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A B S T R A C T

Objective: To assess the prediction accuracy of recent optical and numerical models for the spectral reflectance
and color of monolithic samples of dental materials with different thicknesses.
Methods: Samples of dental resin composites of Aura Easy Flow (Ae1, Ae3 and Ae4 shades) and Estelite
Universal Flow Super Low (A1, A2, A3, A3.5, A4 and A5 shades) with thicknesses between 0.3 and 1.8 mm,
as well as Estelite Universal Flow Medium (A2, A3, OA2 and OA3 shades) with thicknesses between 0.4
and 2.0 mm, were used. Spectral reflectance and transmittance factors of all samples were measured using
a X-Rite Color i7 spectrophotometer. Four analytical optical models (2 two-flux models and 2 four-flux
models) and two numerical models (PCA-based and L*a*b*-based) were implemented to predict spectral
reflectance of all samples and then convert them into CIE-L*a*b* color coordinates (D65 illuminant, 2◦

Observer). The CIEDE2000 total color difference formula (𝛥𝐸00) between predicted and measured colors,
and the corresponding 50:50% acceptability and perceptibility thresholds (𝐴𝑇00 and 𝑃𝑇00) were used for
performance assessment.
Results: The best performing optical model was the four-flux model RTE-4F-RT, with an average 𝛥𝐸00 = 0.72
over all samples, 94.87% of the differences below 𝐴𝑇00 and 65.38% below 𝑃𝑇00. The best performing numerical
model was L*a*b*-PCHIP (interpolation mode), with an average 𝛥𝐸00 = 0.48, and 100% and 79.69% of the
differences below 𝐴𝑇00 and 𝑃𝑇00, respectively.
Significance: Both optical and numerical models offer comparable color prediction accuracy, offering flex-
ibility in model choice. These results help guide decision-making on prediction methods by clarifying their
strengths and limitations.
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1. Introduction

When patients undergo dental treatments, they may have specific
expectations regarding the final outcome, especially in terms of color
and aesthetic rendering. For the practitioner, meeting these expec-
tations and obtaining satisfying results is crucial to ensure patient
satisfaction. Thanks to the latest scientific and technological progress
in the dental field, restorations can now closely mimic the natural
color and translucency of teeth [1–4], and achieve a similar aspect to
the surrounding natural dental tissues. Considering the large number
of materials and colors available today on the marketplace, selection
of the most appropriate material for a given clinical situation may
be difficult [5–7]. Dentists must have a keen eye for color and use
empirical techniques to achieve precise shade matching between the
restoration and the tissues [8].

Currently, color matching is based on the concept of tooth shade,
i.e. the colors of the natural teeth and samples from a shade guide
are compared by the dental practitioner [9], most often by naked eye
and under the lighting of his/her office, calibrated or not. Sometimes,
color evaluation may also be supported instrumentally, by using a
colorimeter, spectrophotometer, intraoral scanner or a computer vision
system [10–14], whose respective pros and cons [15–19] leave room
for improvement.

