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1 Introduction and general setup

Anomalous transport [1–6] is known to be operative in a variety of physical setups where
chiral imbalance is present (see also [7, 8] for reviews). Among them is nuclear matter [9–15]
and in particular the dynamics of the quark-gluon plasma experimentally produced in heavy
ion collisions [16–23], where chirality imbalance may results from vacuum configurations with
nonzero topological number [24, 25]. This points to the possibility of detecting nondissipative
charge transport induced either by a magnetic field or a nonzero fluid vorticity, a current
undertaking in experimental studies of heavy ion collisions [26–30].

Historically, strangeness production played a key role in the early attempts to find exper-
imental signatures of quark-gluon plasma production [31]. Strangeness difussion, however, is
not disentangled from that of the electric and baryon charges, as a gradient in the density of
one of them induces dissipative diffusion in the others [32]. In this short note, we explore
nondissipative transport of strangeness in nuclear matter, modelized as a chiral hadronic fluid
with three flavors in equilibrium and coupled to an external axial-vector gauge field affected
by a ’t Hooft anomaly, thus implementing chiral imbalance in the medium.

The addition of a third flavor, besides making calculations more involved with respect to
the Nf = 2 case studied in [33], raises an important physical issue. It concerns the justification
of the chiral approximation in the case of the strange quark, whose mass is similar to the
effective temperature of the plasma, ms/T ∼ 1/3. As a result, chirality flip due to the strange
quark mass would result in a dissipation of chirality in the sector with nonzero strangeness,
effectively decoupling the strange quark from chiral transport which would be fully dominated
by the two light flavors. It was argued however in [34, 35] that finite mass effects scale rather
like (ms/T )2, bringing about a stronger suppression of chirality dissipation and making the
three-flavor approximation a reliable starting point for the analysis of the system.

Keeping this in mind, we study the constitutive relations of the strangeness current, as
well as the effect of the strange flavor on other currents. Our model consists in a fermion
fluid coupled to Abelian vector and axial-vector external gauge fields denoted respectively
by V and A. In flavor space, the associated vector field one-forms are expanded in the basis
spanned by the baryon number (B), electric charge (Q), and strangeness (S) matrices, given
in terms of the Gell-Mann matrices λa (a = 1, . . . , 8) and the 3 × 3 identity matrix 1 by

B = 1
31, Q = e

2

(
λ3 + 1√

3
λ8

)
, S = 1√

3
λ8 −

1
31, (1.1)

– 1 –



J
H
E
P
0
1
(
2
0
2
4
)
1
7
4

with e the elementary charge. The isospin matrix I, on the other hand, is obtained from the
previous ones through the Gell-Mann–Nishijima relation 1

e Q = 1
2(B + S) + I.

In addition to this, all form fields will be written using the electric-magnetic decomposition
with respect to the fluid four-velocity u. For the vector gauge field, we have

V = V Q + iu
(
µBB + µQQ + µSS

)
≡ VM + uVE , (1.2)

where V is the magnetic piece of the electromagnetic one-form potential and µB , µQ, and µS

are the baryon number, charge, and strangeness chemical potentials respectively. Regarding
the axial-vector gauge field, on the other hand, we follow [33, 36] and take it to be purely
electric and proportional to the identity matrix

A = iuµ51 ≡ uAE , (1.3)

with µ5 the chiral chemical potential controlling chiral imbalance in the system. Moreover,
the time component of the axial-vector gauge fields is taken to be constant, which amounts
to the condition (

d + a
)
µ5 = 0, (1.4)

where a ≡ ıudu is the fluid acceleration one-form, expressed here in terms of the differential
forms interior product [37]. Using all previous relations, the field strengths of the vector
and axial-vector gauge fields can be written as

