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Abstract

The transition from 4G to 5G has not only been marked by growth in
traffic, as has been usual in the last decade, but has also been accompa-
nied by an increase in the number of devices and services. Services like
Massive Internet of Things (mIoT), Massive Machine Type Communica-
tion (mMTC), ultra-Reliable Low Latency Communication (uRLLC), and
Enhanced Mobile Broadband (eMBB) necessitate the implementation of net-
work slicing, which considerably increase network complexity.

To accommodate emerging services and successfully transition to future
networks, operators must tackle the challenge of managing and optimizing
their network infrastructure. In this context, Machine Learning (ML) and
Artificial Intelligence (AI) emerge as promising technologies capable of en-
hancing the efficiency of numerous processes that have traditionally relied
on the expertise of human specialists. The integration of AI into 5G and
future 6G networks, while promising, presents challenges, such as training
models with the vast amounts of data generated by these networks. How-
ever, by leveraging this data, AI can detect patterns and trends that enable
proactive resource allocation, load balancing, or energy-saving measures as
some application examples.

Despite the clear potential of these technologies, the adoption of AI and
ML methods in mobile networks remains in its early stages. The numerous
challenges that lie ahead, coupled with the certainty that this technology
will be transformative, have driven the initiation of this project. The goal
is to make a contribution to the ongoing academic and industrial efforts in
this field. To achieve this, a DQN-based radio resource allocation agent has
been developed, designed to optimize network parameters to meet specific
service requirements within a 5G network slice.
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Resumen

La transición de 4G a 5G no ha estado marcada únicamente por un crec-
imiento en el tráfico, como veńıa siendo habitual en la última década, si no
que ha venido acompañada de un aumento en el número de dispositivos y ser-
vicios. Servicios como Massive Internet of Things (mIoT), Massive Machine
Type Communication (mMTC), ultra-Reliable Low Latency Communica-
tion (uRLLC), and Enhanced Mobile Broadband (eMBB) que requieren la
implementación de network slicing aumentan significativamente la comple-
jidad de la red.

Para responder a los nuevos servicios y transicionar hacia las redes del
futuro de forma satisfactoria, los operadores se enfrentan al reto de gestionar
y optimizar su infraestructura de red. La optimización de los recursos de
la red nunca hab́ıa sido un aspecto tan cŕıtico como ahora. Los métodos
tradicionales ya no son suficientes para gestionar la complejidad y la escala
de las redes 5G. Ante esto el aprendizaje máquina y la inteligencia artificial
se presentan como una prometedora tecnoloǵıa capaz de mejorar la eficien-
cia de múltiples procesos, que tradicionalmente han sido llevados a cabo por
humanos con un amplio conocimiento experto. La integración de la AI en las
redes 5G y las futuras 6G, si bien es prometedora, presenta desaf́ıos, como
el entrenamiento de modelos con la gran cantidad de datos generados por
estas redes. Sin embargo, al aprovechar estos datos, la AI puede detectar
patrones y tendencias que permitan la asignación proactiva de recursos, el
equilibrio de carga o medidas de ahorro de enerǵıa como algunos ejemplos
de aplicación.

A pesar del claro potencial de estas tecnoloǵıas, la adopción de métodos
de AI y ML en redes móviles aún se encuentra en sus primeras etapas.
Los numerosos desaf́ıos que se avecinan, junto con la certeza de que esta
tecnoloǵıa será transformadora, han impulsado el inicio de este proyecto. El
objetivo es realizar una contribución a los esfuerzos académicos e industriales
en este campo. Para lograrlo, se ha desarrollado un agente de asignación de
recursos de radio basado en DQN, diseñado para optimizar los parámetros
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de red cumpliendo con los requisitos de servicio espećıficos dentro de una
slice 5G.
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Chapter 1

Introduction

1.1 Context and motivation

Initial 4G network deployments focused on accommodating rapid traffic
growth, a trend that has persisted over the past decade. In contrast, 5G has
encountered a more complex and ambitious set of objectives. While traffic
continues to rise, the number of connected devices is also increasing signif-
icantly. The proliferation of these new devices results from the diverse ser-
vices that 5G aims to support, including Massive Internet of Things (mIoT)),
Massive Machine Type Communication (mMTC), ultra-Reliable Low La-
tency Communication (uRLLC), and Enhanced Mobile Broadband (eMBB).
This will be accomplished by simultaneously supporting multiple distinct
logical networks, known as network slices, which will operate on the same
physical infrastructure. Each network slice will be tailored to meet the spe-
cific requirements of different vertical industries.

Facing these new services presents various challenges, with one of the
most significant being the optimization of network resources. Given the
rapid evolution of mobile network technologies, traditional optimization
methods are increasingly inadequate to manage the complexity and scale
of modern networks. The introduction of network slicing, coupled with the
diverse and stringent performance requirements of 5G and beyond, neces-
sitates a more dynamic and intelligent approach to network management.
This is where Artificial Intelligence (AI) and Machine Learning (ML) come
into play as transformative technologies. AI-driven solutions have the po-
tential to automate the optimization process, enabling networks to adapt in
real-time to changing conditions, user demands, and service requirements.
This adaptability is crucial for maintaining the quality of service (QoS) and
ensuring efficient use of network resources across various slices.

The incorporation of AI into 5G and 6G networks offers significant

25



26 1.2. Scope and objectives

promise, but it also introduces various challenges. A key issue is the com-
plexity involved in training AI models with the vast amounts of data pro-
duced by these networks. By analysing large quantities of network data,
these algorithms can detect patterns and trends, which can be used to en-
able proactive resource allocation, load balancing, interference reduction,
and energy-saving measures, among other applications. Furthermore, AI-
powered predictive maintenance and self-healing capabilities can greatly
minimize network downtimes and related costs, leading to improved op-
erational efficiency.

Self-Organizing Networks (SON) have become increasingly critical. Tra-
ditional SON relied on automation algorithms designed by humans to op-
timize specific network parameters, aiming to minimize human interven-
tion. While this approach reduced manual involvement, it still fell short
of achieving full automation. SON now integrates machine learning algo-
rithms to enable self-configuration, self-optimization, and self-healing within
the network. With ML-driven self-configuration, radio access networks can
automatically adjust parameters and settings based on real-time network
conditions and user demands, significantly reducing the need for manual
intervention. Self-optimization uses ML to continuously monitor and fine-
tune network performance, optimizing resource use and adapting to evolving
conditions.

Despite the clear potential of these technologies, the adoption of AI and
ML methods in mobile networks remains in its early stages. The numerous
challenges that lie ahead, coupled with the certainty that this technology
will be transformative, have driven the initiation of this project. The goal
is to make a contribution to the ongoing academic and industrial efforts in
this field.

1.2 Scope and objectives

As discussed in the previous section, this thesis focuses on studying optimiza-
tion in mobile networks using emerging AI and machine learning technolo-
gies. Specifically, the research focuses on the Radio Acces Network (RAN),
optimizing resource allocation. A radio resource allocation agent utilizing
Deep Reinforcement Learning (DRL) will be developed. This approach in-
tegrates reinforcement learning, a machine learning technique, with deep
learning through neural networks.

The objective of this thesis is to study the behaviour of a radio resource
allocation agent within a scenario that simulates a real Radio Acces Net-
work (RAN). The aim of this study is to draw general conclusions that
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will enhance our understanding of how to address these types of problems.
Specifically, it seeks to identify factors that may be detrimental to agent
performance and highlight design elements that contribute to optimal re-
sults. In other words, the use case developed in this project aims to serve
as a practical example of applying DRL to radio resource allocation.

Also, the following specific objectives can be highlighted:

• Examine the theoretical foundation of DRL, with a particular focus on
Deep Q-learning Network (DQN), to understand the key components
and challenges associated with implementing this algorithm.

• Familiarize yourself with the unified interface of the Gym library for
defining DRL environments, enabling the development of a customized
environment tailored to the project’s use case that adheres to this
interface.

• Propose a realistic use case where the optimization carried out by the
radio resource allocation agent is directly aligned with the operational
interests of a real-world network operator.

• Develop a RAN simulator in Python that meets the requirements of
the use case and is compatible with a Gym environment for effective
communication.

• Adapt the actions that the agent can perform in the environment to
the interface used by Gym. Optimizing this coding to favour agent
learning.

• Construct a state space with representative variables that minimize
dimensionality. This approach will enhance agent learning while re-
ducing computational costs.

• Develop a reward algorithm that aligns with the optimization objec-
tives, effectively guiding the agent toward achieving optimal solutions.

• Investigate the parameters influencing agent training and determine
the optimal values for each.

• Conduct a detailed analysis of the agent’s behaviour during the infer-
ence phase, using various metrics to assess its performance. Include an
in-depth examination of the agent’s interactions with the environment
at each step.
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1.3 Project planning and cost estimation

This section outlines the project timeline, detailing the sequence of tasks,
the estimated time required for each, and the resources needed to complete
them and reach the project’s objectives. It is organized into three distinct
subsections. The first subsection covers task planning, including descrip-
tions and time estimates for each task. The second subsection focuses on
the hardware, software, and human resources essential for project execution.
Lastly, the third subsection presents the project budget.

1.3.1 Task planning

The tasks undertaken to complete the thesis are listed below, along with a
brief description of them.

1. Introduction to reinforcement learning. During the first month,
the mathematical foundations of reinforcement learning were thor-
oughly studied. Additionally, a practical project focused on developing
a Q-learning agent was undertaken. This work laid the groundwork
by establishing the essential concepts needed to begin working with
DRL and DQN.

2. Introduction to Gym and stable baselines3. The Python li-
braries Gym and stable baselines3 are the core libraries in the devel-
oped solution. Gym provides the RL framework, while stable baselines3
offers the implementation of the DQN algorithm. This task focuses on
gaining familiarity and proficiency with these libraries.

3. Comprehensive study of DQN. The objective of this task is to
thoroughly examine the limitations, challenges, and implementation
aspects of the DQN algorithm. The primary bibliography for this
study includes references [9] and [11].

4. DRL optimization review in radio access networks. The ap-
plication of DRL optimization in RAN encompasses a wide range of
use cases. This task aims to evaluate the current state of the art and
explore various approaches to identify the potential limitations and
challenges associated with the project.

5. RAN simulator in Python. Define the network model and imple-
ment it in Python as a radio access simulator.

6. Use case definition. Once the network model is established, the
optimization problem is defined. This encompasses the mathematical
formulation of the optimization conditions and the identification of the
relevant network parameters involved.
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7. Design action space. Model the actions the agent can perform on
the network to achieve the optimization objective.

8. Design state space. Model the variables that make up the state
space to find the best configurations.

9. Design reward algorithm. Develop various strategies within the
reward algorithm to guide the agent toward the most optimal solution
possible.

10. Train and evaluate agents. This task integrates the previous objec-
tives of modelling the agent’s actions and developing strategies within
the reward algorithm. It involves configuring the state space and re-
ward algorithm, followed by training the agent and evaluating its be-
havior. This iterative process allows for continuous refinement, where
conclusions are drawn, and the design is adjusted to enhance its effec-
tiveness.

11. Hyperparameter configuration. After finalizing the design, the
impact of the training configuration parameters is analysed. The goal
of this task is to identify the optimal agent within the established
design framework.

12. Inference phase. Analysis of the agent’s performance metrics in the
environment across various scenarios.

13. Experimental evaluation. Analyse the results and draw conclusions
by visualizing the agent’s step-by-step operations.

14. Document drafting. Lastly, this task is the only one that spans the
entire duration of the project. In this document, all the information
related with this project is collected.

Then, in Table 1.1 the time invested on each task of the project described
previously is included. In Figure 1.1, the Gantt diagram is represented. It
shows the project tasks development along time.

1.3.2 Resource planning

In this section, resource planning is carried out. For the development of this
project, the necessary resources can be classified into three different types:
physical resources or hardware, software resources and human resources.

1. Hardware resources.
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Fig. 1.1: Gantt chart

Task Time (h)

Introduction to reinforcement learning 40

Introduction to Gym and stable baselines3 30

Comprehensive study of DQN 60

DRL optimization review
in radio access networks

25

RAN simulator in Python 60

Use case definition 40

Design action space 25

Design state space 80

Design reward algorithm 80

Train and evaluate agents 80

Hyperparameter configuration 60

Inference phase 60

Experimental evaluation 40

Document drafting 360

Total Time 1040

Table 1.1: Project temporal planning.

For hardware resources, a Lenovo IdeaPad 330 laptop was utilized for
software development and document preparation. Additionally, a com-
puter equipped with a Graphic Processing Unit (GPU) was utilized for
training and inference phases. The GPU significantly enhances com-
putational efficiency, meeting the intensive demands of these processes.
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The technical characteristics of the hardware components are shown
below.

• Lenovo ideapad 330 technical characteristics. Intel Core i7-
8550U processor, 256 GB SATA3 SSD storage, 256 GB SATA3
SSD storage, RAM memory of 8 GB and UHD Graphics 620 Intel
graphics card.

• HP Z4 G4 Workstation. Intel Core i9-10920X processor and
NVIDIA GeForce RTX 3090.

2. Software resources.

Software resources encompass all the programs and applications uti-
lized at any stage of the project’s development. In Table 1.2 all of
them are shown:

Software resource

SO Windows 10 64 bit

Overleaf online LaTeX editor

IEEE Xplore

Lucidchart

Python 3.8

PyCharm IDE

Table 1.2: Software resources

3. Human resources.
Human resources are quantified by the number of people involved in
the project and the time they dedicate to it. This includes the work-
ing hours of both students and supervisors, which are accounted for
in this section. Table 1.3 presents an estimate of the time invested
by the student and supervisors. It is worth mentioning that the time

Person Invested time (h)

Student 1040

Supervisor 1 40

Supervisor 2 40

Table 1.3: Human resources

spent by the student is the time that has been calculated in the Table
1.1 of tasks planning subsection. The time invested by the supervi-
sors encompasses not only the tutoring hours but also the time spent
sourcing materials, such as bibliographic references, as well as the time
dedicated to reviewing and evaluating the student’s work.
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1.3.3 Project Budget

In this subsection, the total cost of the project is estimated, assuming that
none of the required resources were available before the start of the project.

Regarding software resources, only non-open-source programs and appli-
cations will be accounted for as expenditures, as they require a license. The
price of the student working hours, considering that he is a newly telecommu-
nications engineer, is set at 25 euros; mean while the price of the supervisors
working hours is set at 50 euros. The detailed pricing breakdown for each
item and the total project cost are presented in Table 1.4.

Resource Units Unit Cost (e) Subtotal Cost (e)
Laptop 1 550.00 550.00

Computer
with GPU

1 2329.99 2329.99

Windows 10
Home OS

1 145.00 145.00

IEE Xplore
monthly subscription

5 months 40.56 202.8

Supervisor 1 labor 40 hours 50.00 2000.00

Supervisor 2 labor 40 hours 50.00 2000.00

Student labor 1040 hours 25.00 26000.00

TOTAL(e) 33227.79

Table 1.4: Project total cost.

Thus, as it can be seen in Table 1.4, the total project expenditure is
33227.79 e.

1.4 Project Structure

This section provides an overview of the structure and contents of this Mas-
ter’s Thesis, offering the reader a clear understanding of its organization.
The dissertation is composed of six chapters and four appendices, with a
brief summary of each chapter presented below to guide the reader through
the document.

• Chapter 1: Introduction. Sets the stage for the project by provid-
ing an overview of the emerging possibilities enabled by the integration
of AI and ML in mobile networks. It outlines the motivation and ob-
jectives of the work, offering the reader a clear understanding of its
purpose. Additionally, this chapter includes a section on project plan-
ning, detailing the tasks required for the project’s execution over time.
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The resource planning and the estimated total cost of this project are
also included in the mentioned section.

• Chapter 2: State of the Art. Describe all the key enablers on
which this project is based. The chapter is clearly divided into three
main sections. The first section offers a general overview of Fifth
Generation (5G), focusing on key radio access concepts such as spec-
trum and overall transmission structure. It concludes with a discussion
on Network Slicing technology. The second section reviews the Self-
Organizing Networks (SON) paradigm and its operation within 5G
networks. This review includes an examination of the most popular
AI/ML optimization methods applied to SON networks. Finally, the
third section presents the theoretical foundations of Deep Reinforce-
ment Learning (DRL), with a detailed exploration of Deep Q-learning
Network (DQN) and the implementation keys of this algorithm.

• Chapter 3: System model and problem definition. This chap-
ter describes the system model adopted for this project, describ- ing
the network design. It concludes by defining the problem statement
addressed within this system.

• Chapter 4: Solution Design. It presents the solution developed
to address the use case outlined in this Master’s Thesis. First, the
solution is outlined and introduced at a high level, followed by a de-
tailed explanation of each of its components (action space, state space,
reward algorithm). Lastly, the implementation of the solution using
the Gym reinforcement learning framework and the interaction with
the DQN agent are described.

• Chapter 5: Experimental evaluation and results. This chapter
analyses the results obtained for the DQN agent developed in the
project. The experimental setup in which the agent was tested is
detailed, including two primary experiments. The first experiment
examines the impact of various parameters on the agent’s training
process. The second experiment provides a step-by-step demonstration
of the agent’s performance under various conditions, highlighting the
effects of its actions on network parameters.

• Chapter 6: Conclusions and future works. At the end of this
document, the conclusions drawn from the development of this work
are presented. Additionally, this chapter offers insights into potential
future research directions on the topic.

• Appendix A: UEs assignment to serving SCs. This appendix
outlines the procedure used in the proposed system model to assign
cells to UEs. For this purpose, the implemented algorithm is presented.
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• Appendix B: RAN simulator. It describes how the network model
is implemented as a RAN simulator in Python. It provides a detailed
explanation of the developed pseudocode.

• Appendix C: Advantages of discretizing throughput as a state
variable. The content of this appendix relates to Chapter 4, demon-
strating why the design choices made for the state space in that chapter
are optimal for facilitating the agent’s learning.

• Appendix D: Code repository. This appendix details the structure
of the code developed for this project, which is available in GitHub.



Chapter 2

State of the Art

This chapter presents the essential concepts and technologies necessary to
understand the solution developed and implemented in this thesis.

First, an overview of Fifth Generation (5G) and the main radio access
concepts, such as spectrum and overall transmission structure, is provided.
This section concludes with a discussion on Network Slicing technology, a
key component introduced in 5G and a critical aspect of the solution de-
signed in this project.

The second section reviews the Self-Organizing Networks (SON) paradigm
and its operation within 5G networks. This review includes an examination
of the most popular AI/ML optimization methods applied to SON networks.

Finally, the theoretical basis of Deep Reinforcement Learning (DRL)
is presented. The basic concepts of Reinforcement Learning (RL) are in-
troduced, along with the mathematical formalism that leads its behaviour,
specifically Markov Decision Process (MDP). Building on these founda-
tions, the chapter explains how Deep Learning is applied to RL, resulting
in DRL. The theoretical foundation of the algorithm used in this project,
Deep Q-learning Network (DQN), is discussed in the final section

2.1 Fifth Generation of mobile networks (5G)

Since the first generation of mobile communications was introduced in the
early 1980s, a new generation has appeared every 10 years. The First Gen-
eration (1G) systems used analogue communications techniques and did not
use the available radio spectrum efficiently. The Second Generation (2G)
turned mobile telecommunications into a consumer product due to the de-
creasing price of the devices, the most popular 2G system was System for
Mobile Communications (GSM). It was originally designed for voice, but

35



36 2.1. Fifth Generation of mobile networks (5G)

later allowed the sending of short messages known as Short Message Ser-
vice (SMS). Due to the success of 2G, the International Telecommunica-
tions Union (ITU) specified a number of requirements that led to a Third
Generation (3G). The most popular third generation system was Universal
Mobile Telecommunication System (UMTS) which had a more efficient use
of spectrum than GSM. The most important further improvement in 3G
is known as High Speed Packet Access (HSPA), which improves the per-
formance of data applications by increasing the average transmission speed.
The emergence of HSPA coincided with the first smartphones that would
change the paradigm up to that point due to the massive growth of mobile
data traffic. As a result, Fourth Generation (4G) systems are optimized to
meet these new challenges. By far the most popular is the 3GPP System
known as Long-term Evolution (LTE). Over the last decade, the fourth gen-
eration has incorporated improvements that have allowed it to respond to
traditional mobile broadband. This brings us to the Fifth Generation (5G),
known as New Radio (NR).

5G radio will take the traditional mobile broadband to the extreme in
terms of data rates, capacity, and availability. In addition, 5G will en-
able new services including industrial Internet of Things (IoT) connectivity
and critical communication. 4G networks were designed for the use case
of smartphones, so far mobile networks have primarily focused on connect-
ing people. A number of new use cases and applications can be run on
top of 5G mobile networks. It is expected that 5G can fundamentally im-
pact all sections of society by improving efficiency, productivity, and safety
through advancements such as remote surgery, Industry 4.0, smart cities,
autonomous vehicles, and augmented reality [4].

In September 2015 the ITU published ITU-R M.2083 “IMT Vision –
Framework and overall objectives of the future development of IMT for
2020 and beyond”, in which it identified key capabilities of IMT-2020 and
outlined three main scenarios of use:

• Enhanced Mobile Broadband (eMBB). Human-centric use cases
for accessing multimedia content, services and data. But with im-
proved performance and an increasingly seamless user experience com-
pared to existing mobile broadband applications. For example, by
supporting even higher end-user data rates.

• Massive Machine Type Communication (mMTC). Communi-
cation services in which devices communicate with each other without
human intervention. Key requirements for such services entail min-
imal device expenses and energy consumption, facilitating extended
battery life of several years at the least. Typically, each device han-
dles and produces only a modest amount of data, making support for
high data rates less crucial.
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• ultra-Reliable Low Latency Communication (uRLLC). Com-
munication services with strict requirements in terms of latency and
reliability. In addition, these services cover both human-centric and
machine-centric communications. Examples hereof are traffic safety,
automatic control, and factory automation

5G radio can bring major benefits in terms of network performance and effi-
ciency compared to LTE radio. Minimum technical requirements for 5G are
shown in Figure 2.1, the values are given next to the most relevant use case.
There is no need to meet all requirements simultaneously, whilst all key ca-

Fig. 2.1: Minimum technical performance requirements of IMT 2020 [1]

pabilities may to some extent be important for most use cases, the relevance
of certain key capabilities may be significantly different, depending on the
use cases/scenario. The importance of each requirement in the three use
case scenarios is shown in Figure 2.2. The eMBB scenario is the one with
the most stringent requirements: user experienced data rate, area traffic
capacity, peak data rate, mobility, energy efficiency and spectrum efficiency.
However, it does not need such extreme values in connection density and
latency, which are the key requirements of the other use cases. For example,
in uRLLC scenarios low latency is very important, so that safety critical ap-
plications can operate. In the context of mMTC, a high connection density
is essential to accommodate a vast number of devices in the network. These
devices might transmit only sporadically, at low bit rates, and with very low
mobility.
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The reference values for IMT-Advanced shown in Fig. 3 for the peak data rate, mobility, spectrum 

efficiency and latency are extracted from Report ITU-R M.2134. The Report this was published in 

2008 and was used for the evaluation of IMT-Advanced candidate radio interfaces described in 

Recommendation ITU-R M.2012. 