Decision support for dental materials remains a scientific challenge
for several reasons. Firstly, color is not a physical quantity that can
be measured directly: it is a sensation, produced in the brain after a
complex perceptual process which depends on many parameters. For-
tunately, color science has established a correlation between perceived
colors and measured physical quantities related to light, and the CIE
proposed some standard models and procedures to assess color through
optical measurement in some simple cases as for instance a planar,
uniform, opaque object placed in a uniform, achromatic scene [20].
These procedures can apply to flat slices of dental materials, despite the
fact that these slices are rarely opaque. Second part of the challenge is
determining the appropriate optical measurement for color assessment
in the specific case of dental materials. The standard procedures stand
for opaque, strongly scattering media, such as paper for example. How-
ever, dental materials are usually very translucent and, therefore, light
propagates more deeply into the matter and can keep some directional-
ity. This can lead to artifacts in the measurements (for example a halo
around the illuminated area, corresponding to light that escape from
detection, a phenomenon called edge loss), which make difficult the
analysis of the measured signal, and therefore the color assessment. The
last part of the challenge is that light propagation into dental materials,
thereby the material aspect, depends on many parameters related with
the matter itself (intrinsic optical parameters such as absorption and
scattering coefficients, refractive index, depending on the wavelength
of visible light), the shape of the material (structural parameters such
has the layer thickness, and the lighting (spectral power distribution,
angular distribution, etc.). In this context, even though color is the
‘‘quantity’’ that finally we want to assess, spectral methods are the
most suitable, where the physical quantities measured are described
as a function of the wavelength of light: they enable assessing the
color of a sample under any spectral power distribution of the lighting.
This is an advantage knowing that an individual may meet a broad
variety of lightings in his everyday life. The methods discussed in this
paper are primarily spectral, with the exception of one method that
directly deals with color coordinates. In addition, our study focuses
on the influence on color of a structural parameter: the thickness of
the material layer, known to be determinant in the color of dental
material samples [2,4,21–23]. In particular, the methods we use seek
to perform some physical measurements on one or more samples of
a given thickness (calibration samples), and to predict the color of
samples of any other thicknesses (test samples).

For that purpose, two main approaches are possible. The first ap-

proach, that qualified as ‘‘optical approach’’ consists in (1) describing
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that light-matter interaction with an optical model, (2) using that
model to extract the optical parameters of the considered material
from the physical measurements done on the calibration samples, by
taking into account the characteristics of the light, the detector, and
the sample thickness, and (3) use the model again with the optical
parameters previously obtained but with the new layer thicknesses. In
this approach, the optical measurements must be consistent with the
models, so that the measured values can be correctly interpreted in
terms of light propagation.

The second approach – the ‘‘numerical approach’’ – consists in
doing measurements with a given device on a set of samples, and
interpolating or extrapolating the measured data for other thicknesses.
In this approach, in contrast to the optical approach, the physical
measurements must allow for correct interpretation in terms of color,
in accordance with the recommendations laid down by the CIE.

The two approaches have been followed in other industrial domains,
as for example in printing [24]. In the case of dental materials, the issue
has been tackled more recently, but studies based on both approaches
have also been proposed [25,26] and have shown their effectiveness
in predicting accurately the colors of various materials across different
thicknesses.

For the present study, among the optical models available, the
Kubelka–Munk Reflectance Theory was selected [27–29], which was
used to characterize dental materials [30–35] or predict their spec-
tral reflectance factor [36–38]. Despite its simplistic assumptions, it
remains the gold standard analytical method for optical characteri-
zation of dental materials. Recently, more advanced optical models,
based on the four-flux model generalized by Maheu et al. [39], were
developed and applied to dental materials to predict their spectral
reflectance factors, showing increased prediction accuracy compared
to the previous optical models [40]. Regarding the numerical models,
two methods relying on regression techniques differing in the data
handled for the prediction and the outcome obtained were selected. The
first one is based on a Principal Components Analysis (PCA) approach
from reflectance values, allowing to estimate both reflectance and color
of a new sample [26], while the second method utilizes CIE-L*a*b*
color coordinates, and was specifically designed for CIE-L*a*b* color
estimations [41].

The comparative study that is proposed rely on the same set of sam-
ples, measured with an optical instrument that satisfy the expectations
of both approaches: it allows interpretation in terms of light propaga-
tion with optical models, and it is designed for color characterization
and is therefore compatible with the numerical approach.

Therefore, the objective of this work is to conduct a comparative
analysis of the different methods for color prediction in dentistry
present in the current literature, evaluating the strengths and limi-
tations of each approach, in terms of ergonomy, time computation,
exportability, and other practical considerations. The research hypoth-
esis studied was that optical models and numerical models can provide
similar prediction accuracy.

2. Materials and methods

2.1. Specimen preparation

Samples of dental resin composites of different brands and shades
were prepared (Table 1). These dental resin composites have been
successfully used in aesthetic dentistry for many years [42,43].