FV = 2iµBωB + BQ + 2iµSωS − iuT

[
d

(
µB

T

)
B + d

(
µQ

T

)
Q + d

(
µS

T

)
S

]
≡ FV + uEV ,

FA = 2iµ5ω1 ≡ FA, (1.5)

where ω = 1
2(du + ua) is the vorticity two-form, T is the equilibrium local temperature,

and B = dV + 2iµQω denotes the magnetic field two-form.1

After these preliminaries, we are ready to start discussing a hadronic fluid in the
symmetric phase. The method to be employed here is the same one devised in ref. [36],
and applied in [33] to the case of a two-flavor hadronic fluid. Our departing point is the
Abelian Bardeen Chern-Simons form

ω0
5(A,FV ,FA) = − i

4π2 Tr
[
A

(
F2

V + 1
3F

2
A

)]
, (1.6)

from where the equilibrium partition function Weq is computed by applying the Mañes-Stora-
Zumino transgression formula [40] to a one-parameter family of connections interpolating
between V = V Q, A = 0 and the configuration given in eqs. (1.2) and (1.3) (see [33, 36] for
full details). The resulting partition function has the structure Weq = Wbulk + Wbdy, where
the first (nonlocal) piece defined on the five-dimensional bulk M5 has the form

Wbulk = − i

4π2

∫
M5

uTr
{
AEF 2

A + AEF 2
V + 2VEFAFV

−2
[
FA

(
A2

E + V2
E

)
+ 2FV AEVE

]
ω + 4

3AE

(
A2

E + 3V2
E

)
ω2

}
. (1.7)

1Here we follow the conventions of [33, 36], with the only exception that our definition of the magnetic
field includes the vorticity-dependent term 2iµQω (see also [38, 39]).
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The local term Wbdy, on the other hand, is defined on the boundary ∂M5, identified with
the physical spacetime, and in our case it can be shown to be zero. This is a consequence of
having chosen a purely electric axial-vector gauge field in eq. (1.3). Notice that, since in the
following we are going to be concerned only with the constitutive relations of vector currents,
there is no problem in setting A = 0 in the effective action before taking any variations.

2 The strangeness covariant current

The vector and axial-vector (dual) covariant currents are computed by varying the bulk piece
of the equilibrium partition function with respect to the field strengths FV and FA and
keeping the boundary contributions [33, 36, 38]. For the vector current, the result is

⟨⋆JV ⟩cov = i

2π2 u
(
AEFV + FAVE − 2AEVEω

)
= − 1

2π2 µ5u
(
2iµBωB + BQ + 2iµSωS

)
. (2.1)

To compute the strangeness current from here, we take the trace of the product of the
vector current with the strangeness matrix, ⟨⋆JS⟩cov = Tr

(
S⟨⋆JV ⟩cov

)
. Since the dual

vector current (2.1) is purely electrical, taking a further Hodge dual leads to a four-vector
whose covariant time component vanishes, ⟨JS,0⟩cov = 0, whereas the contravariant spatial
components are given by

⟨J i
S⟩cov = Nc

6π2 µ5
(
2µBωi + eBi − 6µSωi

)
, (2.2)

with Nc the number of colors. In addition, Bi and ωi are expressed in terms of the components
of the two-forms B and ω introduced above by

Bi = 1
2ϵijkBjk,

ωi = 1
2ϵijkωjk. (2.3)

The result for the strangeness current in the symmetric phase shows the existence of chiral
nondissipative transport of strangeness charge driven by both an external magnetic field
and fluid vorticity.

To gain some further physical insight about the different terms in (2.2), we have to take
into account that the strange quark carries both baryon and electric charge, so strangeness
transport is entangled with the transport of the other two charges. From a formal viewpoint,
this results from the nonorthogonality of the {B, Q, S} flavor basis. Going back to eq. (2.1),
we notice that the term containing the magnetic field comes from the contribution proportional
to Tr (QS1), whose origin is a triangle diagram with one axial-vector, one electromagnetic,
and one strangeness current insertion. Nondissipative transport of strangeness associated
with this term is therefore consequence of the standard chiral magnetic effect affecting the
strange quarks. Something similar happens with the vortical baryonic contribution, stemming
from a term proportional to Tr

(
SB1

)
. Its diagrammatic origin lies in a triangle with one

axial-vector, one baryonic, and one strangeness currents. Here again, the chiral vortical effect
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for the baryonic current (cf. the results of ref. [33]) induces strangeness transport due to
the nonzero baryon number of the strange quark. The upshot of all previous considerations
is that the only “genuine” anomalous strangeness transport comes from the vortical term
in (2.2) weighted by the strangeness chemical potential µS , originated in a triangle diagram
with one axial-vector and two strange current insertions, whose flavor factor is Tr

(
S21

)
.

