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Abstract

Due to the impelling urgency of plant conservation and the increasing availability of high res-

olution spatially interpolated (e.g. climate variables) and categorical data (e.g. land cover

and vegetation type), many recent studies have examined relationships among plant spe-

cies distributions and a diversified set of explanatory factors; nevertheless, global and

regional patterns of endemic plant richness remain in many cases unexplained. One such

pattern is the 294 endemic vascular plant taxa recorded on a 1 km resolution grid on the

environmentally heterogeneous island of Sardinia. Sixteen predictors, including topo-

graphic, geological, climatic and anthropogenic factors, were used to model local (number of

taxa inside each 1 km grid cell) Endemic Vascular Plant Richness (EVPR). Generalized Lin-

ear Models were used to evaluate how each factor affected the distribution of local EVPR.

Significant relationships with local EVPR and topographic, geological, climatic and anthropo-

genic factors were found. In particular, elevation explained the larger fraction of variation in

endemic richness but other environmental factors (e.g. precipitation seasonality and slope)

and human-related factors (e.g. the Human Influence Index (HII) and the proportion of

anthropogenic land uses) were, respectively, positively and negatively correlated with local

EVPR. Regional EVPR (number of endemic taxa inside each 100 m elevation interval) was

also measured to compare local and regional EVPR patterns along the elevation gradient. In

contrast to local, regional EVPR tended to decrease with altitude partly due to the decreas-

ing area covered along altitude. The contrasting results between local and regional patterns

suggest that local richness increases as a result of increased interspecific aggregation along

altitude, whereas regional richness may depend on the interaction between area and alti-

tude. This suggests that the shape and magnitude of the species-area relationship might

vary with elevation. This work provides—for the first time in Sardinia—a comprehensive

analysis of the influence of environmental factors on the pattern of EVPR in the entire terri-

tory, from sea level to the highest peaks. Elevation, as well as other environmental and

human-related variables, were confirmed to be influencing factors. In addition, variations of

EVPR patterns at regional-to-local spatial scales inspire next investigations on the possible

interaction between elevation and area in explaining patterns of plant species richness.
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Introduction

The question of how plant diversity is distributed on Earth has long fascinated and inspired

biogeographers and ecologists. Due to the urgency of plant conservation and an increase in the

amount of high resolution data available, many studies have explored how plant species’ rich-

ness results from interactions among topography, geology, climate and anthropogenic factors

[1–3]. Nevertheless, global and regional patterns of plant richness are still in many cases

unresolved.

Since endemic plants are frequently threatened, they constitute a pivotal group for conser-

vation [4, 5]. Among endemics, plant species that have narrow extent of occurrence and area

of occupancy deserve a priority for conservation, since they are often classified as threatened,

mainly due to their limited number of locations/populations, genetic diversity and ecological

amplitude [5, 6]. Despite their conservation interest, the ecology and distribution of such

endemic plants has not yet been explored thoroughly, and further research is needed, espe-

cially in-depth studies at very fine scales [6–8]. Most research on this issue to date has been car-

ried out on islands [9–11], which have long been considered global centres of plant endemism

richness [12]. In studies on larger islands (including continental islands), the area per se con-

tributed to explain most of species’ richness variation since population sizes usually increase

with an island’s area, and thus extinction risk decreases [13]. But when plant diversity was ana-

lysed at increasingly fine scales, further influential factors were found. Generally, elevation gra-

dient and habitat diversity were the most important drivers of plant distribution [3, 14].

Stuessy et al. [15] found the proportion of endemic species evolved through adaptive radiation

to be positively related to habitat diversity on islands, assuming that speciation through adap-

tive radiation is much faster than random drift. In addition, environmental filtering along an

elevational gradient differentiates ecosystems, leading to an increase of habitat diversity and

isolation with elevation [3, 15]. Consequently, an increased speciation rate resulting in a larger

percentage of endemic species can be expected for higher elevations. Support for this eleva-

tion-driven ecological isolation hypothesis comes from other islands in the Mediterranean

region (e.g. Crete and Corsica), where an increase of the percentage of endemic species with

elevation has been observed [3, 11]. Also, human beings are now considered one of the most

novel forces in the evolution of life, since they are alarmingly increasing in the last decades,

especially in lowlands [12, 16].