For each shade of the Aura Easy Flow and Estelite Universal Flow
SuperLow materials, six samples of different thickness (0.3 mm, 0.6 mm,
0.9 mm, 1.2 mm, 1.5 mm, and 1.8 mm), were prepared. For each shade
of the Estelite Universal Flow Medium material, eight samples with
thickness 0.4 mm, 0.5 mm, 0.8 mm, 1.0 mm, 1.2 mm, 1.5 mm, 1.6 mm
and 2.0 mm were fabricated. The flowable dental resin was injected
between two glass-slides, whose spacing was controlled with high

precision wedges (Mitutoyo company) defining the nominal thickness
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Table 1
Names and manufacturers, classification, composition, shade and batch numbers of resin composites (information given by
the manufacturers).
Names
(Manufacturers)

Classification Composition Shade (Batch
numbers)

Aura Easy Flow
(SDI Ltd.)

Nano-hybrid
resin composite

56% inorganic fillers
(0.2–1 micron) multifunctional
methacrylic esters
(UDMA, TEGDMA, Bis-EMA),
initiators, stabilizers, pigments.

Ae1 (1906100)
Ae3 (190964)
Ae4 (190794)

Estelite Universal
Flow SuperLow
(Tokuyama)

Supra-nano filled
resin composite

Spherical silica-zirconia filler
(mean particle size: 200 nm),
Composite filler Bis-GMA,
Bis-MPEPP, TEGDMA,
UDMA, Mequinol,
Dibutyl hydroxyl toluene,
UV absorber.

A1 (10621)
A2 (01713)
A3 (2178)
A3.5 (4064)
A4 (5042)
A5 (60311)

Estelite Universal
Flow Medium
(Tokuyama)

Supra-nano filled
resin composite

Spherical silica-zirconia filler
(mean particle size: 200 nm),
Composite filler Bis-GMA,
Bis-MPEPP, TEGDMA,
UDMA, Mequinol,
Dibutyl hydroxyl toluene,
UV absorber.

A2 (0717)
A3 (2942)
OA2 (7122)
OA3 (8096)
n
c
r
c

2

r
t
c
d
(
m
m

of the sample. The samples were light-cured with a LED light curing
unit (Radii Xpert, SDI) operating at 1500 mW/cm2, according to the
curing scheme described in ISO/TR 4049:2009 [44]: each sample
was irradiated five times, 40 s each irradiation, at 12-3-6-9 o’clock
positions and ending in the center of the sample. The sample diameter,
determined by the volume of material deposited, was ranging from
20 mm to 22 mm. The thickness of each sample after curing was tested
with a precision micrometer. Although the measured thicknesses were
considered in the experiments, samples will be referred to by their
nominal thickness hereinafter for clarity.

2.2. Spectral measurements

The spectral measurements (400 nm to 750 nm with 10 nm steps)
were performed with a Color i7 spectrophotometer (X-Rite, Grand
Rapids, Michigan, USA), and the average of seven successive measure-
ments was considered. The spectrophotometer allows two reflectance
modes: (1) the specular included mode (SCI, CIE di:8◦ geometry [20]),
which allows measurement of the total reflectance factor 𝑅𝑡𝑜𝑡(𝜆) in the
terminology of the four-flux model; (2) the specular excluded mode
(SCE, CIE de:8◦), allowing measurement of the diffuse reflectance factor
𝑅𝑑𝑖𝑓𝑓𝑢𝑠𝑒(𝜆) in the terminology of the four-flux model. The spectropho-
tometer also allows two transmittance modes: (1) the total transmit-
tance mode, allowing to measure the total transmittance factor 𝑇𝑡𝑜𝑡(𝜆)
in the terminology of the four-flux model; (2) the direct transmittance
mode, allowing to measure the collimated-to-collimated transmittance
factor 𝑇𝑐𝑐 (𝜆) in the terminology of the four-flux model; the measure-
ment geometry for this mode is CIE 0◦:0◦. The illumination aperture

