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1 Introduction

Both anti-de Sitter (AdS) and linear dilaton (LD) spacetimes are holographic. Observables
defined in a given asymptotic region of these spacetimes can, at least for certain dimensions,
be equivalently described by a dual theory with one dimension less and no gravity. This
fact is obtained from string theory by taking appropriate decoupling limits of certain brane
configurations. For AdS, this leads to the string-derived AdS5/CFT4 duality [1], while the
seven-dimensional linear dilaton background (LD7) is dual to little string theory (LST) [2, 3].1

At subPlanckian energies, holography of the AdS and LD spacetimes can alternatively
be explored using general relativity and effective field theory (EFT). A successful approach

1LST is a 6D string theory on a stack of NS5 branes with gs → 0 [4]. It is an interacting theory of noncritical
strings which is nonlocal, has no massless graviton, and has Hagedorn density of states at high energy [5, 6].
Lower-dimensional versions of this LD7/LST6 duality can be obtained via spatial compactifications, e.g. a
simple toroidal T2 compactification gives rise to the phenomenological theories LD5/LST4, see e.g. [7].
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is to place a brane in the spacetime and to study observables defined on this brane. The
bulk spacetime, possibly featuring a black hole, is integrated out.

This low-energy approach to holography gives compelling results in AdS background, in
which case the brane can be seen as a regularized version of the AdS conformal boundary.
At low-energy, the effective theory of gravity on the brane is Einstein gravity coupled to a
perfect fluid that nontrivially emerges from the bulk physics. This holographic fluid turns
out to be conformal, as expected from the AdS/CFT correspondence [8–13].

The same approach also gives compelling results in the LD background. It was shown
in [14] that the holographic fluid emerging on the brane has Hagedorn thermodynamics for
any dimension d. The low-energy framework thus reproduces the thermodynamic behavior
of LST for d = 6. It also reproduces the thermodynamics of T T̄ -deformed CFT proposed
in [15] for d = 2.2

In this manuscript we extend the above low-energy approach to holography to a class of
dilatonic spacetimes that contains the AdS and LD ones as particular cases. One motivation
for this analysis is to study the behavior of the holographic fluid that emerges on the brane.
Since meaningful results are obtained from both AdS and LD, we may wonder how does
the holographic fluid behaves in our more general spacetime.

Another motivation comes from the fact that the linear dilaton background is special
because it features some simple conformal symmetries. While these are much weaker than the
AdS isometries, they are nevertheless expected to have physical consequences [14]. Placing the
LD in a broader context helps understanding why physics on the LD background is special.

An extra motivation for our model is the remarkable simplicity of its solutions. Both
classical solutions of the dilaton-gravity system and the quantum fluctuations of gravity
are described by compact analytical expressions. Even though this technical feature is
conceptually irrelevant, it is certainly important for practical purposes: our model provides
an avenue to easily explore the physics of dilatonic spacetimes.

We present the model and discuss solutions with and without black hole in section 2. We
study the fluctuations of the bulk metric around these solutions in section 3. We compute the
holographic fluid and its thermodynamic properties in section 4. There we also briefly discuss
a class of braneworld scenarios. A summary is given in section 5. The appendices contain
details about gauge fixing in holographic actions (appendix A), a full calculation of the
graviton quadratic action showing explicitly that the 5D graviton is massless (appendix B),
and a discussion of the equations of motion in the scalar sector (appendix C).

2 A solvable dilaton-gravity model

The action of the 5D dilaton gravity system in the Einstein frame is

S =
∫

d5x
√

g

(
M3

5
2

(5)R − 1
2(∂M ϕ)2 − V (ϕ)

)
−
∫

brane
d4x

√
ḡ
(
Vb(ϕ) + Λb − M3

5 K
)
+ Smatter . (2.1)

(5)R is the scalar curvature, ϕ is the dilaton field, M5 is the fundamental 5D Planck scale. The
spacetime supports a 3-brane with induced metric ḡµν . The brane supports a tension Λb and a

2Further evidence for the proposed duality has been developed in [16–25].
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localized potential Vb(ϕ). K is the extrinsic curvature that appears in the Gibbons-Hawking-
York (GHY) boundary term. The Vb(ϕ) potential stabilizes ϕ to the vacuum expectation
value (vev) ⟨ϕ⟩brane ≡ vb, which determines completely the background. Smatter encodes the
quantum fields living on this background.

The Vb(ϕ) potential does not need to be explicitly specified. We use the convention
Vb(vb) = 0 wihout loss of generality. The potential and the stability of the dilaton-brane
system are discussed in sections 2.2 and 3, in which further conditions on Vb are derived.

The 5D metric is set to the general ansatz

ds2
gen = gMN dxM dxN = e−2A(r)

(
−f(r)dτ2 + dx2

)
+ e−2B(r)

f(r) dr2 . (2.2)

5D coordinates are labeled by uppercase Latin indexes (M, N, · · · ), 4D coordinates along
the constant-r slices are labeled by Greek indexes (µ, ν, · · · ), i.e. xM = (xµ, r) = (τ, x, r). In
the general ansatz (2.2), we allow for a blackening factor f(r) that describes a black hole
horizon at the hypersurface r = rh if f(rh) = 0, and A(r), B(r) and ϕ(r) are regular at
rh. We assume a flat brane lying at the location r = rb, consistently with the Poincaré
invariance of the constant-r slices of (2.2),

We introduce the reduced bulk potential V (ϕ) ≡ 3M3
5 V̄ (ϕ̄) and the reduced dilaton field

ϕ ≡
√
3M3

5 ϕ̄. V̄ has mass dimension 2, while ϕ̄ is dimensionless. The general model of this
work is defined by setting the reduced bulk potential to

V̄ (ϕ̄) = −1
2(4− ν2)k2e2νϕ̄ . (2.3)

Here ν is a real parameter that we take positive without loss of generality. Further restrictions
on ν are found in subsections 2.1 and 2.3.

The field equations are

0 = (5)RMN − 1
2gMN

(5)R − 3 ∂M ϕ̄∂N ϕ̄ + 3
2gMN (∂Aϕ̄)2 + 3 gMN V̄ (ϕ̄) , (2.4)

0 = 1
√

g
∂M

(√
ggMN ∂N ϕ̄

)
− ∂V̄

∂ϕ̄
. (2.5)

The solutions to the field equations have some integration constants that need a careful
analysis. Some are gauge redundancies, other are physically meaningful. We refer to [14]
for a detailed discussion.

A combination of integration constants is fixed by the fact that the value of vb does not
change with the brane location, ∂vb

∂rb
= 0 [14]. This is a natural consequence of the fact that

the Vb potential is independent on the brane location. Upon reduction of the integration
constants, a physical mass scale η appears,

η ≡ k eν v̄b . (2.6)

The spacetime manifold that solves the field equations (2.4) and (2.5) is denoted by Mν .
The brane at r = rb partitions Mν into two regions

M−
ν = Mν

∣∣
r∈(0,rb] , M+

ν = Mν

∣∣
r∈[rb,∞) . (2.7)

All the quantum fields, including gravitons, have boundary conditions on the brane. The
quantum fields living in M−

ν and M+
ν are thus independent of each other.
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The Z2 orbifold convention. The fundamental domains of M−
ν , M+

ν are (0, rb] and [rb,∞).
To ease comparison with the extradimensional literature, we find it convenient to adopt the
orbifold convention for which space is mirrored on each side of the brane. In this paper,
the brane-localized quantities Λb, Vb are defined within this convention. If, instead, one
chooses to define the action only on the fundamental domain, Sbulk and SGHY both get
reduced by a factor of two, and all the subsequent computations are equivalent to those
made in the orbifold convention upon changing the definition of the brane localized quantities
as Λb → 1

2Λb, Vb → 1
2Vb.

2.1 The Mν spacetime with no black hole

In the absence of a black hole (i.e. eq. (2.2) with f(r) ≡ 1), the solutions to (2.4) and (2.5) are

ds2
ν,rb

=
(

r

L

)2
ηµνdxµdxµ +

(
r

rb

)2ν2 1
(ηr)2 dr2 , (2.8)

ϕ̄(r) = ϕ̄b − ν log
(

r

rb

)
, (2.9)

with r ∈ R+. In (2.9), ϕ̄b = 1√
3M3

5
ϕb is the value of the reduced dilaton field on the brane, with

ϕbrane ≡ ϕb. The value of ϕb is set to the vev ⟨ϕb⟩ = vb due to the brane-localized potential.
The nonzero components of the Ricci tensor are

Rii = −Rττ = (ν2 − 4)η2
(

rb

L

)2 ( r

rb

)2(1−ν2)
, Rrr = 4(ν2 − 1)

r2 , (2.10)

and the scalar curvature is

R = 4(2ν2 − 5)η2
(

rb

r

)2ν2

. (2.11)

The scalar curvature is negative, zero and positive for ν < νc, ν = νc, ν > νc, respectively,
with νc ≡

√
5/2. Mνc is however not Ricci-flat, as can be seen from (2.10). Some noticeable

cases appear:

• For ν = 0, the scalar curvature is a negative constant. Thus M0 is AdS5 spacetime.