The five Mediterranean climate regions have been the site of many studies about endemic

plant richness [3, 7, 9–11]. In the case of the Mediterranean Basin, where this study is focused,

the diversification of several endemic plants across the islands of the Basin substantially origi-

nated via processes of land migration/vicariance driven by connections and disconnections

between micro-plates [17, 18]. Such colonisation/expansion events, followed by successive

fragmentation episodes, were also associated with the aridification of the climate that began

with the last glaciations [18]. Thus, in addition to geographical isolation, the diversification of

the Mediterranean flora was strengthened by progressive climatic modifications related to the

onset of the Mediterranean climatic regime during the Pliocene (ca. 3.2 kya) [18]. These pro-

cesses explain the current pattern of endemic taxa that are particularly concentrated in stress-

ful habitats, often characterised by a low interspecific competition (e.g. psammophilous and

halophytic places and mountain peaks) [8, 11, 19]. Historically, endemic plants in the Mediter-

ranean Basin have also been subjected to intense disturbances, such as deforestation, agricul-

ture, fires, overgrazing, urbanisation, wars and pollution [16, 20–22]. Therefore, studies of the

distribution and ecology of endemic plant species at regional and local scales are pivotal for

conservation planning.
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This research is a representative case study of Mediterranean endemic plants. Indeed, Sar-

dinia is the second largest island of the Mediterranean Basin and it is considered an important

centre of plant endemisms [14, 17]. In this paper, we present a regional-scale analysis of

Endemic Vascular Plant Richness (EVPR) inside a 1-km resolution grid covering all surfaces

of the island. Our main aim was to investigate the ways that topography, geology, climate and

human influence have contributed to explain the distribution of EVPR in Sardinia. Addition-

ally, regional EVPR (number of endemic plant taxa inside each 100 m elevation interval) was

measured to compare, at different scales, EVPR patterns along the elevation gradient.

Materials and methods

Study area

Sardinia (Italy) and its ca. 399 satellite minor islands are located in the central part of the west-

ern Mediterranean Basin and cover a surface area of around 24,090 km2. In the Mediterranean

biogeographic region, Sardinia is particularly related to Corsica and the Tuscan Archipelago;

together these three areas constitute an independent biogeographical province [23].

Sardinia is mainly mountainous (Fig 1A), with several isolated groups of mountains or mas-

sifs such as Limbara, Sette Fratelli, Monti del Sulcis, Supramonte and Gennargentu, the highest

of them a maximum altitude of 1,834 m, but much of the island is comprised of hilly lands, pla-

teaus and few plains. Its coast is characterised by a variety of landscapes, such as cliffs, sandy

dunes and beaches. Substrata and related environments are very heterogeneous, and are mainly

composed of Palaeozoic metamorphites and batholiths, a sedimentary lithostratigraphic

Fig 1. Maps of elevation, topography and Human Influence Index (HII) in Sardinia. Maps on the spatial distribution of (a) elevation, (b) the

simplified lithology subdivided into six categories: Quaternary sedimentary outcrops (Q_sedimentary), Tertiary limestone outcrops

(T_limestones), Tertiary volcanic outcrops (T_vulc), Mesozoic limestone outcrops (M_limestones), Paleozoic metamorphic outcrops (P_meta)

and Paleozoic intrusive outcrops (P_intrusive) and the (c) HII [28].

https://doi.org/10.1371/journal.pone.0182539.g001
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complex related to a Mesozoic marine transgression, Tertiary marine and volcanic depositions

related to the opening of the Tyrrenian Basin (Fig 1B) and Quaternary alluvial deposits [24].

Bioclimatically, two macrobioclimates (Mediterranean pluviseasonal oceanic and Temperate

oceanic), four classes of continentality (from weak semihyperoceanic to weak subcontinental),

eight thermotypic horizons (from lower thermomediterranean to upper supratemperate) and

seven ombrothermic horizons (from lower dry to lower hyperhumid) were identified [25, 26].