as 17 mm in diameter while the measuring aperture was 6 mm
n diameter. The ratio between the illumination aperture and the
easuring aperture was maximized in order to limit the edge-loss phe-
omenon, well-known to alter the measurement of highly translucent
amples [45,46]. A built-in UV filter was used to prevent the UV-to-
isible fluorescence of the sample since fluorescence is not accounted
or in the investigated optical models. However, some fluorescence
ffect still remains, due to excitation of the optical brighteners by the
hort visible wavelength around 400–410 nm. Therefore, for each sam-
le, four spectral measurements were performed: spectral reflectance
actor under CIE di:8◦; spectral reflectance factor under CIE de:8◦),

total spectral transmittance factor under CIE di:0◦, and directional
spectral transmittance factor under CIE 0◦:0◦. All measurements were

erformed in a completely dark room in order to prevent stray light.
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2.3. Prediction algorithms

Predictions methods were applied to predict the reflectance factor
of a sample with a different thickness. Analytical models rely on a set
of assumptions on the material’s optical properties, such as absorption
and scattering parameters and the way light propagates through a layer
of a given thickness. These models predict the spectral reflectance
and transmittance factors of the layer, accounting for the interfaces
with the bordering media (e.g. air, background). On the other hand,
umerical approaches use known spectral reflectance factors or color
oordinates of training samples with certain thicknesses, and apply
egression methods in order to predict the spectral reflectance or the
olor coordinates of samples with other thicknesses.

.3.1. Optical analytical models
In this comparative study, 2 two-flux models and 2 four-flux models

ecently investigated [40,47] were used. The first two-flux model inves-
igated was the Kubelka–Munk model associated with the Saunderson
orrection [48]. This model relies on analytical formulas allowing to
erive the material’s optical parameters from the calibration sample
inverse model). The model predicts the spectral reflectance and trans-
ittance factors of layers of known thicknesses as functions of the
odel’s optical parameters (direct model). This model is denoted 2F-RT

hereinafter. The second two-flux model investigated, denoted dir2F-RT
hereinafter, is similar to the 2F-RT model, except that it considers light
to be mainly directional within samples. This assumption has proved to
be more accurate for reflectance factor predictions of thin samples of
dental materials (between hundreds of microns to a few mm) [49]. The
internal reflectance of the air–material interface used in the Saunderson
correction is 4% in the dir2F-RT model whereas it is 60% in the 2F-RT
model. The implementation of these models and discussion about their
physical assumptions and plausibility are given in literature [25].

The four-flux models considered in this study are extensions of the
model proposed by Maheu et al. [39]. They consider separately the
propagation and mutual exchanges of two diffuse and two directional
light fluxes and predict a specular reflectance, a diffuse reflectance, a
direct transmittance and a diffuse transmittance for any sample. The
first four-flux model tested is described by Eymard et al. [40], and is
denoted Eymard4F-RT hereinafter. The implementation of this model
is detailed in literature [25,40]. The second model, denoted as RTE-
4F-RT, is similar to the first one but with a refined calculation of the
internal reflectance of the upper and lower interfaces of the material
layer, using look-up tables calculated using the Radiative Transfer
Equation [50,51] for translucent materials [47].
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2.3.2. Numerical models
In contrast with optical models, for which the optical measurement

of one calibration sample suffices, numerical models need a certain
number of samples of different thicknesses to be trained. The number
of training samples determines the prediction accuracy of the spectral
reflectance factor of samples with other thicknesses. As the number
of samples available in this study was limited, available samples were
divided into training and test sets following a leaving one out cross-
validation approach (CV-LOO). This was carried out for each material
and shade, therefore, for a given material, the number n of samples
available is divided into n-1 samples in the training set, and 1 sample in
the test set. The sample in the test set can be any of the n samples, and
each of them has been considered in turn. This means that all samples
will be part of the training and test sets at some point, but will never
belong to both at the same time.

