger
than the GR space of solutions, precisely by this cosmological constant as an integration
constant. This analysis can be made much more precise by making a Hamiltonian analysis
of the theory, as it has been done in [14], reaching the same conclusions.

We have concluded that UG is equivalent to GR, up to a global degree of freedom
which is precisely playing the role of the cosmological constant. To make it more explicit,
we will introduce now an additional field in GR that accounts for this global degree of
freedom, to sharpen the difference. We need to introduce a (D + 1)-form field which is the
differential of a D-form [15, 16]. Explicitly, we want to introduce a D + 1 form F which is
the differential of a D-form A. In components, this reads:

Fµ0...µD = ∇[µ0Aµµ1...µD ]. (2.5)

We can write down the action principle which is the Einstein-Hilbert action with an arbitrary
cosmological constant and a Maxwell-like term for F , namely:

S = 1
2κ2

∫
dD+1x

√
−g

[
−2Λ +R(g)− K

(D + 1)!Fµ0...µDF
µ0...µD

]
, (2.6)

where K is simply a coupling constant which can be both positive or negative. The equations
of motion for the F -field are

∇µ0F
µ0...µD = 0. (2.7)
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In a (D + 1)-dimensional manifold, a completely antisymmetric volume form like F needs
to be proportional to the ε pseudotensor. Hence, the equations of motion simply fixed the
proportionality function to be a constant, i.e.

Fµ0...µD = c
√
−gεµ0...µD . (2.8)

From the point of view of the initial value problem, this constant c is precisely a global
degree of freedom that needs to be fixed in terms of initial conditions. From that point of
view, it is akin to the cosmological constant in UG, since it is completely fixed in terms of
the initial conditions. We can sharpen the analogy by examining how does this constant
c enter the equations of motion for the metric. The energy-momentum tensor once we
evaluate the F form on shell, behaves exactly as a cosmological constant [15, 16]. Assuming
the existence of additional matter fields, the equations of motion for the gravitational field
take the following form:

Rµν(g)− 1
2R(g)gµν + Λeffgµν = κ2Tµν(g), (2.9)

where the constant Λeff is expressed in terms of the action as

Λeff = Λ +NDKc
2, (2.10)

with ND an irrelevant numerical factor depending on the spacetime dimension. In this way,
the cosmological constant entering the equations of motion for the metric are a combination
of an initial condition c and the cosmological constant Λ entering the action.

From a purely classical point of view, we have presented a theory akin to GR, exhibiting
the whole set of diffeomorphisms as gauge symmetries and containing an additional global
degree of freedom encoded in a (D+ 1)-form. The equations of motion for this volume form
enforce that it is proportional to the Levi-Civita pseudotensor, with the proportionality
constant been called here c. The constant of proportionality enters the equations of motion
for the metric as an effective cosmological constant. In this way, it plays a similar role to the
one played by the global degree of freedom of UG. Independently of the value that we assign
to the cosmological constant entering the action Λ, the resulting effective cosmological
constant entering Einstein equations Λeff is given by a combination of Λ and c. In terms of
the initial conditions, it is possible to adjust c in order to make Λeff take any desired value.
This formulation of GR with the additional (D + 1) form field is equivalent to UG, in the
sense that it displays the same amount of degrees of freedom, both local and global, and
the global degree of freedom plays the role of a cosmological constant.

At the quantum level, both formulations seem to be different from the point of view
of radiative corrections. The reason behind this mismatch is that, whereas in UG the
cosmological constant does not receive any radiative corrections and this makes it technically
natural [1, 2],1 in this formulation of GR, the cosmological constant in the action Λ

1We note that technical naturalness is a definition that only applies to coupling constants appearing
in the action. In that sense it is not completely legitimate to say that in UG the cosmological constant is
technically natural since it is not a coupling constant. However, making an abuse of language we find it
convenient to say that it is technically natural.

– 6 –



J
H
E
P
0
3
(
2
0
2
3
)
0
2
7

does receive radiative corrections, and hence it is not technically natural. However, the
cosmological constant relevant for the dynamics is the effective one Λeff that combines the
renormalized Λ with the initial value constant c. It is possible to obtain any value for the
cosmological constant Λeff independently of the potentially huge radiative corrections that
Λ may receive. The equivalence once quantum corrections are included into the picture is
unclear. Whether this formulation is then completely equivalent to UG at the semiclassical
level is something that deserves a separate and detailed study on its own.

Our point here was mainly to introduce a formulation within the GR setup that is close
to the UG version, so that both theories can be compared easily. We have made explicit
the difference existing in the global degrees of freedom of UG and GR (UG contains the
whole space of GR with arbitrary values of the cosmological constant coupling). This only
difference in the two theories, will be also the only difference appearing from the point of
view of regarding UG as the low energy EFT for massless string states.

3 String perturbation theory in trivial backgrounds

This section contains a review of the quantization of strings in a flat background as well as
the computation of string scattering amplitudes for gravitons from string theory. This is
well-known material that can be found in any textbook [17, 18]. Also we think that a reader
unfamiliarized with string theory might find here a quick introduction to the arguments
presented in the literature leading to the conclusion that GR is the EFT describing the
excitation in massless degrees of freedom. We find convenient to make such introduction
here to expand the discussion presented in [1] about how the scattering amplitudes can be
equivalently obtained from a GR and a UG-like EFT.