The long presence of humans on the island (since the Lower Palaeolithic) has been pivotal in

shaping the current landscape [27]. In recent decades, the population in mountain villages has

gradually declined, while the largest towns have expanded due to economic development. Low-

land plains and coastal zones have also expanded rapidly due to agricultural and touristic devel-

opment (Fig 1C). This is a common trend among Mediterranean islands, which has caused

significant changes in their landscapes [21].

Floristic data

There are a total of 2,494 taxa recognised in Sardinia [29]. This study focuses on the Endemic

Vascular Plants (hereafter, EVP), which were identified based on the list in Fenu et al. [23].

This list was updated by selecting all the 294 endemic plant taxa (total EVP), then in turn sub-

dividing these into taxa exclusive to Sardinia (187 taxa; exclusive EVP), and taxa also present

in Corsica and the Tuscan Archipelago (107 taxa; insular EVP; for details see S1 Table).

The geodatabase of all EVP was assembled from published literature, Herbarium collections

(CAG, CAT, FI, RO, SASSA, SS, TO) and the authors’ own unpublished field survey records.

A total of 60,301 occurrence records were carefully revised to avoid the potential errors due to

factors such as approximation of the collection locations or inclusion of extinct localities.

Problems related to inhomogeneous sampling efforts were reduced as much as possible by

visiting a great part of the territory between 2006 and 2016, paying particular attention to envi-

ronments similar to those where endemic species were already known to exist, and systemati-

cally visiting all phytogeographic subsectors (recently defined on the basis of the same EVP

presence/absence [23]).

Subsequently, from the 60,301 EVP occurrence records, we built a 1×1 km grid-based

matrix for all Sardinian territory to account for three response variables: (1) the richness of

exclusive EVP (hereafter, exclusive EVPR), (2) the richness of insular EVP (insular EVPR) and

(3) the richness of all EVP (total EVPR). From the initial number of 36,235 cells, our analyses

were restricted to only those grid cells with a minimum of one exclusive (2466), insular

(34,375) or total EVP (34,603 cells). This also allowed us to reduce problems related to sam-

pling bias, as all cells used were visited by the authors or by other botanists during recent

decades. For the 1 km resolution grid map of the three response variables, see the supporting

information (S1 Map).

Explanatory variables

All explanatory variables used for this study were derived from high-resolution free datasets. A

total of 16 predictors were subdivided into three groups: topography and geology (five vari-

ables), climate (six variables), and human influence (five variables).

Topography and geology. We used two variables, elevation and slope, that are strictly

associated with topography and three further variables related to geology: number of geological

units, number of land units and lithology. Elevation and slope were computed by averaging

values from a 10 m resolution Digital Terrain Model (DTM; available at the institutional Sar-

dinian geoportal, http://www.sardegnageoportale.it). The number of geological units per cell

was determined from a 1:25,000 geological map (available from the same institutional
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Sardinian geoportal), while the number of land units was identified from the "Land Units Map

of Italy" [30], kindly provided in raster format by the authors. A land unit was defined as a

zone that displays a certain degree of homogeneity according to a uniformity criterion based

on lithological and geomorphological traits [30]. Lithology was elaborated by dividing the

1:25,000 geological map above six categories: (1) Quaternary sedimentary outcrops, (2) Ter-

tiary limestone outcrops, (3) Tertiary volcanic outcrops, (4) Mesozoic limestone outcrops,

(5) Paleozoic metamorphic outcrops and (6) Paleozoic intrusive outcrops.

Climate. Six bioclimatic variables from the WorldClim database version 1.4 (years 1950–

2000) [31] with a spatial resolution of 30 arc seconds (~1 km) were used: annual mean temper-

ature (Bio1), minimum temperature of the coldest month (Bio6), annual temperature range

(Bio7), annual precipitation (Bio12), precipitation seasonality (Bio15) and precipitation of dri-

est quarter (Bio17).

