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Abstract

The relation between electroencephalography (EEG) rhythms, brain functions, and behav-

ioral correlates is well-established. Some physiological mechanisms underlying rhythm gen-

eration are understood, enabling the replication of brain rhythms in silico. This offers a

pathway to explore connections between neural oscillations and specific neuronal circuits,

potentially yielding fundamental insights into the functional properties of brain waves. Infor-

mation theory frameworks, such as Integrated Information Decomposition (Φ-ID), relate

dynamical regimes with informational properties, providing deeper insights into neuronal

dynamic functions. Here, we investigate wave emergence in an excitatory/inhibitory (E/I)

balanced network of integrate and fire neurons with short-term synaptic plasticity. This

model produces a diverse range of EEG-like rhythms, from low δ waves to high-frequency

oscillations. ThroughΦ-ID, we analyze the network’s information dynamics and its relation

with different emergent rhythms, elucidating the system’s suitability for functions such as

robust information transfer, storage, and parallel operation. Furthermore, our study helps to

identify regimes that may resemble pathological states due to poor informational properties

and high randomness. We found, e.g., that in silico β and δwaves are associated with maxi-

mum information transfer in inhibitory and excitatory neuron populations, respectively, and

that the coexistence of excitatory θ, α, and β waves is associated to information storage.

Additionally, we observed that high-frequency oscillations can exhibit either high or poor

informational properties, potentially shedding light on ongoing discussions regarding physio-

logical versus pathological high-frequency oscillations. In summary, our study demonstrates

that dynamical regimes with similar oscillations may exhibit vastly different information

dynamics. Characterizing information dynamics within these regimes serves as a potent

tool for gaining insights into the functions of complex neuronal networks. Finally, our findings

suggest that the use of information dynamics in both model and experimental data analysis,

could help discriminate between oscillations associated with cognitive functions and those

linked to neuronal disorders.
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Author summary

Electroencephalography (EEG) records cortical brain activity and is widely used in neuro-

science for identifying cognitive states and diagnosing brain pathologies. However, the

relationship between functional brain states and specific rhythms is sometimes unclear.

Traditional methods combined with computational models often fail to link dynamical

regimes to their possible functions. To address this, we used a computational model that

generates in silico EEG-like signals in a neuron population. Instead of only analyzing spec-

tral features, we focused our study on information flow in the neuron population between

small groups of inhibitory and excitatory neurons during the emergence of different

rhythms. We found that in some regimes, the system exhibits enhanced computational

properties, with excitatory neurons maintaining parallel processing capacities, inhibitory

neurons showing high robustness, or populations maximizing information transfer. In

other regimes, low information flow results in more random behavior. Our work high-

lights the utility of informational dynamic analysis for understanding the relationship

between emerging neuronal waves and functions in in silico neuronal populations, a fact

that stimulates extending the present study to neuronal cultures and in vivo EEG time

series.

Introduction

Non-invasive electroencephalography (EEG) exploration on the cerebral cortex has become a

relatively simple, convenient and inexpensive way of analyzing how large populations of neu-

rons can cooperate to develop complex brain functions while variations of their synaptic rela-

tions occur [1–4]. In fact, the EEG technique allows for an easy visualization of spontaneous

brain activity organized in terms of waves or “rhythms”, which emerge due to the synchroniza-

tion of millions of cortical neurons with main frequencies ranging from 0.5 to 35 Hz and

more, defining the so-called δ, θ, α, β and γ bands. Moreover, each one of these rhythms is

loosely associated with different states of consciousness, such as deep sleep, anesthesia, coma,

relax, and attention, and with different mental and cognitive brain processes [5].

The in-depth analysis of EEG time series has traditionally been shown to be a very useful

tool to detect neurological disorders, such as epilepsy [6] and its association with autism spec-

trum disorder (ASD) [7], and it could also be useful to detect Alzheimer’s disease (AD) in its

early stages [8], and other brain pathologies. In particular, in the last years EEG data have

regained significance thanks to the recent development of specific Machine Learning and

Deep Learning techniques that use such data for high-accuracy detection and diagnosis of a

broad range of such neuropathologies [9].

Thanks to advances in experimental techniques in recent decades, high-frequency activity

(HGA) has gained significant interest in the neuroscience community [10]. HGA refers to all

brain activity above 80 Hz, encompassing both pure oscillatory and non-oscillatory phenom-

ena. The purely oscillatory phenomena are usually described as high-frequency oscillations

(HFOs), defined as discrete EEG oscillatory events that clearly stand out from the background

activity. The emergence of HFOs, e.g., presents a fascinating duality: they are associated with

both epileptic seizures and high-level cognitive functions, underscoring the intricate interplay,

not yet well understood, between brain rhythms and functions [10–15]. Neuronal activity in

the high-frequency band (>80 Hz) is typically associated with cognitive functions (physiologi-

cal activity), including broadband high γ activity (80–150 Hz) and narrowband fast γ

PLOS COMPUTATIONAL BIOLOGY Information dynamics of in silico EEG Brain Waves

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012369 September 5, 2024 2 / 41

generate the figures. The code for the simulation

and PHI-ID analysis tools are available in an open

software repository https://github.com/GuEMM/

EEG_model.git and https://github.com/GuEMM/

PhiID_Tools.git respectively.

Funding: This work is part of the Project of I+D+i,

Spain Ref. PID2020 113681GBI00, funded by

MICIU/AEI/10.13039/501100011033, (to JJT).

J.J.T. also acknowledges financial support and

from the Consejerı́a de Transformación

Económica, Industria, Conocimiento y

Universidades, Spain, Junta de Andalucı́a, Spain

and European Regional Development Funds,

Ref. P20_00173. G.M. would like to thank the

Programa Nacional de Becas de Postgrados en el

Exterior “Don Carlos Antonio López” - BECAL of
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oscillations (90–150 Hz) [16]. Conversely, high-frequency oscillations, including those in the

fast γ frequency band and even higher HFOs (>150 Hz), also serve as biomarkers for epileptic

seizures (pathological HFOs), with classifications such as ripples (100–200 Hz) and fast ripples

(200–500 Hz) commonly used in clinical diagnosis [10, 12, 17–19]. However, attempts to dif-

ferentiate between physiological and pathological HFOs based on properties like frequency,

spectral amplitude, and duration have led to contradictory results [20]. Recent research sug-

gests that considering the co-occurrence of other phenomena, such as vertex waves and inter-

ictal epileptiform discharges, may enhance the precision of this differentiation [20].

Nevertheless, further investigation is necessary to fully grasp the distinction between physio-

logical and pathological HFOs [21].

In general, handling real EEG data is a complex task that demands specialized expertise in

signal analysis and noise reduction to avoid misinterpretation [11]. Therefore, modeling brain

rhythms can offer a simpler approach to explore innovative EEG analysis techniques and con-

duct preliminary evaluations of hypotheses regarding the mechanisms and functions behind

different actual brain rhythms.