The Bardeen-Zumino (BZ) currents, on the other hand, can be evaluated from the
Chern-Simons form (1.6) using the explicit expressions given in ref. [36]. In particular, we
find that in our case the BZ vector current is identical to the corresponding covariant current

⟨⋆JV ⟩BZ = ⟨⋆JV ⟩cov, (2.4)

in agreement with the fact that the boundary partition function is zero and so are all
consistent vector currents.2

Let us now turn to the analysis of the system after chiral symmetry breaking. The
computation of the covariant currents in this phase can be carried out by the appropriate
transformation of the BZ currents in the symmetric phase using the Nambu-Goldstone boson
matrix U , as shown in eqs. (6.26) and (6.29) of ref. [36]. This matrix is parametrized in
terms of the pion, kaon, and η8-meson fields by

U = exp

 i
√

2
fπ


1√
2π0 + 1√

6η8 π+ K+

π− − 1√
2π0 + 1√

6η8 K0

K− K
0 −

√
2
3η8


 , (2.5)

where fπ ≈ 92 MeV is the pion decay constant. Unlike in the unbroken phase studied
earlier where the (dual) currents were purely electrical, now the vector and axial-vector
currents have both electric and magnetic components. Here we are ultimately interested in
the contravariant spatial components, so we only need to evaluate the electric part of the
corresponding three-form currents, the magnetic parts giving the covariant time components
upon taking the Hodge dual. The calculation is long and involved but follows the same steps
detailed in ref. [33]. It leads to the following result for the covariant strangeness current

⟨J i
S⟩cov = Nc

6
√

3π2fπ

Tϵijk∂jη8∂k

(
µB

T

)
− eNc

6
√

3π2fπ

Tϵijk∂jη8∂k

(
µQ

T

)
− Nc

2
√

3π2fπ

Tϵijk∂jη8∂k

(
µS

T

)
+ Nc

6π2f2
π

µ5ϵijk
[
i∂jK+∂kK− + eVj∂k

(
K+K−)]

− eNc

3π2f2
π

µ5K+K−(eBi + µQωi) + iNc

6π2f2
π

µ5ϵijk∂jK0∂kK
0 (2.6)

+ Nc

3π2f2
π

µ5µS

(
K+K− + K0K

0)
ωi + Nc

6π2 µ5
(
eBi + 2µBωi − 6µSωi

)
,

where Vi are the components of the electromagnetic potential and we have dropped terms of
third order and higher in the meson fields. Notice that, despite the explicit appearance of
the electromagnetic potential, the previous expression remains gauge invariant.

2The consistent axial-vector current, however, is nonzero, since the magnetic part of the axial-vector gauge
field in the boundary partition function cannot be set to zero prior to taking variations with respect to A.
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To check that the anomalous strangeness transport encoded in the constitutive re-
lations (2.2) and (2.6) is indeed a nondissipative phenomenon, we look at whether the
different transport coefficients remain invariant under the time reversal operation T. From
the transformation of the classical Nambu-Goldstone matrix field (2.5), T : U → U † (see,
for example, [41]), we find T : (π0, η8) → (−π0,−η8), T : (π±, K±) −→ (−π∓,−K∓),
and T : (K0, K

0) → (−K
0
,−K0), whereas the vorticity and the gauge and magnetic fields

satisfy T : (ωi, Vi, Bi) → (−ωi,−Vi,−Bi). Combining these transformations with the one
for the strangeness current, T : J i

S → −J i
S , we conclude that all transport coefficients in

eqs. (2.2) and (2.6) are T-even.3 Notice that all chemical potentials are invariant under
time reversal, since they are proportional to the time component of the corresponding
background gauge fields.