• For ν = 1, the dilatation r → λr is a conformal symmetry of ds2
1,rb

. Thus M1 is LD5
spacetime [14]. This symmetry implies that the Rrr component vanishes.

• For ν = 2, only Rrr is nonzero. The bulk potential defined in (2.3) vanishes identically.
Yet, the spacetime is non-flat due to the nonzero dilaton kinetic term, on which the
metric backreacts.

Importantly, the metric (2.8) depends on the brane location rb, except for ν = 0, i.e. AdS.
This is because the dilaton vev is fixed on the brane. When the brane location varies, the
whole spacetime varies accordingly.

– 4 –



J
H
E
P
0
8
(
2
0
2
4
)
0
7
7

2.1.1 Conformal frame

We introduce conformal coordinates. For any ν ̸= 1 we have

z = L

η rb

1
|ν2 − 1|

(
r

rb

)ν2−1
, ν ̸= 1 , (2.12)

with the domain z ∈ R+. In conformal coordinates the metric reads

ds2
ν,rb

=
(

rb

L

) 2ν2
ν2−1 (|ν2 − 1|ηz

) 2
ν2−1 (ηµνdxµdxµ + dz2) . (2.13)

In these coordinates, the M−
ν and M+

ν subspaces defined in (2.7) are given by

M+
ν = Mν

∣∣
z∈(0,zb] , M−

ν = Mν

∣∣
z∈[zb,∞) if ν < 1 ,

M−
ν = Mν

∣∣
z∈(0,zb] , M+

ν = Mν

∣∣
z∈[zb,∞) if ν > 1 , (2.14)

where
zb =

L

η rb

1
|ν2 − 1| . (2.15)

The special case ν = 1 is the linear dilaton spacetime, for which

z = ± L

rbη
log r

L
. (2.16)

Importantly, the domain in this case is z ∈ R. The freedom of sign in (2.16) is reminiscent
of a discrete symmetry of the LD spacetime pointed out in [14].

2.1.2 Global properties

Singularity. The scalar curvature diverges at r → 0 for any ν > 0. There is thus a curvature
singularity at r = 0, which lies in the M−

ν part of the spacetime. The M+
ν spacetime does

not feature any singularity for any ν. The singularity is labeled as “good” in the sense of
refs. [26, 27] if ν < 2. As a matter of fact, we will see below that ν ∈ [0, 2) is the range of
values for which the singularity can get censored by a black hole horizon.

Boundaries. Using the conformal coordinates with z ∈ (0,∞), we see that if ν ∈ [0, 1), Mν

has a conformal boundary.3 This boundary is in M+
ν . For ν = 1 (the LD5 spacetime), there

is no boundary since z ∈ R, hence the LD5 space has the same causal structure as Minkowski
space [14]. Finally for ν > 1, there is a regular (i.e. not conformal) boundary at z = 0. This
boundary is in M−

ν . It coincides with the curvature singularity.

2.2 Holographic effective potential and stability

The Mν solutions assume that the brane lies at an arbitrary location rb. Here we determine
under which conditions this assumption is valid.

We put the classical solutions (2.8), (2.9) into the action S. This defines a “holographic”
on-shell action, Son−shell, that depends only on the brane location rb and on the value of

3That is, Mν is conformally equivalent to a spacetime with boundary. In our case, it is for example
equivalent to half-Minkowski space.
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the dilaton field on the brane, ϕb. Restricting ϕb to xµ-independent configurations, we
obtain the effective potential

Son−shell(rb, ϕb) ≡ −
∫

d4x Veff(rb, ϕb) (2.17)

that we can use to study stability of the brane-dilaton system.
The on-shell action receives contributions from the bulk, brane and GHY actions,

S = Sbulk + Sbrane + SGHY. The r-integral in Sbulk has to be performed. The integral in the
M−

ν region is finite. The integral in M+
ν is infinite, in that case one regularizes it with a 4D

cutoff surface Σ located at rΣ ≫ rb. Placing a counterterm on Σ produces a finite, renormalized
on-shell action (see e.g. [28]). The counterterm in our case is Sct = 2M3

5
∫

Σ d4x
√

h η(ϕΣ)
with hµν the induced metric on Σ.

We find

Sbulk = ∓2
∫

d4x M3
5 η(ϕb)

(
rb

L

)4
, (2.18)

Sbrane = −
∫

d4x (Vb(ϕb) + Λb)
(

rb

L

)4
, (2.19)

SGHY = ±8
∫

d4x M3
5 η(ϕb)

(
rb

L

)4
, (2.20)

for the M∓
ν spacetimes. We have introduced the ϕb-dependent mass scale η(ϕb) = k eνϕ̄b .

Combining the terms, the effective potential is

Veff(rb, ϕb) = Ub(ϕb)
(

rb

L

)4
, (2.21)

where we have defined the brane-localized effective potential4

Ub(ϕb) = Vb(ϕb) + Λb ∓ 6M3
5 η(ϕb) for M∓

ν . (2.22)

Let us consider the ϕb direction for any rb ̸= 0. The potential stabilizes ϕb to the vev
⟨ϕb⟩ = vb when the ϕb derivative vanishes, which corresponds to the condition U ′(vb) =
V ′

b (vb)∓ 2
√
3M3

5 νη(vb) = 0 for M∓
ν . Stability along the ϕb direction is ensured if the second

ϕb derivative is positive, i.e.

U ′′
b (vb) > 0 . (2.23)

Using that ∂2
ϕb

η = ν2

3M3
5

η, it follows that for any rb ̸= 0, the brane potential Vb must satisfy

V ′′
b (vb) > ±2ν2η for M∓

ν , (2.24)

with η(vb) = η. This is true for any potential Vb, we do not need to specify it further than
the above stability condition. Notice that in the M−

ν space, depending on the form of Vb,
the ϕb = vb minimum may be local if |η| ≫ Vb at large values of ϕb. In such a case, Veff gets
unbounded from below, the ϕb = vb vacuum is then metastable.

4We may recognize the −6M3
5 η(ϕb) term as the superpotential of the model, W (ϕb) = −6M3

5 η(ϕb).
The bulk potential itself can in general be expressed as a function of the superpotential as V (ϕ) =
1
8

(
W ′(ϕ)2 − 4

3M3
5

W 2(ϕ)
)

[14]. In our case, this gives rise to the bulk potential of eq. (2.3).
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We then analyze the rb direction of Veff . Recall we use the convention Vb(vb) = 0. When
the dilaton is stabilized at ϕb = vb, it turns out that Veff has a minimum at rb = 0 for
±6M3

5 η < Λb for M∓
ν , and is unbounded from below otherwise. Neither of these cases

would be compatible with a brane living at arbitrary values of r. However, we can assume
that Λb is tuned as

Λb = ±6M3
5 η for M∓

ν . (2.25)

In that case the potential has a flat direction in rb, and the brane can stay at any value of r.
In summary, we find that the Mν solutions are stable provided that the conditions (2.24)

and (2.25) are satisfied. In section 3, the stability condition (2.24) shows up in a different way
by analysis of the metric fluctuations. In section 4, we find that the tuning (2.25) corresponds
precisely to tuning the 4D cosmological constant to zero in the 4D holographic theory.

2.3 The Mν spacetime with a black hole

The metric in the presence of a planar black hole is given by

ds2
ν,rh,rb

=
(

r

L

)2
(−f(r)dτ2 + dx2) + 1

f(r)

(
r

rb

)2ν2 1
(ηr)2 dr2 , (2.26)

with

f(r) = 1−
(

rh

r

)4−ν2

. (2.27)

We assume that the brane is outside the black hole, i.e. rh < rb.
We see from (2.26), (2.27) that the black hole solution exists if ν ∈ [0, 2). In this range, the

black hole interior is at r ≤ rh. Therefore the horizon censors the singularity at r = 0. This is
another way to see that the singularity is good on ν ∈ [0, 2). The black hole is always in M−

ν .
At ν = 2, f vanishes identically, which is inconsistent and means that the black hole

cannot exist. Finally, for ν > 2, the singularity would be naked. We thus restrict our
analysis to ν ∈ [0, 2).