Some of the earliest and simplest models of EEG data were presented by [22], using an

excitatory/inhibitory network of integrated and firing neurons capable of generating alpha

rhythms and statistical patterns similar to those observed in the thalamus. In recent literature,

a reformulation of this model in terms of differential equations demonstrates that a variety of

other rhythms and modulations between them can emerge based on a few relevant parameters.

Moreover, the complex phenomenology observed in this simple model can be understood

through concepts from statistical physics and dynamical systems theory, such as phase transi-

tions, bifurcations, metastability, and stochastic resonance phenomena [23, 24].

While the dynamical systems/statistical physics approach has been shown to be very power-

ful in explaining aspects of complex systems behavior, it may not always provide a complete

picture. Understanding the properties of a dynamical regime does not necessarily elucidate the

“function” (in the biological sense) of a given dynamical phenomenon. Complementing this

dynamical knowledge with the framework of “information dynamics” [25] offers a broader

perspective on what the system is doing and what possible functions could be favored by a par-

ticular dynamical regime.

For instance, dynamical regimes characterized by high redundancy in information process-

ing tend to be robust to failures and may be linked to vital functions in an organism, as

observed in structurally coupled modular sensory-motor processing in the brain [26, 27]. Fur-

thermore, measuring the transfer of information between parts of a dynamical system allows

for the definition of an effective connectivity network, providing insights into the functional

structure of the system [28] or even captures structural traits of neuronal cultures [29]. On the

other hand, a regime characterized by high integrated information has recently been associated

with the concept of criticality in the neural system [30], a condition possessing advantageous

properties for efficient computing and information processing [31–33].

In recent years, the development of tools such as Local Information Dynamics (LID) [25]

and Partial Information Decomposition (PID) [34] has significantly advanced our understand-

ing of complex systems. LID focuses on studying how a complex system locally stores, trans-

fers, and modifies information, while PID analyzes the information between n + 1 random

variables (n sources and one target) by decomposing it into three types of information

“atoms”: unique, redundant, and synergistic, and their combinations. Each type captures dif-

ferent fundamental relations between random variables.

In this context, a multi-target extension of PID called Integrated Information Decomposi-

tion (F-ID) has been recently developed [35, 36]. F-ID shows promise in providing general

insights into the dynamics and information content of diverse dynamical systems, ranging
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from cellular automata to networks of Kuramoto oscillators [37]. Other tools, such as Partial

Entropy Decomposition [27, 38], have been employed to highlight the limitations of tradi-

tional strategies for studying high-order interactions in complex networks, including func-

tional connectivity, total and dual total correlations, and more recently, the O-information

measure [39]. Moreover, efforts to develop generalized information decomposition tools indi-

cates a growing interest within the scientific community in the utility of new information the-

ory frameworks for complex systems research [40].

These tools have also been applied to decompose functional interactions among brain

regions, revealing disparities in information processing functions [26], and to investigate the

possible existence of a whole world of unexplored structures in human brain data [27, 41].

Moreover, as demonstrated in our study, information dynamics analysis can uncover direct

relationships between the microscopic activity of specific neuronal populations, local informa-

tion processing, and emergent macroscopic phenomena. For instance, it can elucidate how

various local physiological mechanisms—such as short-term synaptic plasticity, neuronal

adaptation, and factors like underlying topology [42, 43], as well as the presence of high-order

interactions in the system [44–46]—influence the generation of brain waves.

In the present study, we investigate the emergence of rhythms in an in silico neuronal sys-

tem that generates oscillations akin to actual EEG data. Our approach diverges from traditional

statistical physics and nonlinear dynamical perspectives, focusing instead on novel informa-

tion theory techniques, as Integrated Information Decomposition (F-ID). Our objective is to

elucidate the relationship between rhythm emergence and local information content and

dynamics. We seek insights that help to distinguish rhythms based on the informational prop-

erties and dynamical regimes of the neuronal populations where they originate.

In our neuronal system, we observe various phenomena reminiscent of those typically

seen in Local Field Potential (LFP) and EEG data, such as the emergence of high frequency

oscillations (HFOs) [10, 15], coexistence of different rhythms [47, 48], continuous phase

transitions [49], discontinuous phase transitions and hysteresis in neuronal activity [50],

among others. Here, we delve into the local information dynamics of the network across dif-

ferent dynamical regimes associated with each of these phenomena. Our analysis demon-

strates how information dynamics provides insights into the functions a system is inherently

capable of performing in each regime. We particularly focus on High Frequency Oscillations

(HFOs) and the emergence and coexistence of low and middle frequency waves, such as δ
and β rhythms, as compelling case studies of information dynamics analysis in dynamical

networked systems.

Specifically, we discover that HFOs in distinct neuronal populations exhibit fundamentally

different informational properties, even when exhibiting similar levels of neuronal activity. In

regimes where excitatory HFOs have higher power and lower frequencies than inhibitory

HFOs, the system demonstrates robust parallel processing capabilities (high redundancy main-

taining differentiated information), suggesting functional dynamics akin to physiological

regimes [14, 20, 51]. Conversely, when both excitatory and inhibitory HFOs emerge at the

same high power and frequency, the system shows poor informational properties, potentially

analogous to pathological states.

In addition to investigating High Frequency Oscillations (HFOs), we also explored the

information dynamics of regimes where other rhythms emerge, such as δ and β waves, which

dominate the oscillations in our system within a meta-stable region. The coexistence and syn-

chronization of δ and low γ—high β waves have been related with fluid intelligence [52].

While δ waves are commonly associated with relaxed states and sleep, some studies have also

linked them to cognitive operations. For instance, an increase in δ power is related to working

memory and focused attention [53, 54]. In contrast, β waves are associated with sensorimotor
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control, motor preparation, sensory processing and amplification, as well as working memory

allocation [54].

The relationships between specific informational properties at the local scale and the emer-

gence of waves at the mesoscopic/macroscopic scale, as presented in this article, reinforce the

notion that waves serve as signatures of functional behavior in neuronal systems. The charac-

teristic association we found between the emergence of dominant waves and specific peaks in

certain information processing modes reveals the potential of information dynamics in eluci-

dating the fundamental relationships between neuronal dynamics, brain waves, and cognitive

processes.

Viewed from the perspective of the physics of complex systems, our work exemplifies how

information dynamics analysis, facilitated by tools such as F-ID, offers valuable insights into

system emergent behavior. This approach captures intricate details about dynamical phases,

collective phenomena and informational properties, complementing traditional methods in

statistical physics and nonlinear dynamics. Thus, for example, we observed that the onset of a

continuous phase transition, marked by a low-activity intermediate (LAI) transition [55], cor-

relates with a peak in integrated information, and that a discontinuous phase transition in the

inhibitory population coincides with a peak in informational differentiation. These observa-

tions provide novel insights into the connections between specific information dynamics

regimes and phase transitions.

Although our findings indicate significant correlations between rhythms, informational

regimes and phase transitions, drawing definitive conclusions about the informational proper-

ties of brain waves requires a comprehensive study of experimental data, which we plan to

address in future work.