The starting point of our discussion of perturbative string theory is the action describing
relativistic strings propagating in flat spacetime. For relativistic free particles it is natural to
consider the action to be the proper time of the particle trajectory i.e., the embedding of the
worldline in the target space. In the same way, for strings it is natural to consider the area
swept out by the worldsheet to replace the proper time of the particle trajectory. For that
purpose, let us introduce a coordinate system in the worldsheet, a pair σa (a = 0, 1) which
correspond to the time coordinate σ0 ∈ (−∞,∞) and a spatial coordinate σ1. Furthermore,
we will restrict our attention to closed strings (those giving rise to graviton excitations) in
which the points at σ1 and σ1 + 2π are identified. If we endow the (D + 1) dimensional flat
spacetime with coordinates Xµ, we look for an action such that the area density swept by
the string is expressed in terms of derivatives of the embedding Xµ(τ, σ). We notice that
the induced metric on the worldsheet is given by

hab = ηµν∂aX
µ∂bX

ν . (3.1)

If we take the action to be the area swept out by the string, we write down the Nambu-Goto
action as

SNG[X] = − 1
2πα′

∫
d2σ
√
−h. (3.2)
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The constant α′ represents the string tension, i.e., the energy density per unit length.
Although this action is perfectly reasonable classically, from the point of view of quantization
is problematic. This is because it is not quadratic in its variables: we have a square root
appearing explicitly in the action. To circumvent this problem, one can work with the
Polyakov action, which is given by

SP [X, γ] = − 1
4πα′

∫
d2σ
√
−γγab∂aXµ∂bX

νηµν . (3.3)

In this action, there is an additional configuration variable γab which is a metric in the
worldsheet. Now, this action is clearly quadratic in the Xµ variables over which we will
path-integrate to quantize the theory. To see the equivalence among these two actions, we
can compute the equations of motion for the γab variable. Actually, following the standard
conventions, we can define a two-dimensional energy-momentum tensor as the variation of
the Polyakov action with respect to the worldsheet metric, i.e. γab:

Tab = − 1√
−γ

δSP
δγab

= 1
4πα′

[
∂aX

µ∂bX
ν − 1

2γabγ
ad∂cX

µ∂dX
ν
]
ηµν . (3.4)

The Polyakov action does not contain any derivatives of the metric γab, and hence the
equations of motion for the metric can be regarded as a constraint Tab = 0 (as a consequence,
strictly speaking it is not a dynamical variable). Actually, this constraint can be used to
solve γab in terms of the Xµ variables. When we plug the result back into the Polyakov
action, we find the Nambu-Goto action we began with.

It is worth pausing at this point and discussing the continuous symmetries of the theory:

• Poincaré invariance. This is a global symmetry on the worldsheet

Xµ → ΛµνXν + cµ. (3.5)

• Reparametrization invariance or diffeomorphism invariance in the worldsheet σa →
σ̃a(σ). Whereas the Xµ fields transform as worldsheet scalars, γab transforms as a
two-index covariant tensor:

Xµ(σ)→ Xµ(σ̃) = Xµ(σ), (3.6)

γab(σ)→ γ̃ab(σ̃) = ∂σc

∂σ̃a
∂σd

∂σ̃b
γcd(σ). (3.7)

• Weyl invariance of the worldsheet metric γab. This transformation leaves invariant
the Xµ coordinates and the metric gets a local rescaling

Xµ(σ)→ Xµ(σ), (3.8)
γab(σ)→ e2φ(σ)γab(σ). (3.9)

We can distinguish now between oriented and unoriented strings. The former have a well
defined transformation law under the parity transformation σ1 → 2π − σ1. We will focus
on the unoriented strings for the sake of simplicity.
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Not all the symmetries that we have introduced are directly preserved through the
process of quantization. Actually, the Weyl symmetry is anomalous, as it is well known.
However, in this case the Weyl symmetry is a gauge symmetry that we must insist on
preserving at the quantum level to remove unphysical states. We will further discuss this
point later when we deal with strings in general backgrounds. For the time being, let us
focus on the quantization of the theory through a path-integral procedure.

Let us illustrate the quantization of the theory through a path-integral procedure as
well as the spectrum that the theory displays. Let us define the generating functional
following the usual Faddeev-Popov procedure. First of all, we would write down the action
in Euclidean space, in order to make the quantization procedure sensible. We write down
the generating functional as

Z = 1
V (gauge)

∫
DγDXe−SP [X,γ], (3.10)

where V (gauge) represents the volume of the gauge group. We recall that we have the Weyl
rescalings of the metric and diffeomorphisms as gauge symmetries of our theory. Hence,
we need to avoid counting more than once physical configurations and that is the reason
for taking the quotient by the volume of the gauge group. As usual, we will introduce a
Faddeev-Popov determinant ∆FP [γ] to take this volume into account.