With this type of predictive models, it is interesting to observe the
prediction accuracy according to whether the thickness of the sample
tested is within or beyond the range of thicknesses of the samples in
the training set (which corresponds to interpolation and extrapolation
approaches, respectively).

For the present study, two numerical models were investigated.
The first one, denoted PCA-PCHIP, was previously described in lit-
erature [26] and it is based on a Principal Components Analysis ap-
proach [52]. It allows to use the spectral reflectance factors of the
training set to predict the spectral reflectance factors of new samples. In
this model, the spectral reflectance factors corresponding to the training
set are converted into a set of Principal Components (𝑎𝑖) and weighting
coefficients 𝛼𝑖. These principal components are linear combinations of
the original wavelengths that capture the maximum variance in the
data. Then, a subset of the principal components, that capture a signifi-
cant portion of the total variance, is selected, and regression predictive
techniques are applied to predict the weighting coefficients that would
correspond to new reflectance factors. The reflectance factor of the test
sample can be estimated by multiplying those predicted coefficients
with their corresponding singular vectors, as shown in Eq. (1).

𝑅(𝜆) = 𝛼1𝑎1(𝜆) + 𝛼2𝑎2(𝜆) +⋯ + 𝛼𝑛𝑎𝑛(𝜆) (1)

Choosing an appropriate number of principal components is impor-
tant in order to develop models that are both accurate and efficient to
predict unseen data. Previous studies have shown that for similar [26]
and even more complex [53] type of data sets, optimal performance
can be obtained when using 3 principal components.

The second numerical model, denoted L*a*b*-PCHIP, previously
described in the literature [41], directly provides color estimations.
This model follows a similar approach to the previous one, but uses
CIE-L*a*b* values as the input data for the regression models instead
of reflectance factors. Since each CIE-L*, CIE-a* and CIE-b* coordinates
were predicted individually, three different models were computed for
each test sample.

For both numerical methods, Piecewise Cubic Hermite Interpolating
Polynomial (PCHIP) [54] was used as fitting regression method for
obtaining the weighting coefficients and color coordinates, respec-
tively. PCHIP is a mathematical approach used in numerical analysis
to interpolate data points. It is a type of spline interpolation method
whose goal is to create a smooth curve passing through a given set of
data points. This regression method has the advantage of preserving
monotonicity, and therefore, this property makes PCHIP particularly
useful when interpolating data that represents monotonic trends, which
is the case of our data.

2.4. Performance metrics

The measured or predicted spectral reflectances were converted
into CIE1976 L*a*b* coordinates, by selecting a D65 illuminant and

a perfect white diffuser under this illuminant as white reference for
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Table 2
Statistics of error metrics between measured and predicted reflectance factors for the
different optical models (78 specimens considered for prediction).

2F-RT dir2F-RT Eymard4F-RT RTE-4F-RT

Mean 𝛥𝐸00 5.35 2.49 1.24 0.72
95th percentile 17.96 4.81 2.89 1.82
<AT% 30.77 38.46 80.77 94.87
<PT% 7.69 3.85 35.90 65.38

chromatic adaptation. As per the current recommendation by the In-
ternational Commission on Illumination (CIE) [20], the total color
differences between CIE-L*a*b* values corresponding to the measured
and predicted data were calculated using the CIEDE2000(1:1:1) total
color difference formula (Eq. (2)):

𝛥𝐸00 =

[

(

𝛥𝐿′

𝐾𝐿𝑆𝐿

)2

+
(

𝛥𝐶 ′

𝐾𝐶𝑆𝐶

)2

+
(

𝛥𝐻 ′

𝐾𝐻𝑆𝐻

)2

+ 𝑅𝑇

(

𝛥𝐶 ′

𝐾𝐶𝑆𝐶

)(

𝛥𝐻 ′

𝐾𝐻𝑆𝐻

)

]
1
2

(2)

This was proven to fit better with human perception for dental
specific shade matching tasks [55]. 𝛥𝐸00 values were assessed based on
the specific perceptibility threshold (PT) 𝛥𝐸00 = 0.8 and acceptability
threshold (AT) 𝛥𝐸00 = 1.8 for dentistry, as reported in literature [56,57]
and recommended by the ISO/TR 28642:2016 [58].