Human influence. We used five variables related to human influence. The first four of

them were obtained from the institutional Sardinian geoportal (http://www.sardegnageoportale.

it): (1) Roads, calculated as the amount of roads (in km) per grid (from the shapefile of the road

network); (2) Number of buildings, calculated from a shape point file obtained by extrapolating

local landscape maps; (3) Fires as an index (i) computed from the shapefiles of the burned areas

(2005–2013) and taking into account which cells had been affected by fire, and how many times

each had experienced fires (i = 0, 1� i� 9); (4) Land use ratio, computed from the CORINE

land use map, which represents the proportion of the area covered by units belonging to the 1–2

Land Use first levels (i.e. anthropogenic uses) against the total surface. High Land use ratio val-

ues (i.e. approaching 1:1) were accounted as highly anthropogenic areas, while lower values

were considered areas that were more natural. The fifth variable, the (5) Human Influence

Index (HII) was obtained from the Wildlife Conservation Society (WCS) and the Centre for

International Earth Science Information Network (CIESIN) [28], a free worldwide dataset of 1

km grid cells created from nine global data layers covering human population pressure (popula-

tion density), human land use and infrastructure (built-up areas, night-time lights, land use/

land cover), and human access (coastlines, roads, railroads, navigable rivers).

Statistical analyses

Methods of variable reduction to avoid collinearity were carried out following Irl et al. [10].

First, linear relationships between response and explanatory variables were assessed via bivari-

ate correlations; we used polyserial correlations implemented by the ‘polycor’ R package [32],

which enabled us to also include categorical variables. Explanatory variables with correlations

-0.1� r� 0.1 were excluded due to their weak explanatory power [2]. In the second step, col-

linearity was addressed by testing correlations for each possible pair of explanatory variables. If

|r|> 0.7, the explanatory variable performing poorer with the response variable was excluded.

Correlation results for all factors are reported in the supporting information (for details see S2

Table). The software GeoDa 1.8.14 [33] was used to verify the absence of spatial autocorrela-

tion in the ordinary least squares residuals with the Lagrange Multiplier (LM) test [34].

The EVPR of all groups of endemics were then fitted by using Generalized Linear Models

(GLMs) with Poisson error distribution and log-link function. Likelihood ratio tests based for-

ward selection were applied to check for any significant improvement within models, where

variables were included if the related p-value was above 0.05 and removed if the related p-

value was above 0.10.

Therefore, variance partitioning for GLMs was implemented to assess the overall impor-

tance of climate, topography and human influence [35]. GLMs used for variance partitioning

were repeated for each richness group and only included noncorrelated predictors with
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coefficients of estimates significant at P< 0.05 (Table 1). The variance partitioning approach

enabled us to quantify the independent and joint explanatory power of different groups of var-

iables by estimating the proportion of variation from a given response variable that can be

attributed exclusively to one set of explanatory variables once the effect of the other explana-

tory variables has been taken into account [10, 35] (see S3 Table for details). The contribution

of each set of variables (i.e. topography, climate or human influence) was based on the amount

of deviance it accounted for (D2) [36], computed by the Dsquared function in the ‘modEvA’

package for R (Fig 2) [37]. For GLMs, D2 measures how much deviance a given model explains

compared to a model with no variables (the null model) [37].

In addition, the percentage of relative importance for each response variable was calculated

using hierarchical partitioning of variance, employing the lmg metric implemented in the

Table 1. Results of generalized linear models (GLMs) showing the set of variables explaining richness of total, insular and exclusive Endemic Vas-

cular Plant Species Richness (EVPR).