For ν ∈ [0, 2), the Hawking temperature of the black hole horizon is [14]

Th = 4− ν2

4
η

π

rh

L

(
rb

rh

)ν2

. (2.28)

We have Th ∝ rh if ν = 0 (i.e. AdS5) and Th ∝ rb if ν = 1 (i.e. LD5).
The entropy of the black hole can be computed by using the Bekenstein-Hawking entropy

formula5

Sh = A
2G5

= 4πM3
5

(
rh

L

)3
V3 , (2.29)

where G5 ≡ 1/(8πM3
5 ) is the 5D Newton constant and V3 =

∫
d3x the comoving volume.

The entropy density per unit of comoving volume is thus

sh = Sh

V3
= 1

2G5

(
rh

L

)3
. (2.30)

5We have introduced an extra factor of 2 due to the Z2 orbifold convention.
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3 Spacetime fluctuations

We analyze the fluctuations of the 5D metric in the M±
ν spacetimes. The spectrum of these

fluctuations contains important bits of information. In particular it tells us about the stability
of the M±

ν spacetimes, and whether or not gravity decouples at low energy in each of them.
In this section it is convenient to work in conformal coordinates. Notice that the properties

of the spacetimes on each side of the brane are not symmetric, see eq. (2.14). For ν ̸= 1, z is
in R+, thus we have a bounded interval z ∈ (0, zb] to the left of the brane, but a half-bounded
interval z ∈ [zb,∞) to the right of the brane. This fact has consequences for the spectrum,
as is shown further below. We study each region systematically.

We first detail in subsection 3.1 our approach to spacetime fluctuations. Along the
process, we review some technical points that are usually left unexplained in the warped
extra dimension literature, and correct a statement about gauge fixing. Additional material
is collected in Appendices A and B.

3.1 Parametrization and gauge-fixing

The metric fluctuations have in general the form gMN + h̃MN . Invariance of the action under
diffeomorphisms implies the gauge symmetry h̃MN → h̃MN +∇M ξN +∇N ξM that must be
used to remove five unphysical degrees of freedom. If one works with a boundary effective
action in which the fifth dimension is integrated out, the 5D gauge symmetry becomes a 4D
gauge symmetry plus Stückelberg transformations. Details on the gauge fixing are given in
appendix A, see also [29]. Our specific gauge choice is given below.

We parametrize the fluctuation in the form gMN + h̃MN ≡ e−2A(z)(ηMN + 2M
−3/2
5 hMN )

for convenience. We plug the metric fluctuations into the general action (2.1). The fluctua-
tion of the Ricci scalar is computed via an identity using conformal rescaling to flat space
gMN = e−2A(z)ηMN , which gives

(5)R = e2A(z)
(

(5)Rflat + 8(5)□A − 12(∂M A)2
)

, (3.1)

and the middle term is conveniently integrated by parts. On the right-hand side, contractions
are done using the 5D Minkowski metric ηMN .

The fluctuations of (5)Rflat at quadratic order in hMN are well-known, see e.g. [30]. Before
gauge-fixing, the expression contains the combination (5)Rflat ⊃ 1

2
(
(∂5hµν)2 − (∂5h)2), which

gives rise to the 4D Fierz-Pauli mass term when one decomposes the 5D fields over a basis
of 4 modes and integrate out over z (see e.g. [31]). This is how the spectrum of massive
gravitons appears in the boundary effective action.

(5)Rflat contains a kinetic mixing of the longitudinal part of hµν with h55, ∂µhµν∂νh55.
This is removed by a suitable field redefinition hµν → hµν − 1

2ηµνh55. Finally, we fix the
gauge such that hµ5 = 0 and hµ

µ ≡ h = 0, leaving the traceless part of hµν and h55 as physical
degrees of freedom (see appendix A).

The physical, diagonalized fluctuations of the metric and the dilaton vev take the final form

ds2 = e−2A(z)
[
e−2F (x,z)

(
ηµν + 2

M
3/2
5

hµν(x, z)
)

dxµdxν + (1 + 2F (x, z))2dz2
]

,

Φ̄(x, z) = ϕ̄(z) + φ̄(x, z) , (3.2)

– 8 –
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where hµν is traceless and F ≡ 1
2M

−3/2
5 h55. This matches the gauge-fixed form usually taken

in the warped extra dimension literature, see e.g. [32].
The extra terms in (3.1) do not produce a mass term for the hµν field. We show explicitly

in appendix B that the quadratic fluctuation of the volume form does not produce a mass
term for hµν either. Hence hµν is massless in the 5D action.

When using the gauge-fixed metric (3.2) in the equations of motions of the F and φ̄

fluctuations, a constraint equation relating F and φ̄ appears,

ϕ̄′(z)φ̄(x, z) =
(
∂z − 2A′(z)

)
F (x, z) . (3.3)

Details are given in appendix C. This is consistent with the choices of parametrization and
gauge made in [32, 33], see also [34] for related considerations. We emphasize that (3.3)
is not a gauge choice by itself, a statement that is sometimes found in the warped extra
dimension literature.

There is thus one physical scalar mode that is a combination of F and φ̄, usually referred
to as the radion. For our purposes, it is enough to focus on the F fluctuation. We refer
to F as the radion for simplicity.

3.2 Graviton

We introduce the graviton propagator
〈
hµν(xM )hρσ(x′N )

〉
≡ Gh

µν,ρσ

(
xM , x′N

)
. The propa-

gator contains a tensor structure that is determined by our (partially unitary and traceless)
gauge fixing. For our purposes of determining the spectrum, it is enough to focus on the
identity part of the tensor structure. We define the propagator of the identity part of Gh

µν,ρσ,

Gh
µν,ρσ(x, x′) = Gh(x, x′)Iµν,ρσ + . . . , (3.4)

with Iµν,ρσ = 1
2 (ηµρηνσ + ηµσηνρ) the identity on the space of 4D symmetric tensors. The wave

operator for hµν is read from the identity term in the fluctuation of the Einstein-Hilbert action,

SEH = 1
2

∫
d5x e−3A (hµνOµν,ρσhρσ) + . . . , (3.5)

with
Oµν,ρσ = Iµν,ρσD , D = e3A∂z

(
e−3A∂z

)
+□(4) . (3.6)

The Gh propagator in (3.4) satisfies a scalar equation of motion,

DGh(x, x′) = ie3Aδ(5)(x − x′) . (3.7)

Plugging the metric solutions and Fourier transforming along the Minkowski slices, the
wave operator is

D = ∂2
z + 3

ν2 − 1
1
z

∂z − p2 , (3.8)

with p2 = ηµνpµpν . The homogeneous solutions of (3.7) are any combination of zαIα(
√

p2z),
zαKα(

√
p2z), where Iα, Kα are the modified Bessel functions with order

α = 1
2
(4− ν2)
(1− ν2) . (3.9)

The order satisfies α ≥ 2 for 0 ≤ ν < 1 and α < 0 for 1 < ν < 2. The case ν = 1 has
been analyzed in [14] and is not repeated here.
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3.2.1 The z ∈ (0, zb] region

The boundary condition of the graviton on the brane is Neumann, ∂zGh(z, z′)|z=zb
= 0. We

require regularity of the solutions in the z → 0 limit. In this region it is convenient to
use the basis of solutions f± = zαI±α(

√
p2z), where Ia(x) is the modified Bessel function

of the first kind.6

Case 0 ≤ ν < 1. This is the M+
ν<1 spacetime. In that case f+ is the regular solution at

z → 0, since f+/f− −−−→
z→0

0 . The bulk propagator is given by

Gh(z, z′; p) = − i

C
f+(z<)

(
f−(z>)−

f ′
−(zb)

f ′
+(zb)

f+(z>)
)

, (3.10)

where z< = min(z, z′), z> = max(z, z′). The C constant is fixed by the Wronskian of f±
via f ′

+f− − f ′
−f+ ≡ Ce3A (see [35]).

In particular, the brane-to-brane propagator reduces to

Gh(zb, zb; p) = −i|1− ν2|3η3z3
b

Iα(
√

p2zb)
Iα−1(

√
p2zb)

1√
p2 . (3.11)

In the low-momentum limit,

Gh(zb, zb; p) −−−→
p→0

−iη3z4
b

(1− ν2)4

4− ν2 . (3.12)

Case 1 < ν < 2. This is the M−
ν>1 spacetime. In that case f− is the regular solution at

z → 0, since f−/f+ −−−→
z→0

0 . The bulk propagator is given by

Gh(z, z′; p) = − i

C
f−(z<)

(
f+(z>)−

f ′
+(zb)

f ′
−(zb)

f−(z>)
)

. (3.13)

The brane-to-brane propagator is

Gh(zb, zb; p) = −i|1− ν2|3η3z3
b

I−α(
√

p2zb)
I1−α(

√
p2zb)

1√
p2 . (3.14)

In the low-momentum limit,

Gh(zb, zb; p) −−−→
p→0

−iη3z2
b

(ν2 − 1)2(ν2 + 2)
p2 . (3.15)

Spectrum. We can read the spectrum from the non-analyticities of the propagators
(e.g. eqs. (3.11) and (3.14)) in the −p2 ∈ R+ region. In the present case, it is a tower
of poles corresponding to the zeros of the Bessel J functions. In both cases, the spectrum
is discrete with spacing mn ∼ nπ

zb
at large n. This can be understood as a consequence of

the fact that the interval in z is bounded. The wave functions of the massive modes tend
to be localized towards the brane.