As anticipated above, whilst all key capabilities may to some extent be important for most use cases, 

the relevance of certain key capabilities may be significantly different, depending on the use 

cases/scenario. The importance of each key capability for the usage scenarios enhanced Mobile 

Broadband, ultra-reliable and low latency communication and massive machine-type communication 

is illustrated in Fig. 4. This is done using an indicative scaling in three steps as “high”, “medium” and 
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In the enhanced Mobile Broadband scenario, user experienced data rate, area traffic capacity, 

peak data rate, mobility, energy efficiency and spectrum efficiency all have high importance, but 

mobility and the user experienced data rate would not have equal importance simultaneously in all 

use cases. For example, in hotspots, a higher user experienced data rate, but a lower mobility, would 

be required than in wide area coverage case.  

In some ultra-reliable and low latency communications scenarios, low latency is of highest 

importance, e.g. in order to enable the safety critical applications. Such capability would be required 

in some high mobility cases as well, e.g. in transportation safety, while, e.g. high data rates could be 
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In the massive machine type communication scenario, high connection density is needed to support 

tremendous number of devices in the network that e.g. may transmit only occasionally, at low bit rate 

and with zero/very low mobility. A low cost device with long operational lifetime is vital for this 

usage scenario.  
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Other capabilities may be also required for IMT-2020, which would make future IMT more flexible, 

reliable, and secure when providing diverse services in the intended usage scenarios:  

Fig. 2.2: Key capabilities in different usage scenarios [2]

2.1.1 Spectrum

Spectrum is the most important resource for operators. The available spec-
trum defines both the capacity and the range of coverage that the mobile
network can offer. Congestion in the low bands, combined with higher band-
width requirements, has led to the use of both low and high bands in 5G.
Figure 2.3 shows the 5G target frequency range together with some char-
acteristics of the bands. The high bands at millimeter wave have lot of

Fig. 2.3: Range of 5G Spectrum [3]

spectrum and enable high capacity and data rates. The low bands have
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great propagation and provide wide area coverage. The challenge with high
spectrum is the short propagation. Millimeter wave signals attenuate fast,
and the cell range is limited to a few hundred meters. Third Generation
Partnership Project (3GPP) has specified 2 frequency ranges:

• Frequency Range 1 (450MHz - 6GHz).

• Frequency Range 2 (24.25GHz - 52.60GHz).

This division allows a different set of requirements to be specified for each
frequency range. Bands from frequency range 1 are shown in Figure 2.4.
These bands allow Frequency Division Duplex (FDD), Time Division Du-
plex (TDD), Supplementary Downlink (SOL) and Supplementary Uplink
(SUL). Bands n1 to n76 are re-farming bands, i.e. they have been specified
for 4G but can be reused for 5G. The highest bands are the new 5G TDD
bands (n77, n78 and n79). These bands have the ability to provide high
throughput at relatively low frequencies.

Figure 2.5 shows the bands of the frequency range 2. This part of the
spectrum is essential in 5G in order to achieve increased capacity and data
rates according to requirements. Bandwidths are much higher than FR1,
these bands only allow TDD. Each operating band is specified to support
a specific set of channel bandwidths that depend on the subcarrier spac-
ing. FR1 allows 15, 30 and 60kHz subcarrier spacing, up to 100MHz total
bandwidth can be achieved with 30kHz and 60kHz. In FR2, a bandwidth
of 400MHz can be achieved with 120kHz subcarrier spacing.

Figure 2.6 shows a typical spectrum usage in 5G. The main spectrum
below 6 GHz worldwide will be 3.5 GHz, covering up to 400 MHz from 3.4
to 3.8 GHz with possible further extension up to 4.2 GHz. The spectrum
around 3.5 GHz is attractive for 5G because it is available worldwide and
the amount of spectrum is relatively high. 5G still requires low bands, below
1GHz, to ensure wide coverage and indoor penetration. Extensive coverage
is important for the new use cases like Internet of Things (IoT) and critical
communication. Finally, millimeter waves can provide high data rates, this
is particularly interesting for fixed wireless users.

2.1.2 Overall Transmission Structure

This section describes the overall transmission structure in NR, providing a
complete overview of its key components. Fundamental aspects of waveform,
numerology, time domain structure, and frequency domain structure are
presented.
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5G NR in BULLliTS

Operatmg 
Duplex Mode 

Uplink Band Downlink Band Bandwidth 
Category 

Band (MHz) (MHz) (MH7.) 

nl 1920 - 1980 2110-2170 2 X 6() 

n2 1850 -1910 1930-1990 2 X 60 

n3 1710-1785 1805 -1880 2 X 75 

n5 824 - 849 869-894 2 X 25 

n7 2500 - 2570 2620- 2690 2 X 70 
POD 

n8 880-915 925 -960 2 X 35 

nl2 699-716 729-746 2 X 17 

1120 832 - 862 791 -821 2 X 30 

n25 1850-1915 1930-1995 2 X 65 

n28 703 - 748 758 -803 2 X 45 

n34 2010 -2025 15 

n38 2570 -2620 50 Re-fanned 

n39 1880 -1920 40 4G bands 

n40 TDD 2300 -24-00 100 

u4I 2496 - 2690 194 

n50 1432-1517 85 

n5I 1427 - 1432 5 

n65 1920-2010 2110 2200 2 X 90 

n66 1710-1780 2110-2200 70+90 

n70 FDD 1695 -1710 1995 - 2020 15 +25 

n7I 663 - 698 617-652 2 X 35 

n74 1427 -1470 1475 -1518 2 X 43 

n75 1432 - 1517 85 
SOL Not Applicable 

n76 1427 - 1432 5 

n77 3300-4200 900 

n78 TDD 3300-3800 500 

n79 4400- 5000 600 

n80 1710-1785 75 

n81 880-915 35 
New 

5G bands 
n82 832 -862 30 

SUL Not Applicable 
n83 703 - 748 45 

n84 1920- 1980 60 

1186 1710- 1780 70 

Table 23 - SG operating bands for Frequ,ency Range I (4S0 MHz to 6 Gllz) 

* Each operating band is specified to support a specific set of channel bandwidths. These channel bandwidths depend upon the subcarrier
spacing. Frequency Range I supports subcarricr spacings of 15, 30 and 60 kl lz. Table 24 presents the set of channel bandwidths for
each operating band and each subcarricr spacing

* ln the case of 4G, there is a one-to-one mapping between Base Station channel bandwidth and UE channel bandwidth. For example, a
4G Base Station channel bandwidth of20 MHz requires all UE to also support a 20 MHz channel bandwidth

* In the case of 5G, the Base Station channel bandwidth can be greater than or equal to the UE channel bandwidth. For example, a 50
Base Station could support a channel bandwidth of l 00 MHz, while a UE could support a channel bandwidth of20 MHz. In that case,
the Base Station would recognise the UE capability and allocate Resource Blocks which arc within a 20 MHz bandwidth. Different UE
could use different 20 MHz sections of the total Base Station channel. UE which support the 100 MHz channel bandwidth could be
allocated Resource Blocks from any location within the Base Station channel

* In some cases, uplink and downlink channel bandwidths are not equal. FDD operating bands 1166 and n70 support asymmetric uplink
and downlink channel bandwidths. For example, operating band n66 supports a 20 MHz uplink channel combined with a 40 MHz
downlink channel. Similarly, TDD operating band nS0 supports asymmetric uplink and downlink channel bandwidths. In this case, a
60 MH7 uplink channel can be used in combination with an 80 MHz downlink channel

Fig. 2.4: 5G operating bands for Frequency Range I (450 MHz to 6 GHz)
[3]

Waveform

3GPP has defined two possible waveforms in, NR based on Orthogonal Fre-
quency Division Multiplexing (OFDM):

• Cyclic Prefix OFDM (CP-OFDM). Both uplink and downlink.

• Discrete Fourier Transform Spread (DFT-S-OFDM). Only in the up-
link.

CP-OFDM is used as the basic scheme, but the possibility of implementing
DFT-S-OFDM in the uplink is allowed. The reason for this is the same as
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Fig. 2.5: 5G operating bands for Frequency Range 2 (24.25 to 52.60 GHz)
[3]

Fig. 2.6: Example of early phase 5G spectrum usage and coverage. [4]

in LTE, to obtain a higher power amplifier efficiency. DFT-S-OFDM has a
lower Peak-to-Average Power Ratio (PAPR) compared to CP-OFDM. This
allows the User Equipment (UE) to transmit with a higher average power,
improving uplink coverage performance. However, it has some disadvan-
tages, for example in MIMO. Spatial multiplexing receivers become more
complex and 3GPP has specified that DFT-S-OFDM only supports single
stream transmission [3]. When DFT-S-OFDM is used, uplink transmissions
are restricted to a single layer only, while uplink transmissions of up to four
layers are possible with CP-OFDM. In other words, DFT-S-OFDM provides
better troughput and capacity, while CP-OFDM provides better coverage.

Numerology

The numerology defines the subcarrier spacing and the cyclic prefix length.
In LTE a subcarrier spacing of 15KHz and a cyclic prefix of approximately
4.7µs has been used because it gives a good result for the scenario it was
designed for. NR must have the flexibility to support different spectrum
and service options. Having a single numerology value for all scenarios is
not possible from a requirements point of view. LTE subcarrier spacing (15
kHz) was selected as the baseline for NR. From this value, larger subcarrier
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spacing are obtained according to the following relationship:

△ f = 2µ · 15KHz (2.1)

Table 2.1 shows the subcarrier spacing, the symbol duration and type of
cyclic prefix.

µ △ f (KHz) Symbol duration (µs) Cyclic prefix

0 15 66.67 Normal

1 30 33.33 Normal

2 60 16.67 Normal, Extended

3 120 8.33 Normal

4 240 4.17 Normal

5 480 2.08 Normal

Table 2.1: Subcarrier Spacings Supported by NR.

Time-Domain Structure

Figure 2.7 illustrates the time domain structure. NR transmissions are orga-

7.2 Time-Domain Structure

In the time domain, NR transmissions are organized into frames of length 10ms, each of

which is divided into 10 equally sized subframes of length 1ms. A subframe is in turn

divided into slots consisting of 14 OFDM symbols each. On a higher level, each frame

is identified by a System Frame Number (SFN). The SFN is used to define different trans-

mission cycles that have a period longer than one frame, for example paging sleep-mode

cycles. The SFN period equals 1024; thus, the SFN repeats itself after 1024 frames or

10.24 seconds.

For the 15 kHz subcarrier spacing, an NR slot has the same structure as an LTE

subframe with normal cyclic prefix. This is beneficial from an NR-LTE coexistence

perspective and is, as mentioned earlier, the reason for choosing 15kHz as the basic sub-

carrier spacing. However, it also means that the cyclic prefix for the first and eighth

symbols in a 15 kHz slot are slightly larger than for the other symbols.

The time-domain structure for higher subcarrier spacings in NR is then derived by

scaling the baseline 15 kHz structure by powers of two. In essence, an OFDM symbol is

split into two OFDM symbols of the next higher numerology, see Fig. 7.1, and 14 con-

secutive symbols form a slot. Scaling by powers of two is beneficial as it maintains the

symbol boundaries across numerologies, which simplifies mixing different numerologies

on the same carrier and this is the motivation for the higher subcarrier spacings being

expressed as 2μ �15 kHz with quantity μ being known as the subcarrier spacing configuration.
For the OFDM symbols with a somewhat larger cyclic prefix, the excess samples are

Fig. 7.1 Frames, subframes, and slots in NR.

118 5G NR: The Next Generation Wireless Access Technology

Fig. 2.7: Frames, subframes, and slots in NR. [5]

nized into frames of length 10ms, each of which is divided into 10 subframes
of length 1ms. Each subframe is divided into slots of 14 OFDM symbols,
the slot duration depends on the numerology. For the 15KHz subcarrier
spacing, the subframe corresponds to a slot and has the same structure as
a LTE subframe. The time-domain structure for higher subcarrier spacings
in NR is then derived by scaling the baseline 15 kHz structure by powers of
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two, the number of slots per subframe is 2µ.

A higher subcarrier spacing implies a shorter slot duration. This can be
beneficial for low delay transmissions, but it also reduces the cyclic prefix,
so it is not a feasible approach in all scenarios.

Frequency-Domain Structure

Figure 2.8 illustrates the frequency domain structure. A resource element,

domain and one LTE slot in the time domain. One reason for defining resource blocks in

the frequency domain only in NR is the flexibility in time duration for different trans-

missions whereas in LTE, at least in the original release, transmissions occupied a

complete slot.4

NR supports multiple numerologies on the same carrier. Since a resource block is 12

subcarriers, the frequency span measured in Hz is different. The resource block bound-

aries are aligned across numerologies such that two resource blocks at a subcarrier spacing

of Δf occupy the same frequency range as one resource block at a subcarrier spacing of

2Δf. In the NR specifications, the alignment across numerologies in terms of resource

block boundaries, as well as symbol boundaries, is described throughmultiple resource grids

where there is one resource grid per subcarrier spacing and antenna port (see Section 7.9

LTE

NR

Carrier center frequency, DC subcarrier used

Device 1
Device 2

Device 3

Carrier center frequency, unused DC subcarrier

Device 1
Device 2
Device 3

Device center frequency (DC subcarrier)

Device center frequency (DC subcarrier)

Fig. 7.3 Handling of the DC subcarrier in LTE and NR.

Fig. 7.4 Resource element and resource block.

4 There are some situations in LTE, for example the DwPTS in LTE/TDD, where a transmission does not

occupy a full slot.
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Fig. 2.8: Resource element and resource block. [5]

consisting of one subcarrier during one OFDM symbol, is the smallest phys-
ical resource in NR. 12 consecutive subcarriers in the frequency domain are
called a resource block. Due to multiple numerology that NR supports, the
bandwidth of a resource block is variable depending on said numerology.
Two resource blocks at a subcarrier spacing △ f occupy the same frequency
range as one resource block at a subcarrier spacing of 2 △ f . This concept
is illustrated in Figure 2.9.

for a discussion of antenna ports), covering the full carrier bandwidth in the frequency

domain and one subframe in the time domain (Fig. 7.5).

The resource grid models the transmitted signal as seen by the device for a given sub-

carrier spacing. However, the device needs to know where in the carrier the resource

blocks are located. In LTE, where there is a single numerology and all devices support

the full carrier bandwidth, this is straightforward. NR, on the other hand, supports mul-

tiple numerologies and, as discussed further later in conjunction with bandwidth parts,

not all devices may support the full carrier bandwidth. Therefore, a common reference

point, known as point A, together with the notion of two types of resource blocks, common

resource blocks and physical resource blocks, are used.5 Reference point A coincides with sub-

carrier 0 of common resource block 0 for all subcarrier spacings. This point serves as a

reference from which the frequency structure can be described and point A may be

located outside the actual carrier. Upon detecting an SS block as part of the initial access

(see Chapter 16), the device is signaled the location of point A as part of the broadcast

system information (SIB1).

The physical resource blocks, which are used to describe the actual transmitted signal,

are then located relative to this reference point as illustrated in Fig. 7.6. For example,

physical resource block 0 for subcarrier spacing Δf is located m resource blocks from

reference point A or, expressed differently, corresponds to common resource block m.

Similarly, physical resource block 0 for subcarrier spacing 2Δf corresponds to common

resource block n. The starting points for the physical resource blocks are signaled inde-

pendently for each numerology (m and n in the example in Fig. 7.6), a feature that is

useful for implementing the filters necessary to meet the out-of-band emission require-

ments (see Chapter 25). The guard in Hz needed between the edge of the carrier and the

first used subcarrier is larger the larger the subcarrier spacing is, which can be accounted

for by independently setting the offset between the first used resource block and reference

point A. In the example in Fig. 7.6, the first used resource block for subcarrier spacing 2Δf
is located further from the carrier edge than for subcarrier spacingΔf to avoid excessively

Fig. 7.5 Resource grids for two different subcarrier spacings.

5 There is a third type of resource block, virtual resource blocks, which are mapped to physical resource blocks

when describing the mapping of the PDSCH/PUSCH, see Chapter 9. In release 16, interleaved resource

blocks are defined to support unlicensed spectra, see Chapter 19.
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Fig. 2.9: Resource grids for two different subcarrier spacings. [5]

2.1.3 Network Slicing

The introduction to this section has presented the main use case scenar-
ios that 5G should be able to address. In order to satisfy different (and
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potentially conflicting) requirements of different services and/or customers
in a cost-effective manner, operators must convert their networks into pro-
grammable multi-service platforms, adopting the infrastructure and func-
tional sharing mechanisms commonly known as network slices. With net-
work slicing, the operator’s network can be logically divided into a set of
programmable network partitions (i.e. network segments), each designed to
satisfy a particular set of service requirements [12].

To achieve this, there are two fundamental technologies that make up the
5G network architecture: Software-defined networking (SDN) and Network
Function virtualisation (NFV) [13].

SDN is a key component of the 5G networking architecture, designed
to overcome the limitations imposed by the use of hardware. The primary
objective of implementing SDN is to achieve fully automated network ad-
ministration, enabling the administrator to efficiently manage the network
through a centralized control plane. This simplifies network management
and facilitates the introduction of changes to the network. NFV architec-
ture is ideal for efficiently managing the lifecycle of network services and
their constituent resources. A virtualized network function consists of one
or more virtual machines, each running various software and processes, op-
erating on servers, switches, storage devices, and cloud infrastructure.

Through these two technologies, network softwarization can provide the
flexibility and modularity that is required to create multiple logical (virtual)
networks on top of a common network. We define network slices as end-to-
end (E2E) logical networks that operate on a shared underlying network,
whether physical or virtual. These slices are mutually isolated, indepen-
dently controlled and managed, and can be created on demand [6]. An
illustrative example of this concept is shown in Figure 2.10.

2.2 Self-Organizing Networks (SON)

Optimization of the mobile network and consequently a good use of avail-
able resources has always been a major objective of operators. During GSM
and UMTS traffic was dominated by SMS and Multi-media Messaging Ser-
vice (MMS), being this kind of traffic relatively predictable. However, the
emergence of smartphones led to an increase in mobile traffic that changed
the paradigm of network optimization.

The rapid expansion of mobile broadband significantly strains wireless
radio networks and the underlying transport infrastructure. Operators have
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range of requirements than existing services do nowadays. Today’s networks, with their “one-size-

fits-all” architectural approach, are unable to address the diverging performance requirements that 

verticals impose in terms of latency, scalability, availability and reliability. To efficiently 

accommodate vertical-specific use cases along with increased demands for existing services over 

the same network infrastructure, it is accepted that 5G systems will require architectural 

enhancements with respect to current deployments. 

 

Network softwarization, an emerging trend which seeks to transform the networks using software-

based solutions, can be a potential enabler for accomplishing this. Through technologies like 

Software-Defined Networking (SDN) and Network Function Virtualization (NFV), network 

softwarization can provide the programmability, flexibility, and modularity that is required to 

create multiple logical (virtual) networks, each tailored for a given use case, on top of a common 

network. These logical networks are referred to as network slices. The concept of separated virtual 

networks deployed over a single network is indeed not new (e.g. VPN), although there are 

specificities that make network slices a novel concept. We define network slices as end-to-end 

(E2E) logical networks running on a common underlying (physical or virtual) network, mutually 

isolated, with independent control and management, and which can be created on demand. Such 

self-contained networks must be flexible enough to simultaneously accommodate diverse 

business-driven use cases from multiple players on a common network infrastructure (see Figure 

1). 

 

 
 

 

Figure 1.  5G network slices running on a common underlying multi-vendor and multi-access 

network. Each slice is independently managed and addresses a particular use case. 
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Fig. 2.10: 5G network slices running on a common underlying multi-vendor
and multi-access network. Each slice is independently managed and ad-
dresses a particular use case. [6]

implemented various solutions to cope with this rapid traffic growth. First,
operators can employ economic incentives to modify user behaviour by ad-
justing tariff structures. Another approach is to improve network capacity
by deploying advanced radio access technologies, as was done for example
with LTE deployments. Optimization of protocol design and traffic shaping
methods is also developed, together with the deployment of advanced source
coding techniques [14].

Many of these alternatives involve high capital outlays as the network in-
frastructure needs to be upgraded. It is therefore interesting to ask whether
the available resources are being used to their full potential before consid-
ering network expansions or evolutions. This is where network optimisation
and in particular the SON paradigm comes into play.

2.2.1 Motivation of the SON paradigm

Managing mobile networks is a complex task due to the number of network
elements to be deployed and managed but also the interdependency of their
configurations. Complexity increases when different 2G, 3G, 4G and 5G
networks must coexist. In such Heterogeneous Network scenarios the vari-
ety of deployed technologies and their specific operational paradigms will be
difficult to handle.

Traditionally, network management tasks are supervised by humans.
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This manual effort by the human operator is time-consuming, expensive,
error-prone and requires a high degree of expertise. Networks are operated
so that the human operator re-plans network configuration based on anal-
ysed performance data [15]. The high complexity and cost of the manual
procedure can be reduced with SON networks. The target is to gradually
move towards a pure monitoring and steering of the SON-enabled system
from manual planning and configuration. Therefore, the human’s role is not
to carry out frequent routine work anymore. Instead, the role is to design
and decide policies that guide SON functioning [16]. The design of opti-
mization algorithms in SON networks started out based on human expert
guidelines, but in recent years the use of Machine Learning (ML) and Ar-
tificial Intelligence (AI) techniques has gained momentum. In the following
sections we will discuss the different techniques that are being implemented.

2.2.2 SON for 5G Mobile Networks

SON originally appeared in 3GPP Release 8 [16] in response to the emer-
gence of smartphones and the exponential growth of traffic, during the last
decade, it has proven its usefulness in traditional macro networks. With the
advent of 5G, the trend in traffic growth has not changed. The ITU has
projected that the exponential increase in mobile data traffic will persist,
anticipating that by 2030, the total monthly mobile data traffic will soar to
an incredible 5 zettabytes (ZB), as shown in Figure 2.11. 5G is expected to

Fig. 2.11: Global mobile data traffic forecast by ITU. [6]
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reach its limits in 2030 and the trend is expected to continue to grow for
the Sixth Generation (6G).