Materials and methods

Integrated Information decomposition (F-ID) framework

Before discussing the framework used to describe the information dynamics, we must clarify

that here we are referring to the concept of information according to Shanon’s classical Infor-

mation Theory. In this way, information is defined as the surprise h(Xi) [56] produced by

observing a state Xi of a random variable X given a state probability distribution PðXiÞ. The

average of the surprise (information) is called the Shannon entropy H and can be viewed as a

measure of “uncertainty” related to a random variable X state. All the information quantities

in this article are presented in bits.

In the context of classical Shannon Information Theory, F-ID is a multi-target extension of

Partial Information Decomposition (PID) [34], which provides a unified framework to explore

the information dynamics of a system through combinations of different information atoms.
The F-ID framework proposes to capture how information in a system flows from present to

future by decomposing the time-delayed mutual information (TDMI) into information atoms

which, differently than PID, can manage not only multivariate sources, but also more than one

multivariate target.

Frameworks like F-ID are interesting in the context of complex systems in general, and for

neuronal systems in particular, because they can reveal emergent and higher-order interac-

tions within the dynamics of a neuronal system [26]. It can be applied, for instance, in the

decomposition of spontaneous spiking activity recorded from dissociated neural cultures to

show how different modes of information processing are spatially distributed over the system

[57] or, as in the case studied here, to investigate how such information processing modes

emerge in different regions of the phase space of an in silico neuronal population model.
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While TDMI captures the information that past states provide about the future and vice

versa, without detailing how this information is processed and which part of the system pro-

vides it, F-ID proposes to decompose mutual information as a sum of information atoms I@,

each capturing different modes of information dynamics and specifying which part of the sys-

tem is operating in what mode.

To apply F-ID we first need to separate our system into partitions and then study the

information that the present (the state at time t) of each partition provides about its

future (the state at time t + τ), the other partitions and the whole system. In the simplest

case, we have a bipartition B with parts X1 and X2, and we build an ordered set

A ¼ fffX1gfX2gg; fX1g; fX2g; fX1X2gg called the redundancy lattice (more details con-

cerning its mathematical properties are presented in [34, 58]).Each element of this lattice

represents a type of PID atom; the first element {{X1}{X2}} is at the bottom of the redun-

dancy lattice and represents the information carried by both parts redundantly, usually rep-

resented as Red. The second and third elements are related to the information carried

uniquely by the respective part, usually symbolized by U1 and U2. The last element is the

information that is only accessible when both parts are considered together, which means

synergistic information, and is commonly represented as Syn. Each of these atoms is repre-

sented as an α element of A.

Now, if we consider the “time evolution” of these a 2 At (At is related to PID of the present

state t), we will have another lattice with four PID atoms in the future, called β atoms

(b 2 Atþt). Any α atom could evolve to a β atom in the future, as shown in Fig 1. Finally, the

time evolution proposed by the F-ID decomposition is the product between both (At �Atþt),

which provides a set of 16 composed atoms of α! β. Here, α! β represents information

atoms that were originally carried as an α atom (carried uniquely, redundantly, or

Fig 1. Integrated Information decomposition framework (F-ID). TheF-ID framework describes how information is carried from present to future

states of a system (information dynamics). By considering the simplest partition of a system—a bi-partition—and defining redundancy and double

redundancy functions (see main text or [58]), we can compute all information atoms from the bottom to the top of the redundancy lattice (see at the

bottom center of the panel). Each type of information atom captures a different mode in which information can be carried. The colors in the lattice

indicate the type of atom: synergistic (red), unique (orange and yellow), and redundant (blue). Color combinations in certain atoms indicate time

evolution of these atoms from one type in the present to another type in future.

https://doi.org/10.1371/journal.pcbi.1012369.g001
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synergistically in the present), which in the future will be carried as a β atom (also carried

uniquely, redundantly, or synergistically in the future). That said, mutual information is

decomposed as

IðXt;XtþtÞ ¼
X

a;b2A�A

Ia!b@ : ð1Þ

Each composed information atom Ia!b@ is computed via a redundancy function, namely Ia!b
\

,

and the sum of every atom that satisfies the ordering relation α 0 ! β 0 � α! β (see Eq (2)

below). The ordering relation� is formally defined as

8a; b 2 A; a � b, 8b 2 b; 9a 2 a; a � b. Therefore, the ordering relation of the product lat-
tice α0 ! β0 � α! β means that α 0 � α and β 0 � β. In practice, this ordering relation implies

that all atoms in this sum have the same or less redundant information as the computed atom

(see more details [58]). Then, we can write

Ia!b@ ¼ Ia!b
\
�

X

a0!b 0≺a!b

Ia
0!b0

@ : ð2Þ

As said above, for computing the atoms, we need to define the redundancy function Ia!b
\

.

By following the axiomatic restrictions presented in the original formulation of F-ID [58], if

α = {a1, a2, . . ., aJ} and β = {b1, b2, . . ., bK} with a;b 2 A and aj, bk non-empty subsets of

{1, . . ., N}, this function can be reduce to PID redundancies, as

Ia!b
\
¼

RedðXa1
t ; . . . ;XaJ

t ;Xb1
tþtÞ if K ¼ 1

RedðXb1
tþt; . . . ;XbK

tþt;X
a1
t Þ if J ¼ 1

IðXa1
t ;X

b1
tþtÞ if J ¼ K ¼ 1 :

8
><

>:
ð3Þ

This let us with the responsibility of choosing wisely a PID redundancy function Red. Note

that last expressions are not defined when both K and J are greater than 1. This situation occurs

in the atom of double redundancy IRed!Red
\

. Therefore, we need also to define a double redun-

dancy function. After defining both redundancy and double redundancy functions we can

compute all information atoms starting from the lower atoms in the order relation.

There is no consensus on an universally preferable redundancy function, as this is still a

work in progress [35, 58]. In the present work, for simplicity and to maintain a computation-

ally tractable analysis, we only explore bipartitions of our system and use mutual minimum

information (MMI) as redundancy and double redundancy functions. For a two-part system

Xi and Xj, we have then:

RedðXa1
t ; . . . ;XaJ

t ;Xb1
tþtÞ ¼ min

i
IðXai

t ;Xb1
tþtÞ ; ð4Þ

RedðXb1
tþt; . . . ;XbK

tþt;X
a1
t Þ ¼ min

j
IðXa1

t ;Xbj
tþtÞ ; ð5Þ

and

IRed!Red
\

¼ min
i;j

IðXi;XjÞ : ð6Þ

Once a redundancy function is defined and after estimating the probability distributions of

t and t + τ states of the system, the decomposition only requires solving a system of 16 linear
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equations [58], which is straightforward. A schematic representation of the framework is pre-

sented in Fig 1.

As previously mentioned, TDMI can quantify the information that the past or present state

of the system provides about its future. However, it does not reveal how this information is

actually transferred from past to future and vice-versa. For instance, if a system relies predomi-

nantly on the state of a specific group of neurons, the majority of the measured TDMI would

be attributed to this group. Consequently, any failure or alteration within this group would sig-

nificantly impact our information of the future states of the system. Alternatively, information

might be redundantly provided by many groups of neurons, meaning that any single neuron

or group gives the same information about the future. In this scenario, removing some neu-

rons or groups would not substantially affect our knowledge of the future. Finally, there may

be a regime where information about the future is derived only by knowing the states of all

groups of neurons jointly, known as synergistic information.