6A different basis is required in case α is integer.
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There is however an important difference between the M+
ν and M−

ν cases. At the level
of the spectrum, it turns out that M−

ν has a graviton massless mode, while M+
ν does not, as

can be seen from the low-energy limits. We relate this feature to the fact that, in the M−
ν

case, z = 0 corresponds to the curvature singularity, while in the M+
ν case, z = 0 corresponds

instead to asymptotically flat infinity in the r coordinates. The massless mode is not localized
towards the brane. The singularity in the M−

ν case has, somehow, a confining effect that
gives the zero mode a finite normalization. In contrast, for M+

ν , even though the interval is
bounded, there is no physical boundary at z = 0, and accordingly no normalizable massless
mode exists in the spectrum. A similar phenomenon appears in the LD spacetime, see [14].

3.2.2 The z ∈ [zb, ∞) region

The boundary condition of the graviton on the brane is Neumann, ∂zGh(z, z′)|z=zb
= 0. We

require regularity of the solutions in the z → ∞ limit. In this region it is convenient to
use the basis of solutions {iα(z), kα(z)} ≡

{
zαIα(

√
p2z), zαKα(

√
p2z)

}
, where Kα(x) is the

modified Bessel function of the second kind.
In that region, for either ν smaller or larger than one, the regular solution at z → ∞

is kα. The bulk propagator is thus

Gh(z, z′; p) = − i

C

(
iα(z<)−

i′α(zb)
k′

α(zb)
kα(z<)

)
kα(z>) . (3.16)

The brane-to-brane propagator is

Gh(zb, zb; p) = −i|1− ν2|3η3z3
b

Kα(
√

p2zb)
Kα−1(

√
p2zb)

1√
p2 . (3.17)

We analyze the small momentum limit for both cases of ν.

Case 0 ≤ ν < 1. This is the M−
ν<1 spacetime. The brane-to-brane propagator in the

small momentum regime is

Gh(zb, zb; p) = −iη3z4
b

|1− ν2|3

2

 p2z2
b

4α − 4 + Γ(1− α)
Γ(α)

(√
p2zb

2

)2α
−1 (

1 + O(p2)
)

. (3.18)

Case 1 < ν < 2. This is the M+
ν>1 spacetime. The brane-to-brane propagator in the

small momentum regime is

Gh(zb, zb; p) = −iη3z4
b

|1− ν2|3

2

−α + Γ(α + 1)
Γ(−α)

(√
p2zb

2

)−2α
−1 (

1 + O(p2)
)

. (3.19)

Spectrum. In both cases, the spectrum features an ungapped continuum, described by the
leading non-analytical terms p2α and p−2α. In the ν < 1 case, the spectrum also features
a massless mode. This mode is not a ghost since α ≥ 2 on ν ∈ [0, 1). This mode is absent
in the ν > 1 case. We thus obtain again that the existence of the zero mode is tied to the
space being bounded by the curvature singularity.
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Holography. The case of AdS5 spacetime truncated by a UV brane, which is the familiar
background to study AdS/CFT, is recovered from the M−

ν region when taking ν = 0. In that
case, the form of the propagator (3.18) is interpreted as a 4D free field mixing with a CFT
operator with dimension ∆ = 2 + α = 4, which is the dimension of the 4D CFT stress-energy
tensor. One may notice that for ν ̸= 0, the structure of (3.18) remains unchanged. Therefore,
if one speculatively generalizes the holographic interpretation to any 0 ≤ ν < 1, we may
interpret (3.18) as a 4D graviton coupled to a 4D stress tensor with dimension

∆ = 2 + α (3.20)

in the dual theory. Since α > 2 for 0 < ν < 1, this dual stress tensor is an irrelevant
operator. It would be very interesting to find a suitably deformed 4D CFT that reproduces
such a behavior.

Braneworld. A M−
ν braneworld scenario with ν < 1 could be viable due to the existence of

the graviton zero mode. For non-integer α, the graviton continuum induces a modification
to the Newtonian potential of the form

∆VNewton(R) ∼ 1
R
∆(R), ∆(R) =

(
zb

R

)2α−2
(3.21)

(see e.g. [36, 37] for calculations in AdS and LD cases). Notice that the AdS case (α = 2) is
recovered from (3.21), but recovering the LD case is not possible from this simple estimate
because a mass gap must emerge in the LD limit. Similar deviations with non-integer powers
have been pointed out in the non-gravitational case in AdS background [38–40]. In the
gravitational case, having a non-AdS background is mandatory to reach a non-integer scaling.

Constraints from Newtonian gravity at distances R ∼ 25µm [41] lead, after imposing
the condition ∆(R) ≲ 1, to the mild bound

1
zb

≳ 0.01 eV . (3.22)

3.3 Radion

We repeat our analysis for the radion fluctuation F . Due to the gauge fixing (3.3), we
know that, even though F is not the physical radion, it does have the same spectrum as
the physical one.7 We thus use F as a proxy to find the radion spectrum. We refer to F

as the radion in the following.
The wave operator for the radion is [32, 33]

DF = eAX∂z

(
eA

X
∂z(e−2AF )

)
+
(
□(4) − 2X

)
F (3.23)

with
X(z) = A′′(z) + (A′(z))2 . (3.24)

7We have verified explicitly this feature at the level of the radion effective action. Our study of the full
radion effective action is in preparation [42].
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From this homogeneous EOM, we can deduce the equation for the radion propagator
⟨F (x)F (x′)⟩ ≡ GF (x, x′) up to a positive normalization constant c,8

DGF (x, x′) = ic e3AXδ(5)(x − x′) . (3.25)

Putting in the background and going to momentum space, we have

D = ∂2
z + (1 + 2ν2)

(ν2 − 1)
1
z

∂z − p2 . (3.26)

The homogeneous solutions of (3.25) are any combination of zγIγ(
√

p2z), zγKγ(
√

p2z) with
Bessel order

γ = 1
2
(2 + ν2)
(1− ν2) = α − 1 . (3.27)

It is convenient to introduce

Y± ≡ 2
[
(1− ν2)2ηz2

b

p2

U ′′
b

± 1
]

, (3.28)

where U ′′
b ≡ U ′′

b (vb) is the second derivative of the brane-localized effective potential defined
by eq. (2.22). The mass dimension is [U ′′

b ] = 1.

3.3.1 The z ∈ (0, zb] region

The boundary condition of the radion on the brane is(
∂z − 2A′ + 2p2eA

U ′′
b (ϕ)

)
GF (z, z′)

∣∣∣∣∣
z=zb

= 0 . (3.29)

We require regularity in the z → 0 limit. A convenient basis of solutions is then
{

iγ(z), īγ(z)
}
≡{

zγIγ(
√

p2z), zγI−γ(
√

p2z)
}

.

Case 0 ≤ ν < 1. This is the M+
ν<1 spacetime. In that case the regular solution at z → 0

is iγ , since iγ /̄iγ −−−→
z→0

0 . The bulk propagator is given by

GF (z, z′; p) = − i

C
iγ(z<)

(
īγ(z>)−

ī′γ(zb) + X+īγ(zb)
i′γ(zb) + X+iγ(zb)

iγ(z>)
)

, (3.30)

where X+ ≡ −2A′(zb) + 2p2

U ′′
b

eA(zb), and the constant C is fixed by i′γ īγ − ī′γiγ ≡ C c e3AX.
The brane-to-brane propagator reduces to

GF (zb, zb; p) = −i
Z

Y− + |1− ν2|
Iγ−1

(√
p2zb

)
Iγ

(√
p2zb

) √
p2zb

(3.31)

8The dependence in e3AX is enforced by the single-∂z term of the EOM. This term determines the
Wronskian of the solutions, which for consistency must be proportional to the δ(5)(x − x′) term [35]. Here this
is more easily derived by studying the EOM of the F̃ ≡ e−2AF field. The Wronskian of the F̃ EOM is found
to be ∝ e−AX. Going back from GF̃ to GF then produces the e3AX factor used in eq. (3.25).
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with Z = cν2(1 − ν2)2η3z2
b . Since our focus is on the spectrum, the precise value of Z is

irrelevant, we only need to know that Z > 0. The same constant appears below.
In the low-momentum limit, an isolated mode appears with mass

m2
0 = ν2(4− ν2)U ′′

b

(1− ν2)2[U ′′
b + 2(4− ν2)η]z2

b

. (3.32)

This mode becomes massless in the limits ν → 0 or U ′′
b → 0.