In addition to this, the emergence of Small Cell Networks (SCN) also
comes into play in 5G. This technology is based on the idea of deploy-
ing short-range, low-power, and low-cost base stations operating in con-
junction with the main macrocellular network infrastructure [17]. We need
many more small cells than macro cells, and small cells are deployed much
more dynamically. In consequence, manual processes for configuration and
optimization are no longer feasible, SCN have to be plug-and-play and
self-configurable. In 5G, SON will continue playing an essential part, as
Heterogeneous networks (HetNets) require even more automatic control.
With the SON approach, the network can leverage knowledge of its cur-
rent state to allocate resources efficiently, ensuring they are directed where
and when they are needed most. As a result, users enjoy constant, seamless
and virtually unlimited connectivity.

The SON use cases can be structured in different ways. one of the
possible high-level classifications is the following (adopted in [14]):

• Self-Planning. Determining the settings for each new network node
involves selecting the site location and specifying the hardware config-
uration, but does not include site acquisition and preparation.

• Self-Deployment. Preparation, installation, authentication and verifi-
cation of every new network node. It includes all procedures to bring
a new node into commercial operation.

• Self-Optimization. Utilization of measurements and performance indi-
cators collected by the User Equipments and the base stations in order
to auto-tune the network settings.

• Self-Healing. Execution of the routine actions that keep the network
operational and/or prevent disruptive problems from arising. This
includes the necessary Software (SW) and HW upgrades and/or re-
placements.

When there are several SON functionalities operating on the same network
there may be conflict between their objectives so that the overall SON gain
is reduced. In classical SON there is a latency, since the situation is first
observed, diagnosed and finally compensatory action is taken. This reactive
approach is not compatible with 5G quality of experience levels. Therefore,
to be able to perform successfully in 5G network, the intended solution for
SON paradigm should be proactive. In this way, the network can predict
the potential problem beforehand instead of waiting to observe and spot the
problem. Empowering SON with big data is the key to transforming SON
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from being reactive to proactive [18].

In this sense, algorithms designed by humans to operate in SON net-
works are moving towards the use of Machine Learning (ML) and Artificial
Intelligence (AI) to gain this predictive component and adapt to a proactive
paradigm.

2.2.3 AI/ML applied to Self-Organizing Networks

The wide availability of configuration and performance data makes it pos-
sible to gather substantial information on the state of the network in real
time, in this context AI becomes a key feature.

As discussed in the previous section, decisions that were previously made
by experts manually or with optimization algorithms can now be made by
ML algorithms. This not only improves the overall operational efficiency
of the NR network infrastructure, but also has significant impact into the
reduction of management and energy related costs. The use of Artificial
Intelligence (AI) and Machine Learning (ML) as a key enabler for future
networks has been recognized at European [19] and global level [20]. In the
following subsections, two of the most popular AI/ML methods are reviewed
in general terms: Neural Networks (NN) and Reinforcement Learning (RL)
[8]. We focus on these two since the combination of both results in Deep
Reinforcement Learning (DRL), the technique implemented in this project
and whose theoretical basis is presented in section 2.3.

Neural Networks

Neural Networks (NN) emerged as an attempt to emulate the behaviour of
the human brain in a computer. The equivalent component of a neuron in
a NN is called a node. The nodes are connected to each other through links
of varying weight that simulate the neural connections of the human brain.
In addition, these nodes perform nonlinear operations using their activation
functions [21].

The nodes are distributed in layers, there are 3 types of layers in a NN:

• Input layer. The data is received in this layer.

• Hidden layer. Layers through which the signal travels, undergoing
changes depending on the weights.

• Output layer. Layer that returns the result of network processing.

Although all networks must have an input and an output layer, the number
of hidden layers or the number of nodes is not fixed. A simple NN design
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Fig. 2.12: Most basic design of a neural network, consisting of 3 layers [7]

of three layers is shown on Figure 2.12. A denotes the input layer, B the
hidden layer and C the output layer. The variable link weights are depicted
as θ(j), which correspond to the matrix of weights controlling the function
mapping between layer j to layer j + 1 and the activation function of each
neuron as ai

j , where i is the neuron number and j is the layer number.
As can be seen in the connections between layers, they all go forward and
no loops are formed. This type of network is known as Feed-forward neural
networks (FFNN).

The objective of an FFNN is to approximate an unknown function
y = f∗(x). During training, the network tries to adjust parameters θ. So
the neural network defines a function f(x, θ), which depends on the inputs
x and the parameters θ, with the objective of adjusting the values of θ in
such a way that f(x, θ) = f∗(x).

The process of training Feedforward Neural Networks (FFNNs) follows
a similar pattern to other machine learning algorithms. This involves com-
puting a loss function, J(θ), based on the model’s parameters (weights),
and then using gradient descent to adjust these parameters in order to min-
imize the loss function. There are several types of loss functions, but the
most utilized are the mean square error, the Huber Loss, Cross-entropy, the
Kullback-Liebler Divergence, etc [22]. This loss function is used to update
the parameters. This update starts from the last layer and propagates back-
wards, hence it is known as backpropagation.

FFNNs can perform automatic feature extraction across layers of dif-
ferent depths. In mobile networks the amount of data is massive, FFNNs
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benefit from large amounts of data as this allows them to improve general-
ization.

In addition to FFNN, there are multiple other types of NNs. When the
number of hidden layers is more than one, it is called Deep Neural Net-
works (DNN) [23]. Figure 2.13 shows a simple example of a DNN with 2
hidden layers. The use of DNN in mobile network optimization has grown in

Fig. 2.13: Scheme of a deep neural network with 2 hidden layers [8]

recent years. It covers areas such as automatic computation offloading and
edge caching [24], or also applications at the physical layer [25] for novel tasks
such as spectrum analysis, radio virtualization and optimization, blockage
prediction or beam alignment. DNNs are capable of adapting to multiple
problems as long as a large amount of data and metrics can be collected, as
is the case in the vast majority of mobile network optimization cases.

The most common architecture for DNNs is feed-forward, in which the
information flows from the input layer to the output layer without internal
loops. There are other types of architectures, such as Recurrent Neural Net-
works (RNN), where information is propagated both forward and backward.
This change allows the output to depend on both the current input and its
history through the network. This makes RNN capable of capturing tempo-
ral correlations such as those found, for example, in user mobility prediction.

Another type of architecture within DNN are Convolutional Neural Net-
works (CNN) which specialize in inferring local patterns in the feature
space of a matrix input. Two-dimensional convolutional neural networks
(2D-CNN) have been widely used in image processing. When the data is of
a spatio-temporal nature, the architecture is extended to 3D-CNN, which
adds the temporal dimension to the problem. Mobile network traffic exhibits
patterns in both space and time, e.g. the geographical position of a base
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station and traffic trends throughout the day. In this case, 3D-CNN can
be used to infer patterns from a time series matrix of traffic with a spatial
component.

Reinforcement Learning

Reinforcement Learning (RL) is a learning method in which an agent takes
actions in an environment and receives feedback from it, so that the learning
technique is based on trial-and-error. Unlike many other forms of machine
learning, the agent is not told what actions to take, but discovers the best
actions by trying them out. The agent’s goal is to maximize his reward,
in other words, given an initial situation it must find a set of actions for
which the environment provides him with the maximum reward. This type
of solution has drawn the attention to mobile network researches due to its
proven efficacy to address complex multi-domain problems, yielding close to
optimal results [8]. Furthermore, the use of RL avoids the need for expert
knowledge to mathematically model the environments to be optimized.

In each interaction with the environment, the agent sees a state s(t) and
selects an action a(t). The action a(t) in state s(t) obtains a certain reward
r(t). Most reinforcement learning problems can be formulated as Markov
Decision Process (MDP), a complete mathematical formalism of RL is de-
veloped in section 2.3. Most mobile communications solutions maximize the
expected reward by learning the state-value or action-value functions [26].
Among the value-base methods, the most well-known are Q-learning and
SARSA [27].

This method is very powerful for complex environments such as resource
allocation and orchestration problems. However, the algorithm needs to ex-
plore the environment fully and this means that in a complex system such
as a 5G network, the learning phase can be inefficient as it requires a large
amount of time to reach an optimal solution. Deep Reinforcement Learn-
ing (DRL) addresses this issue by utilizing Deep Neural Networks (DNN)
as function approximators, thereby reducing the complexity associated with
traditional RL methods.

The best known DRL technique is Deep Q-learning Network (DQN).
DNN is used as a function approximator for action selection in a discrete
space, based on Q-learning. The use of DNN has led to the exploration of
new problems that so far could not have been tackled by RL due to its high
dimensionality. DRL has obtained good results in energy saving strategies
for switching off cells [28] , optimal routing [29], mobile edge computing [30]
or network slicing [31], to name a few examples.
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The biggest drawback of these solutions is that a very large number of
interactions with the environment is needed to explore it well enough to
reach an optimal solution. This is a problem when you want to deploy it
in a real production environment. What is done is to use simulators that
emulate as closely as possible the behaviour of the network to train them in
this environment beforehand.

2.3 Theorical foundations of Deep Reinforcement
Learning (DRL)

2.3.1 Fundamentals of reinforcement learning

Reinforcement Learning (RL) is a subfield of Machine Learning (ML) that
addresses the problem of the automatic learning of optimal decisions over
time. It is based on optimal control theory and Markov Decision Pro-
cess (MDP). Richard Bellman first explored it in the 1950s, within the
framework of dynamic programming and quasilinear equations [32].

The RL method bases its learning on trial-and-error, a concept based on
natural human learning. A simple example of an RL problem would be a
child learning to ride a bicycle. In his first attempts, he will not last long
on the bike and may even fall off. Through these negative experiences, he
learns what actions he should not take in order not to repeat these mistakes.
In the course of time he will have managed to learn to ride a bicycle as a
result of a long training where he has learned from both his successes and
his mistakes.

RL problems are expressed as a system composed of an agent and an
environment. The interaction between the agent and the environment can
be reduced to the following steps:

1. The environment generates information describing the system, known
as state.

2. The agent observes the state provided by the environment and based
on it selects an action.

3. The environment receives the action selected by the agent. From this,
it moves to a new state and generates a reward.

4. The agent receives this information and learns from what has hap-
pened. It started from a state st, with an action at moved to state
st+1 and obtained a reward rt.

The steps described are illustrated by the block diagram in Figure 2.14.
When the cycle of (state → action → reward) completes, we say that one
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Fig. 2.14: Reinforcement learning operating diagram [9]

time step has passed. The cycle can repeat forever or terminate by reaching
either a terminal state or a maximum time step t = T . The time horizon
from t = 0 to when the environment terminates is called an episode. The
(st, at, rt) tuple is called an experience. A trajectory is a sequence of ex-
periences over an episode, τ = (s0, a0, r0), (s1, a1, r1), ... The following is a
formal description of the state, action and reward [9].

st ∈ S is the state, S is the state space (2.2)

at ∈ A is the action, A is the action space (2.3)

rt ∈ R(st, at, st+1) is the reward, R is the reward function (2.4)

The state space S is the set of all possible states in an environment. For
example, if our environment is an operator’s network cell, the state could be
defined by the number of users it serves and the total throughput. So the
state space would have dimension 2 and would be composed of an integer
value and a float value. The total number of states in the state space will be
given by all possible combinations of the variables that make up the state
space.

Similarly, the action spaceA is the set of all possible actions defined to be
taken in an environment. Continuing with the previous example, the action
could be to increase or decrease the bandwidth of the cell. In this case, the
action space would commonly be coded as 0 and 1, one value for each action.
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Finally, reward can be positive, negative, large or small, but it’s just a
number whose purpose is to inform the agent how well it has behaved. It
evaluates the goodness of the action taken.

Markov Decision Process

In a system of states, the transition from one state to another can be mod-
elled mathematically with what is known as a transition function. In RL
the transition function is formulated as an Markov Decision Process (MDP).

For a system to be an MDP, it must satisfy the markov property, which
means that the future of the system from any state must depend only on the
current state. The Markov property requires that the states of the system
be distinct and identifiable. Consequently, only a single state is needed to
predict the future behavior of the system, rather than relying on the entire
history or the previous N states [11]. The transition function is expressed
as follows:

st+1 P ( st+1| st, at) (2.5)

The Markov property implies that the current state and action at time step
t contain sufficient information to fully determine the transition probability
for the next state at t + 1. In RL an MDP is defined by a tuple of 4 vari-
ables: S, A, R(.) and P(.) [9]. The first three correspond to the definitions
in equations 2.2, 2.3, 2.4 and P(.) is the state transition function of the
environment defined in 2.5.

To formalize the agent’s objective to be maximized, the return, we use
the trajectory of an episode, τ = (s0, a0, r0), ..., (sT , aT , rT ):

R (τ) = r0 + γ r1 + γ2r2 + . . .+ γT rT =

T∑
t=0

γt · rt (2.6)

The objective J(τ) will be the expected value of the return over many tra-
jectories.

J (τ) = E

[
T∑
t=0

γt · rt

]
(2.7)

The return R(τ) is the sum of the discounted rewards γt · rt over all time
steps, where γ ∈ [0, 1] is the discount factor, a very important variable that
modifies how the agent understands the reward. This parameter determines
how much future rewards are valued compared to immediate rewards.

In the extreme case with γ = 0, the objective only considers the initial
reward r0. Conversely, when γ = 1 all rewards are considered equally re-
gardless of when they are received. When γ is large, more weight is given
to future rewards, allowing the agent to take a more “long-term” view.
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Learnable functions and DRL algorithms

There are three primary functions to learn in reinforcement learning [9]:

• A policy π , which maps state to action: a ∼ π(s)

• A value function, V π(s) or Qπ(s, a), to estimate the expected return.

• The environment model, P (st+1)|st, at.

A policy π is the strategy followed by the actions taken by the agent to
maximize the objective. A policy can be stochastic, meaning that it can
give different actions with certain probabilities for the same state. This is
denoted as π(a|s), which represents the probability of selecting the action a
given the state s.

Value functions provide information about the quality of states and ac-
tions in terms of expected future rewards. They help the agent understand
how beneficial it is to be in a particular state or take a particular action,
with the goal of maximizing the cumulative long-term reward. The value
function V π(s) evaluates how good or bad a state is, measuring the expected
return of being in state s, assuming that the agent continues to act according
to its current policy π. The Q-value function Qπ evaluates how good or bad
a state-action pair is, measuring the expected return from taking action a
in state s assuming that the agent continues to act according to its current
policy π.

The transition function P (st+1)|st, at contains the probabilities that the
environment goes to a state st+1 from a state st because of an action at.
With the transition function, an agent can predict the next state without
the need to execute the action in the actual environment. This is useful for
evaluating the potential consequences of different actions in advance.

From these 3 functions that the agent can learn from the environment,
the 3 main families of Deep Reinforcement Learning (DRL) algorithms are
derived: policy-based, value-based and model base methods. An overview
of each family and how they are related is given in Figure 2.15. Model-
based algorithms have had limited use in addressing mobile communication
issues because network deployments are often too complex to model accu-
rately. Consequently, determining transition probabilities and planning for
future scenarios currently appears impractical. Most of the solutions that
implement DRL in communication networks belong to the policy-based and
value-based categories [8]. In this thesis, the DQN algorithm is discussed in
greater depth (2.3.3), since it was the solution implemented in the practical
part of the project.
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Fig. 2.15: Deep reinforcement learning algorithm families [9]

2.3.2 Deep Learning for Reinforcement Learning

Neural networks learn functions that modify an input value by providing
an output, the layers of the neural network modify the value of the input.
The weights of the layers, commonly known as parameters θ, will define the
function learned by the neural network.

To learn a function, the neural network needs a sufficiently represen-
tative input data set and a way to evaluate the outputs produced by the
network. One way is to have a set of input data with an associated target
output. The goal is to train the network to predict the correct output given
any input. To achieve this, a loss function is defined, which quantifies how
far the network’s predictions are from the actual targets. This option is
implemented in supervised learning, for RL another strategy is needed. The
most straightforward option in RL is to provide a scalar value indicating
how good or bad the output is. That is, what has been defined as reward
or return.

With a loss function, the network can change the parameters θ to min-
imize loss. This is known as gradient descent because we change the pa-
rameters in the direction of steepest descent on the loss surface in search
of a global minimum [11]. Assume a neural network that learns a function
f(x; θ) and L(f(x; θ), y) be the predefined loss function. A training step can
be summarized as follows [9]:

1. Obtain an input value with its associated output (x, y) from the train-



State of the Art 57

ing dataset.

2. Obtain the output provided by the neural network in response to the
input ŷ = f (x, θ).

3. The loss L(ŷ, y) is calculated using the (known) target output and the
neural network prediction.

4. Calculate the gradient (partial derivative) of the loss ▽θL with respect
to the parameters of the network.

5. Use an optimizer to update the network parameters using the gradi-
ent. For example, a stochastic gradient descent optimizer makes the
following update: θ ← θ − α▽θL, where α is a scalar learning rate.

However, the training process described is not directly applicable to RL,
neither the inputs x nor the target outputs y are given in advance. These
values are obtained from the states and rewards that the agent receives from
the environment after interacting with it. This represents a particular chal-
lenge for training neural networks in reinforcement learning. Furthermore,
the current state and rewards of an environment are not independent of the
states and rewards in previous instants of time. This violates an assumption
of gradient descent, that data is identically and independently distributed
(i.i.d.). The speed at which a network converges and the quality of train-
ing can be affected, so the various DRL techniques focus on being able to
minimize these effects.

2.3.3 Deep Q-learning Network (DQN)

This section introduces the Deep Q-learning Network (DQN) algorithm pro-
posed by Mnih et al. [33] in 2013.

The Q- and V-Functions

In section 2.3.1 the two value functions V π(s) and Qπ(s, a) were presented
conceptually. The mathematical formalism of these expressions is defined
below in order to develop the theoretical foundation of DQN.

The Q-function measures the value of state-action pairs (s, a) under a
particular policy π [9], as defined in Equation 2.8.

Qπ (s, a) = Ea,τ∼π

[
T∑
t=0

γt · rt

]
(2.8)

The value of Qπ (s, a) is given by the expected value of the return, defined
in equation 2.7, taking an action a in a state s and acting according to the
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policy π. Value functions are always defined relative to a specific policy
π, which is why they are indicated with a π superscript. Various policies
can produce different future action sequences from a given state-action pair
(s, a), potentially leading to different rewards.

V π(s) measures the value of state s under a particular policy π [9], as
defined in Equation 2.9.

V π (s) = Es,τ∼π

[
T∑
t=0

γt · rt

]
(2.9)

The value of V π (s) is given by the expected value of the return from that
state s onwards under a specific policy π. The two functions are related,
V π (s) is the expectation over the Q-values for all the actions a available in
a particular state s under the policy π.

V π (s) = Ea∼π(s) [Q
π(s, a)] (2.10)

To facilitate the understanding of these two functions, let’s use a chess game
as an example, from the perspective of one of the players. The player will
be represented by the policy π, a given configuration of the pieces on the
board will be a state s. From a game situation (state) chess experts are able
to intuit whether victory is near, this intuition is provided by the value of
V π(s). Suppose this function takes values between 0 and 1. If the game
situation is very close to being resolved in favour of a win, V π(s) will be
very close to 1. In this particular case, it would be giving the probability of
victory from a state in the form of reward.

However, in chess, given a good board configuration, there are different
decisions that can end the game with more or less moves. This information
would be provided by Qπ(s, a) which gives a value for each possible move-
ment. This value can be used to decide on the best move (action) to make
in a particular position (state).

The disadvantage of learning Qπ(s, a) is that the function approxima-
tion is more computationally complex and requires more data to learn from
compared to V π(s). To learn V π(s) well, it is necessary that the data rep-
resent the state space reasonably well. Conversely, to learn Qπ(s, a) well,
it is necessary that the data represent all (s, a) pairs, not just the states [34].

Although V π(s) has an easier approximation function, it has an impor-
tant disadvantage when the system is stochastic. The agent can act opti-
mally by selecting the action a that provides a better expected return from
state s. If the system is stochastic, taking action a from state s provides
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different reward values. Therefore, the agent needs to try many times the
action a from state s in order to obtain a reliable estimate of the expected
reward. This is computationally very expensive and in some use cases un-
feasible. Qπ(s, a) avoids this problem because it directly learns the value of
(s, a). As a result, RL algorithms which select actions using a learned value
function tend to approximate Qπ(s, a) [27].

Learning the Q-function in DQN

DQN learns the Q-function using Temporal Difference (TD) learning. The
objective is to use a neural network that for a pair (s, a) produces an esti-
mate of the Q-value. The key insight in TD learning is that Q-values for
the current time step can be defined in terms of Q-values of the next time
step [9].

From now on, the following change in the nomenclature will be made in
order to facilitate the writing of the mathematical formalism: (st, at, rt) →
(s, a, r) and (st+1, at+1, rt+1)→ (s′, a′, r′).

Qπ(s, a) is defined recursively, as shown in Equation 2.11. This expres-
sion is known as the Bellman equation.

Qπ
tar (s, a) = r + γmax

a′
Qπ

(
s′, a′

)
(2.11)

The subindex tar is used to indicate that this is the target Q-value that the
neural network is intended to generate. To estimate Qπ

tar (s, a), DQN uses
the maximum Q-value of all possible actions from that state. Qπ

tar (s, a)
can be calculated using the right-hand side equation 2.11 for each tuple
(s, a, r, s′, a′). To calculate the Q-values only the information of the next
step is needed, not the whole trajectory of the episode. This allows the Q-
function to be updated at each step, which is known as TD learning, instead
of waiting until the end of the whole episode.

Off-policy algorithm

An important feature of DQN is that it is an off-policy algorithm. This
means that the function that is learned is independent of the policy that
is followed to select actions and generate experiences. An experience is the
tuple composed of the reward obtained after taking an action from a state:
(s, a, r, s′). As seen in the equation 2.11, the value of Qπ

tar (s, a) is updated
with the maximum Q-value of the next state within all possible actions.
Therefore, it does not depend on the action a′ taken by the current policy in
state s′. This occurs in on-policy algorithms such as SARSA, whose Bellman
equation is shown in equation 2.12:

Qπ
tar:SARSA (s, a) = r + γ Qπ

(
s′, a′

)
(2.12)



60
2.3. Theorical foundations of Deep Reinforcement

Learning (DRL)

In this case, Qπ
tar (s, a) is updated with the Q-value of the next state s′

and the next action a′ according to the policy. The fact of being off-policy
allows DQN’s objective is to achieve the optimal Q-function that is defined
in equation 2.13:

Q∗ (s, a) = max
π

Qπ(s, a) = Qπ∗
(s, a) (2.13)

The optimal Q-function is the maximum expected reward that can be ob-
tained by taking action a in state s and then following policy π∗. The
optimal policy π∗ is the best possible action selection strategy, i.e. the one
that maximizes the expected reward in all states.