In general, we can make the following interpretation about how the TDMI is decomposed.

If there are many groups that carry unique information, this system is a highly differentiated

system (with specialized parts). If the system is redundancy dominated, it will have a high

robustness to failures as many parts of the system carry the same information. This last indi-

cates that such parts of the system must have the same functional properties. Finally, a system

that is synergistic dominant is a high-integrated system, where all parts work together to deter-

mine the future states of the system.

To identify the different dynamic information regimes, we group the atoms into 3 mea-

sures. The first was the revised effective information φR, proposed by [36, 37], which for a given

bipartition B is defined as

φR½X; t;B� ¼ IðXt;XtþtÞ �
X2

j¼1

IðXj
t;X

j
tþtÞ þmin

ij
IðXi

t;X
j
tþtÞ : ð7Þ

From this revised effective information, the corresponding revised integrated information
FR is defined as the normalized revised effective information of the minimum information

partition (MIP), i.e.:

FR½X; t� ¼ φR½X; t;BMIP
�=KðBMIP

Þ

BMIP
¼ argBmin

φR½X; t;B�
KðBÞ

KðBÞ ¼ minfHðX1Þ;HðX2Þg ;

ð8Þ

where K is a normalization factor equal to the minimum entropy between the partition entro-

pies [59]. Note that the revised effective information φR captures synergistic information plus

the information that is transferred between parts of the system, while FR aims to quantify the

extent to which the parts of a system work together as a whole (the extent to which the whole is

more than the sum of its parts).

Based on the strategy used in the revised integrated information measure shown in Eq (8),

we propose in the present work two new measures to capture differentiation and redundancy

in the system. First, to compute the level of differentiation of information, we measure the
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information that is uniquely carried by each partition across time, which is defined as

Un½X; t;B� ¼
X2

k

h
IðXk

t ;X
k
tþtÞ � min

i
IðXk

t ;X
i
tþtÞ � min

j
IðXj

t;X
k
tþtÞ þmin

ij
IðXi

t;X
j
tþtÞ
i
: ð9Þ

Now as before, we first normalize Un½X; t;B� using KðBÞ, and then search the partition

that minimizes this quantity, which we denote as BMUP
(here MUP means minimum unique

information partition)

U½X; t� ¼ Un½X; t;BMUP
�=KðBMUP

Þ ð10Þ

BMUP
¼ argB min

Un½X; t;B�
KðBÞ

: ð11Þ

As this unique information is conceptually the opposite of the integrated information, we

will call it differentiated information.
Third, to quantify the degree of redundancy of our system, we define a non-synergistic

redundancy (NS-Red) information measure adding all redundancy-related atoms that do not

contain a synergistic component. This implies to subtract four times the double redundancy

atom (see Eq (2)). This could imply the possibility of negative values for R. We can avoid this

by adding four times the double redundancy atom in the final definition of NS-Red, which

results in

NS-Red ¼ min
ij

IðXi
t;X

j
tþtÞ þ

X2

k

h
min

i
IðXk

t ;X
i
tþtÞ þmin

j
IðXj

t;X
k
tþtÞ
i
: ð12Þ

With this measure, we define the redundant information R as the minimum non-synergis-

tic redundancy, and is defined as

R½X; t� ¼ NS-Red½X; t;BMRP
�= KðBMRP

Þ ð13Þ

BMRP
¼ arg Bmin

NS-Red½X; t;B�
KðBÞ

: ð14Þ

where BMRP
is the partition that minimizes the non-synergistic redundancy (MRP meaning

minimum redundant information partition).

The atoms that make up each measure are indicated in Fig 2 using the redundancy lattice

representation. In this figure, we see that the revised effective information Eq (7) is constituted

by a synergistic component and a transfer component. Information transfer is particularly use-

ful for identifying dynamical regimes that maximize communication between parts of the sys-

tem. Therefore, using the F-ID framework, we will explicitly define information transfer for a

given bipartition B as follows:

T ½X; t;B� ¼
X

i

X

j
j6¼i

IðXi
t;X

j
tþtÞ �

X2

k

h
min

i
IðXk

t ;X
i
tþtÞ þmin

j
IðXj

t;X
k
tþtÞ � min

i;j
IðXi

t;X
j
tÞ
i
: ð15Þ

As we will see later, it is important to look for the partition that maximizes T , since such

maximum of the transfer information can be related, for instance, with the emergence of spe-

cific waves in both excitatory and inhibitory populations.
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Finally, we define a measure to identify the partition that minimizes information storage

(IS) in our system. We use the definition of IS presented in [58], which defines it as the sum of

F-ID atoms that do not change over time. This includes the sum of ISyn!Syn
@ , IUn1!Un1

@
,IUn2!Un2

@

and IRed!Red
@

which gives

IS½X; t;B� ¼ IðXt;XtþtÞ �
X2

k

½IðXk
t ;XtþtÞ þ IðXt;X

k
tþtÞ� þ

X

i; j
i 6¼ j

IðXi
t;X

j
tþtÞ

þ2
X2

k

IðXt
k;X

tþt
k Þ � min

i
IðXt

i ;X
tþt
k Þ � min

i
IðXt

k;X
tþt
j Þ

n o

þmin
i

IðXi
t;XtþtÞ þmin

j
IðXt;X

j
tþtÞ þ 4 min

ij
IðXi

t;X
j
tþtÞ

ð16Þ

Then again, we propose defining “Storage” as the normalized IS of the minimum informa-

tion storage partition, namely BMISP
, resulting in the following mathematical definition

Storage½X; t� ¼ IS½X; t;BMISP
�=KðBMISP

Þ ð17Þ

BMISP
¼ arg Bmin

IS½X; t;B�
KðBÞ

: ð18Þ

It should be noted that the redundant information (R), differentiated information (U), and

“Storage” are new measures inspired by the integrated information measure strategy of defin-

ing an information dynamics mode by identifying bottlenecks in a given informational prop-

erty of a system. With these measures, we can describe most of informational regimes of the

emergent phases of the neuronal system described in the next section.

EEG brain rhythms model

The model studied here for the generation in silico of brain rhythms was first introduced in

[22] to reproduce EEG α-rhythms obtained from activity recorded from the thalamus.

Fig 2. Measures to capture information dynamics. Information measures computed from information atoms presented in the

redundancy lattice. Each node has two PID atoms from the present to the future (α! β) indicated by a color code: synergistic

(red), unique 1 and 2 (orange and yellow) and redundant (blue). The colored area indicates the atoms that make up each

measure. Revised integrated information [37] (green), unique information (yellow) and non-synergetic redundancies (blue).

https://doi.org/10.1371/journal.pcbi.1012369.g002
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Recently, the model was formalized and extended in [23] and [24] to study the emergent oscil-

latory response of a balanced E/I neural population to variable noisy inputs, and explored the

possibility of stochastic resonance phenomena and the possible relation between brain rhythm

modulation and dynamic phase transitions. One of the main conclusions from these works is

that the model is capable of reproducing the features of familiar brain rhythms in EEG record-

ings just by varying the level of noisy uncorrelated activity that arrives at the neural population

from other areas [23]. Moreover, in [24] it has been demonstrated the important role of short-

term synaptic plasticity to induce explosive phase transitions from “non-pathological” to “epi-

leptic-like” oscillatory behaviour.