Total EVPR

Variablesa Categoriesb Estimate z-value χ2 Pc

HII H -1.71 -3.13 0.2 <0.001

LU_Ratio H -1.56 -18.02 6.7 0.009

Roads H -4.29 -11.60 136.2 <0.001

N_Land T -5.87 -2.58 330.8 <0.001

Slope T 8.48 17.05 293.2 <0.001

N_Geol T 1.00 0.49 9.6 0.625

Elev T 1.95 101.06 9858.2 <0.001

Bio7 C 1.75 9.96 98.8 <0.001

Bio15 C -8.50 -16.52 270.2 <0.001

Insular EVPR

HII H -2.12 5.63 14.3 <0.001

Fires H -3.51 -4.67 21.3 <0.001

LU_ratio H -4.62 -2.16 4.7 0.031

Roads H -2.62 -2.65 4.2 <0.01

N_Land T -1.27 -14.24 205.8 <0.001

N_Geol T -3.05 -1.30 1.7 0.194

Elev T 1.68 82.59 6594.8 <0.001

Slope T 8.35 16.10 261.5 <0.001

Bio7 C 8.85 4.86 122.7 <0.001

Bio15 C -6.01 -11.13 23.6 <0.001

Exclusive EVPR

HII H -0.04 -0.21 0.04 0.832

LU_ratio H -2.91 -3.21 10.51 <0.001

Elev T 8.83 15.57 258.76 <0.001

Slope T 6.66 4.07 16.69 <0.001

Bio15 C 2.67 -4.71 22.23 <0.001

Note: The Poisson distribution with log link function was chosen for all models. Only variables which were not excluded for high collinearity are shown.
a Variable abbreviations: HII = Human Influence Index; Fires = index of fires occurred among the years 2005–2013; LU_ratio = ratio of 1–2 Land Use first

levels (i.e. anthropogenic uses) and the total surface; Roads = kilometres of roads per grid; N_Geol = number of geological units; N_Land = number of land

units; Elev = elevation; Bio7 = annual range of temperature; Bio15 = precipitation seasonality.
b H = Human influence; T = Topography and geology; C = Climate
c Significance (in bold for P < 0.05) of the likelihood ratio tests (LRT) was determined using the Chi-Squared (χ2) contribution with 1 degree of freedom

https://doi.org/10.1371/journal.pone.0182539.t001
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Fig 2. Variance partitioning based on the GLM results for total EVPR, insular EVPR and exclusive EVPR and relative importance of each

explanatory variable. The Unexplained (U) and the explained variance of each group of explanatory variables (Human influence (Human), Climate,

and Topography and geology (Topography)) are shown on the left. Figures on the right display the relative importance of each explanatory variable

calculated as the normalised percentage contribution to the adjusted R2 for the respective response variable. See S3 Table for detailed values of the

contribution of each group of and singular explanatory variable.

https://doi.org/10.1371/journal.pone.0182539.g002
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‘relaimpo’ R package [38]. This procedure has been proposed to decompose the variance of

final models among different predictors and interactions and has been widely used in recent

ecological studies e.g. [10, 39, 40].

To investigate the specific relationship between elevation and EVPR and a possible interac-

tion between elevation and area, the analysed region was subdivided into 100 m elevation

intervals and the variation in number of 1 km grid cells per each interval was plotted and com-

pared with the variation in local (number of endemic plant taxa inside each 1 km grid cell)

and regional (number of endemic plant taxa inside each 100 m elevation interval) EVPR.

Results

After excluding collinear and weak explanatory predictors, there were eight remaining corre-

lated variables with significant relationships for total EVPR, eight for insular EVPR and four

for exclusive EVPR (Table 1). No high spatial autocorrelations were detected in the residuals

for total EVPR (LM = 0.71, P = 0.19), insular EVPR (LM = 0.64, P = 0.26) or exclusive EVPR

(LM = 0.22, P = 0.64).

All predictors related to human influence, the number of land units, and precipitation sea-

sonality (Bio15), demonstrated a negative correlation with all groups of EVPR. On the con-

trary, EVPR increased with elevation, slope and annual temperature ranges (Bio7).

In every case, elevation alone accounted for more variance than all other variables together

(Fig 2; see S4 Table for details). Accordingly, most variation in exclusive, insular and total local

EVPR was explained by the topography and geology subsets, followed by climate, and by

human influence (Fig 2). All shared variances were lower than the variances of topography

and geology subsets alone, while shared variances between topography and geology and cli-

mate and human influence subsets were higher than the independent variances explained by

the last two subsets. Nonetheless, a moderately large amount of variance remained unex-

plained; this was more evident for the exclusive EVPR (88.3%) than for total and insular EVPR

(71.1% and 67.4%, respectively).