The first three terms in (2.6), driven by the gradients of the chemical potentials, can be
interpreted as describing nondissipative strangeness diffusion. Unlike the dissipative case
studied in [32] in which the current points along the gradient, this is mediated by the gradient
of the T-odd η8-meson and is itself normal to the charge gradient. Interestingly, these are the
only contributions surviving in the absence of chiral imbalance. In fact, all terms in (2.6),
apart form the ones depending on µS have to be interpreted as resulting from the mixing
between strangeness S and electric charge Q and baryon number B. Notice however the
conspicuous absence of terms depending on the meson fields and proportional to the baryon
chemical potential µB, indicating that baryon anomalous transport only contributes to the
strangeness covariant current through the meson-independent BZ terms.

3 Other currents

A nonvanishing strangeness chemical potential µS also has effects on the constitutive relations
of other currents. In the unbroken phase, an explicit evaluation of the electromagnetic
current ⟨Jem⟩cov = Tr

(
Q⟨JV ⟩cov

)
shows the existence of a chiral vortical effect mediated

by µ5µS

⟨J i
em⟩cov = eNc

3π2 µ5
(
eBi − µSωi

)
. (3.1)

While the first, chiral magnetic effect term has its source in the standard triangle diagram with
one axial-vector and two electromagnetic currents, the second one has the same diagrammatic
origin as the first term in eq. (2.2). A further peculiarity of Nf = 3 is that Tr Q = 0, which
removes from the constitutive relations of the electromagnetic covariant current a vortical
term proportional to the baryon number chemical potential µB, that is however present
for Nf = 2 (notice that this contribution was not explicitly computed in ref. [33], where the
baryon chemical potential was set to zero from the start).

3These same transformations, together with the T-odd character of the electromagnetic and baryonic
currents, imply as well the nondissipative character of the anomalous transport phenomena to be analyzed in
the next section, both in the symmetric and the broken phases (cf. the discussion of the two-flavor case in
ref. [33]).
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In the broken phase, the electromagnetic and baryon currents are obtained along the
same lines as the strangeness current shown in eq. (2.2). For the first one, we find

⟨J i
em⟩cov = eNc

12π2fπ
Tϵijk

(
∂jπ0 + 1√

3
∂jη8

)
∂k

(
µB

T

)

+ e2Nc

12π2fπ
Tϵijk

(
∂jπ0 + 1√

3
∂jη8

)
∂k

(
µQ

T

)
− eNc

6
√

3π2fπ

Tϵijk∂jη8∂k

(
µS

T

)
− eNc

3π2f2
π

µ5
(
π+π− + K+K−

)(
eBi + µQωi)

+ eNc

6π2f2
π

µ5ϵijk
[
i
(
∂jπ+∂kπ− + ∂jK+∂kK−

)
+ eVj∂k

(
π+π− + K+K−

)]
(3.2)

+ eNc

3π2f2
π

µ5µSK+K−ωi + eNc

3π2 µ5
(
eBi − µSωi

)
.

Again, the first three terms proportional to the chemical potentials gradients give rise to
a nondissipative transverse diffusion of electric charge, similar to the corresponding effect
spotted in the constitutive relations for the strangeness covariant current (2.6). As for
the remaining contributions, only the terms proportional to µ5µS represent electric charge
transport induced by the anomalous transport of other conserved charges, in this case
strangeness (here, as a consequence of Tr Q = 0, there are no contributions resulting from
the mixing between electric and baryonic charges). Finally, the meson-independent term is
the BZ electromagnetic current that, as we explained above, coincides in our model with the
covariant electomagnetic current in the symmetric phase given in eq. (3.1).

We complete our analysis with the calculation of the constitutive relations for the baryonic
covariant current. In the symmetric phase, the result is

⟨J i
bar⟩cov = − Nc

3π2 µ5
(
µB − µS

)
ωi. (3.3)

Here we find a vortical effect similar to the one encountered in the electromagnetic current (3.1)
proportional to µ5µS , this time in combination with the one driven by a nonvanishing baryonic
chemical potential. Thus, a nonzero strangeness chemical potential gives rise to a vortical
term proportional to Tr (B1S), originating in a triangle with an axial-vector, a baryonic,
and a strangeness current. Once more, the identity Tr Q = 0 eliminates any electromagnetic
contribution to the anomalous transport of the baryonic charge.