Case 1 < ν < 2. This is the M−
ν>1 spacetime. In that case the regular solution at z → 0

is īγ . The bulk propagator is given by

GF (z, z′; p) = − i

C
īγ(z<)

(
iγ(z>)−

i′γ(zb) + X+iγ(zb)
ī′γ(zb) + X+īγ(zb)

īγ(z>)
)

. (3.33)

The C constant is fixed by ī′γiγ − i′γ īγ ≡ C c e3AX. The brane-to-brane propagator is

GF (zb, zb; p) = −i
Z

Y+ + |1− ν2|
I1−γ

(√
p2zb

)
I−γ

(√
p2zb

) √p2zb

. (3.34)

In the low-momentum limit, an isolated mode appears with mass

m2
0 = 6ν2U ′′

b

(ν2 − 1)2[U ′′
b + 6ν2η]z2

b

. (3.35)

Spectrum. In both cases, the spectrum features a discretum with spacing mn ∼ nπ
zb

, as in
the graviton case. The spectrum features, in either cases, a stable massive isolated mode
which is non-ghost and non-tachyonic provided that U ′′

b > 0.

3.3.2 The z ∈ [zb, ∞) region

The boundary condition of the radion on the brane is(
∂z − 2A′ − 2p2eA

U ′′
b (ϕ)

)
GF (z, z′)

∣∣∣∣∣
z=zb

= 0 . (3.36)

We require regularity in the z → ∞ limit. A convenient basis of solutions is then
{iγ(z), kγ(z)} ≡

{
zγIγ(

√
p2z), zγKγ(

√
p2z)

}
. In that case, for either ν smaller of larger

than one, the regular solution at z → ∞ is kγ . The bulk propagator is given by

GF (z, z′; p) = − i

C

(
iγ(z<)−

i′γ(zb) + X−iγ(zb)
k′

γ(zb) + X−kγ(zb)
kγ(z<)

)
kγ(z>) , (3.37)

where X− ≡ −2A′(zb)− 2p2

U ′′
b

eA(zb). The C constant is fixed by ±
(
i′γkγ − k′

γiγ

)
≡ C c e3AX

for M∓.
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Case 0 ≤ ν < 1. This is the M−
ν<1 spacetime. The brane-to-brane propagator is

GF (zb, zb; p) = −i
Z

Y+ + |1− ν2|
Kγ−1

(√
p2zb

)
Kγ

(√
p2zb

) √
p2zb

. (3.38)

There is an isolated mode, that is non-ghost and non-tachyonic provided that U ′′
b ≥ 0.

The mass is

m2
0 = 6ν2U ′′

b

(1− ν2)2[U ′′
b + 6ν2η]z2

b

. (3.39)

When ν approaches 0, appropriate Bessel approximation has to be used. We find that the
mass is nonzero at ν = 0, m2

0 ≃ U ′′
b

ηz2
b
.

Case 1 < ν < 2. This is the M+
ν>1 spacetime. The brane-to-brane propagator is

GF (zb, zb; p) = −i
Z

Y− + |1− ν2|
Kγ−1

(√
p2zb

)
Kγ

(√
p2zb

) √
p2zb

. (3.40)

There is an isolated mode with mass

m2
0 = ν2(4− ν2)U ′′

b

(ν2 − 1)2 [U ′′
b + 2(4− ν2)η

]
z2

b

. (3.41)

Spectrum. In both cases, the spectrum features an ungapped continuum. The spectrum
features also an isolated mode that mixes with the continuum and acquires a decay width
due to this mixing. The isolated mode is not stable, it can decay into the continuum. It
is non-ghost and non-tachyonic if U ′′

b > 0.

3.3.3 Radion mode and stability

We recapitulate the properties of the isolated radion mode. The radion mode exists in all
regions and is non-ghost and non-tachyonic if

U ′′
b > 0 . (3.42)

For ν → 0 the radion mode becomes massless in M+
ν but remains massive in M−

ν . We also
find that the radion wavefunction is localized towards the brane in M+

ν , while it has flat
profile in M−

ν . Thus in M−
ν the singularity acts somehow as a second boundary that allows

the isolated mode to exist, analogously to the graviton case.
The study of the isolated radion mode is the extension of the holographic potential

analysis of section 2.2. While in section 2.2 we obtain only a stability condition, here we
determine the actual mass of the radion fluctuation. We find that the mass of the mode
is described by the same expression in the M+

ν<1 and M+
ν>1 cases, and similarly in the

M−
ν<1 and M−

ν>1 cases. Even though these masses are respectively proportional to V ′′
b ∓W ′′,

the fact that the expressions match exactly at ν < 1 and ν > 1 is unexpected, especially
because the various spacetime regions and the rest of the spectra are very different. A
full computation of the radion effective action might be needed to fully understand this
unexpected simplicity. We leave this for future work.
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4 Holographic fluids

We consider the Mν spacetime with a planar black hole and a brane. The black hole is
always in the M−

ν region, as shown in section 2.

4.1 Effective Einstein equation

We study the gravitational behavior of the theory projected onto the brane. The induced
metric on the brane at r = rb is

ds̄2 = ḡµνdxµdxν = −dt2 + e−2A(rb)dx2 , (4.1)

where the brane proper time is dt = e−A(rb)√f(rb) dτ . Notice the e−A(rb) amounts to a
spatial scale factor.

To study gravity in the holographic theory, we compute the effective 4-dimensional
Einstein equations as seen by a brane observer. These are computed by projecting the
5-dimensional Einstein equations on the brane using the Gauss equation and the Israel
junction condition (see [9] for the original calculation in AdS5). We recall that we use a
Z2 orbifold convention as in [9] which implies that the spacetime is mirrored on the other
side of the brane. A notable implication is that the entropy of the black hole horizon is
doubled when using this convention, see e.g. ref. [43].

Following [14], we find that the effective Einstein equations have the form

(d)Gµν = 1
M2

4

(
T b

µν + T eff
µν

)
+ O

(
T 2

b

M6
5

)
, (4.2)

where T b
µν is the stress tensor of possible brane-localized matter. The indices in (4.2) are

contracted with the induced metric (4.1). Equation (4.2) has the form of the standard
Einstein equations with an extra effective stress tensor T eff

µν . Moreover, it turns out that the
structure of the T eff

µν tensor represents a 4-dimensional perfect fluid at rest:

T eff,µ
ν = gµλT eff

λν = diag(−ρeff , Peff , · · · , Peff) . (4.3)

We refer to this as the holographic fluid. See [14] for further details.
The effective energy density and pressure in (4.3) split as

ρeff = ρfluid + ρvacuum , Peff = Pfluid + Pvacuum . (4.4)

The vacuum contributions are independent on ν, rb and rh. They are given by

ρvacuum = −Pvacuum = Λ4M2
4 . (4.5)

The 4D cosmological constant Λ4 and Planck mass M4 are related to the parameters of
the bulk action as

Λ4 = −3η2 + Λ2
b

12M6
5

, (4.6)

M3
5 = M2

4 η

√
1 + Λ4

3η2 . (4.7)
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The fluid contributions depend on ν, rb and rh. They are

ρfluid(rh, rb) = 3η2M2
4

(
rh

rb

)4−ν2

, (4.8)

Pfluid(rh, rb) = (1− ν2)η2M2
4

(
rh

rb

)4−ν2

. (4.9)

For ν = 0, ρfluid and Pfluid scale as r−4
b and we have ρfluid = 3Pfluid, as expected from

AdS5. For ν = 1, the pressure vanishes identically and ρfluid scales as r−3
b , which is the scaling

of pressureless matter. Once again, something peculiar happens for the LD5 spacetime.
Finally, for the critical case ν → 2, the rb dependence of ρfluid, Pfluid vanishes and we

have Pfluid → −ρfluid asymptotically. Thus the fluid tends to behave as vacuum energy, i.e.
as a cosmological constant for ν → 2. In that limit, the separation of the terms in (4.4) does
not hold. Accordingly, a direct calculation of the ν = 2 case simply gives ρfluid = 0 = Pfluid,
because the black hole cannot exist in this critical case.

All these results are summarized into the equation of state of the holographic fluid,
Pfluid = wfluid ρfluid with parameter

wfluid = 1− ν2

3 . (4.10)

4.2 Thermodynamics

We study the thermodynamics of the holographic fluid. The physical parameters of the system
are the horizon location rh and the brane location rb. We treat all the thermodynamical
variables as functions of these two parameters.