The model considers two coupled regular two-dimensional networks with periodic bound-

ary conditions (lattice on a torus). The first one, with NE excitatory neurons disposed in a

square lattice with cE rows/columns and the second one with NI inhibitory neurons disposed

also in a square lattice with cI ¼
cE
2

columns; in this way for each pair of excitatory columns an

inhibitory column fits in between, as shown in Fig 3. This model aims to capture the essentials

of the cerebral cortex, where excitatory neurons are reported to occur almost four times more

frequently than inhibitory neurons [60], a ratio which is assumed to correspond to a balanced

state of the cortex.

To coupling both lattices, each inhibitory neuron receives input from spikes generated

by 32 nearby presynaptic excitatory neurons and then sends spikes to 12 adjacent postsyn-

aptic excitatory neurons, as shown in Fig 3. Following previous works [22–24], we only con-

sider excitatory-inhibitory (E-I) and inhibitory-excitatory (I-E) interactions, as including

excitatory-excitatory (E-E) and inhibitory-inhibitory (I-I) connections does not signifi-

cantly alter the dynamical phase space or the emergent oscillatory behavior in the network

[24].

Using the leaky integrated and fire neuron dynamics to monitor the time dependence of

the membrane potential of each neuron, we describe the dynamics of the excitatory or

Fig 3. Model for generation in silico of EEG brain rhythms: Local dynamics and network topology. (A) The model

implements a minimal neuronal circuit, where excitatory and inhibitory pulses are different and act in different timescales. (B)

Schemes representing the network topology used in the present study as in [22–24]. Inhibitory neurons (blue dots) have 32 pre-

synaptic excitatory neighbours (red dots inside the dashed circle) while each of them are pre-synaptic neighbours of 12 excitatory

neurons (inside the solid line circle).

https://doi.org/10.1371/journal.pcbi.1012369.g003
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inhibitory membrane potential VE/I as

tm
dVE

i ðtÞ
dt

¼ Vr � VE
i ðtÞ þ

Vmin � VE
i ðtÞ

Vmin

XKI¼3

m¼1

Vin;I
m¼1
ðtÞ þ VnoiseðtÞ ð19Þ

tm
dVI

i ðtÞ
dt

¼ Vr � VI
i ðtÞ þ

Vsat � VI
i ðtÞ

Vsat

XKE¼32

l¼1

Vin;E
l ðtÞ ; ð20Þ

where the factors
Vsat � V

vsat
and

Vmin � V
Vmin

in the input terms were introduced to prevent physio-

logically unrealistic levels of membrane potential (too high or too low) around the resting

membrane potential that it is set to Vr = 0. The limits used were Vsat = 90 mV and Vmin = −20

mV. Furthermore, the time constant τm is equal to τ1(τ2) depending if the membrane cell volt-

age is above(below) the resting potential Vr [22]. The terms Vin;I=E
s

s ¼ m; l correspond to

synaptic inputs from a neighboring presynaptic neuron when a spike occurs. These inputs

vary depending on the nature of the spike (excitatory or inhibitory) and follow the equations,

Vin;I
m ¼ VI

0
Uxtsp

Y t � tsp
� �

e�
t� tsp
t2 ð21Þ

Vin;E
l ¼ VE

0
Uxtsp
½Yðt � tspÞ � Yðt � tsp � tmaxÞ� ; ð22Þ

where VE=I
0 is the maximum amplitude of synaptic input, U is the release probability of neuro-

transmitter vesicles (viewed also as the fraction of resources released) and xtsp
¼ xðtspÞ is the

fraction of neurotransmitters available (i.e. which can be released) after the arrival of an action

potential at time tsp [61] (see below). In this model, excitatory spikes generate synaptic inputs

in the form of square pulses of duration tmax, while inhibitory inputs generate pulses with

exponential decay with decay time constant τ2 [22].

The system is also driven by a noise term Vnoise which accounts for the excitatory inputs to

E neurons from neurons in other regions of the brain. This noise is modeled assuming the lack

of temporal correlations using a Poisson signal characterized by a noise level parameter μ. This

represents the mean value of external action potentials reaching each E neuron in 100 simula-

tion time steps, which means that an E neuron receives on average l ¼ m

100
external spikes at

each time step. In the simulations, we assume the existence of n external neurons so that the

probability that each E neuron will receive an external spike from one external neuron is λ/n.

Using a sufficiently large n, the external input per unit of time follows a Poissonian distribu-

tion. For all the simulations in this paper, we set n = 100.

We also account for the possibility of synaptic plasticity at the synapses and consider a sim-

ple mechanism of short-term depression (STD) in which synaptic efficacy, represented by the

fraction of available neurotransmitters x(t), decreases with the increase in the presynaptic fir-

ing rate. This is due to the rapid depletion of neurotransmitters inside the synaptic button and

their slow recovery after heavy presynaptic activity [62]. It has been demonstrated that this

STD mechanism has strong computational implications in the functioning of different neural

systems [63] such as an increase in memory capacity [64], optimal transmission of information

in noisy environments [65, 66], appearance of dynamical memories [67], and even it could be

a mechanism to avoid over synchronization [68]. The STD mechanism is introduced by the
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equation

dxðtÞ
dt
¼

1 � xðtÞ
trec

� UxðtÞd t � tsp
� �

; ð23Þ

with the delta function indicating that the second right-hand term occurs only for t = tsp. For

simplicity, concurrent mechanisms such as short-term synaptic facilitation [69] were not

included.

The set of Eqs (19–23) describes the dynamics of the neuron membrane potential below a

firing threshold, namely Vth, so when VE=I
i > Vth a spike is generated. Following previous

work, to introduce the possibility of absolute (ta) and relative refractory periods after the gen-

eration of a voltage spike at tsp, the firing threshold is considered to be time dependent follow-

ing the evolution

VthðtÞ ¼
Vsat tsp < t < tsp þ ta

V0
th þ ðVsat � V0

thÞe
� kðt� tsp� taÞ t > tsp þ ta

:

(

ð24Þ

Here, when a spike takes place, the threshold is first set to Vsat during a period of ta ms to

prevent any further spike generation accounting in this way for an absolute refractory period.

Then, it decays exponentially to its resting value V0
th with a time constant κ−1 that mimics the

existence of a relative refractory period.

All parameters, symbols and values used in our study are summarized in Table 1. Through-

out the text, we use the noise level μ and the recovery time constant τrec as the system control

parameters, while all the other parameters were fixed. All differential equations in the model

were numerically integrated using a simple first-order Euler method with time step Δt = 4/

100ms.