The integral over the gauge orbits cancels with the volume of the gauge group and we
reach the expression for the generating functional which is

Z[γ] =
∫
DX∆FP [γ]e−SP [X,γ]. (3.11)

Choosing a convenient normalization for the action, we can rewrite the Faddeev-Popov
determinant as

∆FP [γ] =
∫
DbDce−Sg[b,c], (3.12)

where b and c are ghosts Grassman-values that anticommute and

Sg = 1
2π

∫
d2σ
√
γbab∇acb. (3.13)

At this point, we have reduced the evaluation of the path integral for the bosonic string
theory to the evaluation of the path integral:

Z =
∫
DbDcDXe−SP [γ,X]−Sg[γ,b,c], (3.14)

which is the conformal field theory (CFT) of D + 1 scalar fields (the Xµ) and the bc-ghost
system [17, 19]. If the theory is going to preserve the Weyl invariance, we need the theory
to have a total zero central charge. This is precisely the consistency condition that we
mentioned would appear. Weyl invariance means that the trace of the two-dimensional
energy momentum tensor needs to vanish. In two-dimensions, the trace of the energy-
momentum tensor is determined by the central charge and the trace anomaly

〈T aa〉 = − c

12R [γ] . (3.15)
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The system of the Xµ-scalars and the bc-ghost system is linear, and hence the total central
charge is the sum of the central charges of the two systems independently:

c = cg + cX . (3.16)

The bc-ghost system [17] has a central charge cg = −26 while each scalar field gives a
contribution of 1 to the central charge cX = D + 1. Ensuring Weyl-invariance means that
we need the spacetime dimension to be 26. This is the well-known way in which the critical
dimension of bosonic string theory emerges.

Now that we have ensured how to preserve the gauge invariance at the quantum level
in order to make the theory consistent, it is time to talk about the spectrum of the strings.
Our point is simply to illustrate that the spectrum of the closed unoriented bosonic string
contains a tachyon, a dilaton, and a graviton. Hence, for this purpose, we can skip the
detailed BRST analysis and focus only on the states generated by the X-fields which are
the “physical fields”.

In order to characterize the spectrum, the simplest way to do it is to use the so called
state-operator map for CFTs [20, 21], in which states are replaced by operator insertions
that generate them by acting in a neighbourhood of the vacuum. For this purpose, it is
first easier to use complex coordinates σ → (z, z̄) on the worldsheet. Furthermore, we now
need the operators to be gauge invariant. The diffeomorphism invariance can be ensured by
integrating local operators O(z, z̄) over the worldsheet, i.e. constructing operators of the form

V =
∫
d2zO(z, z̄), (3.17)

with V standing for vertex operators. Weyl invariance is ensured by choosing the operators
O to transform adequately under Weyl rescalings, i.e., having a suitable weight. The
measure of integration, d2z has a conformal weight (−1,−1) under such rescalings. Hence,
O needs to be a primary operator of the CFT with weight (+1,+1) to compensate it.

The kind of operators that give rise to the lowest energy states of the string are eip·X
and Pµν∂Xµ∂Xνeip·X , with p a given momentum that we endow the string with and Pµν
the polarization tensor [17, 18]. The operator eip·X gives rise to the tachyon, since we need
to impose that −p2 = −4/α′ < 0 for the operator to be Weyl invariant. The operator
Pµν∂X

µ∂Xνeip·X corresponds to the dilaton (pure trace part of Pµν) and the symmetric part
of Pµν gives rise to the graviton, since p2 = 0 (massless condition) and pµPµν = 0 (transverse
condition) needs to be imposed to ensure the Weyl invariance. The antisymmetric part does
not appear for unoriented strings since it corresponds to the Kalb-Ramond excitation [17].

Up to this point, we have analyzed the spectrum of the closed unoriented bosonic
string theory and found that the massless states correspond to the dilaton and the graviton.
The Polyakov action per se does not give rise to interactions. We will now make a small
digression on how interactions among the massless states arise in string theory. There is
a term that we can add to the Polyakov action which is an Einstein-Hilbert term that is
purely topological in two-dimensions

Sint = λ

4π

∫
d2σ
√
γR(γ) = 2λ(1− g), (3.18)

– 10 –



J
H
E
P
0
3
(
2
0
2
3
)
0
2
7

being g the genus of the worldsheet and λ a coupling constant which we assume to be small in
order to do perturbation theory. Hence, if we add this term to the string action, we will get

Z =
∑

topologies

∫
DXDγe−SP−Sint =

∞∑
g=0

e−2λ(1−g)
∫
DXDγe−SP . (3.19)

If we call eλ = gs, as it is common, this gives a good expansion as long as gs � 1. The whole
series is known to be a divergent series as the standard perturbative series in QFT [22]. In
addition to this problem, there is a harder problem which is the finiteness of each of the
terms in the series, i.e., the path integral over the different geometries. For a fixed topology,
the path integral with the Polyakov action requires to compute a sum over the moduli
of conformally inequivalent surfaces. In general, for higher loop orders (i.e. non-trivial
topologies) this requires to perform an integral over a moduli space that is not obviously
convergent, although some results in the literature point toward its finiteness [23].