We define the volume and temperature of the system. These are related to the comoving
volume V3 =

∫
d3x and to rh by powers of the scale factor

a(rb) ≡ e−A(rb) = rb

L
. (4.11)

The spatial volume of the brane is given by

Vb = V3 a(rb)3 = V3

(
rb

L

)3
. (4.12)

The black hole temperature on the brane is9

Tb =
Th

a(rb)
= 4− ν2

4
η

π

(
rb

rh

)ν2−1
. (4.13)

Using the energy density obtained in (4.8), the total energy of the system is

Efluid(rh, rb) = ρfluid(rh, rb)Vb = 3η2M2
4

(
rh

L

)3 (rh

rb

)1−ν2

V3 . (4.14)

Using this expression of Eeff and using Tb and Vb, we can derive the rest of the thermodynamic
variables.

9The temperature on the brane is obtained from the horizon temperature by multiplying with 1/
√

|gττ |. In
the present analysis we are assuming rh ≪ rb, hence we neglect the 1/

√
f(rb) factor as it is a small correction.
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By the fundamental laws of thermodynamics, the variation of the total energy of the
system should satisfy

dE = TdS − PdV . (4.15)

From this, we get the relation[
∂Efluid

∂rh
− Tb

∂Sfluid
∂rh

]
drh +

[
∂Efluid

∂rb
+ Pfluid

∂Vb

∂rb
− Tb

∂Sfluid
∂rb

]
drb = 0 . (4.16)

Each bracket must separately vanish. From the first bracket, we find that

Sfluid(rh, rb) = 4πηM2
4

(
rh

L

)3
V3 + CS(rb) , (4.17)

where CS(rb) is an arbitrary function on rb. We set CS to zero using that Seff should vanish
in the rh → 0 limit, for which the black hole does not exist. Plugging this result into the
second bracket, we obtain the pressure, which matches exactly the expression obtained in
eq. (4.9). This provides a nontrivial consistency check of our thermodynamic approach.

Finally, the free energy of the system is

Ffluid ≡ Efluid − TbSfluid = −(1− ν2)η2M2
4

(
rh

L

)3 (rh

rb

)1−ν2

V3 , (4.18)

which coincides with −PeffVb.
These results make clear that the thermodynamics of the linear dilaton spacetime is

very particular. For ν = 1, we have Ffluid = 0, Tb =cste and Sfluid ∝ Efluid, which is the
so-called Hagedorn behavior. See [14] for more details.

We notice that the fluid entropy Sfluid can be independently derived from the Bekenstein-
Hawking entropy of the black hole. Starting from the entropy density sh obtained in (2.30),
we multiply by the redshift factor to get the entropy density in the brane, i.e. sb = sh/a(rb)3.
Multiplying with Vb, using the relation between the Planck masses of eq. (4.7) and assuming
Λ4 ≪ η2, the result precisely reproduces eq. (4.17):

sbVb = 4πM3
5

(
rh

L

)3
V3 = Sfluid . (4.19)

In other words, we find Sfluid = Sh, i.e. the entropy of the holographic fluid matches exactly
the black hole entropy.

In analogy with the matching of the entropies, we may expect that an appropriately
defined mass density of the planar black hole, computed for example along the lines of [22],
could also reproduce ρfluid upon redshifting. This is an interesting calculation that is left
for future research.

4.3 Time evolution of the holographic fluid

We let the brane location evolve in time, rb = rb(t). Computing the time evolution of the
system serves as a consistency check for our formal results. This is also a development
that can be used for the study of realistic braneworld models beyond AdS5, see discussion
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in next subsection. The low-energy regime ρb ≪ η2M2
4 implies H ≪ η and the brane

motion is nonrelativistic. We introduce the scale factor ab(t) ≡ a(rb(t)) and the Hubble
parameter H ≡ ȧb(t)/ab(t).

In this subsection we assume that there is no brane-localized matter, T b
µν = 0. The

braneworld is empty, apart from the contributions from the holographic fluid and the vacuum
energy both encoded into T eff

µν . Starting from the effective Einstein equation (4.2), the
Friedmann equations on the brane are

3M2
4 H2 ≈ −ρeff , 6M2

4
a′′

b (t)
ab(t)

≈ − (ρeff + 3Peff) . (4.20)

The solution of the Friedmann equations including both the perfect fluid contribution
and the cosmological constant term is

ab(t) = ah

[
(4− ν2) η

2γ
sinh(γ(t − t∗))

] 2
4−ν2

, (0 ≤ ν < 2) (4.21)

where

γ ≡ 1
2(4− ν2)

√
ρvacuum
3M2

4
, (4.22)

and ah ≡ rh/L while t∗ is an integration constant that can be freely chosen.
The solution eq. (4.21) reproduces a power-law behavior for a fluid-dominated universe

of the form

ab(t) ∝ t
2

3(1+wfluid) (ρvacuum ≪ ρfluid(rb)) (4.23)

with wfluid given by eq. (4.10). Also, eq. (4.21) leads to an exponential behavior for a universe
dominated by the cosmological constant

ab(t) ∝ exp(Ht) (ρvacuum ≫ ρfluid(rb)) , (4.24)

with H =
√
Λ4/3.

The conservation equation of the bulk stress tensor evaluated on the brane can be
written as [13, 44]

ρ̇eff + 4Hρeff + HT eff µ
µ = −2

(
1 + ρb

Λb

)
T ϕ

MN uM nN . (4.25)

It turns out that T ϕ
MN uM nN = O(H3), the r.h.s. of this equation is negligible in the low-

energy regime. Using that T eff µ
µ = −ν2ρfluid(rb) − 4ρvacuum, it is easy to verify that the

conservation equation is satisfied.
Finally, the limiting case ν = 2 has vacuum contribution only, such that the solution

of the Friedmann equations is given by eq. (4.24). In this case ρfluid(rb) = 0, and the
conservation equation is also satisfied.
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4.4 A cosmological dark fluid

We may identify the brane-localized matter T b
µν in eq. (4.2) with the known matter content of

our universe. The M−
ν model then defines a braneworld scenario. In the low-energy regime,

the main cosmological consequence is the presence of the holographic fluid.
In the LD5 case the fluid may be identified as dark matter [37, 45]. But more generally for

ν ̸= 1, given the equation of state established in (4.10), the behavior of the “dark fluid” can
lie anywhere between radiation-like and vacuum energy-like. Radiation corresponds to ν = 0,
i.e. wfluid = 1

3 , which is the well-known AdS5 case. Vacuum energy behavior corresponds
to the ν → 2 limit, i.e. wfluid = −1. This range of possibilities implies that the dark fluid
may possibly dominate at some intermediate phase of the evolution of the universe. Here
we do not undertake the study of this intriguing set of possibilities — a detailed analysis
of each cases would deserve a separate work.

As a simple constraint, we just require that the fluid energy density be negligible
at present times. This constraint, together with the one from Newtonian gravity shown
in (3.22), translates as bounds on the fundamental parameters of the M−

ν braneworld, that
we now present.

The relationship between conformal and cosmological coordinates leads to

|1− ν2|ηzb =
L

rb(t)
, (4.26)

and makes zb = zb(t). The bound (3.22) on zb refers to the present time t0, for which we
define ab(t0) = rb(t0)/L = 1. This translates into the mild bound on the η parameter

η = 1
|1− ν2|zb(t0)

≳
0.01 eV
|1− ν2|

, (4.27)

for ν ̸= 1. The case ν = 1 has been treated in [37].
Moreover, the fraction of fluid energy density in the universe Ωfluid = ρfluid(t)/ρc(t),

where the critical energy density is defined as ρc = 3H2M2
4 , yields

Ωfluid = η2

H2

(
rh

rb

)4−ν2

. (4.28)

We then impose the condition that the fluid energy density be negligible with respect to
the other known cosmological fluid densities today: Ωfluid < Ωrad ≈ 10−4. This in turn
provides the bound

rh

L
≲
(
0.01H0

η

) 2
4−ν2

≲ 10−
66

4−ν2 (4.29)

where H0 is the Hubble parameter today, which leads e.g. to the bound rh ≲ 5 × 10−17L

for ν = 0, and rh ≲ 10−22L for ν = 1.

5 Summary

We present a simple class of 5D dilaton-gravity spacetimes that includes both AdS5 and
LD5 (the linear dilaton spacetime) as particular cases. The model has a single continuous
parameter ν. We compute the planar black hole solutions of these Mν spacetimes.
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Value of ν 0 [AdS5] (0, 1) 1 [LD5] (1, νc) νc (νc, 2) 2
Scalar curvature < 0 0 > 0

Singularity ✗ good ✗ good bad
Timelike boundary conformal ✗ regular

Bulk Black hole ✓ ✗

Gravity spectrum in M−
ν continuum gapped cont. discretum

Gravity spectrum in M+
ν discretum gapped cont. continuum

Table 1. Elementary properties of the Mν spacetimes. The ν = νc case with νc ≡
√
5/2 is not

Ricci-flat. There is always a massless graviton mode in M−
ν , and never in M+

ν . There is an isolated
massive radion mode anywhere in M±

ν , which is resonant when the spectrum is continuous.