3. Results

Fig. 1 shows all 𝛥𝐸00 values between predicted and measured colors
for all materials and shades and all six predictive models evaluated.

For the optical models, Table 2 shows the mean 𝛥𝐸00, the 95th
percentile and the percentage of samples below 𝐴𝑇00 and 𝑃𝑇00 values
for all the unknown data, i.e., all materials and all thicknesses excluding
the calibration sample (1.2 mm). All optical models yield a color
difference of 0 for the calibration sample, since the calibration of these
models involves employing reversible protocols in order to identify the
optical parameters that minimize color difference for the calibration
sample.

The prediction accuracy of the 2F-RT model deviates quickly as
the thickness deviates from the calibration thickness, while it is more
stable for the more advanced RTE-4F-RT model which indicates that the
latter better describes the light propagation in the evaluated samples.
For the same reasons, the 2F-RT and dir2F-RT models are rather
inaccurate, while the Eymard4F-RT model achieved an average 𝛥𝐸00
color difference of 1.24 below 𝐴𝑇00. The best performance among the
optical models was obtained for the RTE-4F-RT model, which achieved
an average 𝛥𝐸00 color difference of 0.72, slightly below 𝑃𝑇00, while
the 95th percentile is at 1.82, slightly above 𝐴𝑇00, for the 78 evaluated
samples.

For the numerical models, more than one sample are needed to train
the algorithms, and therefore a CV-LOO approach was used to fully
exploit the available data. For these models, it is important to consider
that in the given experimental context, different modeling behaviors
may arise when estimating the data (spectral reflectance factor or color
values) of samples with thicknesses beyond the range covered by the
training data (extrapolation) compared to thickness within the training
data range (interpolation). Therefore, it is worth examining whether
the prediction performance changes by excluding extreme values and
focusing solely on values falling within the range of available data
(intermediate values well-represented in the training set).

Tables 3 and 4 show the mean 𝛥𝐸00, the 95th percentile and the
percentage of samples below 𝐴𝑇00 and 𝑃𝑇00 values for all materi-
als when employing the interpolation and extrapolation approach or
interpolation only approach, respectively.

As expected, better performance was achieved when following an
interpolation approach, with average color differences around 𝛥𝐸 =
00
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Fig. 1. 𝛥𝐸00 values between measured and predicted data, and corresponding 𝑃𝑇00 (solid) and 𝐴𝑇00 (dotted) lines, for all materials (a–d: Aura Easy Flow, e–h: Estelite Universal
Flow Medium, i–m: Estelite Universal Flow SuperLow) and each predictive model evaluated.
Table 3
Statistics of error metrics between measured and predicted values for the
different numerical models (interpolation and extrapolation approach —
92 specimens considered for prediction).

PCA-PCHIP L*a*b*-PCHIP

Mean 𝛥𝐸00 0.99 0.97
95th percentile 4.23 4.09
<AT% 85.87 88.04
<PT% 65.22 65.22
1681 
Table 4
Statistics of error metrics between measured and predicted values for the
different numerical models (interpolation only approach — 64 specimens
considered for prediction).

PCA-PCHIP L*a*b*-PCHIP

Mean 𝛥𝐸00 0.51 0.48
95th percentile 1.41 1.44
<AT% 98.44 100.00
<PT% 76.56 79.69
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0.5, versus those obtained for an approach including both interpolation
and extrapolation, whose average color differences obtained were al-
most twice as large, around 𝛥𝐸00 = 1.0. For this type of models, whose
erformance relies on regression methods, it is extremely important to
ork with data within a known domain, which would be the case of

nterpolation, but not of extrapolation. However, even for the case were
xtrapolated spectra are considered, very good results were obtained,
ince similar performances were obtained with the four-flux optical
odels (< 𝐴𝑇% above 85% and < 𝑃𝑇% above 65%), and even much

etter than the more simple two-flux optical models.