Now it comes to the point of computing some observables. The observable to compute
in string theory is the string S-matrix. This means, we plug some “in” state of the free
string spectrum and compute the probability amplitude of generating another “out” state
of free string spectrum. These states are generated by introducing their corresponding
vertex operators.

For our purposes of analyzing how GR or UG might emerge from string theory, we
are interested in computing the scattering amplitude involving m gravitons with momenta
pi and polarization tensors ei which we represent as A(m)(p1, e1; p2, e2; . . . pm, em). This
is computed as a suitable path integral for the Polyakov action SP that schematically
reads [17, 18]

A(m)(1h1 , 2h2 , . . . ,mhm) = 1
g2
s

1
Vgauge

∫
DXDg e−SP[X,g]

m∏
i=1

Vi(pi, hi), (3.20)

where Vi represents the vertex operator associated with a graviton insertion with a given
spin and momentum. To begin with, we particularize the amplitude for three gravitons and
we find

A(p1, e1; p2, e2; p3, e3) = i
gs(α′)6

2 (2π)26δ26 (p1 + p2 + p3) e1µνe2αβe3γδT
µαγT νβδ, (3.21)

where
Tµαγ = pµ23η

αγ + pα31η
γµ + pγ12η

µα + α′

8 p
µ
23p

α
31p

γ
12, (3.22)

pµij = pµi − p
µ
j . The terms of order O(α′) in Tµαγ contribute as O

(
p4) to the amplitude. If

we focus just on the lowest order terms O
(
p2), this amplitude is equivalent to the ones

computed at tree level from the Einstein-Hilbert action upon the identification κ = gs(α′)6.
The same agreement is found with amplitudes involving an arbitrary number of gravitons:
if we neglect the higher-order contribution from the string amplitude, they agree with those
computed from the Einstein-Hilbert action [17, 18], with the same identification of κ and
the string constants.
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As it has been already discussed in the literature [6, 7], the tree-level scattering
amplitudes of gravitons computed in GR and UG are identical. Hence, from the point of
view of scattering amplitudes, string theory does not point toward GR in a univocal way:
both UG and GR are equivalent from a low-energy effective field theory point of view. This
result was already advanced in [1] and we have reproduced here the analysis in more detail
for the sake of completeness. We will come back to this analysis later, when we introduce
the low energy EFTs for the massless degrees of freedom of the string: both the UG and
the GR-like actions.

4 Strings in general backgrounds

Up to now, we have only considered strings propagating in flat spacetime. However, the
spectrum of the strings contains some excitations which typically interact among themselves
and could lead to the generation of a non-trivial background. In particular, it contains a
graviton and, necessarily, gravitons need to interact gravitationally. At low energies, all
the excitations that matter are the massless ones. In the same way a laser is a coherent
state of photons, we expect that a coherent state of gravitons might look like a curved
background and a string propagating on top of it needs to be described appropiately. The
same comment applies to the dilaton field. As such, we can write down the most general
renormalizable action including those fields, which is the following non-linear σ-model

S[X,γ] =SP [X,γ]+SD[X,γ] =− 1
4πα′

∫
d2σ
√
−γ

[
γabGµν(X)∂aXµ∂bX

ν+α′R (γ)Φ(X)
]
,

(4.1)

where Gµν(X) represents a metric (graviton excitations), Φ(X) represents the dilaton
background field, and R[γ] represents the Ricci-scalar of the two-dimensional metric. This
term breaks explicitly the Weyl invariance in the worldsheet. This term is of a higher
dimension than the Weyl-invariant terms, and it does not require to be normalized with a
dimensionful constant. In virtue of the expansion in α′ that we will perform, we will cancel
the tree-level contribution to the anomaly of this last term with the one-loop contribution
of the classically Weyl-invariant terms. The result of this procedure is a reasonable effective
field theory for the massless degrees of freedom of the string.

There are two missing terms that still give rise to a renormalizable theory. The first of
these terms is the coupling to the Kalb-Ramond field. However, if we focus on unoriented
strings, we can skip it since the divergences of the rest of the terms do not require this term
to be renormalized. In case we deal with oriented strings, this term gives a contribution to
the conformal anomaly [17].

The additional term that we can add to the action corresponds to a coupling to the
background tachyon field T (X)

ST = 1
4π

∫
d2σ
√
−γT (X) . (4.2)

In principle this term is needed to cancel some of the quadratic divergences arising from
vacuum to vacuum diagrams. However, if we use a renormalization scheme such that
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those divergences are absent (for example, dimensional regularization), we can safely skip
those terms. Hence, we will work with a renormalization scheme fullfilling this property.
Furthermore, it is worth mentioning that supersymmetry in the worldsheet ensures that those
quadratic divergences are absent in superstrings due to the characteristic cancellation among
fermionic and bosonic degrees of freedom, with independence of the renormalization scheme.