Depending on the ν parameter, the Mν spacetimes can have a timelike boundary that is
either conformal or regular. Mν also typically features a curvature singularity, except for
certain values of ν. The ν parameter is bounded (namely ν ∈ [0, 2)) for the black hole to
be allowed to exist. The black hole horizon screens the singularity.

We assume that a flat brane exists, that splits the Mν spacetime into inequivalent
regions M±

ν . The M−
ν region contains the singularity and the black hole. The dilaton vev is

stabilized on the brane by a potential Vb(ϕ). We compute the holographic potential of the
dilaton-brane system and determine a stability condition on Vb that is conveniently expressed
using a brane-localized effective potential Ub. We show that the brane location can be free
upon an appropriate tuning of the brane tension. The brane would otherwise go into the
singularity or run to infinity. This tuning turns out to be equivalent to setting the effective
4D cosmological constant to zero in the 4D holographic theory.

We perform a systematical analysis of the fluctuations of the bulk metric. Depending
on the value of the ν parameter, the spectrum of the fluctuations for both gravitons and
radion can be either discrete or continuous. Overall, the tendency of the spectral distribution,
except for a possible isolated mode (see below), is to be localized in the direction of the
curvature singularity for both M−

ν and M+
ν spaces.

The spectrum contains an isolated massless graviton mode in M−
ν . This implies that

low-energy 4D EFTs arising from M−
ν feature Einstein-like gravity. The spectrum contains

an isolated massive radion mode in both M−
ν and M+

ν , that is non-tachyonic in all regions
provided that the second derivative of the brane-localized effective potential Ub(ϕ) is positive.
This bound is equivalent to the one derived from the holographic potential stability, confirming
stability of the solutions upon perturbations. Both graviton and radion modes have flat
profiles in M−

ν . The singularity acts effectively as a second boundary that makes these
modes normalizable.

The elementary properties of the M±
ν spacetimes are summarized in table 1. The class

of Mν spacetimes sheds some light on the LD spacetime. It is clear from table 1 that the
LD spacetime corresponds to a critical case between two regimes, this helps to make sense
of its peculiar properties (see [14].

We compute the effective Einstein equation on the brane, which at low-energies features
a perfect fluid that is the manifestation of the bulk black hole projected on the brane. We
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find that the equation of state of the holographic fluid is w = 1−ν2

3 . This interpolates between
radiation behavior (AdS), non-relativistic behavior (LD), and tends to vacuum energy behavior
for ν → 2. We verify the consistency of these results using the 5D conservation equation. As
another check we compute the time evolution of the fluid-dominated braneworld.

The M−
ν background provides a set of braneworld models beyond AdS5. Its main

cosmological prediction is the existence of a dark fluid whose equation of state can lie
anywhere between radiation (ν = 0) and vacuum energy (ν → 2) behaviors. The dark
fluid could dominate at some intermediate period in the history of the universe. This
generates a set of intriguing modifications of the standard cosmological history that require
dedicated investigation. Here we just derived a few simple bounds on the parameters of
the M−

ν braneworld.
We establish the thermodynamic properties of the holographic fluid. It turns out that

the entropy matches exactly the black hole Bekenstein-Hawking entropy upon appropriate
redshifting. Along the same line of black hole/fluid correspondence, it would be good
to evaluate the black hole mass density using the formalism of [22] to verify whether it
reproduces ρfluid upon redshifting.

At the technical level, we explain in details the gauge-fixing of spacetime fluctuations in
warped spacetimes, and present detailed calculations of the graviton action. We provide a
detailed computation of the graviton quadratic action, using a form of the off-shell gravity
action that is reminiscent of the Codazzi equation. We show that the graviton mass induced
by the variation of the √

g volume form vanishes. We also revisit the equations of motion
of the radion/dilaton sector, showing that a redundancy in the equations of motion fixes
an integration constant, which in turn completely fixes the relation between the metric and
dilaton fluctuations, leaving the radion as the only degree of freedom.

Regarding future research directions, it would be for example interesting to study a
more evolved field content of the Mν spacetimes. In particular, given the simplicity of the
Mν spacetimes solutions, it would be interesting to exactly solve the Abelian Higgs model
introduced in [46] in the Mν background, in which case the Higgs field is identified as the
dilaton field. Along the same lines, it would also be interesting to study models that solve the
electroweak hierarchy problem using the ν ≪ 1 limit, for which the Higgs/dilaton spectrum
features a parametrically light mode.

Finally it would be good to further study the holographic correlators defined on the
brane. In this paper we have only evaluated the two-point brane-to-brane propagators. We
note that in the region M−

ν with ν < 1, which is connected to the familiar case of AdS5 with
a UV brane, the two-point correlator takes a form which amounts to a simple generalization
of the well-known AdS result. It would be very interesting to further explore the brane
correlators of M−

ν and to search for a dual 4D theory that reproduces their features.
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A Gauge-fixing spacetime fluctuations

In curved space, the 5D fluctuation hMN of the gMN metric has the gauge redundancy

hMN → hMN +∇M ξN +∇N ξM , (A.1)

due to invariance under diffeomorphisms.
In the case of warped metrics of the general form (2.2), one can always define a decompo-

sition over a set of orthogonal wavefunctions hMN (x, z) =∑
λ hλ

MN (x)fλ(z). In the presence
of a brane, a brane-localized mode can also exist, see [31] for details on the decomposition.
For our purposes, it is enough to focus on a single mode fλ. The gauge parameter is similarly
expanded as ξM (x, z) =∑

λ ξλ
M (x)fλ(z). The gauge transformation (A.1) can be written as

hλ
µν → hλ

µν +∇µξλ
ν +∇νξλ

µ , (A.2)
hλ

5µ → hλ
5µ + ωλξλ

µ +∇µξλ
5 , (A.3)

hλ
55 → hλ

55 + 2ωλξλ
5 , (A.4)

where ωλ = (fλ)−1∇5fλ. The ωλ may be a function of z, however the gauge transformation is
done within the action, in which the z integral is ultimately done. For the present discussion
we can just use (A.2)–(A.4) assuming that ωλ is constant. Hence the situation is analogous to
gauge fixing spacetime fluctuations in e.g. a S1 compactification [29]: the 5D gauge symmetry
becomes a 4D Stueckelberg symmetry.

The full unitary gauge. The gauge redundancy (A.2)–(A.4) can be used to set hλ
5µ = 0

by fixing ξλ
µ, and to set hλ

55 = 0 by fixing ξ5. This is the full unitary gauge, in which all
polarizations of the massive graviton modes are encoded into the propagator of hλ

µν . Notice
that the trace of hλ

µν cannot be set to zero.

The traceless-unitary gauge. Instead of removing hλ
55 we can remove the 4D trace

hλ = hλ
µνgµν , along with hλ

5µ, as follows. The 4D trace transforms as hλ → hλ + 2∇µξλ
µ. We

see that ∇µξλ
µ is related to the longitudinal component of ξλ

µ, that we will call ξλ
µ,L, which can

then be used to remove hλ. Let us then introduce the transverse and longitudinal projectors

P µ
T,ν = δµ

ν − ∇µ∇ν

∇2 , P µ
L,ν = ∇µ∇ν

∇2 , (A.5)

that satisfy P µ
T αP α

L,ν = 0, P µ
T,αP α

T,ν = P µ
T,ν , and similarly for PL. We apply PT to (A.3)

and use that, in the general warped metric, ∇µ and ∇5 commute since Rµ5 = 0. The ξλ
5

term is projected out, leaving

hλ
5µ,T → hλ

5µ,T + ωλξλ
µ,T , (A.6)
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with hλ
5µ,T ≡ PT · hλ

5µ, ξλ
µ,T ≡ PT · ξλ

µ. Using this transformation we remove the transverse
component of hλ

5µ using the transverse component of ξµ. We cannot remove the longitudinal
part of hλ

µ5 because the corresponding longitudinal part of ξλ
µ has been already used to remove

the trace. However, we can use ξλ
5 , since the longitudinal part transforms as

hλ
5µ,L → hλ

5µ,L + ωλξλ
µ,L +∇µξλ

5 . (A.7)

In doing so, h5µ is completely removed. All gauge freedoms have been used, thus h55 remains
unconstrained.

In summary we have traded hλ
55 = 0 for hλ = 0. In this traceless and partially uni-

tary gauge, the hλ
µν propagator contains spin-2 and spin-1 polarizations, while the spin-0

polarization of the massive graviton mode is separately encoded into the propagator of hλ
55.

B Quadratic action and graviton mass

By considering the expansion of the action up to second order in the metric fluctuations, we
prove in this appendix the absence of mass terms for the graviton. This is a point that is
often left implicit in the warped extra dimension literature, where fluctuations of the √

g

volume form at second order are often ignored.