If we now think of the Bellman equation of DQN (equation 2.11) ac-
cording to equation 2.13, if the estimate of Qπ is correct, then maximizing
Qπ (s′, a′) would be optimal. This implies that the policy that Qπ

tar (s, a)
corresponds to is the optimal policy π∗ [9].

Action selection: ϵ-greedy

As discussed, TD learning is a method for learning to evaluate actions.
However, what has not yet been mentioned is a method for selecting actions,
what we call policy. If we assume that the optimal Q-function has already
been learned, then each pair (s, a) has associated with it the best expected
value of taking that action a in that state s. If the agent always selects the
maximum Q-value, then it will be acting optimally. In order for the agent
to reach the point of having learned a good policy, and as a consequence to
select actions optimally, it is necessary that Qπ

tar (s, a) has been updated
during training to reach optimal values. Two important concepts come into
play here: :

• Exploration. Consists of the agent selecting various options, even
those that do not provide the best immediate reward, with the objec-
tive of acquiring information about the performance of each available
option. That means, during the exploration phase, the agent will per-
form random actions in order to learn more about the environment
which it operates.

• Exploitation. It occurs when the agent decides to focus on a par-
ticular option that has proven to be most profitable so far, with the
objective of starting to generate consistent profits from that choice. In
DQN when the agent selects the maximum Q-value.

If the agent always exploits, it will only know a part of all possible (s, a)
pairs, therefore it will learn suboptimal or bad actions in those (s, a) pairs
that it has not learned. If the agent always explores he will know a wide
range of pairs (s, a) but he will never learn an optimal policy since he does
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not select the actions that offer him the best reward. A trade-off between
exploration and exploitation is important for good training.

It is common to use as an action selection strategy a ϵ-greedy policy.
Under this policy, an agent selects the greedy action (exploitation) with
probability 1− ϵ and acts randomly (exploration) with probability ϵ, which
is known as the exploration probability. Exploring has the risk of getting
bad results for some time, but it gives the opportunity to discover better
states and ways to act. If the agent had access to the optimal-Q function it
should act greedily, but while it is learning the Q-function, acting greedily
may prevent it from improving.

A usual strategy to handle this tradeoff is to start training with ϵ values
close to 1. At the beginning, the agent has not yet learned anything, so there
is nothing to exploit. Over time, ϵ is gradually decayed, As the agent learns
better Q-functions, and so better policies, there is less benefit to exploring
and the agent should act more greedily [9]. This improves the efficiency of
training as the agent focuses on better actions. The amount of exploration
that an agent needs to perform is highly dependent on the environment in
which it operates and the task that it must complete. Some environments
might require a large amount of exploration, while others might be able to
learn with little exploration.

Experience replay

In 1992 Long-Ji Lin observed that TD learning could be slow, since at each
time step information has to be propagated backwards in the neural network
[35]. To reduce this time, he proposed a Q-learning enhancement called ex-
perience replay.

An experience replay memory stores the k most recent experiences an
agent has gathered. Each time an agent trains, one or more batches of
data are sampled random-uniformly from the experience replay memory.
Each of these batches is used in turn to update the parameters of the Q-
function network [9]. Each batch usually contains experiences from different
episodes and different policies, which reduces the variance of the parameter
updates and stabilizes the training. If memory is full, the oldest experience
is discarded, older experiences become less useful because an agent is less
likely to visit the older states.

DQN Algorithm

The pseudocode for DQN with a ϵ-greedy policy is given in Algorithm 1.
The Q-function estimate Q̂π(s, a) is parametrized by a neural network with
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parameters θ, denoted Qπ0 . First, experiences are generated according to

Algorithm 1 DQN training algorithm

1: Initialize learning rate α
2: Initialize exploration probability ϵ
3: Initialize number of batches per training step, B
4: Initialize number of updates per batch, U
5: Initialize batch size N
6: Initialize experience replay memory with max size K
7: Randomly initialize the network parameters θ
8: for m = 1 to MAX STEPS do
9: Gather and store h experiences (si, ai, ri, s

′
i) using ϵ-greedy policy

10: for b = 1 to B do
11: Sample a batch b from the experience replay memory
12: for u = 1 to U do
13: for i = 1 to N do
14: # Calculate target Q-values for each example
15: yi = ri + γmaxa′ Q

π (s′, a′)
16: end for
17: # Calculate the loss, for example using MSE
18: L(θ) = 1

N

∑
i(yi −Qπθ(si, ai))

2

19: # Update the network’s parameters
20: θ = θ − α∇θL(θ)
21: end for
22: end for
23: Decay ϵ
24: end for

the ϵ-greedy action selection policy (line 9). To train the agent, B batches of
experiences of size N are selected from the from experience replay memory.
For each batch, U parameters of the neural network are updated in the
following way:

• First, we calculate the target Q-values for each element in the batch
(line 15).

• Then, we calculate the loss (line 18).

• Finally, calculate the gradient of the loss and update the network
parameters θ (line 20).

After the training of a time step has been completed, the value of epsilon is
decreased to follow the trade-off strategy between exploration and exploita-
tion discussed above.



Chapter 3

System model and problem
definition

This chapter describes the system model adopted for this project, describ-
ing the network design. It concludes by defining the problem statement
addressed within this system.

3.1 System model

The system consists of a New Generation Radio Access Network (NG-RAN)
formed by a set B of 5G NR Small cells (SCs) that are controlled by a
radio resource allocation agent. This infrastructure can be used by an OTT
provider or vertical industry players to establish specific service requirements
in a 5G slice. A set U of User Equipment (UE) exist in the system, these
users should be provided with enough resources to satisfy a guaranteed bit
rate or service demand. User traffic is of type Enhanced Mobile Broadband
(eMBB).

3.1.1 Network design model

The 5G network modelled supports scalable numerologies with subcarrier
spacing of 2µ · 15KHz (µ = 0, 1..., 4). As shown in Figure 3.1, the gNB
bandwidth is split into a set of Physical resource block (PRBs), each con-
sisting of 12 consecutive subcarriers in the frequency domain. The number
of PRBs is mapped to a specific bandwidth based on the numerology. The
maximum permissible bandwidth is determined by the spectrum band in
which NR operates. Specifically, the limit is 100MHz for the sub-6 GHz
band and 400MHz for the millimeter wave band.

A number Rb of PRBs from the total available PRBs will be assigned to
the SC b, b ∈ B. We denote the number of PRBs by the variable R, where

63



64 3.1. System model

BW assigned

BW total

BW assigned

BW total

SC1 SC2

Fig. 3.1: NG-RAN model and example of bandwidth allocation.

the subscript b refers to the specific cell. The Rb PRBs assigned provides the
SC bandwidth BWb, which in turn determines the transmit power, Pb

TX of
the SC b.The transmission power is proportional to the allocated bandwidth.
A power PR is defined per PRB, so the transmission power of the SC is given
by:

Pb
TX = PR ·Rb (3.1)

The received power Pb
RX(d) at a certain distance d when served by the SC

b is given by:
Pb

RX(d) = Pb
TX − L(d) (3.2)

where L(d) is the path loss at the distance d. The propagation model that
defines the path loss of the UEs is based on linear regression, assuming
NLOS situation:

L(d) = L0 + n · log10(d) (dB) (3.3)

Where L0 is a constant that represents the path loss at a reference distance
d0 = 1m, and n is the exponent of the variation with distance, which depends
on the environment and the characteristics of the transmission medium.

The SINR experienced by a UE u in a bandwidth r is given by:

SINR (u, r) =
Pu,b

RX (db,u)(∑
j∈B\{b} Lj · πj (r) · Pu,j

RX (dj,u)
)
+ PN

(3.4)

where Lj is the load factor of the cell j, The function π(j) denotes a binary
indicator that equals 1 if the spectrum portion r is assigned to cell j, and 0
otherwise. In the numerator of equation 3.4, the term represents the power
received by user u from their serving cell b. The interference from neigh-
bouring cells and the noise power PN appear in the denominator.

The interference that cell j causes to user u is determined by the product
of the cell j load factor and the power received by user u from cell j. This
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interference occurs only if cell j is assigned the same PRBs as the serving
cell of user u.

The cell load factor is determined by the relationship between service
demand and cell capacity:

L̂j =

∑
u|j=Γ(u) Du∑

u|j=Γ(u)BW u · SEu
(3.5)

where Du represents the service demand of the UE, SEu denotes the average
spectral efficiency of the UE and BWu is the spectrum allocated to UE. Γ(u)
is a function that returns the cell j serving UE u. The adjusted load factor
is defined as:

Lj = min(L̂j , 1) (3.6)

This ensures that the adjusted load factor does not exceed 1, indicating that
the cell cannot handle more service demand than its capacity. The spectral
efficiency of UE u at bandwidth r is derived from SINR(u, r) according to
the following SINR mapping [36]:

SE =


0, SINR < SINRmin

α · log2(1 + SINR), SINRmin ≤ SINR ≤ SINRmax

SEmax, SINR ≥ SINRmax

(3.7)

where SEmax is the maximum achievable spectral efficiency with link adap-
tation, SINRmin and SINRmax are the minimum and maximum SINR val-
ues, respectively, and α stands for the attenuation factor, which represents
implementation losses. Finally, the throughput of UE u is given by:

T (u) =
BW u

|Rb|
·
∑
r∈Rb

SE (u, r) (3.8)

The bandwidth assigned to UE BWu depends on the resource scheduling
scheme, in the project Round-Robin is used:

BW u =
BWPRB ·Rb

Ub
(3.9)

where BWPRB is the bandwidth per PRB and Ub is the number of UEs
served by cell b that serves UE u. So the throughput expression reduces to:

T (u) =
BWPRB

Ub
·
∑
r∈Rb

SE (u, r) (3.10)

The throughput of UE u is calculated as the sum of the spectral efficiency
over the allocated bandwidth, multiplied by the bandwidth of a PRB, and
then divided by the number of users served by cell b. Further information
about this network model can be found in [37].



66 3.2. Problem definition

3.2 Problem definition

This section defines the problem that this project aims to solve. All the
assumptions and constraints considered in this problem are defined along
the section.

In this project, we propose an energy saving agent that ensures mini-
mum throughput for all users of a 5G network slice. The goal is to minimize
bandwidth allocation to reduce transmission power, thereby enhancing the
network’s energy efficiency. However, this reduction in resources must en-
sure that minimum throughput is maintained as the primary requirement.

We denote Tu as the throughput of the UE at the edge served by SC
b, that is, the user with the worst SINR. The primary requirement to be
ensure is given by:

Tu ≥ Tmin (3.11)

where Tmin represents the minimum throughput threshold that the opera-
tor or service provider aims to ensure within the slice. We put focus on the
throughput of the worst UE because if it guarantees the minimum through-
put, the rest of the users served by the SC will also comply with this min-
imum throughput value. Once the throughput criterion is satisfied, the
optimization objective shifts to minimizing transmission power, resulting in
the following criterion:

Minimize Pb
TX s.t Tu ≥ Tmin (3.12)

According to Equation 3.1, minimizing the transmission power requires the
agent to decrease the number Rb of PRBs allocated to the SC b. Bandwidth
directly affects throughput; therefore, a reduction in the number of allocated
PRBs will lead to a corresponding decrease in throughput. For this reason,
the minimization is subject to Tu ≥ Tmin, the primary requirement of the
agent.

The agent’s objective is to optimize this condition within each individual
cell of the network, ultimately leading to a reduction in energy consumption
across the entire network.
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Solution Design

This chapter describes the solution developed to solve the problem posed in
section 3.2. First, the solution is outlined and introduced at a high level,
followed by a detailed explanation of each of its components (action space,
state space, reward algorithm).

Lastly, the implementation of the solution using the Gym reinforcement
learning framework and the interaction with the DQN agent are described.

The code developed in the project is available in the GitHub repository
referenced in [10]. The repository structure and brief descriptions of each
script are detailed in Appendix D.

4.1 High Level Design

The problem defined in section 3.2 is addressed in this project using Deep Re-
inforcement Learning (DRL), in particular Deep Q-learning Network (DQN).
Regardless of the method chosen, applying a Reinforcement Learning (RL)
technique to a problem requires framing it as an interaction between an
agent and an environment. The agent performs actions that modify the en-
vironment and receives an observation influenced by the action it has taken.
The concepts of agent and environment were introduced in a general context
in section 2.3.1. Below, they are specifically defined for our particular use
case:

• Agent. A piece of code that takes actions that modify the bandwidth
allocation in the gNBs, it is a radio resource allocation agent. The ac-
tions will involve adjusting the number of PRBs allocated within the
cell, either increasing or decreasing them, and modifying the place-
ment of the allocated bandwidth within the available spectrum (i.e.,
it decides the amount and what specific PRBs to allocate within the
available spectrum).
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• Environment. It is the New Generation Radio Access Network (NG-RAN)
capable of receiving the agent’s actions, applying them, and providing
an observation that describes its current state, along with a reward
that evaluates the effectiveness of the agent’s action. As this is a
proof of concept, the solution is not designed for a production envi-
ronment. Instead, it uses a radio access simulator that implements the
network model defined in section 3.1.1, emulating the behaviour of a
real network

Figure 4.1 shows a diagram of the agent’s operation over the environment
(NG-RAN).

BW assigned BW assigned

SC1 SC2

N
G

-R
A

N
AG

EN
T SC1 state SC2 state

Bandwith allocation 
to SC1

Bandwith allocation 
to SC2

Fig. 4.1: Illustration of agent operation over the NG-RAN.

The agent must be an entity with expert knowledge regarding the op-
timization criterion followed. In the case of a traditional solution, a group
of human experts define an algorithm that implements the desired opti-
mization. In a DRL solution, the agent is a Neural Networks (NN) that
has learned to optimize through reinforcement learning training. The agent
takes actions on the environment, observes the current state, and evaluates
the reward, which indicates the effectiveness of its actions. Through this
process, it learns what actions to take and acquires expert knowledge for
which it was designed.

Metaphorically, once the agent is trained and has acquired expert knowl-
edge, the SCs will consult the agent for advice on improving its situation
according to the established optimization criteria. Based on the information
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provided by the SCs, the agent will recommend the necessary bandwidth
modifications.

To ensure the agent acquires the desired knowledge, it is crucial to design
a solution that guides its learning process. The three key concepts in de-
signing an RL agent are the action space, state space, and reward algorithm.
The following sections detail the design of each of these aspects.

4.2 Action Space

The action space defines the set of actions that the agent is capable of do-
ing in the environment. This problem involves a radio resource allocation
agent that modifies the bandwidth of the gNBs. As mentioned in network
model design, depending on numerology, a certain bandwidth will be avail-
able. This bandwidth is split into a number of PRBs, the agent will decide
how many and what specific PRBs within the available gNB spectrum to be
allocated.

Set a numerology µ, there is a bandwidth BW in the frequency range
[f1, f2] that is split into a number R of PRBs where each PRB comprises
a bandwidth BWPRB. For the agent, the bandwidth allocation will be
represented as an array of R positions, where each position corresponds to
a PRB represented by an index, as illustrated in Figure 4.2.

0 1 2 3 ⋯ R-4 R-3 R-2 R-1

PRB index

𝒇𝟐 (Ghz)𝒇𝟏

𝑩𝑾𝑷𝑹𝑩

Fig. 4.2: Bandwidth allocation represented as an array of R PRBs.

The agent can modify the allocated bandwidth in two ways. First, it
can increase or decrease it, adding or removing PRBs respectively. On the
other hand, it can modify the position of the allocated bandwidth in the
spectrum by shifting the assigned PRBs. An important aspect of the design
is that the assignment of PRBs is contiguous, meaning the PRBs assigned
in a SC comprise a single frequency range [f1, f2] completely. From these
two bandwidth modification options, 7 actions that the agent can perform
are derived. These actions are detailed in Table 4.1. The number p of PRBs
that the agent adds, deletes, or shifts is a design parameter that depends
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ID Description

0 Delete p PRBs from the left side

1 Delete p PRBs from the right side

2 Add p PRBs to the left side

3 Add p PRBs to the right side.

4 Shift PRBs p positions to the right.

5 Shift PRBs p positions to the left.

6 Not modify the PRBs.

Table 4.1: Action space

on the scenario and the specific optimization goals. Chapter 5 will present
experiments and results where all the design values used are specified. Fig-
ure 4.3 shows a graphic example of the different actions of the agent on the
bandwidth allocation array. In this example, the SC has 3 PRBs assigned,
the number of PRBs that the agent adds, deletes and shifts is p = 1.

The defined actions have a direct impact on the optimization objective
of the problem. The agent may increase and reduce the throughput of the
UEs by respectively increasing and reducing the number of PRBs assigned
to the SC. However, the placement of the allocated bandwidth within the
available spectrum is also a critical factor affecting throughput. According
to the defined network model (section 3.1.1), interference from neighbouring
SCs appears in the denominator of Equation 3.4; As interference increases,
the SINR experienced by UEs is reduced. Therefore, allocating bandwidth
in a way that minimizes interference will be advantageous, enabling trans-
mission power to be minimized effectively.

The agent can utilize all available actions to reduce interference while
satisfying throughput requirements and minimizing allocated bandwidth. It
can add PRBs to either end of the assignment, allowing it to select the side
with the least interference. It can also delete PRBs from either end, en-
abling it to reduce allocated bandwidth on the side experiencing the most
interference. The actions of shifting assigned PRBs are specifically designed
to enable the agent to allocate bandwidth in the spectrum frequencies with
minimal interference.

Finally, it is necessary to define an action that does not modify the
bandwidth allocation. In this problem, the optimization objective aims to
minimize allocated bandwidth while ensuring that the user’s throughput at
the edge meets a predefined minimum. The agent does not know beforehand
what the final solution should be or when it should stop optimizing. As a
consequence, it is necessary for the agent to have the option of taking no
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𝒇𝟐 (Ghz)𝒇𝟏

Initial PRBs allocation 

Delete PRB from the left side (0) 

Delete PRB from the right side (1) 

Add PRB to the left side (2)

Add PRB to the right side (3)

Shift PRBs to the right  (4)

Shift PRBs to the left (5)

Not modify the PRBs (6)

Bandwidth allocation arrayAction description (ID)

Fig. 4.3: Graphic example of the action space.

action (doing nothing) to discover if this is the best action. If the optimal
decision for the agent is to refrain from modifying the bandwidth allocation,
it indicates that it has identified an optimal solution where any alteration
of the assigned PRBs would be detrimental. The way in which the agent is
guided in learning the optimization criterion is developed in section 4.4.
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4.3 State Space

The state space is the set of variables that collectively describe the current
state of the environment. This set of variables is also known as observation,
since the state that describes the environment is what the agent observes
about it. The agent interacts with the SCs by adjusting their bandwidth. In
response, the environment provides an observation that describes the state
of the SC the agent is interacting with. In the solution designed in this
project, the state of a SC is described by variables listed in Table 4.2.

Variable Abbreviation

UE throughput at the edge Tu

Number of PRBs assigned to the SC R

PRB position flag fp
Number of interfered PRBs Ri

Interference PRB position flag fi

Table 4.2: Abbreviation of state space variables

With N being the number of neighbouring cells of a SC, the observation
that defines the state of a SC is formalized as:

obs =
[
Tu, R, fp, Ri0, · · · , RiN−1, fi0, · · · , fiN−1

]
(4.1)

The number of interfered PRBs and the interference PRB position flag are
variables defined for each neighbouring cell. Consequently, they can be
reformulated as follows:

R⃗i = [Ri0, · · · , RiN−1] (4.2)

f⃗i =
[
fi0, · · · , fiN−1

]
(4.3)

The observation can be expressed in a simplified form as:

obs =
[
Tu, R, fp, R⃗i, f⃗i

]
(4.4)

The size of the observation is 3 + 2N , thus it is dependent on the specified
number of neighbouring cells. Throughout the document, various alterna-
tives are discussed to maintain a reasonable observation size in scenarios
where there may be an excessively large number of potential neighbouring
cells.

The following subsections provide a complete description of each of the
variables that make up the observation.
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4.3.1 UE throughput at the edge

Each SC serves a set of UEs that experience a specific throughput. As
mentioned in section 3.2, the agent works on the throughput of the worst
UE because if it guarantees the minimum throughput, the rest of the users
served by the SC will also comply with the minimum throughput value. As
a consequence, in the observation that describes the state of the SC, the
throughput of the UE with the worst SINR is provided. That is, the UE at
the edge.

The throughput is a positive value, measured in bits per second, that can
vary within a range determined by the specific scenario considered. The pa-
rameters that constitute the network model, along with the number of cells,
users, and their positions in the scenario, influence the throughput values.
Regardless of the range of values, throughput is a continuous variable. In
the solution designed for this project, this variable is discretized to reduce
its variance and facilitate the agent’s learning process.

In RL learning, the agent must thoroughly explore the action-state space
to discover the best solutions. If the state space is too large, it will be more
difficult for the agent to converge to an optimal solution. Discretizing a con-
tinuous variable significantly reduces the range of values it can take, thereby
decreasing the number of distinct states within the state space. Appendix C
shows the improvement in the agent’s learning as a consequence of reducing
the dimensionality of the state space by discretizing the throughput vari-
able. To achieve this, an experiment was conducted to compare the learning
results of the agent using two different state spaces. The first space consid-
ered the raw throughput variable as a continuous value, while the second
space utilized the discretized throughput option employed in the project.

In order to determine the appropriate number of bins for discretizing the
range of throughput values, it is necessary to conduct a preliminary study
of the probability density function associated with the variable. In chapter
5, where the experiments and results obtained in specific scenarios are pre-
sented, the established number of bins is detailed.

The presence of UE throughput at the edge within the state space is
inherent, as it constitutes one of the fundamental variables in the defined
optimization criterion.

4.3.2 Number of PRBs assigned to the SC

In the optimization criterion defined in equation 3.12, the minimization of
the transmission power is defined. The transmission power is proportional
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to the allocated bandwidth, which is established by the number of PRBs as-
signed to the SC. Therefore, it is essential that the agent knows the number
of PRBs assigned to the SC since in this way it is considering the amount
of transmission power.