4.1 Determination of the Weyl anomaly

Anomalies always appear when there are two symmetries that the theory displays at the
classical level, but it is not possible to quantize such theory preserving both of them. This
means, there is a trade-off between the two symmetries and it is only possible to preserve
one of them in the process. For example, the chiral anomaly is a trade-off between the vector
and axial currents for massless fermion fields. If we use a regularization procedure which
automatically preserves one of those currents, then straightforwardly the other current will
be anomalous. In the case of the chiral anomaly, it is standard to use a regularization
scheme that preserves gauge invariance and hence yields to the conservation of the vector
current, leading to an anomalous axial current. In the case of Weyl invariance for strings,
we are using a regularization scheme that preserves diffeomorphism invariance, while the
Weyl symmetry becomes potentially anomalous. We need to ensure that the non-linear
sigma model is chosen in such a way that it gives rise to a Weyl-invariant theory. In a
language closer to particle physics, this means that we need to choose our theory in such
a way that we cancel the potential gauge anomalies, which in this case corresponds to
choosing the background fields in such a way that the theory is not Weyl-anomalous. In the
case of the Standard Model, since it corresponds to a chiral gauge theory, arbitrary matter
fields would lead to an anomalous theory. However, the matter content is such that the
potential anomaly is absent. This is precisely what we have done in the previous section to
fix the target space dimension to be 26; otherwise, the Weyl-symmetry becomes anomalous.
In this case, we expect constraints also on the background fields entering the non-linear
sigma models, i.e., constraints that the Gµν(X) and the Φ(X) fields need to obey.

We want now to write down the most general form that the Weyl anomaly can display.
Following D’Hoker [24], it is possible to show that the structure of the anomaly for unoriented
strings in a curved background needs to be of the form

〈T a
a 〉 = βGµν(X)∂aXµ∂bX

νγab + βΦ (X)R (γ) + βVµ (X)gabD∗a∂bXµ, (4.3)

where D∗a represents the covariant derivative on the product space of the cotangent space
of the worldsheet and the tangent space of the target space, and it can be explicitly written
down as

D∗a∂bX
µ = ∂a∂bX

µ − Γcab∂cXµ + Γµνρ∂aXν∂bX
ρ, (4.4)

where Γcab are the Christoffel symbols of the metric γab and Γµνρ represent the Christoffel
symbols of the metric Gµν . The last term in the Weyl anomaly, βV can be removed through
a transformation on the Xµ fields, since we are always able to perform a local transformation
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on the Xµ fields at the same time that we perform a Weyl-rescaling of the metric. This
leaves only two independent β functionals: βG and βΦ.2

Hence we need to determine the β functionals obtained from the action (4.1). We
want to study perturbatively this action order by order in the α′ expansion, which is done
by assuming that the background fields Gµν(X),Φ(X) vary smoothly with respect to the
scale α′. It is conventional to do the computations in the background field formalism. In
this formalism, we decompose the fields Xµ in a background part Xµ

0 and its quantum
fluctuations Y µ

Xµ (σ) = Xµ
0 (σ) + Y µ (σ) , (4.5)

where the integration is now performed with respect to the quantum fluctuations instead of
Xµ. We define the effective action Γ[X0, g] following [25] as

e−Γ[X0,g] =
∫
DY e

−
[
S(X0,Y )−S(X0)−

∫
d2σY µ(σ) δS

δX
µ
0

]
, (4.6)

which is the generating functional of the Feynman diagrams relevant for the computation
of the β-functionals.

At this point, it is better to pause and mention a crucial step in the computations. The
coordinate difference does not transform in a covariant way under changes of coordinates.
Hence, in order to obtain results that are manifestly covariant, it is better to do the
computation in variables that are manifestly covariant at intermediate steps. This can
be done as follows. Imagine that the coordinates Xµ

0 correspond to a given point p0 and
the coordinates Xµ = Xµ

0 + Y µ to a point p. If both points are close enough, there exists
only one geodesic with respect to Gµν connecting both of them. Hence, we can replace the
coordinate difference Y µ which characterizes the point p by the tangent vector tµ of the
geodesic at the point p0, which transforms covariantly under changes of coordinates. Hence,
it is better to use this vector as the integration variable in the path integral.

In fact, we can use this tangent vector tµ to perform a covariant Taylor expansion
based on Xµ

0 of an arbitrary tensor living in the target manifold. To put it explicitly, any
tensor Tµ1...µn(X) can be expanded as

Tµ1...µn(X0 + t) =
∞∑
k=0

T (k)
µ1...µnν1...νk(X0)tν1 . . . tνk , (4.7)

where each of the terms T (k)
µ1...µnν1...νk is a combination of covariant derivatives of the tensor

Tµ1...µn and contractions with curvature tensors evaluated at X0. This expansion can be
achieved with the help of the normal coordinate expansion although we emphasize that
it remains valid in an arbitrary coordinate system since it is a tensor expression. We
are interested in the expansion of the tensors Gµν ,Φ(X) (the latter is a trivial tensor,
i.e. a scalar), and the object ∂a (Xµ

0 + Y µ). These expansions can be obtained after a

2For oriented strings there will be another β-functional associated with the Kalb-Ramond field.
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straightforward computation, see [25] for details:

Gµν(X) = Gµν(X0) + 1
3Rµρσνt

ρtσ + . . . , (4.8)

Φ(X) = Φ(X0) +∇µΦ(X0)tµ + 1
2∇µ∇νΦ(X0)tµtν + . . . , (4.9)

∂a (Xµ
0 + Y µ) = ∂aX

µ
0 +∇atµ + 1

3R
µ
νρσ∂aX

σ
0 t
νtρ + . . . , (4.10)

where Rµνρσ represents the Riemann tensor associated with Gµν .
We are not ready to perform the diagrammatic computation yet. There is a problem

arising from the fact that the term that gives us the propagator for the quantum fields over
which we integrate, tµ, contains an arbitrary metric in front of it, i.e. we need to invert a
term that looks like Gµν(X0)∇atµ∇btν . The way to deal with this problem and obtain a
simple propagator is to introduce a vielbein eAµ(X0) which fulfills the property

eAµ(X0)eBν(X0)ηAB = Gµν(X0), (4.11)

with ηAB a Lorentzian metric. In this way, we can rewrite all the vector expressions in
the non-holonomic basis eAµ and get a trivial propagator for the tA = eAµt

µ fields. This
comes with a subtlety, because now the derivatives ∇a involve the spin-connection of the
spacetime ω AB

µ ; for example,

∇atA = ∂at
A + ω AB

µ ∂aX
µ
0 t
CηBC . (4.12)

Obtaining a trivial propagator means breaking the SO(D, 1) invariance that the theory
displays, but since we are working in a formalism that is explicitly gauge covariant, we
automatically know that there will always be contributions in the diagrammatic expansion
that make the theory explicitly gauge covariant in intermediate steps. Up to this point,
collecting all the information, we have performed the following expansion for the Polyakov
piece of the action:

SP = SP [X0] + 1
2πα′

∫
d2σ
√
γγabGµν(X0)∂aXµ

0∇bt
ν

+ 1
4πα′

∫
d2σ
√
γγab

[
ηAB∇atA∇btB

]
+ 1

3πα′
∫
d2σ
√
γγabRµABC∂aX

µ
0 t
AtB∇btC

+ 1
12πα′

∫
d2σ
√
γγabRABCDt

BtC∇a∇atA∇btD, (4.13)

and for the dilaton part we have the trivial structure:

SD[X0 + t] = SD[X0]− 1
8π

∫
d2σ
√
γ∇AΦ(X0)tA

− 1
16π

∫
d2σ
√
γ∇A∇BΦ(X0)tAtB + . . . . (4.14)

We recall that we can safely impose the equations of motion for the classical fields and
safely drop the linear terms. This is tantamount to a legitimate field redefinition.
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Now we can determine the trace anomaly, see eq. (4.3) from the effective action
introduced above. The computation requires to go to the next higher order in loops in the
dilaton field, since the piece of the action for the dilaton field α′ comes with an additional
α′ with respect to the other field. The computation is rather lengthy and hence we do not
reproduce it here [25]. We simply write down the result as

βGµν = Rµν (G)−∇µ∇νΦ +O
(
α′
)
, (4.15)

βΦ = D − 26
6 + α′

[
−R (G) + 2∇2Φ + (∇Φ)2

]
+O

(
α′2
)
. (4.16)

A comment is in order now. If we are dealing with a flat worldsheet, the vanishing of βG is
enough to ensure the Weyl invariance at the quantum level, as long as we are working in
D = 26 dimensions, the critical dimension (see eq. (4.3). Hence, in principle, we expect that
the same applies to non-flat worldsheets, i.e. that the condition βΦ = 0 is not independent
of βG = 0. Actually, we have a non-trivial constraint coming from the Bianchi identity

∇µ
(
Rµν (G)− 1

2R (G)Gµν
)

= 0. (4.17)

This ensures that we have to the computed order the following identity whenever βGµν = 0

∇µβGµν = ∇νβΦ = 0, (4.18)

as can be seen by direct calculation. This implies that βΦ is a constant as long as βG = 0.
By continuity, this automatically implies at this level that βΦ = 0 for D = 26 [25]. From
now on we will restrict ourselves to work in D = 26 and make a comment on strings on
non-critical dimension later.

4.2 Including string-loop corrections

At this point, we have only focused on the zeroth-order in the gs-expansion. Although it
is clear that string loops should modify the results, it is not completely clear how those
corrections must be included. One of the most accepted proposals is the Fischler-Susskind
approach [8–10]. The idea behind such mechanism is that string loop divergences can be
absorbed through a renormalization of the background fields in the non-linear sigma models.
Let us illustrate this explicitly for unoriented closed bosonic strings. For the purpose of
this section, it is simpler to work with a sharp cut-off as regularization scheme.