. Discussion

In restorative dentistry, achieving a natural and seamless blend with
he surrounding teeth is essential. Dentists must accurately match the
olor and shade of the restorative materials with the patient’s existing
eeth to achieve a harmonious and natural look. In this regard, spectral
eflectance is paramount for material characterization and, therefore,
eing able to properly predict it can have significant applications in
he dental field.

This research paper presents a comprehensive investigation into the
erformance of optical models including 2F-RT, dir2F-RT, Eymard4F-
T, and RTE-4F-RT and numerical models, specifically PCA-Based and
*a*b*-Based models, for predicting color of various dental materials.
t delves into the pros and cons of these models, considering factors
uch as accuracy, ease of implementation, sample requirements, and
daptability to different scenarios.

From the values presented in Fig. 1, we can see that for all of
he models a U-shaped trend is observed for the CIEDE2000 color
ifferences as a function of the sample thickness. For the optical mod-
ls, the predictions according to the thickness rely necessarily on an
xtrapolation approach since only one sample is used for calibration.
n ideal model should provide accurate predictions regardless of the

hickness of the calibration sample and the test thicknesses evaluation.
n practice however, due to the approximations made by the model in
erms of light propagation, better predictions are obtained when the
hickness of the test sample is close to the one of the calibration. In this
egard, for the numerical models it is logical to expect better results for
amples centered within the data range used.

In the case of optical models, the prediction accuracy of two-flux
odels is limited due to the rather high translucency of dental materials
hile their physical assumptions are satisfied with highly scattering
aterials only [25]. The translucency of dental materials is better
anaged by the four-flux models, especially by the RTE-4T-RT, for
hich the internal reflections at the bordering interfaces are more

inely quantified thanks to computations based on a Radiative Transfer
odel [47]. This is why the latter model enables reflectance factor
redictions with color differences below the acceptability threshold for
ost materials evaluated, and in many cases even below the perceptibly

hreshold.
Also, it is important to consider that optical models rely on physical

escriptions of light matter interaction to link macroscopic measure-
ents, namely reflectance and transmittance factors of a layer, to its

ptical parameters. As such, optical models tend to be more sensible
han numerical approaches to measurements inaccuracies. One source
f deviation known in the field of translucent material [45] is edge-loss
henomenon, which occurs when light exits the materials layer by its
oundary and thus, does not reach the sensor in both reflectance and
ransmittance measurements [46]. In the case of dental materials, this
henomenon affects longer wavelengths (red light) more than shorter
avelengths (blue light), since longer wavelengths usually propagate

urther into these materials. This phenomenon is not accounted for in
ptical models and might be falsely interpreted as absorption and/or
cattering. Edge-loss also occurs with numerical models but it is in-

luded in the training data, since edge-loss may vary with respect to the

1682 
sample thickness, however it can be a limit to the accuracy of numerical
models too.

Regarding the numerical models, it should be noted that for the
extrapolation cases, generally worse results were obtained. This reflects
the importance of predicting data that is within the range of data
used to train the models, or in the worse case scenario, when an
extrapolation approach has to be used, it is important to keep in mind
the limits of the models and know that the farther we move away from
the range of data, the worse the results obtained will be, as clearly show
the results presented in Tables 4 and 3.

In comparing optical and numerical models, it becomes evident that
each approach has its own set of advantages and drawbacks. On one
hand, optical models aim to surpass numerical approaches by under-
standing the intricate interactions between light and materials. These
models enable spectral material characterization which can be useful
for material manufacturers, requiring only one sample for calibration
and allowing adaptation for predicting reflectance or transmittance fac-
tors. They can also be adapted for different contexts, for directional or
diffuse lighting, with or without background, etc. However, these mod-
els demand more measurements and adapted instrumentation, for ex-
ample, four-flux models need an optical bench with integrating sphere
allowing reflectance measurement (specular component included and
excluded) and transmittance measurements (diffuse and direct), which
are considerably more complex than those needed for numerical mod-
els, also since four-flux model rely on an optimization algorithm for
their calibration, the calibration step requires a longer calculation time
(about 5 s for the Eymard4F-RT model, and about 2 min for the RTE-4F-
RT model on a standard computer). The longer computation time makes
them less straightforward than numerical models and less suitable for
integration into handheld devices.