This variable is discrete and can take values in the range [1, RT ] with
RT being the total number of PRBs available in the gNB.

4.3.3 PRB position flag

The purpose of this variable is to provide the agent with information regard-
ing the allocated bandwidth’s position within the spectrum. The objective
is for the agent to recognize when the assigned PRBs are located at the
boundaries of the available spectrum. So that the agent does not take ac-
tions to add or shift PRBs outside the allowed frequency limits.

This variable depends on the number p of PRBs that the agent adds,
deletes or shifts with his actions. The flag can take the values shown in
Table 4.3.

Flag value Description

0 The PRBs are more than p positions from the edges.

1 The PRBs are less than p positions from the left edge.

2 The PRBs are less than p positions from the right edge.

3 The PRBs are less than p positions from both edges.

Table 4.3: PRB position flag values

Figure 4.4 shows an illustrative example of the operation of this flag
for a value of p = 1. That is, the number of PRBs that the agent adds,
deletes or moves in this example is 1. For example, when flag = 1, the
allocated PRBs are positioned at the left edge of the available spectrum.
Consequently, the agent should refrain from taking actions such as adding
one PRB to the left or shifting the allocation towards the left side. The
agent will learn this through the reward algorithm, but this variable needs
to be in the state space so it can associate the reward with this flag.

Another alternative to provide this type of information to the agent is
to use the PRB index in the array (see Figure 4.2). However, in this way,
the variable could take RT possible values. With the flag designed in this
solution, the variable can take 4 possible values, which considerably reduces
the dimensionality of the state space.
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𝒇𝒍𝒂𝒈 = 𝟏

Bandwidth allocation arrayPRB position flag

𝒇𝒍𝒂𝒈 = 𝟎

𝒇𝒍𝒂𝒈 = 𝟐

𝒇𝒍𝒂𝒈 = 𝟑

Fig. 4.4: Graphic example of the PRB position flag.

4.3.4 Number of interfered PRBs from each neighbour.

The bandwidth assigned to a gNB may overlap with that of another gNB
within the same spectrum. If the adjacent gNB is in proximity, this overlap
can lead to interference. The state space includes the number of PRBs of the
SC that have interference with each of the SCs defined as neighbours. Let N
be the number of neighbours of an SC, N variables will appear in the state
space that will indicate the number of PRBs interfered with each neighbour.
Figure 4.5 shows an example for a scenario of 4 SCs with a certain allocation
of PRBs. All SCs are defined as neighbours. The table in the figure shows
the number of interfered PRBs of each SC with its neighbours.

SC0 SC1

SC2 SC3
SC0 SC1 SC2 SC3

SC0 2 2 1

SC1 2 0 1

SC2 2 0 0

SC3 1 1 0

Number of interfered PRBs 
of each SC with its 

neighbors

Fig. 4.5: Graphic example of interference in PRBs.
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4.3.5 Interference PRB position flag

With the previous information, the agent only knows the number of PRBs
of the SC with interference, but does not know the location of those PRBs
in the spectrum. So that the agent has complete information about the in-
terference, each number of interfered PRBs is accompanied by a flag called:
“Interference PRB position flag”.

The purpose of this flag is to indicate on which side of the spectrum
the interference is occurring so that the agent can associate this flag with
actions that help reduce the interference. The flag can take the 3 values
indicated in table 4.4.

Flag value Description

0 There is no interference

1
The interference is on the right side.
The best action is to shift left or delete PRBs from right side.

2
The interference is on the left side.
The best action is to shift right or delete PRBs from left side.

Table 4.4: Interference PRB position flag values

Figure 4.6 illustrates the four potential scenarios of interference between
an SC and its neighbouring cell, along with the corresponding values of the
flag indicator for each case. In situation A of Figure 4.6, the interfered
PRBs are on the left side for SC0 and on the right side for SC1. The best

SC0

SC1

𝑓𝑙𝑎𝑔_𝑖𝑛𝑡𝑒𝑟𝑓 = 2

𝑓𝑙𝑎𝑔_𝑖𝑛𝑡𝑒𝑟𝑓 = 1

SC0

SC1

𝑓𝑙𝑎𝑔_𝑖𝑛𝑡𝑒𝑟𝑓 = 1

𝑓𝑙𝑎𝑔_𝑖𝑛𝑡𝑒𝑟𝑓 = 2

1 4

SITUATION A

SITUATION B

Fig. 4.6: Four potential scenarios of interference and the interference PRB
position flag value for each case.
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action the agent can take for SC0 is to shift the assignment to the right or
delete PRBs from the left side. Therefore, the value of the flag in SC0 is 2.
Conversely, the flag in SC1 has a value of 1, as the best action for the agent
is either to shift the assignment to the left or to delete PRBs from the right
side.

Situation B in Figure 4.6 represents a different interference scenario;
however, the Interference PRB position flag behaves in the same manner.
The PRBs allocated in SC0 are entirely interfered with by the allocation in
SC1, as the bandwidth assigned to SC0 falls within the bandwidth assigned
to SC1. The best action for SC0 to avoid interference is to shift the allo-
cation to the left, there is less distance on this side towards an area of the
spectrum without interference. Therefore, the value of the flag in SC0 is 1.
The opposite happens to SC1, to avoid interference it is easier for it to shift
its assignment to the right or delete PRBs from the left side, so the flag in
this case has a value of 2.

The interference PRB position flag together with the number of inter-
fered PRBs provides the agent with complete information to be able to be
aware of the interference and act accordingly.

4.4 Reward algorithm

So far, the actions that the agent can take and the set of variables that de-
scribe the state of the environment have been defined. We understand how
the agent can modify the environment and which variables it receives to de-
termine the effects of its actions on the environment. The action space and
the state space are two key concepts in any RL problem, since they represent
the communication between the agent and the environment. However, for
the agent to learn the desired optimization objective and become an entity
with expert knowledge, the key piece of the system is the reward algorithm.

The way in which the agent is rewarded defines the behaviour it learns,
or what is referred to as policy in RL. As presented in section 2.3.1 in
general terms, the agent takes an action in the environment and receives a
reward along with the new state of the environment (observation). In our
problem, the agent will modify the bandwidth of a SC. The environment
will provide the agent with an observation, as described in equation 4.1, and
indicate the effectiveness of its action through a reward.

The reward will simply be a number, during the learning phase the agent
will try to maximize the accumulated reward which will indicate good per-
formance. Consequently, it is important to design the reward algorithm to
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align with the optimization objective defined in the problem. If the reward
is directly related to the objective, it will guide the agent towards the solu-
tion during the learning process.

The designed reward algorithm is directly related to the criteria defined
in equations 3.11 and 3.12. It utilizes the observation variables from equa-
tion 4.1 to determine the reward value. So the agent will be able to directly
relate the tuple (a, s, s′) to a reward value. Where a is the action that the
agent has taken, s is the state from which it starts and s′ is the new state
after the action.

Figure 4.7 shows the block diagram of the reward algorithm designed in
the project. It is divided into 3 stages that are explained in the following
sections. Three state space variables participate in the reward algorithm:
throughput of the UE at the edge, number of PRBs assigned to SC and
total number of PRBs with interference. In the block diagram, throughput
is denoted by “thr′′, the number of PRBs assigned to the SC as “PRBs′′,
and the total number of PRBs with interference as ”interf PRBs”.

The index t indicates the current time step, with t−1 being the previous
time step.

It should be noted that the total number of PRBs with interference is
not strictly the sum of the Ri0, · · · , RiN−1 variables of equation 4.1. These
variables indicate the number of PRBs, with interference with each neigh-
bouring cell. The total number of PRBs that a SC has with interference
is not simply the sum of these variables. For instance, a SC may have the
same 5 PRBs interfered with by all of its N neighbours. In this scenario,
the total number of interfered PRBs would be 5, not 5N .

4.4.1 First stage: Guarantee minimum throughput

As specified in section 3.2, where the problem is defined, the primary re-
quirement that must be ensured is that the throughput of the UE at the
edge exceeds the specified minimum threshold. Therefore, the initial step
of the reward algorithm is to verify that this requirement is fulfilled. This
stage of the algorithm is inside the red box in Figure 4.7.

First, the reward algorithm checks if the throughput exceeds the mini-
mum. If it does not exceed it, the error with respect to the minimum value
is calculated and rewarded according to a linear relationship:

Reward = 5 · E − 5 if thr < thrmin (4.5)

where E is the relative error between the edge UE throughput and the
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thr[t] < thr_min

Yes

Reward = +5*E-5

No
thr[t-1] < thr_min

Yes

Reward = +3

PRBs[t] < PRBs[t-1]

No

No

Yes

Yes

PRBs[t] > PRBs[t-1]

interf_PRBs[t] < 
interf_PRBs[t-1]

Reward = +3

No

Reward = +2

Yes

Reward = -3

thr[t] > thr[t-1]

Yes

Reward = +4

thr[t] < thr[t-1]
No

Yes

Reward = -4

No

Reward = +1

First stage: Guarantee minimum 
throughput.

START

Second stage: Reduction of transmission 
power by reducing the assigned PRBs

Third stage: Interference reduction

No

Fig. 4.7: Reward algorithm.
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minimum throughput:

E =
thr − thrmin

thrmin
(4.6)

Since throughput is a positive variable, its minimum value is zero, so the
relative error takes values in the range [−1, 0). Figure 4.8 depicts the lin-
ear correlation between reward and relative error. The reward diminishes
proportionally with the deviation of throughput from its minimum value.
When thr < thrmin the reward moves in the range [−10,−5) so that the

1.0 0.8 0.6 0.4 0.2 0.0
Relative error

10

9

8

7

6

5

Re
wa

rd

Reward when thr < thr_min

Fig. 4.8: Relationship between reward and relative error when thr < thrmin.

agent can know how far it is from the minimum throughput.

If the throughput value is greater than the minimum, it is checked to see
what the value was in the immediately previous time step. If the throughput
in the previous time step was below the minimum threshold, it indicates that
the agent’s action was effective in surpassing the threshold. Consequently,
a reward of +3 is issued. On the contrary, if the minimum threshold was
already reached in the previous time step, we proceed to the second stage
of the reward algorithm.

4.4.2 Second stage: Transmission power minimization

Once UE throughput at the edge surpasses the predefined minimum (equa-
tion 3.11), the goal shifts to minimizing transmission power (equation 3.12).

According to the definition of transmission power (equation 3.1) in the
proposed network model, the power directly depends on the assigned band-
width. Therefore, the only method to decrease the transmission power is by
reducing the bandwidth allocation. The agent can achieve this by executing
the “delete assigned PRBs” actions, as long as the throughput does not drop
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below the allowed level. However, if the second stage of the reward algo-
rithm has been reached, it means that the throughput criterion is already
being met.

The second part of the reward algorithm appears inside the green box in
Figure 4.7. We check whether the number of PRBs allocated in the current
time step is greater or less than those allocated in the previous time step.
If the assigned PRBs have been increased, it is negatively rewarded with a
value of −3. On the other hand, if the PRBs have decreased their reward
is positive, with a value of +3 if the interference has decreased, or +2 if the
interference remains unchanged.

Reducing the number of allocated PRBs is rewarded positively since it
reduces transmission power. However, this reward is enhanced if a reduction
in interference is also achieved. If we recall the actions available to the agent,
there are two options for deleting PRBs: from the right side or from the left
side. If the interference is located on one side, it is beneficial to delete the
PRBs on that side. This enables the agent to correlate the action of deleting
PRBs from a specific side with the value of the “Interference PRB position
flag”, which indicates the side where interference is located.

When interference is avoided, throughput increases, enabling further re-
duction in allocated bandwidth and consequently in transmission power.

If the number of assigned PRBs remains unchanged between consecutive
time steps, it proceeds to the third stage of the reward algorithm.

4.4.3 Third stage: Interference reduction

If the number of assigned PRBs remains constant between consecutive time
steps, the agent has only executed 3 out of the 7 possible actions:

• Shift PRBs p positions to the right.

• Shift PRBs p positions to the left.

• Not modify the PRBs.

According to the network model defined in this project, a variation in inter-
ference always has an impact on the throughput (equations 3.4, 3.7, 3.10).
In the third stage, the reward algorithm checks the throughput value be-
tween consecutive time steps. If the throughput has increased, it means
that the agent has shifted the allocation and reduced the interference. In
the opposite case, the displacement increases the interference and therefore
the throughput is reduced.
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This stage of the algorithm is located inside the blue box in Figure 4.7.
Shifting assignments to reduce interference is rewarded with a +4 value,
while increasing interference is penalized with a −4 reward.

The reward is higher for reducing interference (+4) compared to reduc-
ing the number of PRBs (+3 or +2), despite the primary objective being
to minimize PRBs and thereby transmission power. The reason is that to
maximize the reduction in allocated bandwidth while ensuring the through-
put criterion, minimizing interference is essential. Maximum throughput is
achieved by minimizing interference as much as possible, according to equa-
tion 3.4. Once maximum throughput is attained, bandwidth can be gradu-
ally reduced until ideally reaching the threshold thr = thrmin. However, if
there is interference in the bandwidth allocation (which can be eliminated),
the optimization of the criterion defined in equation 3.12 will never be op-
timal.

The end of the third stage and the reward algorithm is reached if the
throughput did not change between two consecutive time steps (thr[t−1] =
thr[t]). This can only be achieved if the agent takes the action that does not
modify the PRBs, the action with ID = 6 in Table 4.1, and the throughput
exceeds the minimum (otherwise it would not be possible to pass the first
stage of the reward algorithm). In this case, a reward of value +1 is provided.

Rewarding the action that “does nothing” is key to the agent’s correct
learning. In this optimization problem, the agent does not know in advance
when it should stop optimizing; it only knows that it should minimize equa-
tion 3.12 as much as possible. The only way for the agent to recognize
that it has reached an optimal solution is when any action that modifies the
bandwidth becomes detrimental. At this point, not modifying the PRBs
should be the best action the agent can take.

To enable the agent to learn this behaviour, it is essential to appropri-
ately calibrate the values within the reward algorithm. The reward given
for doing nothing (+1) is smaller than any good action, such as reducing
assigned PRBs (+3 or +2) or reducing interference (+4). But it must also
be greater than any bad action, such as increasing PRBs (−3) or increasing
interference (−4). Thus, the agent will identify the optimal action of doing
nothing only when there is no interference left to delete and when further
reducing PRBs would cause the throughput to drop below the established
minimum.

Since the agent aims to maximize the reward accumulated during the
episode, it is crucial to design the reward values in a way that prevents the
agent from entering a loop of repeatedly performing and undoing the same
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action. For example, if the agent adds p PRBs on the right side (action
ID = 3) and in the next step removes p PRBs from the right side (action
ID = 1), it’s not really doing anything. Therefore, the goal of the reward
algorithm is to prioritize action where the PRBs are not modified (action
ID = 6) over actions that result in a do-undo cycle. This is achieved by
properly designing the reward values. if the agent takes action ID = 3,
which adds PRBs to the right side, and then follows with action ID = 1,
which removes them, it will receive a reward of +3 for the first step and −3
for the second step. This results in a cumulative reward of 0. Conversely, if
action ID = 6 is performed in two consecutive time steps, which does not
modify the PRBs, an accumulated reward of +2 is obtained. As a result,
the agent will favour this latter action, aligning with the desired objective.

It should be noted that this behaviour only occurs when the minimum
throughput criterion is being guaranteed (equation 3.11). If the throughput
does not meet the minimum, the reward algorithm remains in the first stage
and the reward is governed by the linear relationship in Figure 4.8.

Lastly, it is important to note the presence of a specific penalty assigned
to prohibited actions. Prohibited actions include attempts by the agent to
add PRBs beyond the available spectrum or to shift assignments outside the
available spectrum. When this occurs, the environment provides a reward
of −12 (the lowest reward value of the algorithm) and returns the same
state that the agent started with. The following sections describe the main
components of the solution developed in Gym.

4.5 Development of the solution with Gym frame-
work

The framework used to define the agent-environment communication is the
Python Gym library [38], developed and maintained by OpenAI. Gym offers
a diverse range of environments for reinforcement learning problems and en-
ables users to define new environments, as is our case. The significance of
Gym lies in its use of a unified interface for defining any environment, which
will be adhered to in this project.

4.5.1 Gym class components

The environment is represented in Gym by the Env class and is made up of
4 main pieces [11]:

• action space. This field of the class defines the set of actions that
the agent is capable of doing in the environment. Actions can be dis-
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crete, continuous, or a combination of both. In our proposed solution,
we utilize a discrete action space consisting of seven distinct actions.
These actions are represented by the values [0, 1, 2, 3, 4, 5, 6], with each
value serving as an identifier corresponding to the actions detailed in
Table 4.1.

• observation space. The space of observations is the equivalent of
the space of states defined in the theoretical foundation of RL (section
2.3.1). In Gym, the state provided by the environment is known as ob-
servation because it is what the agent observes about the environment.
This observation is composed of an array of variables that collectively
describe the current state of the environment. Similar to actions, these
variables can take discrete values, continuous values, strings, or a com-
bination of them. In our problem, the observation consists of discrete
variables as outlined in Section 4.3. The observation is represented as
an array with a size of 3 + 2N , as specified in Equation 4.1.Where N
is the number of neighbours that the SC has defined.

• reset(). This method resets the environment to an initial state, re-
turning the initial observation.

• step(). This method enables the agent to take an action and pro-
vides feedback on the outcome, including the next observation and
the reward obtained.

4.5.2 Reset method

As introduced in the theoretical foundation of RL, communication between
the agent and the environment occurs through what we call steps. A se-
quence of steps, starting from when the agent begins taking actions until
it concludes, is called an episode. Therefore, at the start of an episode, it
is necessary to reset the environment to an initial state with reset method.
From here on, the step method is used for the agent to take actions until the
episode concludes, where the environment would be restarted for the next
episode. This behaviour is how any RL agent training works. The reset()
and step() methods must include all the necessary components that make it
possible to train the agent in our particular problem.

The scenario implementing the environment in which the agent operates
consists of a number B of Small Cells, a number U of UEs and their positions
within the dimensions of the scenario. Additionally, each SC will have a
bandwidth allocation that will be determined by the number R of PRBs
assigned and its position in the available spectrum. During the episode, the
agent modifies the bandwidth of only one SC, referred to as the agent SC.
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The PRB assignment for the rest of the SCs in the scenario remains static
throughout the episode.

The reset method will be responsible for restoring the environment to
its initial state, allowing the agent to start introducing actions within the
environment. Figure 4.9 shows the flow chart that describes the opera-
tion of the reset method. Initially, the environment is configured with a
specific number U of UEs, a number B of SCs, and their positions within
the scenario dimensions [B⃗x, B⃗y]. In addition, the number p of PRBs that
the agent modifies with its actions (adds, deletes or shifts) is also configured.

The remaining variables required for the environment to operate are ran-
domized. These include the positions of the UEs, the bandwidth allocation
to each SC, and the specific SC that the agent will control. For the agent
to effectively learn the optimization objective in the specific scenario being
trained, it must be exposed to a wide range of possible situations that may
occur. For this reason, in each episode the initial state is randomized.

The randomization of the allocated bandwidth in the SCs involves ran-
domly determining both the number of PRBs allocated and their positions

Randomize bandwidth 
allocation

randomize UEs positions

Random selection of SC 
agent

- Number B of SCs  
- Number U of UEs       
- SCs position [Bx, By] 
- Number p of PRBs that 

the agent modif ies.
Assigned UEs to SCs

Radio Acces Network 
Simulator

Calculate PRB position f lag

Calculate Interference PRB 
position f lag

reset()

Init ial ize 
environment with 

reset  method

Provide init ial  
observat ion to agent

scenario 
conf igurat ion

DQN
AGENT

Fig. 4.9: Reset method flowchart.
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within the spectrum. With R representing the number of PRBs and B the
number of SCs, the array [R0, R1, ..., RB−1] specifies the number of PRBs
allocated to each SC in the scenario.

Once the positions of the UEs [U⃗x, U⃗y] have been defined, the process of
assigning UEs to their serving SCs is performed. This process is based on
the path loss according to the propagation model defined in the proposed
network model (section 3.1.1). The details of this procedure are described
in Appendix A. This assignment occurs only once at the beginning of each
episode because it is based on path loss, and the positions of UEs remain
static throughout the episode.

Once each UE has designated its serving SC, the radio access network
simulator is executed. The simulator implements the proposed network
model and calculates the throughput of all UEs. It provides the throughput
of the UE at the edge served by SCa (the cell controlled by the agent), which
is located at the first position of the observation array. Implementation de-
tails of the radio access network simulator are described in Appendix B.

On the other hand, the values of the “PRB position flag” (section 4.3.3)
and “interference PRB position flag” (section 4.3.5) are calculated. These
flags, along with the throughput, the number of PRBs assigned to SCa, and
the number of PRBs interfered with each neighbouring cell R⃗i, constitute
the observation that describe the state of the environment.

4.5.3 Step method

The agent receives the initial observation and is ready to introduce actions
in the environment using the step() method. The flow chart of this method
is shown in Figure 4.10. The agent’s actions within the environment will
modify the bandwidth allocation for the specified SCa, while the allocations
for the remaining SCs will remain unchanged. Once the change is applied,
the flags are calculated and the throughput of the worst UE is obtained by
running the radio access network simulator. The observation is formed in
the same way as in the reset() method. The novelty of the step() method is
the calculation of the reward using the reward algorithm described in sec-
tion 4.4. The environment provides the agent with the observation and the
reward that the agent will associate with the state it started from and the
action it took.
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Fig. 4.10: Step method flowchart.

4.5.4 Agent training workflow

Once the reset() and step() methods are defined, we can build the complete
process that makes up the training of the agent. In certain reinforcement
learning problems, the agent has a defined stopping condition, which could
be achieving the desired solution or reaching a forbidden state. In these
cases, the duration of an episode is determined by these ending conditions.
As mentioned in previous sections, in the problem addressed in this project,
there is no final solution that the agent can know to end the episode. A spe-
cific number of steps per episode is established, and the episode ends when
this number is reached. Figure 4.11 shows the flow chart of the agent training
process. This diagram shows the communication between agent and envi-
ronment through the reset() and step() methods. The number of episodes
and the number of steps per episode are training configuration parameters.
In this project, a DQN agent implemented using the stable baselines3 [39]
Python library has been utilized. This library provides various DRL algo-
rithms designed to interact with the Gym environment interface. Thus, the
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Fig. 4.11: Flowchart of agent training with reset() and step() methods.

library is responsible for internally implementing the algorithm described in
Section 2.3.3.