The divergences in string loops appear when we have to sum over conformally inequiva-
lent surfaces of a fixed topology (i.e. genus). For a fixed but arbitrary topology (i.e. we focus
here on non-trivial topologies), this sum is an integral over a finite-dimensional parameter
space, the so-called Teichmüller space [17, 18]. These integrals are divergent, but these
divergences arise from handles that shrink to zero size. These divergences are equivalent to
the divergences coming from inserting a local operator on the trivial-genus worldsheet. In a
flat spacetime, the divergence appearing for the torus topology can be eliminated through
the insertion of an operator log Λ

2π γabηµν∂aX
µ∂bX

ν , with a suitable coefficient. Here Λ is a
suitable cut-off in the Teichmüller space.
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If we move to a curved geometry Gµν with a non-trivial zero mode of the dilaton
field Φ, we need to substitute the metric Gµν and include a relative factor e−Φ to account
for the dependence of the path integral on the topology of the surface. We recall that the
asymptotic value of the dilaton field λ = 〈Φ〉 is identified with the string coupling constant
gs = eλ through an exponential relation, as it can be seen by comparison of the actions in
eq. (4.1) and eq. (3.18) [17, 18]. Explicitly for the first non-trivial order (torus topology)
we have the following divergences:

δSloop = log Λ
2π

∫
d2σ
√
−γγabe−ΦGµν(X)∂aXµ∂bX

ν . (4.19)

The e−Φ factor ensures that, when evaluated on the trivial topology on the worldsheet, it
captures the divergences in the torus. If the dilaton field displays a non-trivial background
profile Φ(X), not only a zero mode λ, we expect that replacing Φ with Φ(X) would lead
to a first term in an α′ expansion of the term. This term modifies the β-functional (we
will refer from now on to those β-functionals modified due to the presence of string loop
corrections as β̃) associated with the metric through the addition of a term δβGµν to the
functional βGµν above

β̃Gµν = βGµν + δβGµν , (4.20)

which looks like a cosmological constant term, i.e.

δβGµν = Ce−ΦGµν , (4.21)

where C is an arbitrary constant that arises in the renormalization procedure. On equal
footing, an additional contribution to the dilaton, which we call δβΦ will also appear,
although it is hard to evaluate explicitly. Instead, it is easier to obtain it by applying a
consistency argument [8–10]. As we have argued above, in principle the vanishing of the
modified β̃Φ-functional through string loop corrections is not independent of the vanishing
of the β̃Gµν functional. As we have seen, in the CFT computation, it being constant is
precisely a consequence of the vanishing of the remaining β-functionals. By this consistency
condition, it is possible to derive an equation for the β̃Φ-function.

Taking the divergence of the β̃Gµν and simplifying it through Bianchi identities and using
also the vanishing of β̃Gµν itself, we find:

∇µβ̃Gµν = ∇ν
(1

2R (G)−∇2Φ− 1
2 (∇Φ)2

)
(4.22)

This leads us to the following β̃Φ functional for the dilaton field:

β̃Φ = α′
[
−R (G) + 2∇2Φ + 1

2 (∇Φ)2
]
, (4.23)

which knowing that is a constant, can be safely chosen to be equal to zero. In case that we
were dealing with strings in non-critical dimension, an additional D− 26/6 factor should be
included arising from the bc-ghost system contribution to the Weyl-anomaly at the string
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tree level. Notice that we have introduced α′ as a dimensionful parameter. Once we have
reached this point, it is better to pause and recapitulate what we have done until now.
We began analyzing the α′-expansion of the sigma model describing the propagation of
strings in arbitrary backgrounds. We determined the β-functionals of the Weyl anomaly to
the lowest order. Then we jumped into the problem of including string-loop corrections
that should clearly modify the constraints that the background fields should obey. For the
purpose of including such corrections, we noticed that the divergences arising from the
string loops can be absorbed into a renormalization of the background fields Gµν and Φ.
Hence, up to this point we have found a set of equations that these background fields need
to obey for the consistent propagation of the strings.

4.3 EFTs for the theory

The consistency equations that we found arising from the Weyl anomaly cancellation and
the cancellation of the divergences from string loop corrections resemble a lot the equations
of motion of a given field theory for Gµ(X) and Φ(X):

β̃Gµν = Rµν (G)−∇µ∇νΦ + Ce−ΦGµν +O
(
α′
)
, (4.24)

β̃Φ = D − 26
6 + α′

[
−R (G) + 2∇2Φ + (∇Φ)2

]
+O

(
α′2
)
. (4.25)

Setting C = 0 corresponds to omitting the string loop corrections. The natural question is
then whether it is possible to obtain an effective action whose dynamics correctly reproduce
these equations. In addition, such effective action needs to correctly account for the
scattering amplitudes involving only massless excitations of the string (to the lowest order
in the α′ expansion) in order to be a sensible action. There are (at least) two effective
actions that fullfill these criteria: match the scattering amplitudes involving gravitons and
dilatons and their equations of motion give rise to the β-functionals. These two actions
correspond to a GR-like EFT and a UG-like EFT. The GR-like EFT can be given as:

SGR
eff = 1

2κ2

∫
dD+1X

√
−GeΦ

(
−(D−26)

6α′ −2Ce−Φ+R (G)+(∇Φ)2
)

+O
(
α′
)
. (4.26)

From this action principle it is straightforward to obtain the β-functionals as

β̃Φ = −2κ2 e−Φ
√
−G

δSGR
eff
δΦ , (4.27)

β̃Gµν = 2κ2 e−Φ
√
−G

(
δSGR

eff
δGµν

+ 1
2Gµν

δSGR
eff
δΦ

)
. (4.28)

Furthermore, it is possible to perform a field redefinition to map this action to the Einstein
Frame [18].