Chiral symmetry breaking adds transverse nondissipative diffusion terms to the con-
stitutive relation for the baryonic current, driven by the gradients of the electric charge
and strangeness chemical potentials

⟨J i
bar⟩cov = eNc

12π2fπ
Tϵijk

(
∂jπ0 + 1√

3
∂jη8

)
∂k

(
µQ

T

)
+ Nc

6
√

3π2fπ

Tϵijk∂jη8∂k

(
µS

T

)

− Nc

3π2 µ5
(
µB − µS

)
ωi. (3.4)

Notice the absence in this case of meson-dependent contributions proportional to the chiral
chemical potential µ5.

– 6 –



J
H
E
P
0
1
(
2
0
2
4
)
1
7
4

4 Closing remarks

We studied the anomalous transport of strangeness in a chiral hadronic fluid with three
flavors at equilibrium, analyzing the cases where chiral symmetry is preserved and sponta-
neously broken. In the symmetric case, our main conclusion is that there are nondissipative
mechanisms of strangeness transport driven by vorticity and an external magnetic field.

After chiral spontaneous symmetry breaking, we found a number of contributions to the
constitutive relations mediated by the meson fields and/or their gradients. More remarkably,
we showed how all three currents (2.6), (3.2), and (3.4) contain terms that survive the limit
of vanishing chiral imbalance (µ5 → 0), depending on the gradients of the three chemical
potential. This can be interpreted as describing transverse nondissipative diffusion in the
chiral hadronic fluid (i.e., normal to the direction set by the charge gradient). As a matter
of fact, the contributions mentioned can be written in a way very much reminiscent of the
structure found in [32] for dissipative diffusion


⟨J⃗bar⟩cov

⟨J⃗em⟩cov

⟨J⃗S⟩cov


∣∣∣∣∣∣∣∣
µ5=0

=


κ⃗BB κ⃗BQ κ⃗BS

κ⃗QB κ⃗QQ κ⃗QS

κ⃗SB κ⃗SQ κ⃗SS

×


∇⃗

(µB
T

)
∇⃗

(µQ

T

)
∇⃗

(µS
T

)
 , (4.1)

where the notation indicates the matrix product should be carried out using the three-
dimensional vector cross-product between the corresponding entries. The calculations pre-
sented above show that most entries in the (vectorial) diffusion coefficient matrix are nonzero
and determined by the gradients of the π0 and η8 meson fields, namely

κ⃗BB = 0⃗,

κ⃗QQ = eκ⃗QB = eκ⃗BQ = e2Nc

12π2fπ
T ∇⃗

(
π0 + 1√

3
η8

)
, (4.2)

eκ⃗SS = 3κ⃗QS = 3κ⃗SQ = −3eκ⃗BS = −3eκ⃗SB = − eNc

2
√

3π2fπ

T ∇⃗η8.

We see that, as in the dissipative case, anomaly-mediated diffusion mixes the different gradients
among themselves. This is again a consequence of the use of a nonorthogonal basis of conserved
charges, which implies microscopic degrees of freedom carry all three quantum numbers.
Notice moreover that all terms in (4.1) have their origin in the axial anomaly responsible for
the electromagnetic decays of neutral Nambu-Goldstone mesons π0 → 2γ and η → 2γ.

Since this mixed nondissipative transport of conserved charges is at work even in the
absence of chirality imbalance, it would be interesting to explore this phenomenon in more
precise modelizations of the quark-gluon plasma in order to decide whether they can be
detected in current heavy-ion collision facilities. To the extend that the model used here
provides a reliable description of the physics of quark-gluon plasma produced in heavy ion
collisions, our results might point to a novel way of searching for nondissipative phenomena
in these physical systems by focusing on strangeness transport.
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