Chapter 5

Experimental evaluation and
Results

This chapter analyses the results obtained for the DQN agent developed in
the project.

First, the experimental setup where the agent has been tested is pre-
sented. This involves the configuration of the network model and the pa-
rameters necessary for the operation of the agent. The tests have been
carried out in two scenarios with a different number of Small Cell (SC) and
UEs.

To find the optimal DQN agent, an experiment has been carried out in
which the impact of different configuration parameters of the agent training
is studied. Finally, we provide a step-by-step demonstration of the agent’s
operation across the two scenarios under various conditions. The actions
are detailed alongside their effects on throughput and bandwidth allocation
in each SC of the scenario.

5.1 Experimental setup

This section describes the experimental setup used to test the performance of
the DQN agent developed in the project. The configuration is divided into
parameters used in the RAN Simulator, which define the network model,
and parameters used in the agent’s configuration.

5.1.1 Network model configuration

The scenario occupies a geographical area of 100m x 100m, where a 5G
NG-RAN as described in section 3.1.1 is deployed. The SCs operate in the

89
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3.4GHz band with a bandwidth of 100MHz, corresponding to the band-
width of commercial gNBs at 3.4GHz. Numerology µ = 0 is used, a subcar-
rier spacing of 15KHz and a bandwidth of 180KHz per PRB. Therefore,
the available bandwidth is splitted into the following number of PRBs:

Number of PRBs =
Total Bandwith

Bandwith per PRB
=

100MHz

0.18MHz
≈ 555.5 (5.1)

We work with 555 PRBs, resulting in a total bandwidth of 99.9MHz. The
bandwidth allocation will be treated as an array of 555 positions. The
spectrum is mapped to the PRB array, with each position in the array is
represented by an index. Each index corresponds to one PRB and a band-
width of 180kHz, as illustrated in Figure 5.1. For instance, if a cell has 200
PRBs assigned, starting at position 0 of the array, it will have the frequency
range [3.4, 3.436] GHz, representing a bandwidth of 36 MHz.

The parameter values used in the RAN simulator were obtained in ac-
cordance with 3GPP recommendations as detailed in [36]. Table 5.1 shows
the value of each parameter and its description, its influence on the network
model is described in section 3.1.1. As shown in Table 5.1, the transmission
power per PRB is specified as PR = 1.8 mW = 2.55dBm. Figure 5.2 illus-
trates the total transmission power as a function of the number of PRBs
allocated to the gNB, the value is presented in dBm. The maximum trans-
mission power for the full bandwidth of 99.9 MHz is 30 dBm.

In the experimental tests carried out in this chapter, two different sce-
narios have been used:

• Scenario A. Composed of 2 SCs and 25 UEs as illustrated in Figure
5.3a.

• Scenario B. Composed of 4 SCs and 50 UEs as illustrated in Figure
5.3b.

0 1 2 3 ⋯ 551 552 553 554

PRB index

𝒇 (Ghz)𝟑. 𝟒

𝟏𝟖𝟎𝑲𝑯𝒛

Fig. 5.1: Bandwidth as an array of 555 PRBs.
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Parameter Description Value Unit

L0
Path loss value at a reference distance

d0 = 1m
22.38 dbm

n
Exponent of the variation with

distance
43.3 -

bz Antenna height 4 meters

uz UEs height 1.5 meters

PN Noise power -112.44 dBm

Du Service demand of users 5 Mbps

SE Average spectral efficiency of UEs 2 bps/Hz

α Attenuation factor 0.6 -

SINRmin Minimum allowed value of SINR 0.1 -

SINRmax Maximum allowed value of SINR 999.95 -

SEmax
Maximum achievable spectral
efficiency with link adaptation

5.98 -

PR Transmission power per PRB 1.8 mW

Table 5.1: Values of the parameters used in the RAN simulator calculations.
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Fig. 5.2: Transmission power as a function of the number of PRBs allocated
to the gNB.

In both scenarios, all SCs are defined as neighbours. The UE colour indi-
cates which is its serving SC, according to the colour of the SC.

5.1.2 Agent configuration

This section defines the configuration parameters that affect the DQN agent.
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Fig. 5.3: Scenarios used in experimental tests

Optimization criterion

All SCs have a 5G slice deployed that meets the service requirements outlined
in Section 3.2, as specified below:

Minimize Pb
TX s.t Tu ≥ Tmin (5.2)

where Tu is the throughput of the UE served by the SC with the worst
SINR, and Tmin is the minimum throughput allowed in the slice. To fulfil
this service, the DQN agent developed is employed. It is responsible for
controlling the bandwidth allocation for each SC within the slice.
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Minimum throughput is a design requirement established by the opera-
tor or service provider to serve a particular application. In the experimental
setup, Tmin = 5Mbps is used, which is a typical value for eMBB type ser-
vices. A study was conducted to analyse the throughput values experienced
by the UEs across 500 runs of the Radio Access Network simulator. In each
run, both the positions of the UEs and the bandwidth allocation for each
SC were randomized. Probability Density Function (PDF) and Cumulative
Distribution Function (CDF) of the throughput are presented in Figures
5.4a and 5.4b, respectively.
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Fig. 5.4: Throughput PDF and CDF calculated over 500 executions of RAN
simulator.
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The values are concentrated in the range of 0 to 80 Mbps, with the
60% falling below 10 Mbps. Therefore, the minimum throughput value
determined is consistent with the characteristics of the RAN simulator.

Action space

In Section 4.2, the actions available to the agent in the environment have
been presented. Each action modifies a certain number p of PRBs. As
presented, each gNB has a total available bandwidth of 99.9 MHz split
into 555 PRBs. In the experimental tests carried out in this chapter, a
number p = 10 PRBs is defined that the agent will modify with its actions.
This allocation represents a bandwidth of 1.8 MHz, which aligns with PRB
allocations used in real production environments. Table 5.2 shows the 7
actions that the agent can perform in this experimental setup.

ID Description

0 Delete 10 PRBs from the left side

1 Delete 10 PRBs from the right side

2 Add 10 PRBs to the left side

3 Add 10 PRBs to the right side.

4 Shift PRBs 10 positions to the right.

5 Shift PRBs 10 positions to the left.

6 Not modify the PRBs.

Table 5.2: Action space in experimental setup

State space: Observation

As described in section 4.3, the observation that defines the state of the
environment depends on the scenario configuration. First, the throughput
value included in the observation is discretized. The benefits of discretiza-
tion are shown in Appendix C. The throughput values fall within the range
of [0, 80] Mbps. However, certain areas within this range are more probable
than others. Therefore, the discretization of this variable is not performed
uniformly; instead, the number of bins used to divide the range varies ac-
cordingly. Let thr represent the throughput value to be discretized, and i
denote the index of the discretized bin. The discretization function operates
as follows:

i =



⌊
thr
0.5

⌋
if thr ≤ 20 Mbps

40 + (thr− 20) if 20 Mbps < thr ≤ 30 Mbps

50 + thr−30
2 if 30 Mbps < thr ≤ 40 Mbps

55 + thr−40
5 if thr > 40 Mbps

(5.3)
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where [.] is a function that approximates to the nearest integer. This dis-
cretization function results in 62 bins: 40 bins within the range [0, 20] Mbps,
10 bins within the range (20, 30] Mbps, 5 bins within the range (30, 40] Mbps,
and 7 bins within the range (40, 80] Mbps. In this way, the throughput vari-
able will have greater representativeness at lower values, according to its
PDF and CDF, as shown in Figure 5.4.

The observation variables related to the neighbouring cells depend on
the number of neighbours defined in the scenario. In Scenario A, there are
2 SCs, resulting in the number of neighbours being N = 1. In Scenario
B, there are 4 SCs, all defined as neighbours, resulting in the number of
neighbours being N = 3.

In the scenario A, the observation will be an array composed of the
following 5 variables:

obs = [Tu, R, fp, Ri, fi] (5.4)

On the contrary, the observation in scenario B will be composed of an array
of 9 variables:

obs = [Tu, R, fp, Ri0, Ri1, Ri2, fi0, fi1, fi2] (5.5)

All variables are discrete; Table 5.3 shows the number of possible values they
can take. The state space grows, with the number of neighbours defined in
the scenario. In the context of this project, neighbouring cells are those that,
due to their location, can cause considerable interference. It is important
to consider these cells as neighbours, so the agent can effectively reduce
interference with them. The higher the dimensionality of the state space, the
more exploration the agent will need during its training. This is because the
agent must know a greater number of states to effectively learn all the options
the environment offers. In the experiments carried out we will observe how
the agent behaves in the face of the growth of the state space, as occurs in
scenario B with respect to scenario A.

Variable Abbreviation range

UE throughput at the edge thr 62

Number of PRBs assigned to the SC r 556

PRB position flag fp 4

Number of interfered PRBs ri 556

Interference PRB position flag fi 3

Table 5.3: Range of values of the variables of the observation array
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5.2 Agent performance study

In complex reinforcement learning problems, such as those addressed in this
project, predicting the optimal values for each training parameter can be
challenging. Therefore, it is essential to conduct multiple training runs and
analyse the resulting behaviour to determine the most effective parameter
settings.

5.2.1 DQN hyperparameters

As outlined in Section 4.5, the implementation of the DQN algorithm is car-
ried out using the Python library stable baselines3. This library internally
implements the algorithm described in Algorithm 1 and allows agents to be
trained in environments defined using the Gym interface, as is the case in
our project.

To train the agent, the training hyperparameters must be configured.
The specified hyperparameters are detailed below:

• Discount Factor γ. This parameter determines how much future
rewards are valued compared to immediate rewards, as presented in
equation 2.7 of the state of the art.

• Learning Rate α. This parameter determines the step size the algo-
rithm takes to update the neural network weights θ during the mini-
mization of the loss function.

• Learning start step. Number of steps before the agent starts learn-
ing.

• Exploration fraction. Fraction of training time during which the
agent will explore.

• Exploration initial ϵ. Initial value of ϵ for the ϵ-greedy policy.

• Exploration final ϵ. Final value of ϵ for the ϵ-greedy policy.

• Experience replay buffer size. This parameter specifies the size
of the replay buffer, which will store the k most recent experiences
collected by the agent.

• Batch size. Number of experiences extracted from the replay buffer
in each update of the neural network.

In addition to the training hyperparameters, there are two other fundamen-
tal factors that significantly impact the agent’s performance. On one hand,
the duration of the training is determined by the number of episodes. On
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the other hand, the number of steps per episode is also crucial. This lat-
ter parameter is specific to the agent developed in this project, where the
stopping condition within each episode is reaching the maximum allowable
number of steps.

An ϵ-greedy action selection strategy is employed, the theoretical founda-
tion of which is outlined in Section 2.3.3. The ϵ value will decrease through-
out training according to the hyperparameter that defines the exploration
time fraction. To obtain optimal performance and ensure that the agent
learns the optimization objective, it is essential to achieve a balance be-
tween exploration and exploitation during training. The agent must suffi-
ciently explore the state space of the environment to understand the various
possibilities it offers, while also exploiting this knowledge to identify the
optimal solutions in each situation.

This trade-off is primarily influenced by the training duration, the ϵ-
greedy policy, and the size of the experience replay buffer. In each step
of the training, the agent collects an experience that is stored in the expe-
rience replay buffer. Let us recall that we define experience as the tuple
(a, s, s′, r), where a represents the action, s is the initial state, s′ is the re-
sulting state, and r is the associated reward. During the exploration phase,
the experiences collected by the agent are not necessarily those that provide
the best reward. The objective of this phase is to gather information about
all possible options, rather than focusing solely on those that offer the best
immediate reward. Conversely, during the exploitation phase, actions are
selected based on the maximum values of the Q-function, ensuring that the
best action is chosen given the initial state s. Therefore, the experience
replay buffer, from which experiences are extracted to update the weights
of the Neural Networks (NN), will contain a combination of experiences
from the exploration and exploitation phases. If the buffer predominantly
contains experiences from the exploration phase, the agent will be familiar
with a wide range of state-action pairs (s, a) but will fail to learn an opti-
mal policy. Conversely, if the buffer contains significantly more exploitation
experiences than exploration, the agent will learn the optimal solution for
a limited range of state-action pairs, leaving it uncertain about what to do
in other situations. For effective training, it is necessary to explore enough
steps for the agent to become familiar with the entire state-action space.
But it must also exploit enough steps to learn the optimal solution in most
possible situations.
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5.2.2 Training configurations

There is no standard configuration that works optimally for all DQN prob-
lems, so a study has been carried out with the aim of obtaining the best
possible training configuration. To achieve this, the hyperparameters listed
in Table 5.4 have been set and variations have been made to the number
of steps per episode, the number of training episodes, and the exploration
fraction.

Training hyperparameter Value

Discount Factor γ 0.95

Learning Rate α 0.001

Learning start step 500

Exploration initial ϵ 1

Exploration final ϵ 0.05

Experience replay buffer size 1000000

Batch size 32

Table 5.4: Training hyperparameters value

A high discount factor γ is employed to prioritize long-term rewards,
which is crucial given the complexity of our problem, as it ensures the agent
considers future outcomes. Various γ values have been tested, it has been
observed that high values lead the agent to better performance. The values
chosen for the learning rate, experience replay buffer size, and batch size
are the default values in DQN stable baselines3. The ϵ-greedy policy begins
to be applied from step 500 with an initial value ϵ = 1 that is gradually
reduced to ϵ = 0.05 which is maintained until the end of training.

The agent has been trained over 1000, 2000, 3000, and 4000 episodes,
with the number of steps per episode varied at 500, 700, and 1000. Addi-
tionally, exploration fractions of 30% and 70% have been employed in the
training process. This combination results in 24 training configurations that
are listed in Table 5.5. The training has been carried out in scenario A, with
two SCs and 25 UEs as illustrated in Figure 5.3a.

5.2.3 Analysis of results

Once the 24 agents have been trained, with their respective configurations,
as detailed in Table 5.5, we proceed to the inference phase to evaluate their
performance. To achieve this, the 24 agents are subjected to 500 episodes,
all starting from the same initial state. Each initial state is defined by the
positions of the UEs, the allocation of bandwidth across the two SCs, and
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Steps Episodes
Exploration
fraction (%)

Exploration
steps

Total steps

500 1000 30 150000 500000

500 1000 70 350000 500000

500 2000 30 300000 1000000

500 2000 70 700000 1000000

500 3000 30 450000 1500000

500 3000 70 1050000 1500000

500 4000 30 600000 2000000

500 4000 70 1400000 2000000

700 1000 30 210000 700000

700 1000 70 490000 700000

700 2000 30 420000 1400000

700 2000 70 980000 1400000

700 3000 30 630000 2100000

700 3000 70 1470000 2100000

700 4000 30 840000 2800000

700 4000 70 1960000 2800000

1000 1000 30 300000 1000000

1000 1000 70 700000 1000000

1000 2000 30 600000 2000000

1000 2000 70 1400000 2000000

1000 3000 30 900000 3000000

1000 3000 70 2100000 3000000

1000 4000 30 1200000 4000000

1000 4000 70 2800000 4000000

Table 5.5: Value of the parameters in the 24 agent training configurations.

the specific SC controlled by the agent. The following metrics are used to
evaluate agent performance:

• Success rate. We define the success rate as the percentage of episodes
in which the agent achieves a throughput for the UE at the edge that
exceeds the minimum threshold of tmin = 5Mbps. An episode is con-
sidered successful if the main constraint of the optimization objective,
as established in Equation 3.11 of Chapter 3, is met.

• Average value of the achieved throughput (Precision). The
precision of the agent is defined as the average value of the through-
put achieved in the 500 episodes. According to the optimization cri-
terion presented in Equation 3.12, the most optimal solution that the
agent can achieve involves minimizing the assigned PRBs as much
as possible, which directly translates into a reduction in throughput.
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Therefore, the closer the achieved throughput is to the minimum al-
lowed throughput, while still remaining above it, the better the agent’s
performance will be. Therefore, a throughput value very close to the
minimum allowed implies high precision in the solution found, as it
guarantees the minimum required throughput in the slice while also
minimizing the transmission power as much as possible.

• Interference-free episode rate. This rate represents the percent-
age of episodes in which the bandwidth allocation of SC assigned by
the agent is free from interference. As discussed in previous chapters,
to minimize the allocated bandwidth and thereby reduce transmission
power, it is essential to delete all possible interference. If this condition
is met, the agent is able to find the optimal solution as per the opti-
mization criterion specified in Equation 3.12. Therefore, this metric is
a good indicator of the agent’s performance.

The best agent should have a high success rate, the lowest possible value of
achieved throughput and a high rate of interference-free episodes. Table 5.6
presents the results obtained from the 500 episodes. The table displays the
values of the three evaluated metrics alongside the agent’s training configu-
ration, which includes the number of steps per episode, the total number of
episodes, and the exploration fraction. Agents with 500 steps per episode
are highlighted in blue, those with 700 steps per episode are indicated in
red, and agents with 1000 steps per episode are depicted in green.

Figure 5.5 shows scatter graphs between the 3 metrics analyzed to un-
derstand the relationship between them. Figure 5.5a shows the relationship
between the success rate and the average throughput achieved. Throughput
values closest to Tmin = 5Mbps occur at success rates around 98%. As the
success rate increases and approaches 100%, the throughput also increases,
indicating a decrease in the agent’s precision. There is a trade-off between
these two metrics: an agent with a success rate nearing perfection will,
on average, be less accurate. While it will always guarantee the minimum
throughput in the slice, it will not minimize the transmission power to the
greatest extent possible. Conversely, an agent that maximizes precision will
occasionally fail, thereby reducing its success rate. That is, in attempting
to reduce transmission power by decreasing the allocated bandwidth, the
throughput may fall below the minimum allowed.

Figure 5.5b shows the relationship between the average throughput achieved
and the interference-free rate. In this case, a certain correlation is observed
between both metrics. Low values of throughput imply high values of the
interference-free rate. This occurs because when the bandwidth allocation
by the agent is free from interference with neighbouring cells, the throughput
depends solely on the assigned PRBs. Consequently, it is easier for the agent
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Fig. 5.5: Scatter plots between the 3 performance metrics.
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Steps Episodes
Exploration
fraction (%)

Success
rate (%)

Average
throughput
(Mbps)

Interference-free
rate (%)

500 1000 30 95.2 7.91 45.8

500 1000 70 98.8 6 78.4

500 2000 30 95.2 6.02 77

500 2000 70 97.6 5.77 70.6

500 3000 30 99.2 7.09 60.2

500 3000 70 99.4 6.96 74.2

500 4000 30 99.2 7.44 63.2

500 4000 70 96.2 5.78 81.6

700 1000 30 97.2 9.12 68

700 1000 70 96.6 6.14 83.6

700 2000 30 99.4 6.22 76.2

700 2000 70 98.8 7.11 77.2

700 3000 30 99 6.32 79.2

700 3000 70 86.4 9.06 71

700 4000 30 97.8 5.68 80.2

700 4000 70 98 8.3 50

1000 1000 30 88.4 6.68 57.4

1000 1000 70 99 6.8 70.6

1000 2000 30 99.8 7.09 68.8

1000 2000 70 97.4 5.67 70.4

1000 3000 30 98 5.53 83.2

1000 3000 70 96.4 5.84 81.2

1000 4000 30 97.6 5.78 77.6

1000 4000 70 97.6 7.48 66.8

Table 5.6: Value of the metrics in the performance evaluation of the 24
training configurations.

to reduce the PRBs to find the optimal allocation that provides throughput
as close as possible to the minimum. On the other hand, in the presence of
interference, a reduction in allocated bandwidth can further decrease perfor-
mance. Therefore, the agent tends to find solutions with higher throughput
values, as reducing the assigned PRBs further at that point could result in
throughput falling below the minimum allowed for the slice.

Figure 5.5c shows the relationship between the success rate and the
interference-free rate. In this graph, we can observe the same behaviour
that occurred between success rate and throughput, due to the correlation
between throughput and interference. At success rates close to 100%, the
percentage of episodes without interference is slightly lower compared to
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that achieved with success rates around 98%.

Figures 5.6, 5.7, and 5.8 illustrate the success rate and average through-
put for agents with 500, 700, and 1000 steps per episode, respectively. This
bar graph represents the success rate value in blue and the average through-
put value in green. Below each pair of bars, the number of episodes and the
exploration fraction are shown. The left side of the y-axis displays the scale
for the success rate percentage, while the right side of the y-axis shows the
scale for throughput in Mbps. The minimum throughput is marked with a
dashed horizontal red line.

The best agent will be the one that has achieved the best trade-off be-
tween success rate and average throughput, that is, the compromise between
success and precision. In general, most agents achieve a high success rate.
However, there is considerable variation in their average throughput. The
throughput values closest to the minimum allowed are observed when using
1000 steps per episode. This is expected, as a higher number of steps per
episode allows for greater exploration within the same episode. This enables
the agent to gain a deeper understanding of the action-state space, thereby
enhancing its ability to identify optimal solutions across a broader range
of states. The number of episodes will influence how much knowledge the
agent acquires of the state-action space, since each episode begins from a
randomly selected initial state. Training an agent with an increasing num-
ber of episodes does not necessarily guarantee improved performance. It
is crucial to find the optimal balance between the duration of training and
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Fig. 5.6: Success Rate and average throughput results for 500 steps per
episode.
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Fig. 5.8: Success Rate and average throughput results for 1000 steps per
episode.

the trade-off between exploration and exploitation. The parameter that will
indicate this trade-off, in conjunction with the number of episodes, is the
exploration fraction. Values of 30% and 70% have been utilized in the exper-
iment. This parameter determines the percentage of training steps during
which the ϵ exploration probability is reduced from 1 to 0.05, as specified
in Table 5.4. A higher percentage indicates increased agent exploration rel-
ative to exploitation.
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In the three values of steps per episode, the best performance is observed
at 2000 or 3000 episodes, suggesting that this is an effective training length.
Among these configurations, the best-performing agent was achieved with
1000 steps per episode, 3000 episodes, and 30% of exploration fraction. This
agent has achieved a 98% success rate, an average throughput of 5.5Mbps
and an interference-free rate of 83% (these values can be found in table 5.6).

It should be noted that most training configurations yield quite accept-
able results, with slight differences that allow us to select the optimal so-
lution. This good performance, regardless of the hyperparameter settings,
indicates that the agent design is well aligned with the optimization objec-
tive. The action space, state space, and reward algorithm are responding
appropriately. In the following sections, particular examples will be pre-
sented showing the operation of the agent step by step.