Comparisons among variations in exclusive, insular and total EVPR and elevation stressed

that the three EVP groups showed similar exponential patterns with the highest local EVPR in

cells at the highest elevations (approx. > 1300 m a.s.l.) (Fig 3A, 3B and 3C). This pattern was

similar among the three analysed groups (exclusive, insular and total), although it was more

evident for insular than for exclusive EVPR (Fig 3A and 3B). In contrast, the regional EVPR,

especially of exclusive EVP (Fig 3D), decrease with altitude partly due to the decreasing area

covered along altitude (i.e. the number of 1 km grid cells per elevation interval) (Fig 3D, 3E

and 3F). This was less evident for insular EVP and, consequently, for total EVP, the richness of

which was more constant along the elevation gradient.

Discussion

As previously found for other Mediterranean continental islands [3, 11, 17], and also for the

highest mountain area of Sardinia [14], elevation revealed to be a crucial factor in explaining

EVPR. In particular, the highest EVPR was found at the highest elevations. These results sup-

port authors who previously highlighted the mountainous Gennargenteo and Supramontano

biogeographic sectors as important areas for the conservation of both plant diversity [14, 23,

41] and other organisms, such as bats, butterflies and amphibians [42–44].

Considering that high elevations comprise smaller areas, high EVPR are also reflecting high

EVP concentrations. On the other hand, the area per se hypothesis, which assumes that species’

richness increases with area [13], counterbalances the increase in EVPR in restricted areas at

higher altitudes. Indeed, when regional EVPR is considered, the number of exclusive EVP in
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particular increases with area (i.e. number of 1 km grid cells) and decreases with the EVP con-

centration (i.e. local EVPR) and elevation, suggesting that EVPR patterns might be influenced

by the interaction between the area and elevation. For instance, besides their large number,

endemic taxa along the coast (i.e. first 100-m elevation interval) are less concentrated than in

mountains, occupying many small places with particular morphologies and high degrees of

isolation (e.g. small islets and cliffs) [41, 45].

The increase in endemic plant species’ richness as elevation increases was also found in

other Mediterranean contexts [9, 11, 46, 47]; otherwise, other research reported an increase in

the endemic plant species richness at intermediate altitudes in islands with mountain systems

reaching elevations of more than 2000 m a.s.l. [3, 48]. In our case, an increase in EVPR at mid

elevation ranges is likely to be more evident at larger scales (i.e. when data is pooled across 100

m intervals) than at smaller scales (i.e. when data is pooled inside 1 km grid cells), suggesting

that the relationship between elevation and EVPR might be also sensitive to the sampling size.

Species composition, and the richness in the most interesting areas of endemisms (mainly

mountainous areas, but also some coastal areas, such as small islets and cliffs), were also related

to the ancient traditional land use of ecosystems [27], characterised by the exploitation of low-

lands, leaving the higher slopes and elevations for less intensive touristic and agro-pastoral

uses. Our results regarding the negative relationship between EVPR (exclusive EVPR in partic-

ular) and the proportion of the area covered by units affected by anthropogenic uses (LU_ra-

tio) partially confirmed the widespread idea that humans, with their accompanying land uses

changes, acted as major extinction filters [1, 12, 49].

Relationships between EVPR and elevation might be influenced by other important fac-

tors, mainly climate, the effects of which might be partly masked by elevation or were not

Fig 3. Variations in EVPR of exclusive EVP, insular EVP and total EVP. Variations in local EVPR (number of endemic plant taxa inside each 1 km

grid cell) of exclusive EVP (a; N = 2466), insular EVP (b; N = 34375) and total EVP (c; N = 34603) are shown in the upper part of the figure. Variations in

regional EVPR (number of endemic plant taxa inside each 100 m elevation interval) of exclusive EVP (d), insular EVP (e) and total EVP (f) are shown in

the lower part of the figure. Variations in the area of territory considered (number of 1 km resolution grid cells at each elevation interval) were

superimposed on both local and regional EVPR.