We have explored the dynamic phase space of the model by simulating 107 time steps for

different values of τrec and μ, reproducing the results presented in [24] and obtaining the differ-

ent dynamical regimes and phase transitions already reported. In all simulations, we used a

network with cE = 14 (NE = 196) and cI = 7 (NI = 49). To monitor the emerging rhythms in the

Table 1. Meaning, symbols and values of the EEG model parameters.

Parameters Symbols Values

Depolarized membrane potential time constant τ1 16 ms

Hyper-polarized membrane potential time constant τ2 26 ms

Synaptic resource recovery time constant τrec 0 to 300 ms

Proportion of synaptic resources released at each spike U 0.5

Maximum excitatory input amplitude VE
0

10 mV

Maximum inhibitory input amplitude VI
0

−40 mV

Resting membrane potential Vr 0 mV

Saturation membrane potential Vsat 90 mV

Minimum allowed membrane potential Vmin −20 mV

Excitatory pulse duration tmax 4 ms

Firing membrane potential threshold V0
th 6 mV

Absolute refractory period ta 4 ms

Relative refractory period time constant κ−1 0.5 ms

Number of external neurons n 100

Noise level μ 0 to 15

Integration time step Δt 0.04 ms

https://doi.org/10.1371/journal.pcbi.1012369.t001
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system, we define a local field potential (LFP) scheme, which consists of measuring the aver-

aged membrane potential of the network by segmenting the network into 5 regions, as shown

in Fig 4A. More precisely, We selected groups of 32 E and 9 I neurons and then computed the

averaged membrane potential at each time step over the whole group of neurons, obtaining in

this way and separately a kind of LFP time series for excitatory and inhibitory neurons.

At fixed parameters τrec and μ, the obtained averaged membrane potential over the neuron

group (or LFP) are expected to be more or less stationary as the system reaches its stationary

regime; therefore Fourier transforms should be enough to analyze the power spectrum of each

LFP time series. Furthermore, taking LPF measures of excitatory and inhibitory populations

separately allows us to explore the differences between rhythms in each population, analysis

that will not be possible in experimental data.

Beyond the membrane potential, the time series of the spike trains for each neuron was also

calculated by saving the state Xi of each neuron. The state is a Boolean variable Xi = {0, 1}, with

0 for inactive or silent neurons, and 1 for active or firing neurons. Time binning was also

applied to reduce the size of the time series and reduce the computational resources needed

for the analysis. Considering that the absolute refractory period in simulations is set to 100

time steps (4ms at Δt = 4/100 ms), we used bin widths of 100 time steps. If a neuron spikes in

that interval, the Xi has value 1, otherwise its value was 0. These spike trains were used to study

the information dynamics of the networks, as discrete variables are simpler to analyze with

information theory tools that relates on probability and/or entropy estimators.

To explore the whole phase space, and following the previous literature, we used the noise

level μ and the recovery time τrec as relevant control parameters. On the other hand, we use the

time average of the excitatory and inhibitory network activity as order parameters. These are

defined, respectively, as the proportion of active neurons (firing neurons) in a given time bin t

in each neuron population, i.e. rE½t� ¼
1

NE

XNE

i

Xi½t�
E

and rI½t� ¼
1

NI

XNI

i

Xi½t�
I
, where Xi[t] is the

Boolean state of a neuron in the time interval t (being 1 when the neuron fires in that time

Fig 4. Measurement schemes used for the study of the information dynamics of the network. (A) LPF-scheme: Five groups of

32 E and 9 I neurons (inside green circles) across the network were selected. The averaged membrane potential for each group

was calculated, generating a five-channel EEG-like time series. (B) Scheme forF-ID analysis: 12 E neurons (E neurons inside the

yellow circle) and 9 I (I neurons inside the green square) were selected. The states (active/inactive) of each of them were saved to

obtain time series of discrete Boolean variables.

https://doi.org/10.1371/journal.pcbi.1012369.g004
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interval or 0 otherwise). Simulations of 800 seconds of network evolution were performed

(2 × 107 time steps), which means that 2 × 105 time bins of 4 ms were obtained to compute the

network activity statistics at each point in the space of explored parameters (μ, τrec).
To study the information dynamics of the model, we selected the central group of 12 E and

9 I neurons (as shown in Fig 4B) and saved the individual spike train of a group of neurons;

this analysis in some sense considers only local interactions (interactions between first neigh-

bours). It is worth mentioning that the topology used here does not facilitate the presence of

long-range interactions, so observing an active information dynamics between distant neurons

is less probable; nevertheless, it is an interesting complementary analysis to be explored in a

future work.

From the spike time series, we compute the neuron state probability distribution by count-

ing the frequency of each neuron state, first for the joint state at time t and t + τ of the E and I

neuron groups, XE ¼ fxE
1
; . . . ; xE

12
g and XI ¼ fxI

1
; . . . ; xI

9
g, and second, for each possible bipar-

tition of each group, XE;1 ¼ fxE
1
; . . . ; xE

s g and XE;2 ¼ fxE
sþ1
; . . . ; xE

12
g for the E group, and XI;1 ¼

fxI
1
; . . . ; xI

pg and XI;2 ¼ fxI
pþ1
; . . . ; xI

9
g for the I group. From these distributions, it was possible

to compute the redundancies and, consequently, all other information atoms. Once we have

calculated the information atoms for each possible bipartition of our system, we can compute

the revised integrated information FR, the differentiated information U , the non-synergistic

redundant information R and other measures, as explained in the previous section.

Results

The results section is organized as follows: First, we present the phase diagram of the system,

with neuronal activity ρ (see Materials and methods) serving as the order parameter, indicating

the different dynamical phases and transitions lines in the model. Second, we delineate the

regions within the phase diagram where different rhythms emerge, identifying specific points

where each rhythm dominates. Third, we expose the behaviour of various information mea-

sures along the whole phase diagram, illustrating the relationships between informational

properties and phase transitions. Additionally, we focus on the insights gained from analyzing

local information dynamics regarding system behavior during rhythm emergence. Specifically

we report results concerning (i) how information dynamics is related to the emergence of

dominant β and δ rhythms in each population, (ii) the informational properties of regions

where there is coexistence of rhythms, and (iii) how information dynamics can discriminate

regimes where HFO rhythms emerge in both E and I neuronal populations.

Phase diagram, rhythms and information dynamics

Excitatory and inhibitory activity. The phase diagram based on the neuronal activity ρ of

the system in the (μ, τrec) parameter space is shown in Fig 5A. Three distinct regions are

observed. First, for very low noise μ, to the left of the continuous phase transition (white solid

line), we have a subcritical regime where both excitatory (E) and inhibitory (I) neuron popula-

tions are inactive (ρE/I� 0; black region I). The second region (II), between the continuous

phase transition and a discontinuous transition (white dashed line), is characterized by both E

and I neuronal populations being active, but in different regimes: a low-intermediate activity

regime (II.a) and a high-activity regime (II.b). Finally, a third region (region III) is observed

beyond the discontinuous transition, where excitatory activity ρE increases dramatically while

inhibitory activity ρI diminishes, as the synaptic recovery time constant τrec becomes too large

to allow effective coupling between excitatory and inhibitory neurons. Between phases II.a and
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III, there is a meta-stable region, previously identified in this model [24], which we indicate

here as the area between both white dashed lines.