From this experiment, it can be concluded that the number of steps
per episode is crucial for enhancing the agent’s accuracy across a broader
range of states. However, this increase in steps must be paired with an
appropriate training duration and a balanced trade-off between exploration
and exploitation.

5.3 Agent Operation

This section shows the agent’s operation step by step, that is, the actions it
takes in each situation and their effect on the environment.

To achieve this, various specific situations are analysed within the two
scenarios presented in Figure 5.3. During training, the agent operates on
a single SC while the bandwidth allocation of the remaining SCs remains
fixed. However, in these tests, the agent acts on all SCs in the scenario at
each step. The agent is agnostic of the SC’s position in the scenario. It
only needs the observation describing the state of an SC to take action on
its bandwidth allocation.

In each example, we will begin with an initial situation defined by the
position of the UEs in the scenario and the bandwidth assigned to the SCs.
Each SC will be described by its observation array, which will be provided to
the agent. Based on this observation, the agent will recommend the optimal
action for each SC to achieve the optimization objective.

5.3.1 Scenario A

Scenario A is composed of two small cells and 25 UEs as shown in Figure
5.3a. Below are 3 examples that show the agent’s operation in this scenario
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for 3 different initial situations. These demonstrations employ the agent
that delivered the best performance in the study from the previous section,
which was configured with 1,000 steps per episode, 3,000 episodes, and a
30% of exploration fraction.

Example 1A

In this example, SC0 is assigned a bandwidth of 7.2 MHz (40 PRBs) and
SC1 is assigned a bandwidth of 43.2 MHz (240 PRBs). There is no interfer-
ence between the PRBs assigned to each cell. The location of the UEs and
their serving cell are shown in Figure 5.9. The throughput of the UEs with
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Fig. 5.9: UEs position and throughput of the worst users in each SC in
Example 1A.

the worst SINR in each SC is also displayed. The UE at the edge of SC0

has a throughput of 3.21Mbps while the user at the edge of SC1 has a value
of 19.87Mbps.

Figure 5.10 shows the initial bandwidth allocation, and the final band-
width allocation after the agent operation. The agent increased the band-
width of SC0 by 3.6 MHz (20 PRBs) and decreased the bandwidth of SC1

by 30.6 MHz (170 PRBs).

To gain a deeper understanding of the agent’s decisions, Figure 5.11
shows the evolution of throughput, the number of assigned PRBs, and the
number of interfered PRBs. The grid in these graphs is colour-coded to rep-
resent the actions taken by the agent at each step, with the corresponding
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Fig. 5.10: Initial and final bandwidth allocation in Example 1A.

colour legend displayed at the bottom of Figure 5.11. The two graphs at the
top of Figure 5.11 illustrate the evolution of throughput for each SC. The
minimum allowed throughput for the slice, Tmin = 5Mbps, is indicated by a
red dotted line. The bottom left figure shows the number of PRBs assigned
to each SC, while the bottom right figure shows the number of interfered
PRBs in each SC. In all the representations in Figure 5.11, the x-axis values
displayed in the lower graph are shared between the two SCs. These repre-
sentations will be used throughout all the examples in this section, aiding in
our understanding of how the agent behaves to achieve the optimization goal.

The UE at the edge of the cell SC0 has a throughput lower than the
minimum allowed in the slice. The agent decides to increase the PRBs on
the right side of the assignment. In two steps, taking this action increases
the number of PRBs by 20, achieving a throughput of 5.13 Mbps as shown
in Figure 5.11. The situation for cell SC1 is different. This cell has a higher
allocated bandwidth, resulting in the user with the lowest SINR achieving
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Fig. 5.11: Example 1A: Throughput, number of assigned PRBs and number
of interfered PRBs along with the action taken at each step.

a throughput of 18.29 Mbps. In line with the optimization objective, SC1

has significant capacity to reduce its bandwidth, which would allow for a re-
duction in transmission power. The agent decides to remove PRBs from the
left and right side of the allocation until the throughput reaches 5.89 Mbps.
When the agent finds what it considers an optimal solution, it decides to
take the action that does not modify the PRBs. In Figure 5.11, this action
is represented by the white color code.

The agent required 2 steps to optimize SC0 and 16 steps to optimize
SC1. In this situation, where there is no interference between cells, the
situation is the simplest for the agent. It only needs to assess whether the
throughput is above or below the minimum threshold to determine the ap-
propriate action. In this example, the throughput is optimized to be as close
to the minimum as possible, ensuring that the allocated bandwidth—and
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consequently the transmission power—cannot be reduced further.

Summarizing the agent’s operation in this example:

• SC0. It increases its bandwidth by 3.6 MHz (20 PRBs), resulting
in a corresponding rise in transmission power of 15.56 dBm. This
adjustment improves the UE throughput at the edge from 3.21 Mbps
to 5.13 Mbps, meeting the minimum allowed throughput for the slice.

• SC1. It reduces its bandwidth by 30.6 MHz (170 PRBs), leading
to a decrease in transmission power of 24.85 dBm. As a result, the
UE throughput at the edge decreases from 19.87 Mbps to 5.80 Mbps,
while still meeting the minimum allowed throughput and optimizing
transmission power to the greatest extent.

Example 2A

This example is a bit more complex than the previous one. SC0 is assigned
a bandwidth of 21.6 MHz (120 PRBs) and SC1 is assigned a bandwidth
of 25.2 MHz (140 PRBs). There are 12.6 MHz (70 PRBs) of interference
between both cells. The location of the UEs and their serving cell are shown
in Figure 5.12. The UE at the edge of SC0 has a throughput of 6.82Mbps
while the user at the edge of SC1 has a value of 5.38Mbps.
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Fig. 5.12: UEs position and throughput of the worst users in each SC in
Example 2A.
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Figure 5.13 shows the initial bandwidth allocation, and the final band-
width allocation after the agent operation. The agent decreased the band-
width of SC0 by 12.6 MHz (70 PRBs) and decreased the bandwidth of SC1

by 10.8 MHz (60 PRBs). Additionally, the agent successfully eliminates all
interfered bandwidth between the two cells.

Cell SC_0 (120 PRBs)

0 60 120 180 240 300 360 420 480 540

Cell SC_1 (140 PRBs)

Initial bandwidth allocation

(a)

Cell SC_0 (50 PRBs)

0 60 120 180 240 300 360 420 480 540

Cell SC_1 (80 PRBs)

Final bandwidth allocation

(b)

Fig. 5.13: Initial and final bandwidth allocation in Example 2A.

Figure 5.14 shows the evolution of throughput, the number of assigned
PRBs, and the number of interfered PRBs in example 2A. In this example,
the throughput for both cells initially exceeds the minimum allowed in the
slice. Consequently, the agent’s objective is to reduce the bandwidth to
lower the transmission power. The agent takes actions to shift the allocated
bandwidth in order to eliminate interference. Specifically, it adjusts the al-
location of SC0 to the left and SC1 to the right, shifting 10 PRBs in each
step. As shown in Figure 5.13a, the most efficient way to eliminate interfer-
ence is to shift the bandwidth allocated to each SC in the specified directions.
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Fig. 5.14: Example 2A: Throughput, number of assigned PRBs and number
of interfered PRBs along with the action taken at each step.

The number of PRBs with interference at each step is displayed in the
graph on the right side of Figure 5.14. The agent requires 4 steps to elimi-
nate the 70 interfered PRBs, as it removes 20 PRBs per step (10 from each
cell). As interference is reduced, throughput increases. This concept has
been discussed in several chapters and is the basis of the reward algorithm
designed.

To maximize the reduction in allocated bandwidth while ensuring the
throughput criterion, minimizing interference is essential. Maximum through-
put is achieved by minimizing interference as much as possible. Once max-
imum throughput is attained, bandwidth can be gradually reduced until
ideally reaching the threshold thr = thrmin. This behaviour is exactly how
the agent is acting in this example. First, the agent completely deletes inter-
ference. Once that is accomplished, it then reduces the number of assigned
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PRBs to achieve the minimum bandwidth necessary to ensure throughput
as close to the minimum allowed as possible.

Summarizing the agent’s operation in this example:

• SC0. It reduces its bandwidth by 12.6 MHz (70 PRBs), resulting in
a corresponding decrease in transmission power of 21.19 dBm. This
adjustment reduces the UE throughput at the edge from 6.82 Mbps
to 5.98 Mbps. The agent has assigned the PRBs such that the inter-
ference has been completely reduced.

• SC1. It reduces its bandwidth by 10.8 MHz (60 PRBs), resulting
in a corresponding decrease in transmission power of 20.52 dBm. In
this case, the same throughput value is achieved as initially, but with
reduced bandwidth and transmission power, highlighting the benefits
of completely eliminating interference.

Example 3A

In the final example of scenario A, we analyze a situation where the band-
width of one SC is entirely interfered with by the other SC. SC0 is assigned
a bandwidth of 41.4 MHz (230 PRBs) and SC1 is assigned a bandwidth
of 73.8 MHz (410 PRBs). All PRBs assigned to SC0 are interfered by the
assignment in SC1, which utilizes the majority of the available spectrum.
The location of the UEs and their serving cell are shown in Figure 5.15. The
UE at the edge of SC0 has a throughput of 3.95Mbps while the user at the
edge of SC1 has a value of 21.19Mbps.

Figure 5.16 shows the initial bandwidth allocation, and the final band-
width allocation after the agent operation. The agent decreased the band-
width of SC0 by 28.8 MHz (160 PRBs) and decreased the bandwidth of SC1

by 63 MHz (250 PRBs). Additionally, the agent successfully eliminates all
interfered bandwidth between the two cells.

Figure 5.17 shows the evolution of throughput, the number of assigned
PRBs, and the number of interfered PRBs in example 3A. In this example,
the situations for each cell are different. On the one hand, SC0 does not
meet the minimum throughput allowed in the slice. On the other hand, SC1

exceeds this threshold by a substantial margin and has been allocated more
bandwidth than necessary based on the slice requirements.

Given the initial bandwidth allocation depicted in Figure 5.16a, the most
effective strategy for the agent to enhance the throughput for users served
by SC0 is to increase the bandwidth. As a consequence, it takes the action
of adding PRBs to the right side of the assignment. In the case of SC1, as
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Fig. 5.15: UEs position and throughput of the worst users in each SC in
Example 3A.

shown in Figure 5.16a, shifting the allocated bandwidth will not mitigate the
interference. Of the 555 available PRBs, SC1 has 410 assigned. Regardless
of its position in the spectrum, SC1 will consistently experience interfer-
ence from the 230 PRBs assigned to SC0. The agent has learned during its
training that, in such cases, the optimal strategy is to reduce bandwidth by
deleting PRBs. This approach is applied to SC1, as illustrated in Figure
5.17. The agent decides to strategically remove the PRBs from the right
side. As can be seen in Figure 5.16a, the agent needs fewer steps to start
removing interfering PRBs if it removes the PRBs on the right side. This be-
havior illustrates how the “PRB Interference Position Flag” (section 4.3.5),
included in the observation, allows the agent to more effectively position
itself in the bandwidth and identify which side of the allocation is most ad-
vantageous for intervention.

When the throughput in SC0 reaches the minimum, the situation changes
for the agent. At this point, the objective shifts to minimizing transmission
power by reducing the bandwidth. The agent chooses to shift the PRBs as-
signed to SC0 to the right side. As observed in Figure 5.17, this action leads
to a reduction in interfered PRBs and an increase in throughput. These ac-
tions on SC0 affect the observation describing the state of SC1. Thus, the
agent realizes that if SC0 is shifting its bandwidth to the right, then shifting
SC1’s bandwidth to the left will help reduce the number of interfered PRBs
for both cells. The agent shifts the bandwidth of SC1 to the left while also
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Fig. 5.16: Initial and final bandwidth allocation in Example 3A.

reducing PRBs on that side, which lowers the throughput. Simultaneously,
the agent shifts the bandwidth of SC0 to the right until the interference is
completely eliminated.

Once there are no interfering PRBs, as shown in the lower right graph
of Figure 5.17, the agent takes the actions of deleting PRBs on both sides
in both cells until it achieves the optimal throughput, very close to 5 Mbps.
This example demonstrates how the agent is continuously aware of the state
of the SC and is capable of taking long-term actions to ensure finding the
optimal solution in accordance with the slice requirements.

Summarizing the agent’s operation in this example:

• SC0. It reduces its bandwidth by 28.8 MHz (160 PRBs), resulting in a
corresponding decrease in transmission power of 24.59 dBm. The agent
has completely reduced interference, allowing it to increase throughput
from 3.95 to 5.80Mbps with 160 fewer PRBs.
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Fig. 5.17: Example 3A: Throughput, number of assigned PRBs and number
of interfered PRBs along with the action taken at each step.

• SC1. It reduces its bandwidth by 63 MHz (250 PRBs), resulting in a
corresponding decrease in transmission power of 26.53 dBm. The UE
throughput at the edge of SC1 has been reduced from 21.19 Mbps to
5.38 Mbps.

5.3.2 Scenario B

Scenario B is composed of four small cells and 50 UEs as shown in Figure
5.3b. Below is an example showing how the agent works in this scenario.
This example use an agent, trained in scenario B, with the agent config-
uration that offered the best performance: 1000 steps per episode, 3000
episodes, and a 30% exploration fraction.

An important factor to consider in scenario B, as compared to sce-
nario A, is that while the bandwidth remains the same, the number of SCs
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and UEs is doubled from the previous scenario. As a result, the available
throughput tends to decrease due to the increased number of users (Equa-
tion 3.10), and the likelihood of interference rises because of the additional
cells. Consequently, it becomes more challenging to find solutions close to
Tmin = 5Mbps, unlike in scenario A.

Example 1B

In this example, SC0 is allocated a bandwidth of 19.8 MHz (corresponding
to 100 PRBs), SC1 is allocated 27 MHz (150 PRBs), SC2 is allocated 21.6
MHz (120 PRBs), and SC3 is allocated 43.2 MHz (240 PRBs). There are
multiple interferences among the cells of the scenario, as illustrated in Figure
5.19a. The location of the UEs and their serving cell are shown in Figure
5.18. The throughput of the UEs with the worst SINR in each SC is also
displayed. SC0 and SC2 have throughput below the minimum required for
the slice, with SC0 significantly underperforming and SC2 nearly meeting
the minimum threshold. Conversely, UEs at the edge of SC1 and SC3 ex-
perience significantly higher throughput. Therefore, the agent will follow a
different strategy in each cell to ensure that they meet the slice requirements.

Figure 5.19a shows the initial bandwidth allocation, and Figure 5.19b
shows the resulting allocation after the agent operation. As observed, the
agent has reduced the bandwidth allocated to all SCs and completely deleted
interference. To understand how this outcome was achieved, the agent’s
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Fig. 5.18: UEs position and throughput of the worst users in each SC in
Example 1B.
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Fig. 5.19: Initial and final bandwidth allocation in Example 1B.

actions are analysed step by step. Figures 5.20, 5.21, and 5.22 show the
evolution of throughput, the number of assigned PRBs, and the number of
PRBs with interference, respectively. Similar to the graphs presented in the
previous scenario, the background of the grid is colour-coded to represent
the actions taken by the agent at each step.

At each step, the agent adjusts the bandwidth of all cells, except when it
opts not to make any modifications. Modifying the bandwidth of one SC can
impact the throughput experienced by UEs in other SCs, as it may increase
or decrease the interference it causes in neighbouring cells. Therefore, to
accurately analyse agent behaviour based on the representations in Figures
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Fig. 5.20: Example 1B: Evolution of throughput along with the action taken
by the agent at each step.

5.20, 5.21, and 5.22, it is essential to consider the actions taken in all SCs
and not analyse a single SC individually.

The UE at the edge of SC0 has an initial throughput of 0.68Mbps, so the
agent decides to add PRBs to increase this value. In SC1, the throughput
is 9.59 Mbps, which is above the minimum allowed in the slice. This cell
experiences interference in the left area of the spectrum caused by SC2, as
shown in Figure 5.19a. To eliminate this interference, the agent shifts the
allocated bandwidth to the right and removes PRBs from the interfered zone
on the left side. Once the interference is resolved, the agent reduces PRBs
on the right side until the throughput reaches 6.62 Mbps, at which point
the agent determines that further bandwidth modification is unnecessary.

The situation in SC2 is somewhat more complex. Initially, the UE
throughput at the edge is 4.96 Mbps, which is just below the minimum
threshold of Tmin = 5Mbps. The agent achieves this threshold with a sim-
ple increase of 10 PRBs. SC2 has interference both on the right side of the
spectrum with SC1 and on the left side with SC3 as seen in Figure 5.19a.
The agent chooses the quickest method to reduce interference by shifting the
bandwidth allocation to the right. This adjustment is advantageous because
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Fig. 5.21: Example 1B: Evolution of the number of PRBs assigned along
with the action taken by the agent at each step.

SC1 also moves in the same direction and removes its PRBs on that side,
allowing both SCs to collectively eliminate their mutual interference.

The UE at the edge of SC3 experiences the highest throughput due to
the cell having the largest allocated bandwidth among the four. To man-
age this, the agent shifts the bandwidth allocation to the left and removes
PRBs from the right side. This adjustment reduces both interference and
throughput, ultimately resulting in a throughput of 5.98 Mbps.

Once the UE throughput at the edge of SC0 exceeds the minimum al-
lowed in the slice, the agent begins to address the interference. To achieve
this, the agent shifts the allocated bandwidth to the right. SC0 reduces
its interference with SC3 but begins to experience interference with SC2,
leading to a decrease in the throughput of this cell. This interference is
significant enough that the UE throughput at the edge of SC2 falls below
the minimum threshold of 5 Mbps. The agent, having previously achieved
a stable situation in SC2 with no further bandwidth adjustments, observes
the drop in throughput and decides to increase the PRBs to ensure the min-
imum required throughput is maintained.
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Fig. 5.22: Example 1B: Evolution of the number of PRBs with interference
along with the action taken by the agent at each step.

In this example, we observe how the agent’s actions on one SC impact the
other SCs it either interferes with or stops interfering with. Consequently,
an SC that the agent determined required no modifications may now need
adjustments in bandwidth allocation to achieve an optimal solution once
again. This behaviour demonstrates the agent’s ability to continually en-
sure that all cells in the scenario meet the optimization requirements defined
in the slice.

Finally, the agent achieves a stable situation for all SCs within 40 steps.
The final throughput values are not as close to Tmin = 5 Mbps as observed
in scenario A, because this scenario has twice as many users. Since through-
put is governed by Equation 3.10, a higher number of users per SC results in
greater throughput degradation as the number of assigned PRBs decreases.

Summarizing the agent’s operation in this example:

• SC0. It reduces its bandwidth by 5.4 MHz (30 PRBs), resulting in a
corresponding decrease in transmission power of 17.32 dBm. The agent
has completely reduced interference, allowing it to increase throughput
from 0.68 to 5.38 Mbps with 30 fewer PRBs.
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• SC1. It reduces its bandwidth by 12.6 MHz (70 PRBs), resulting in a
corresponding decrease in transmission power of 21.03 dBm. The UE
throughput at the edge of SC1 has been reduced from 9.59 Mbps to
6.62 Mbps.

• SC2. It reduces its bandwidth by 9 MHz (50 PRBs), resulting in a
corresponding decrease in transmission power of 19.54 dBm. The UE
throughput at the edge of SC2 has been increased from 4.96 Mbps to
6.28 Mbps with 50 fewer PRBs.

• SC3. It reduces its bandwidth by 34.2 MHz (190 PRBs), resulting in a
corresponding decrease in transmission power of 25.34 dBm. The UE
throughput at the edge of SC3 has been decreased from 17.66 Mbps
to 5.98 Mbps.





Chapter 6

Conclusions and future works

This final chapter presents the conclusions and key insights gained from the
project’s development. It also outlines potential future directions that could
inspire subsequent projects.

6.1 Conclusions

The number of parameters to be optimized in 4G and 5G networks has
grown so large that they are no longer easily manageable by traditional
human-driven algorithms. Given that the cost of network infrastructure
is already accounted for, operators are now primarily focused on optimiz-
ing their resources. Current solutions increasingly rely on replacing manual
SON network algorithms with Machine Learning (ML) and AI techniques.
This project aims to demonstrate that this trend is not merely a product of
the AI “Boom”, but a powerful tool for optimizing network infrastructure
and reducing costs.

The simulator used to emulate the behaviour of a 5G NG-RAN under-
scores the complexity of the numerous interdependent parameters involved,
highlighting the challenges of developing manual solutions based solely on
expert knowledge. However, despite the use of AI, a deep understanding
of the network and its behaviour remains a fundamental component of the
developed solution. Reinforcement Learning (RL) was selected as the ap-
proach, wherein an agent learns autonomously based on a reward system.
Specifically, Deep Q-learning Network (DQN) was utilized, as this Deep Re-
inforcement Learning (DRL) technique has demonstrated promising results
in other use cases and serves as an effective initial approach.

To enable the DQN agent to learn the desired optimization objective,
it is essential to guide it in finding optimal solutions. This is accomplished
by carefully designing the action space, state space, and reward algorithm.

123



124 6.1. Conclusions

The solution developed in the project was based on the following premises:

• State space variables should describe everything necessary for the op-
timization goal and not add redundant information.

• State space variables must accurately reflect the changes resulting from
the actions taken by the agent.

• The reward algorithm should be directly aligned with the optimization
goal.

• The reward algorithm must allow the agent to link reward values with
action-state pairs, thus achieving effective generalization in its learning
process.

Chapter 4 details the implementation of these principles within the
project’s use case and explains the rationale behind the decisions made.
Chapter 5 provides an evaluation of the solution, showcasing various results
and demonstrations. From the obtained results, the following conclusions
have been drawn:

• Dividing the reward algorithm into three stages has proven to be an ef-
fective strategy for ensuring a high success rate. The first stage focuses
on ensuring that the minimum throughput is met in the slice, reward-
ing negatively until it is reached. This approach has enabled the agent,
using the throughput variable from the state space, to accurately iden-
tify its current situation. If the throughput is below Tmin, the agent
selects actions to increase bandwidth and, consequently, throughput.
Conversely, when throughput exceeds Tmin, the agent’s actions vary
widely based on the specific context, influenced by the subsequent two
stages of the reward algorithm. This reward algorithm leads the agent
to focus on guaranteeing the minimum throughput before doing any-
thing else. So the success rate is very high, as presented in chapter 5,
with values very close to 100%.