B.1 Codazzi form of the action

Let us consider the 5D bulk metric in proper coordinates

ds2 = γµνdxµdxν + dy2 , γµν = e−2A(y)ηµν . (B.1)

The non-vanishing Christoffel symbols are [47]

−Γ5
µν = Kµν = 1

2 γ̇µν , Γµ
ν5 = Kµ

ν , (B.2)

where the dot denotes differentiation with respect to y. We consider intrinsic four dimensional
curvature quantities on the y = constant surface. The 5D Ricci scalar writes in terms of
4D quantities as

(5)R = (4)R − 2K̇ − K2 − KµνKµν , (B.3)

with (4)Rµ
ναβ the 4D Riemann tensor. In the 4D quantities, indices are raised and lowered

with γµν , e.g. K = γµνKµν , (4)R = γµν (4)Rµν . After plugging eq. (B.3) into the action of
eq. (2.1), we integrate by parts the term ∝ K̇, thus producing a boundary term that exactly
cancels the GHY term. The final form of this off-shell action writes

S =
∫

d5x
√

g

(
M3

5
2
(

(4)R + K2 − KµνKµν
)
− 1

2(∂µϕ)2 − 1
2 ϕ̇2 − V (ϕ)

)

−
∫

brane
d4x

√
γ (Vb(ϕ) + Λb) + Smatter . (B.4)

We remind that in this manuscript we have adopted the orbifold convention in which space
is mirrored on each side of the brane, as in e.g. [9].
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B.2 Action at second order

Let us allow for fluctuations in the 4D part of the metric,

γµν ≡ e−2A(y)γ̄µν , γ̄µν = ηµν + hµν . (B.5)

We are fixing the gauge such that hµ5 = 0 and hµ
µ ≡ h = 0. We will omit in this analysis the

dilaton vev, i.e. h55 = 0 = φ̄. Both metrics γµν and γ̄µν are related by a Weyl rescaling with
scaling function ω ≡ A(y) which is constant in xµ. The Ricci scalar (4)R is thus expressed
in terms of (4)R̄ (the Ricci scalar computed with the metric γ̄µν) as

(4)R = e2A(y) (4)R̄ . (B.6)

On the other hand, the extrinsic curvature computed up to second order O(h2
µν) leads to

the following results:

K = −4Ȧ − 1
2hµν∂5hµν , (B.7)

KµνKµν = 4Ȧ2 + Ȧhµν∂5hµν + 1
4∂5hµν∂5hµν . (B.8)

Finally, after using the classical equations of motion for the background, the on-shell action
becomes

S =
∫

d5x
√

γ

[
M3

5
2

(
e2A(y) (4)R̄ + 3A′(y)hµν∂5hµν − 1

4∂5hµν∂5hµν
)
− 2V (ϕ)

]

−
∫

brane
d4x

√
γΛb + Smatter , (B.9)

where we have set the minimum value of the brane potential to zero by convention, i.e.
Vb(vb) = 0.

B.2.1 Brane terms

Let us study the brane term. The contribution of this term to the energy-momentum tensor is

Tµν = −Λbγµν . (B.10)

By using Israel’s junction condition, we have [9]

[Kµν ] = − 1
M3

5

(
Tµν − 1

3γµνT

)
, (B.11)

where T ≡ γµνTµν and [X] ≡ X+ − X−, while the Z2 symmetry implies that K+
µν = −K−

µν .
Focussing on K−

µν we have

K− ≡ γµνK−
µν = 2

3M3
5
Λb , (B.12)

and from a comparison with eq. (B.8) we obtain

Λb = −6M3
5 A′(yb) . (B.13)
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This result can be used to evaluate the brane tension contribution to the action, i.e.

Sb ≡ −
∫

brane
d4x

√
γΛb = 6M3

5

∫
brane

d4x
√

γA′(yb) . (B.14)

The volume form has the following expansion in fluctuations
√

γ = e−4A(y)
(
1− 1

4hµνhµν + · · ·
)

. (B.15)

We use this to work out the expression of Sb at orders O(h0
µν) and O(h2

µν).

Order O(h0
µν). It is convenient to rewrite the boundary terms via integration by parts,

i.e. via the divergence theorem. At O(h0
µν) we have

√
γA′(y)|yb

= −1
4

d

dy

(
e−4A(y)

) ∣∣∣
yb

+O(h2
µν) = −1

4

∫ yb

dy
d2

dy2

(
e−4A(y)

)
+O(h2

µν)

= 2
3M3

5

∫ yb

dy e−4A(y) V (ϕ) +O(h2
µν) , (B.16)

where we have used the background equations of motion in the last equality. We also used
that ∂y

(
e−4A(y)

)
is vanishing on other possible boundaries — for example at the singularity

in the Mν background (2.8). The brane contribution at lowest order in the fluctuation
takes therefore the form

Sb =
∫

d5x e−4A(y)2V (ϕ) +O(h2
µν) . (B.17)

This exactly cancels the bulk term ∝ V (ϕ) in eq. (B.9) at this order.10

Order O(h2
µν). In the computation at order O(h2

µν), we have to consider Sb as well as the
bulk terms ∝ √

γV (ϕ) and ∝ √
γA′(y)hµν∂5hµν in the action (B.9). The terms are

S(2)
b ≡ 6M3

5

∫
brane

d4x[√γ]2A′(yb) = −3
2M3

5

∫
brane

d4x e−4A(yb)A′(yb)hµνhµν , (B.18)

S(2)
V ≡

∫
d5x [√γ]2 (−2V (ϕ)) = 1

2

∫
d5x e−4A(y)V (ϕ)hµνhµν , (B.19)

S(2)
A′ ≡ 3

2M3
5

∫
d5x [√γ]0A′(y)hµν∂5hµν = 3

4M3
5

∫
d5x e−4A(y)A′(y)∂5 (hµνhµν) , (B.20)

respectively, where [√γ]n stands for the order O(hn
µν) term of the volume form. After

integrating by parts in eq. (B.20) with the Z2 orbifold convention, it turns out that the
summation of all these contributions cancel out, i.e. S(2)

b + S(2)
V + S(2)

A′ = 0.
We conclude from this computation that there is no mass term for the fluctuation hµν .

The final result for the on-shell quadratic action of hµν is

S = M3
5
2

∫
d5x e−2A(y)

[
−1
4∂ρhµν∂ρhµν + 1

2∂ρhµν∂µhρν − 1
4e−2A(y)∂5hµν∂5hµν

]
+ Smatter .

(B.21)
The two first terms come from the expansion of (4)R̄. The action (B.21) matches the result
presented in the warped extra dimension literature [27, 48].

10The integral in eq. (B.17) has been extended to the full domain considering the Z2 symmetry and the
subsequent factor 1/2.
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C Equations of motion of the scalar sector

The classical equations of motion for the F and φ̄ fluctuations are [32]

□(4)F (x, z) + ∂2
z F (x, z)− A′(z)∂zF (x, z)− 2ϕ̄′(z)∂zφ̄(x, z) = 0 , (C.1)

ϕ̄′(z)∂µφ̄(x, z)−
(
∂z − 2A′(z)

)
∂µF (x, z) = 0 , (C.2)

□(4)φ(x, z)− ∂2
z φ(x, z) + 3A′(z)∂zφ(x, z) + e−2AV ′′(ϕ)φ(x, z)

+6ϕ′(z)∂zF (x, z) + 4e−2AV ′(ϕ)F (x, z) = 0 . (C.3)

Eq. (C.2) can be integrated to give

ϕ̄′(z)φ̄(x, z)−
(
∂z − 2A′(z)

)
F (x, z) = c(z) , (C.4)

with c(z) an arbitrary function constant in xµ. This constant is set to zero due to a
combination of the two other equations (C.1), (C.3), which satisfy

(1 + c1∂z) [(C.1)] +
(
c2 + c3∂z + c4∂2

z

)
[(C.4)] + c5 [(C.3)] = 0 , (C.5)

with

c1 = 1
2
(
ν2 − 1

)
z , c2 = 1

2M3
5

[
1 + ν2

1− ν2 + 1
3(ν

2 − 1)p2z2
]
1
z

, (C.6)

c3 = 1
6M3

5
, c4 = 1

6M3
5
(ν2 − 1)z , c5 = ν

2
√
3M3

5

, (C.7)

once c(z) = 0.
As a result, eq. (C.4) amounts to a constraint equation which relates the fluctuations

φ̄(x, z) and F (x, z). We are left with two independent differential equations, e.g. (C.1)
and (C.4) with c(z) = 0. The fact that redundancies in the equations of motions turn
into nontrivial algebraic constraints on integration constants was observed in [14, 45] at
the level of the background.
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