We also measured the temporal variance of the activity ρ of both neuronal populations (Fig

5B). We found that excitatory populations have low variability in their activity, except for a

small region at the end of the metastable phase, whereas inhibitory populations exhibit rich

behavior in the high-activity region (II.b). This difference could be explained by the fact that

excitatory activity ρE is driven by external noise and modulated/stabilized by inhibitory activity

ρI, while this last depends solely on excitatory activity and lacks modulation, as I-I connections

were not included. In future work, we will explore the impact of I-I and E-E connections on

the activity fluctuations and on the information dynamics of this model.

Fig 5. Neuronal activity ρ features across the (μ, τrec) parameter space. The white solid line on the left shows a second-

order phase transition from a silent to an active state (AT). The white dashed line shows the emergence of an explosive first-

order transition. The region between dashed lines is a meta-stable phase, as described in [24]. (A) Temporal average of

excitatory and inhibitory neuronal activity hρi: The region between the second-order and first-order transitions shows what

appears to be a low activity intermediate phase (II.a), which gives place to a full active phase of high activity (II.b) for noise

values μ> 5. (B) Temporal variance of excitatory and inhibitory neuronal activity: The inhibitory population shows

complex activity patterns along the phase space with clear regions of high temporal variability of its activity (in phase II.b),

whereas the excitatory population has, in general, low temporal variability in its activity along the phase space. (C)

Temporal variance of Boolean states (X) of neurons: The maximum variance (gray region) appears to mark the transition

line between the low activity intermediate phase II.a and the high activity phase II.b. Note that this finding occurs for both

the excitatory and inhibitory neuronal populations.

https://doi.org/10.1371/journal.pcbi.1012369.g005
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Additionally, in Fig 5C, we illustrate the time variance of the neuron states X in stationary

conditions. A maximum (gray region) occurs at the transition from the low activity region (II.

a) to the high activity region (II.b), suggesting the presence of a phase transition, analogous to

the so-called low activity intermediate (LAI) phase transition [55]. This transition can be

understood as a distortion of the silent-active transition between phases I and III. When inhib-

itory activity ρI is introduced in the neuronal network, once the silent phase loses stability and

the absorbing-active phase transition takes place (transition between I and II), the inhibitory

population modulates the overall network activity, delaying the full transition to a high activity

state (phase II.b). This behavior has been previously described in simpler neuronal networks

with sparse topology [55, 70, 71].

In conclusion, from this analysis, we observe four characteristic regimes associated to the

network activity ρ:

• I) Silent phase: An absorbing or silent regime for low external drive μ, which is almost inde-

pendent of the time constant of the synaptic resource recovery τrec.

• II.a) LAI phase: A low activity intermediate region between the second-order and first-order

transition lines, occurring for small to intermediate values of μ and τrec in both neuronal

populations.

• II.b) High E/I activity phase: A high activity region for both neuronal populations under

high external noise μ and intermediate values of τrec (50≲ τrec� 200).

• III) Pure excitatory phase: Beyond a critical value of τrec, the activity ρI of the inhibitory pop-

ulation vanishes, leading to high excitatory activity driven by noise.

Next, we will explore the emergence of rhythms in the averaged membrane potential of

excitatory and inhibitory neurons and relate them to the emerging phases described above.

Dominant rhythms for relevant regions of the phase diagram. The relation between

specific rhythms and system dynamical phases can be important for understanding how par-

ticular rhythms in the brain can emerge in terms of some physiological information (for exam-

ple, level of synaptic plasticity in some brain areas in our case) and therefore to relate relevant

physiological parameters with cognitive functions associated with those rhythms. With this

aim, we track the main peaks of the power spectrum density (PSD) of the system’s averaged

membrane potential time series in different frequency bands, across the space of the relevant

parameters considered. The band classification we used was the following: (0.5 − 3.5)Hz for δ,

(7.5 − 12.5)Hz for α, (12.5 − 30.5)Hz for β, (30.5 − 60.5)Hz for γLow and > 60.5Hz for γfast. Fig

6 depicts a phase diagram indicating the areas where the different rhythms appear in both

excitatory and inhibitory populations.

The averaged membrane potential time series for each group of neurons at points of maxi-

mum power in different bands (colored stars in Fig 6) is shown in the S1 Appendix (see Fig B

in S1 Appendix). Additionally, we computed the power spectrum of both excitatory and inhib-

itory averaged membrane potential time series at fixed values of μ and τrec (marked by black

arrows in Fig 6A), which are presented in Figs C and D in S1 Appendix.

Fig 6 shows that low frequency rhythms emerge in a broad interval of synaptic recovery

time scales but in a non-trivial manner. For example, as described in [24], δ − β modulations

emerge in the meta-stable region (between phases II.a and III), but we also observe δ rhythms

coexisting with other rhythms for low τrec depending on the intensity of external noise μ. In

the high E/I neuronal activity phase (II.b of Fig 5), we observe the emergence of excitatory and

inhibitory HFOs (γfast). These regions are shown as red areas in Fig 6. The white areas indicate

regions where the power spectrum does not surpass the thresholds established to define a
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dominant rhythm. The threshold used were 1011 for bands from δ to β (in phase II.a) and γfast
(phase II.b) and 1010 for γLow, which is normally observed to have lower power in this model.

The emergence of high frequency oscillations (γfast), as well as other oscillations such as β
and δ waves, will be the focus of analysis in the last results subsection. Next, we will broadly

explore the information dynamics across the phase diagram.

Phase diagram and information measures. In the present model, we used the spiking

trains of excitatory and inhibitory neurons to compute various information measures across

the parameter space (μ, τrec) as described earlier (see Model and Methods section). Using these

information measures, we generated the phase diagrams presented in Fig 7, which include the

previously discussed phase transitions (indicated by white solid and dashed lines).

Each of the information measures exhibits different behaviors across the parameter space

and among neuron populations. In the excitatory population, we observe a clear peak in FR at

the continuous (or second-order) phase transition between phase I and III, and in the LAI

phase transition between II.a and II.b (see Fig 7A top). This peak indicates a relationship with

critical behavior in the network (see Discussion section). In the inhibitory population, within

phase II.a, we observe that integrated information is higher near the LAI phase transition (dot-

ted white line in Fig 7A bottom). In this region, β and γLow rhythms emerge in both popula-

tions. However, only in the inhibitory population we observe a relation between higher values

of FR and this middle frequency waves (see Fig 6B), suggesting that these intermediate fre-

quency rhythms in the inhibitory population may represent a different phenomenon com-

pared to the same rhythms in the excitatory population.