Following [1] we know that it is also possible to write down an action principle which
reproduces the same equations of motion that eq. (4.26) displays, with the cosmological
constant C entering as an integration constant instead of a coupling constant. To be
concrete, we can write down the following action principle:

SUG
eff = 1

2κ2

∫
dD+1XωeΦ

(
−(D − 26)

6α′ +R(G̃) + (∇̃Φ)2
)

+O
(
α′
)
. (4.29)
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If we compute the variation with respect to Gµν we obtain the traceless version of the
equations obtained from eq. (4.26). Explicitly, if we define

δSUG
eff

δGµν
= Kµν (G)− 1

2K (G) , (4.30)

for the variation of SUG
eff we obtain the following:

δSUG
eff

δGµν
= Kµν(G̃)− 1

D + 1K(G̃)G̃µν = 0, (4.31)

with K(G̃) = G̃µνKµν(G̃). Upon taking the divergence and using the generalized Bianchi
identities for the corresponding tensor K entering the equations (see [1] for further details)
we find:

Eµν = Kµν(G̃)− 1
2K(G̃)G̃µν + CG̃µν = 0. (4.32)

Again, a suitable combination of these equations with the equation obtained from the
equation of motion for Φ we find:

β̃Φ = −2κ2 e
−Φ

ω

δSUG
eff
δΦ , (4.33)

β̃Gµν = 2κ2 e
−Φ

ω

(
Eµν + 1

2G̃µν
δSeff
δΦ

)
, (4.34)

confirming our claim that the Unimodular Gravity action (4.29) reproduces the β-functionals.
Notice that this effective action does not only reproduce the β-functionals but it also
reproduces all of the scattering amplitudes involving massless excitations of the string
(graviton and dilaton asymptotic states), as derived following the procedure sketched in the
previous section. In that sense, both actions reproduce the desired properties and hence
none of them is preferred over the other one from the perspective of using them as EFTs
for the massless modes of the string.

5 Conclusions

We have analyzed the embedding of UG in string theory from the point of view of the
consistent quantization of the strings in an arbitrary background. Furthermore, we have
followed the proposal by Susskind and Fischler towards cancelling divergences arising from
string loops with suitable counterterms in the non-linear sigma model. Our analysis here
does not unveil any preference for UG or GR as a low energy description of string theory.
This ties up the loose ends that were not analyzed in [1], regarding the embedding of UG
in string theory. To put it explicitly: both UG and GR are equally valid as low energy
descriptions of the massless modes of string theory and none of them seems to be preferred
over the other one.

Regarding future directions of work, we recall that our analysis here has focused on
bosonic string theory. At first sight, the extension to superstring theory seems straightfor-
ward although subtleties may arise in a careful study. Previous considerations of supergravity
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in a UG-like context suggest that some of the vacua may spontenously break SUSY and
hence both theories may develop a potential inequivalence at the quantum level [26–28].
Although there is no analysis of the global degrees of freedom in such contexts, it should be
mentioned that it seems possible that a careful implementation of SUSY in that contexts
requires also from a fermionic global degree of freedom, which is the responsible for the
apparent SUSY-breaking presented there.

A second direction of work that is worthwhile exploring is that of non-perturbative
definitions of string theory and its interplay with UG. For instance, the gauge/gravity
correspondence (also called usually AdS/CFT) [29–31] and matrix models [32], among them
probably we could highlight the BFSS matrix model [33]. In such contexts, we have not
explored whether it is easy or not to accomodate a UG principle instead of a GR principle.

String Field Theory (SFT) provides a framework in which it is possible to analyze
some features of string theory in a simpler way [34, 35]. For our purpose of discerning
whether UG or GR are preferred somehow as the EFTs for the massless string states, it
is clear that we have to concentrate on Closed String Field Theory (CSFT) since closed
strings are the ones carrying the graviton excitations. There are in principle two ways in
which CSFT can shed light on this problem. The first of them is through the study of some
non-perturbative formulation of the theory. However, as far as we know, there does not
exist any analysis of non-perturbative effects in CSFT that can be used to discern whether
UG or GR is preferred over the other one. The second way is the study of background
independence of string theory. CSFT has been shown to be background independent in
the following sense: although the quantization of the worldsheet requires that we choose
a given particular background to which we associate the worldsheet CFT, from the point
of view of SFT, all of them are related through a string field redefinition as long as they
correspond to marginal deformations [36]. However, although this tells us that the different
CFTs formulated in different backgrounds are equivalent, it is still possible to write down
an effective action for the massless string states that includes a background structure: the
background independence only refers to the fact that the worldsheet formulation depends
on a background structure. Thus, further work in this direction is required to understand
whether a UG principle is preferred over a GR principle.
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