• The second and third stages of the reward algorithm concentrate on
minimizing the assigned PRBs and reducing interference, respectively.
To minimize bandwidth efficiently, it is necessary to eliminate as much
interference as possible. The reward algorithm has been designed with
this principle in mind, assigning higher rewards for reducing interfer-
ence compared to reducing PRBs. Both the results presented in Table
5.6 and the specific demonstrations in Section 5.3 illustrate how the
agent has learned this behaviour. In the performance study of the
agents, it is observed that whenever a throughput value very close
to Tmin is reached, the percentage of interference-free is also high
compared to the rest of the cases. In the step-by-step demonstration
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examples, it can be seen how in all cases the agent first eliminates all
interference. Once this is accomplished, it then reduces bandwidth as
much as possible until the throughput approaches the minimum al-
lowed. As a result, this approach allows for the transmission power to
be reduced as much as possible, which is the fundamental objective.

• The inclusion of the “PRB position flag” as a state space variable
has enabled the agent to recognize when it should avoid adding PRBs
outside the available spectrum range. In other words, it identifies
when the assigned PRBs are at the left or right edge of the PRBs
array. Consequently, it will use add or shift actions in the opposite
direction to these edges.

• The presence of the “Interference PRB position flag” allows the agent
to identify where most of the interference is located and take actions to
avoid it more efficiently. As can be seen from the examples in section
5.3, the direction (right or left) in which the agent adds/removes or
moves PRBs is not arbitrary. In all cases, it can be observed that
the agent’s actions related to avoiding interference depend on where
the interference is located. As described in this section, the agent
chooses actions that eliminate interference more quickly. For instance,
if interference is predominantly on the left side of the spectrum, the
agent will shift bandwidth allocation to the right or remove PRBs from
the left side.

In addition to these conclusions, which validate the effective design of
the action space, state space, and reward algorithm, the results achieved are
highly satisfactory with respect to the optimization objectives of the prob-
lem. The first condition that sets a minimum throughput in the slice has
been measured as the agent’s success rate. The results presented in Table
5.6 indicate a very high success rate across most configurations. Addition-
ally, the specific examples in Section 5.3 demonstrate that the minimum
throughput is consistently guaranteed in all cases.

Once the first condition is guaranteed, the objective is to minimize the
transmission power. To measure it, the distance to the minimum established
throughput is measured, since this will indicate the maximum possible power
saving. This value, referred to as the agent’s accuracy, is highly dependent
on the training hyperparameters. The best-performing agent achieved an
average throughput of 5.5 Mbps, with Tmin = 5Mbps. In the demonstration
examples, it is evident that, regardless of the initial throughput, the final
throughput consistently approaches Tmin.

The solution has been tested in two scenarios: the first with 2 SCs and
the second with 4 SCs. The size of the state space is determined by the
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number of neighbouring cells defined for each SC. As the size of the state
space increases, the agent requires more extensive exploration during train-
ing. If the number of neighbours is too high, the computational cost may
become prohibitive, potentially hindering the agent’s ability to find optimal
solutions efficiently. However, not all cells in a network are neighbours to
every other cell. Operators define neighbourhoods based on specific crite-
ria. For the agent to operate effectively, it is essential to include only those
neighbours that contribute significantly to harmful interference. Since there
may be many cells that cause very small interference that is not worth con-
sidering in the solution.

Finally, with respect to DQN, it is clear that training hyperparameters
play a crucial role. Extended training time does not necessarily ensure
better performance. The effectiveness of the agent depends on the specific
problem, requiring careful adjustment of factors such as exploration rate, the
number of steps per episode or the size of the replay buffer. When dealing
with a complex problem where intuition may fall short, it is essential to
explore various training configurations and thoroughly evaluate the results
to identify the optimal agent.

6.2 Future works

The agent developed in this project is constrained by the capabilities of
the radio access network simulator used to emulate network behaviour. Al-
though the simulator is relatively simple and includes only the most ba-
sic KPIs, it is adequate for producing behaviour that closely approximates
real-world conditions. Increasing the complexity of the simulator presents
a significant challenge in designing the action space, state definitions, and
reward algorithm, due to the more intricate relationships between simulator
parameters. However, the greater the complexity, the closer it will be to the
behaviour of the real network. In this context, the primary direction for the
project’s continuation is to deploy it in a real production environment or in
a laboratory that closely emulates the network’s behaviour.

Another potential improvement related to increasing the simulator’s
complexity involves incorporating additional network KPIs. These new KPIs
may prove to be more effective in the state space than those currently used in
the existing solution. For example, if the operator uses a specific definition
of interference, incorporating this KPI would better align with the actual
interference conditions and assist the agent in learning how to reduce it more
effectively. However, in this project, we have full knowledge of the equations
implemented by the simulator, allowing us to precisely understand the be-
haviour of interference. As a result, the state space is specifically aligned
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with interference reduction. In contrast, in a real network, there are no per-
fect equations that fully capture the relationships between different metrics.
Therefore, utilizing KPIs that reflect the operator’s specific understanding
of interference in their network will guide the agent toward achieving satis-
factory results.

Finally, another key area for future work is the exploration of alternative
Deep Reinforcement Learning (DRL) techniques. The project has employed
DQN and highlighted the inherent complexity of this technique. Achieving
an optimal solution demands extensive trial and error, as well as a deep un-
derstanding of the underlying principles. However, there are numerous other
techniques, each with its own complexity. It may be valuable to compare
the performance of these techniques to identify potential improvements or
alternative approaches. For example, Proximal Policy Optimization (PPO),
Advantage Actor-Critic (A2C) could be studied.
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transmission structure. In Erik Dahlman, Stefan Parkvall, and Johan
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[6] Jose Ordoñez Lucena, Pablo José Ameigeiras Gutiérrez, Diego Lopez,
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[16] S. Hämäläinen, H. Sanneck, and C. Sartori. LTE Self-Organising Net-
works (SON): Network Management Automation for Operational Effi-
ciency. Wiley, 2011.

[17] Bom Rong, Xuesong Qiu, Michel Kadoch, Songlin Sun, and Wenjing Li.
5G heterogeneous networks: Self-organizing and optimization. Springer,
2016.

[18] Hafiz Yasar Lateef, Ali Imran, and Adnan Abu-Dayya. A framework
for classification of self-organising network conflicts and coordination
algorithms. In 2013 IEEE 24th Annual International Symposium on
Personal, Indoor, and Mobile Radio Communications (PIMRC), pages
2898–2903. IEEE, 2013.

[19] European partnership under horizon europe smart networks and ser-
vices, 2020.

[20] Nan Hu. 5g white paper 2 by ngmn alliance, 2020.

[21] Simon Haykin. Neural networks: a comprehensive foundation. Prentice
Hall PTR, 1998.

[22] Gareth M James. Variance and bias for general loss functions. Machine
learning, 51:115–135, 2003.

https://github.com/davidfernxndez/DQN-Resource-Allocation-Agent-in-5G
https://github.com/davidfernxndez/DQN-Resource-Allocation-Agent-in-5G


BIBLIOGRAPHY 131

[23] Chaoyun Zhang, Paul Patras, and Hamed Haddadi. Deep learning
in mobile and wireless networking: A survey. IEEE Communications
surveys & tutorials, 21(3):2224–2287, 2019.

[24] Wei Yang Bryan Lim, Nguyen Cong Luong, Dinh Thai Hoang, Yutao
Jiao, Ying-Chang Liang, Qiang Yang, Dusit Niyato, and Chunyan Miao.
Federated learning in mobile edge networks: A comprehensive survey.
IEEE Communications Surveys & Tutorials, 22(3):2031–2063, 2020.

[25] Francesco Restuccia and Tommaso Melodia. Deep learning at the phys-
ical layer: System challenges and applications to 5g and beyond. IEEE
Communications Magazine, 58(10):58–64, 2020.

[26] Zehui Xiong, Yang Zhang, Dusit Niyato, Ruilong Deng, Ping Wang,
and Li-Chun Wang. Deep reinforcement learning for mobile 5g and
beyond: Fundamentals, applications, and challenges. IEEE Vehicular
Technology Magazine, 14(2):44–52, 2019.

[27] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. MIT press, 2018.

[28] Rongpeng Li, Zhifeng Zhao, Xianfu Chen, Jacques Palicot, and Hong-
gang Zhang. Tact: A transfer actor-critic learning framework for energy
saving in cellular radio access networks. IEEE transactions on wireless
communications, 13(4):2000–2011, 2014.

[29] Tran Anh Quang Pham, Yassine Hadjadj-Aoul, and Abdelkader Out-
tagarts. Deep reinforcement learning based qos-aware routing in
knowledge-defined networking. In Quality, Reliability, Security and
Robustness in Heterogeneous Systems: 14th EAI International Confer-
ence, Qshine 2018, Ho Chi Minh City, Vietnam, December 3–4, 2018,
Proceedings 14, pages 14–26. Springer, 2019.

[30] Xianfu Chen, Honggang Zhang, Celimuge Wu, Shiwen Mao, Yusheng Ji,
and Medhi Bennis. Optimized computation offloading performance in
virtual edge computing systems via deep reinforcement learning. IEEE
Internet of Things Journal, 6(3):4005–4018, 2018.

[31] Chen Qi, Yuxiu Hua, Rongpeng Li, Zhifeng Zhao, and Honggang Zhang.
Deep reinforcement learning with discrete normalized advantage func-
tions for resource management in network slicing. IEEE Communica-
tions Letters, 23(8):1337–1341, 2019.

[32] Richard Bellman. A markovian decision process. Journal of mathemat-
ics and mechanics, pages 679–684, 1957.



132 BIBLIOGRAPHY

[33] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioan-
nis Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari
with deep reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

[34] David Silver. Lecture 6: Value function approximation. UCL, Computer
Sci. Dep. Reinf. Learn. Lect., pages 1–15, 2015.

[35] Long-Ji Lin. Self-improving reactive agents based on reinforcement
learning, planning and teaching. Machine learning, 8:293–321, 1992.

[36] 3rd Generation Partnership Project. Technical Report TR 38.803. Tech-
nical Report V14.0.0, 3rd Generation Partnership Project; Technical
Specification Group Radio Access Network, March 2017. RF and co-
existence aspects.

[37] Jorge Navarro-Ortiz, Oriol Sallent, Jordi Pérez-Romero, et al. Radio
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Appendix A

UEs assignment to serving
SCs

The propagation model that defines the path loss of the UEs is based on
linear regression, assuming NLOS situation:

L(d) = L0 + n · log10(d) (dB) (A.1)

Where L0 is a constant that represents the path loss at a reference distance
d0 = 1m, and n is the exponent of the variation with distance, which depends
on the environment and the characteristics of the transmission medium. The
distance between UE u and SC b is given by:

d =

√
(bx − ux)

2 + (by − uy)
2 + (bz − uz)

2 (A.2)

In this project, the assignment of UEs to the SCs that serve them is strictly
determined by path loss. The UEs will be assigned to the SC from which
they receive the highest Received Signal Strength (RSS), as defined by the
path loss:

RSS(d) = −L(d) (dB) (A.3)

The coordinates of SCs (bx, by) and UEs (ux, uy) used in Equation A.2 for
distance calculation are defined based on the dimensions of the scenario. In
the project, we work with rectangular scenarios. The coordinates in the z
dimension correspond to the vertical heights of the antenna and the user.
The pseudocode of the process of assigning UEs to SCs is shown in algorithm
2.
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Algorithm 2 UEs assignment to serving SCs

1: Set number of UEs, U
2: Set number of SCs, B
3: Set UEs position, [Ux, Uy, Uz]
4: Set SCs position, [Bx, By, Bz]
5: for b = 0 to B do
6: for u = 0 to U do

7: d(b, u) =
√

(bx − ux)
2 + (by − uy)

2 + (bz − uz)
2

8: L(b, u) = L0 + n · log10(d(b, u))
9: RSS(b, u) = −L(d, u)

10: end for
11: end for
12: SC(u) = max(RSS(:, u))



Appendix B

Radio Acces Network (RAN)
simulator

The network model proposed in Section 3.1.1 has been implemented in
Python as a radio access network simulator. This simulator operates ac-
cording to the defined network design and emulates the behaviour of a real
network, allowing interaction with the agent.

The pseudocode of the implemented RAN simulator is shown in algo-
rithm 3. The simulator has knowledge of which SC serves each UE, obtained
directly from the assignment of UEs to SCs performed in Algorithm 2.

First, the power received by each UE from all the SCs in the scenario is
calculated (lines 20 to 25). Since these powers make up the expression of
the SINR.

The load factor of the SCs is determined by aggregating the contributions
of each UE served by the respective SC (lines 29 to 33). The user demand
Du and its spectral efficiency SEu are the same for all UEs.

SINR and throughput are calculated for all the UEs in each assigned
PRB (lines 36 to 43). Finally, the total throughput experienced by the UE
will be the cumulative sum of the throughput across all allocated PRBs (line
44).

In the proposed network design, the SINR and throughput levels remain
uniform across all PRBs. This uniformity arises because the received power
at UEs is independent of frequency, and the noise power is assumed constant
across the entire frequency band.
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Algorithm 3 RAN simulator operation

1: Set number of UEs, U
2: Set number of SCs, B
3: Set UEs position, [Ux, Uy, Uz]
4: Set SCs position, [Bx, By, Bz]
5: Set number of PRBs in each SC, [R0, R1, ..., RB]
6: Set power per PRB, PR

7: Server SC Assignment SC(u)
8:

9: 1) Determine the power received by the UEs for all the SCs
10:

11: for b = 0 to B do
12: PTX(b) = PR ·Rb

13: for u = 0 to U do
14: PRX(b, u) = PTX(b)− L(b, u)
15: end for
16: end for
17:

18: 2) Calculate cell load factor in each SC
19:

20: for u = 0 to U do
21: b = SC(u)
22: load(b) = load(b) +Du/(Rb ·BWPRB · SEu)
23: end for
24: load = min(load, 1)
25:

26: 3) Calculate throughput for all UEs
27: for u = 0 to U do
28: b = SC(u)
29: for r in Rb do
30: interf(u, r) =

∑
j ̸=b load(j) · Pj,u

RX

31: SINR(u, r) = Pb
TX/(interf + PN )

32: Determine SE(u, r) according to equation 3.7.
33: T (u, r) = (BWPRB · SE(u, r))/Ub

34: end for
35: T (u) = sum(T (u, :))
36: end for



Appendix C

Advantages of discretizing
throughput as a state
variable

This appendix shows the improvement in the agent’s learning as a conse-
quence of reducing the dimensionality of the state space by discretizing the
throughput variable.

In the observation that describes the state of the cells, the UE through-
put at the edge of the cell appears. This variable is continuous in nature;
for instance, in the experimental setup detailed in Chapter 5, it takes values
within the range of (0.80] Mbps. In the developed solution, a discretization
of this variable has been carried out to reduce the dimensionality of the state
space and facilitate agent learning.

To demonstrate the benefits of discretization, an experiment was con-
ducted using the same experimental setup described in Section 5.1. Two
agents have been trained with the configuration listed in Table C.1. These

Steps
per episode

Episodes
Exploration
fraction (%)

Throughput

1000 3000 70 discrete

1000 3000 70 float

Table C.1: Agent training configuration to demonstrate benefits of dis-
cretization.

are two agents with identical training configurations; however, in one, the
throughput variable is treated as a float, while in the other, it is treated
as a discrete data type. The discretization is performed using 62 bins, as
described in Section 5.1.2.
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First, the convergence curves of both agents are compared, as shown in
Figure C.1.
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Fig. C.1: Convergence curves for agents with discrete throughput versus
continuous throughput.

In Reinforcement Learning (RL), convergence curves illustrate the aver-
age reward per episode over the course of training. Based on the training
configuration, exploration is performed according to ϵ-greedy policy up to
step 2,100,000. After this point, the agent performs exploitation with a
probability of 99.95%. At the beginning of the exploration phase, the agent
with continuous throughput (represented by the red curve) achieves a higher
reward than the agent with discrete throughput (represented by the blue
curve). However, by the end of the exploration phase, both agents achieve
practically identical rewards.

The most significant and noticeable difference between the two trainings
occurs during the exploitation phase. The agent with discrete throughput
(represented by the blue curve) clearly converges and maintains a stable re-
ward level. In contrast, the agent with continuous throughput (represented
by the red curve) experiences a decrease and does not converge stably, in-
stead showing a noisy pattern.

In terms of convergence, we can observe a clear improvement in the
agent with throughput as a discrete variable. To evaluate the behaviour
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learned by each agent, both are subjected to the same 500 initial situations
in Scenario A (see Figure 5.3a). This type of experiment is the same as
that performed with 24 agents trained in section 5.2. Consequently, the
evaluation will include the same metrics: success rate, average throughput
value (precision), and rate of interference-free episodes. The results obtained
are shown in Table C.2.

Throughput
Success
rate (%)

Average
throughput (Mbps)

Interference-free
rate (%)

discrete 98.40 5.87 84.88

float 85.80 7.1 52.63

Table C.2: Discrete throughput versus continuous throughput metrics re-
sults.

The advantage observed in the convergence curves is evidenced by the
result obtained in the agent performance metrics. In addition to achieving a
higher success rate with throughput discretization, precision also improves
significantly. The average throughput achieved is much closer to Tmin =
5Mbps.





Appendix D

Code repository

This appendix details the structure of the code developed for this project,
which is available in the GitHub repository referenced in [10].

First, the Python libraries are listed in Table D.1 along with the version
compatible with the code. The Python version is 3.8.0.

Package Version

gym 0.17.3

stable-baselines3 1.0

numpy 1.24.3

pandas 2.0.3

scipy 1.10.1

matplotlib 3.7.4

seaborn 0.12.2

tensorboard 2.13.0

tensorflow 2.13.0

keras 2.13.1

Table D.1: Versions of Python libraries compatible with the developed code
in [10]

Figure D.1 shows the folder structure of the repository. The code is
organized into two main sections.

D.1 DRL Framework

The first section, which includes the files Environment.py, Training.py, and
Inference.py, is responsible for implementing the framework required to train
DQN agents for the project’s use case. The environment.py file defines a
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Fig. D.1: Repository folder structure.

class that adheres to the interface provided by the Gym library. Within this
class, the action space, state space, and reward algorithm are implemented
alongside the RAN simulator. In summary, this class contains the complete
implementation described in Chapter 4.

The training.py file is used to train agents within the environment de-
fined in environment.py. To train an agent you need to configure 4 variables:
num cells, num steps, num episodes and exploration fraction. The number
of cells determines whether the agent is trained in Scenario A or Scenario B.
The environment configuration is based on the files located in the config files
folder. The configuration files in this folder are CSV files that specify the
parameter values for the scenario and the RAN simulator. The number of
steps, number of episodes and the exploration fraction are the 3 training
parameters that have been studied in Chapter 5. Once the value of these
variables is established, the DQN class of the stable baselines3 library is
used to train the agent.

The model produced after training is saved in a zip file named:

{num_cells}_cells_{num_steps}_steps_{num_episodes}_ep_{

exploration_fraction}_fraction.zip

Reflecting the values of the training configuration variables. The training
progress log is stored in the tensorboard folder. For graphical representa-
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tion of the training logs, the TensorFlow visualization toolkit [40], Tensor-
Board, is used. The trained agent models are stored in the Agent models
folder, while their corresponding training logs can be found in the tensor-
board folder.

The inference.py file enables the execution of inference procedures for
one or more agent models. To perform inference, you need to specify the
name of the .zip file containing the models and set the number of inference
episodes. The resulting metrics for each model are displayed on the screen,
and the outcomes of each episode are saved in a CSV file. This inference
procedure is the one carried out in section 5.2 to study the performance of
24 agents. The metrics evaluated are those listed in table 5.6.

D.2 Agent operation

The second section of the code consists of the files Agent operation.py and
RAN simulator.py. This code enables the trained agent to be applied across
all cells in either of the two scenarios. That is, the operation of the agent
as shown in section 5.3.

The RAN simulator.py file serves as the equivalent of the environment
class. However, it is not a Gym class and does not implement the state space
and reward algorithm. This file implements the RAN simulator to emulate
the behaviour of the 5G network. It receives actions from the agent, adjusts
the bandwidth of the cells accordingly, and provides the agent with obser-
vations that describe the state of each cell.

In the Agent operation file, a trained agent model is selected, and an
initial state is set, including the number of PRBs assigned to each cell and
their positions within the spectrum. The agent takes actions on the cell
bandwidth until the optimization objective is reached in all cells in the
scenario. This script plots the step-by-step evolution graphs shown in section
5.3.






	Acronyms
	Introduction
	Context and motivation
	Scope and objectives
	Project planning and cost estimation
	Task planning
	Resource planning
	Project Budget

	Project Structure

	State of the Art
	Fifth Generation of mobile networks (5G)
	Spectrum
	Overall Transmission Structure
	Waveform
	Numerology
	Time-Domain Structure
	Frequency-Domain Structure

	Network Slicing

	Self-Organizing Networks (SON)
	Motivation of the SON paradigm
	SON for 5G Mobile Networks
	AI/ML applied to Self-Organizing Networks
	Neural Networks
	Reinforcement Learning


	Theorical foundations of Deep Reinforcement Learning (DRL)
	Fundamentals of reinforcement learning
	Markov Decision Process
	Learnable functions and DRL algorithms

	Deep Learning for Reinforcement Learning
	Deep Q-learning Network (DQN)
	The Q- and V-Functions
	Learning the Q-function in DQN
	Off-policy algorithm
	Action selection: -greedy
	Experience replay
	DQN Algorithm



	System model and problem definition
	System model
	Network design model

	Problem definition

	Solution Design
	High Level Design
	Action Space
	State Space
	UE throughput at the edge
	Number of PRBs assigned to the SC
	PRB position flag
	Number of interfered PRBs from each neighbour.
	Interference PRB position flag

	Reward algorithm
	First stage: Guarantee minimum throughput
	Second stage: Transmission power minimization
	Third stage: Interference reduction

	Development of the solution with Gym framework
	Gym class components
	Reset method
	Step method
	Agent training workflow


	Experimental evaluation and Results
	Experimental setup
	Network model configuration
	Agent configuration
	Optimization criterion
	Action space
	State space: Observation


	Agent performance study
	DQN hyperparameters
	Training configurations
	Analysis of results

	Agent Operation
	Scenario A
	Example 1A
	Example 2A
	Example 3A

	Scenario B
	Example 1B



	Conclusions and future works
	Conclusions
	Future works

	Bibliography
	Appendices
	UEs assignment to serving SCs
	Radio Acces Network (RAN) simulator
	Advantages of discretizing throughput as a state variable
	Code repository
	DRL Framework
	Agent operation