https://doi.org/10.1371/journal.pone.0182539.g003
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measurable. According to previous researches e.g. [3, 6, 8, 10], plant diversity patterns result

from the interaction or addition of multiple biogeographic and ecological factors, the effect

of which is more or less evident depending on the scale of observation [50]. At local scale, the

negative relationship between EVPR and precipitation seasonality (Bio15), and the positive

one with the annual temperature range (Bio7) suggest a possible correlation between these

variables and elevation, a trend that is quite common in other areas [51] and which has, in

our case, a moderate collinearity. On the other hand, precipitation and temperatures are per
se crucial factors in plant species richness [6, 14] and evolution [17–18], and their importance

has been also underlined from a conservation perspective, especially related to climate

changes [5, 52, 53]. Since an increase in precipitation seasonality is expected to be in the

Mediterranean Basin under climate change [54], conservation efforts should be focused in

Sardinia on endemic plants with specific moisture requirements, such as the already endan-

gered Pinguicula sehuensis Bacch., Cannas & Peruzzi, Ribes sardoum Martelli and all species

of the genus Aquilegia [55–57].

Local EVPR was significantly influenced by variables, such as the slope and the number of

land units, which are often in synergy with elevation [19, 47]. For instance, both elevation and

slope play important roles in increasing the degree of isolation in terms of dispersal events and

human colonization [3, 47]. First, it has been documented that endemic species richness usu-

ally peaks at higher elevation and rocky places than total species richness; this could be related

to the increasing isolation and the decreasing surface area of high mountain regions, leading

to speciation events in small and fragmented species populations [3, 58]. In addition, habitats,

such as mountain grasslands, rocky habitats as well as psammophilous and halophytic places,

with a high degree of stress and where vegetation and competition are low, are characterized

by the frequent occurrence of endemics.

Although it is common to find a positive effect of habitat diversity on EVPR at regional

scale by increasing space available for niche partitioning and speciation and, thus, for species

coexistence [10], discrepancies were also previously found between regional and local scale

analyses [50]. For instance, our results at 1 km spatial resolution showed a negative correlation

of land unit diversity with EVPR, suggesting that, at local scale, land unit diversity reflects the

negative effect of habitat fragmentation instead of the common positive influence of habitat

diversity. The weak and insignificant relationships between, respectively, insular and exclusive

EVPR and human influence could be interpreted as an ostensible lack of human threats to

EVP; however, further considerations should be weighed. Firstly, analyses of human presence

as a determining factor of current Mediterranean landscape and biodiversity patterns have

faced several shortcomings, principally related to difficulties in accurately evaluating conse-

quences of such a long-term presence, as well as the many indirect factors triggered by it.

Therefore, if present-day biodiversity should be biased toward species that are generally more

tolerant of humans [1], analyses accounting for absences or extinction events which can be

related with certainty to human influence are barely feasible [21].

Assuming that richness of endemisms reflects species speciation rate reasonably well [11,

46], the positive influence of the slope and elevation predictors could also suggest an increase

in speciation rate associated with topography-driven isolation [46, 47]. Although it is not

directly measurable by our analyses, this is more evident at fine scale (i.e. when data is pooled

inside 1 km grid cells) and for spread than for exclusive EVP. The latter suggests that the pat-

tern of insular EVP is more related to the geographical speciation promoted by the alternation

of glacial and warm interglacial phases than the pattern of exclusive EVP. This could be related

to findings obtained by comparing island and mainland mountain systems in the Mediterra-

nean Basin e.g. [11, 14, 59, 60], which showed, in some cases, a weaker endemic species rich-

ness-elevation relationship for islands. Indeed, the same isolation that can facilitate the
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speciation of EVP, especially of exclusive EVP [11], may, at the same time, limit the ingression

and speciation of EVP related to the alternation of glacial and interglacial phases [17, 61].

For the first time, our study provides a general-picture, from the lowest point on the coast

up to the highest mountain peaks, about the distribution patterns of all endemic vascular flora

of Sardinia. Nonetheless, a large section of variance remains unexplained, mainly because the

distribution of EVPR can hardly be related to all possible past and present causes. Since the

relationship between EVPR and elevation might be sensitive to the sampling grain, a possible

way to improve the knowledge in this field could be to compare analyses and results at differ-

ent resolutions by considering the same parameters inside both coarser or, if possible, finer

grids. Alternatively, specific local studies or, despite their costs, species-specific empirical

researches may be the only feasible approach for understanding some specific issues.
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