On the other hand, numerical models are quick to run and easy
to implement. They are also more suitable for integration into hand-
held devices since they only rely on reflectance factor measurements.
Moreover, they can be enhanced with other algorithm types, providing
flexibility in optimization. However, limitations include material de-
pendency, the necessity for multiple samples to train the models, and
reduced accuracy in extrapolation scenarios. Despite these drawbacks,
numerical models remain more accurate than many optical models
for extrapolation. Also, it is important to take into account that for
the L*a*b*-PCHIP model, reflectance estimation is not possible, since
it only works with color data. Indeed, although the main purpose of
all approaches is to predict color, spectral approaches (analytical or
numerical) are more reliable since they enable to predict the color
under any illuminant, not only the device’s light source, and are less
subject to metamerism. The L*a*b*-PCHIP model, working with color
measurements can be a drawback if the goal is to characterize the
materials, however, it can be also an advantage for clinical scenarios,
where color data is easier to acquire than spectral data.

It is also worth highlighting that, both numerical and optical ap-
proaches can be adapted to the case of multilayered materials. The
accuracy of two-flux models for predicting the reflectance factor of bi-
layered samples has been demonstrated without the need for additional
calibration compared to single layer materials [59]. Four-flux models
for layered materials have been also previously used [60,61], but their
accuracy applied to dental materials remains to be tested. Numeri-
cal models calibrated using multilayered training samples of dental
materials have also been proposed [41,53], showing good prediction
accuracy, and new methods relying solely on single layer samples are
under development. Therefore, based on the results of this study, the
research hypothesis is accepted, since optical and numerical models
can provide similar prediction accuracy, although, this is only true
for the four-flux optical models, as there are significant differences in
performance for the two-flux models.

The comparison between optical and numerical approaches, along

with practical considerations, is summarized in Table 5.
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Table 5
Summary of pros and cons of optical and numerical approaches.
Approach Optical

(Extrapolation)
Numerical
(Interpolation)

Average color difference Two-flux: > 𝐴𝑇00
RTE-4F-RT: < 𝑃𝑇00

interpolation and extrapolation: < 𝐴𝑇00
interpolation: < 𝑃𝑇00

Instrument required d:8◦ d:8◦ or 45◦:0◦

Calibration samples required 1 N

Prediction enabled Reflectance/Transmittance Reflectance

Applicable to layered materials Yes Yes

Calculation time Two-flux: ∼10−3 s
Four-flux: ∼10 s

∼10−3 s
Bearing the limitations in mind, it has become clear that both
ypes of models, optical and numerical, have great potential to be a
aluable aid in the dental industry. Numerical models are well-suited
or scenarios where accuracy, speed, and ease of implementation are
ritical, especially for handheld devices. Optical models, meanwhile,
espite their intricacies, are valuable for material characterization espe-
ially during their formulation, but maybe less practical for embedded
ystems due to their computational demands. Future work should
nclude a wider range of dental materials, as for example ceramics.
evertheless, the high accuracy obtained with the shades and materials
lready tested, confirms that the proposed methods for reconstructing
eflectance factor and color can already be used.

. Conclusions

This research highlights the importance of choosing the appropriate
odel based on the specific requirements of the application. Optical

nd numerical models can provide similar prediction accuracy, there-
ore the choice of model for color prediction of dental materials can be
ased on the user’s needs or available resources without compromising
ts outcome.

The findings presented in this paper contribute to a better under-
tanding of the strengths and limitations of numerical and optical mod-
ls, facilitating informed decision-making in the selection of prediction
ethods.
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