In region II.a, where low-frequency rhythms emerge in the excitatory population, informa-

tion is carried redundantly for large values of τrec (see Fig 7B top). These results suggest that

regions dominated by low-frequency oscillations (δ, θ, and α) are associated with redundancy

Fig 6. Phase diagram of emerging rhythms in the model. Rhythms observed in the (A) excitatory and (B) inhibitory neuronal population across

the phase diagram. Each color shows a specific band of brain rhythms. The regions were defined as areas in the parameter space where the

maximum PSD in a given band exceeds 1011, except for γLow where the threshold is 1010. Additionally, for the inhibitory case, the threshold for δ
waves is 2 × 1010. In the white regions, maximum PSD values in each band are below the corresponding thresholds, which means there is not a clear

dominant rhythm. The colored stars indicate the point of highest maximum power for each rhythm. The detailed PSD for each band is presented in

Fig A in S1 Appendix. The solid line indicates a second-order phase transition (absorbing-active phase transition); dashed line indicates a first-

order phase transition. Dotted and dash-dotted lines indicate the onset of transition to a LAI phase, for the excitatory and inhibitory population

respectively. Vertical and horizontal black arrows indicate the values of μ and τrec for which full spectrum is shown in Figs C and D in S1 Appendix

respectively.

https://doi.org/10.1371/journal.pcbi.1012369.g006
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in the excitatory population and, as we will see in the next subsection, are also linked to infor-

mation storage. Since redundancy may indicate robustness to failure, and assuming the model

captures fundamental properties of brain oscillations, low-frequency waves could be associated

to basal brain functions, which require greater robustness [26]. An in-depth analysis of the

informational properties of the system during the emergence of these rhythms is presented in

the following sections.

In Fig 7C (bottom), we observe that differentiated information exhibits an abrupt peak in

the inhibitory population along the discontinuous (or first-order) transition line from region

II.b to region III. This observation suggests that the explosive phase transition is associated

with a corresponding information dynamics transition. Identifying specific informational

properties linked to such explosive phase transition could pave the way for exploring the func-

tional capabilities or dysfunctional behaviour of neuronal systems at the edge of a discontinu-

ous phase transition.

Fig 7. Information dynamics across phase diagram for time delay τ = 1 bin (4ms). The white solid line represents the

previously explained second-order phase transition, while the white dashed line indicates the first-order phase transition

present in the system. The white dotted (dash-dotted) line indicates the maximum variance in the states of the I(E) neurons

(see Fig 5). The color code indicates the values of information measures. (A) Integrated informationFR, (B) Redundant

information R and (C) Differentiated information U in excitatory and inhibitory groups respectively. The neuron groups

consists of 12 E neurons and 9 I neurons as indicated in Fig 3B of Material and methods section.

https://doi.org/10.1371/journal.pcbi.1012369.g007
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In Figs H and I in S1 Appendix, we present similar phase diagrams of information dynam-

ics for FR, R and U with other values of time delay, namely τ = 10 bins and τ = 100 bins.

While in the excitatory group we see that the maximum integrated information FR is invariant

with the explored time delays, the other two information measures, i.e. redundancy and differ-

entiation, decrease as the time delay increases. This indicates that excitatory information

dynamics mainly involve short time scales, with the exception of the excitatory LAI phase tran-

sition. In the inhibitory population, however, both measures remain large but change in a

complex manner with time delay, indicating a complex information dynamics between inhibi-

tory neurons that spans over a larger time scale. This result reinforces the fact that inter-neu-

rons (even in this simple model) have distinguishable information processing capabilities [72],

which makes them important for understanding neuronal circuit functions, but also dysfunc-

tional behaviour [73].

Insights into wave emergence through information dynamics

In addition to the various phase transitions occurring in this model, an intriguing property is

the emergence of low, medium, and high-frequency oscillations in both populations in a com-

plex manner. Building on our understanding of neuronal activity and the emergence of

rhythms (see previous sections), our main goal in this section is to understand the relationship

between rhythms emergence and information dynamics. Specifically, we aim to characterize

the informational properties of the system in regions of the parameter space where δ, β, and

γfast oscillations emerge.

Information dynamics of β waves and rhythms coexistence regimes. In Fig 7A, it is

observed that FR in the inhibitory population reaches higher values in Phase II.a close to the

transition to Phase II.b (white dotted line). As presented in Fig 2, the effective information,

which constitutes the backbone of the Revised Integrated information FR measure, have two

main components, “Synergy” and “Transfer” of information. Exploring information transfer

as defined in Eq (15), we found that between inhibitory neurons, this measure reaches maxi-

mum values in the meta-stable region (transition between Phase II and III), close to the transi-

tion between Phase II.a and II.b (see Fig 8C). Simultaneously, observing the emergence of β
waves in both populations (see Fig 8A and 8B), we identified a relationship between maximum

information transfer between inhibitory neurons and β waves.

To further elucidate the relationship between β waves and information transfer, in Fig 8D,

we show that the maximum power spectrum of β waves in phase II.a for both populations (x

and y axes) correlates with the maximum information transfer in the inhibitory group (see col-

orbar code). Upon visual inspection, we see that the peak in inhibitory information transfer

(with a value larger than 0.25) coincides with the region where β waves dominate in both pop-

ulations (black arrows in Fig 8A, 8C and 8D). However, when β waves emerge predominantly

only in the excitatory neurons but not in the inhibitory ones—i.e. 0.5 ⪅ μ ⪅ 3, see also red

arrow position in Fig 8A, 8C and 8D –, there is no correspondence with maximum informa-

tion transfer, indicating the existence of two different informational regimes for β wave

emergence.

In Fig 9, we focus on data points across different noise levels μ while maintaining the same

τrec value (τrec� 180). We observe that when β waves have a PSD peak at approximately the

same power in both populations (for a noise level μ� 4.4 in panels A and B for excitatory and

inhibitory respectively), there is a concurrent peak in redundancy (green × symbol data) and

information transfer (blue × symbol data) in the inhibitory group (panel B). Although there is

also an increase in information transfer in the excitatory group (panel A blue × symbol data),

it is less pronounced. For a noise level of μ� 1.8, we observe a second PSD peak in β waves,
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which coexists with lower frequency rhythms (Fig 9E). This second peak shows also a peak in

redundancy (green × symbol data on panel A around μ� 1.8) with almost no information

transfer (blue × symbol data in panel A around μ� 1.8) in the excitatory population, indicat-

ing a different information dynamics at play.

In conclusion, we observe that the region where low (δ, θ and α) and β waves coexists (see

Fig 9C and 9E), presents an information dynamics clearly distinguishable from the region

where β waves dominates alone (see Fig 9D and 9F). In the former, there is a prevalence of

redundancy and differentiation (both related to low-order information storage dynamics

[58]). Conversely, in the latter, there is no differentiation in excitatory neurons, and maximum

transfer occurs in inhibitory neurons. This suggests that in the latter case, the information

dynamics is less related to information storage and more to information transfer.

Dominant δ waves and excitatory information transfer. In Fig 10 we explore the meta-

stable region between phases II.a and III [24]. Here, dominant δ waves emerge near the second

bifurcation line of this region (solid black line). Interestingly, the maximum information trans-

fer coincides with the emergence of δ waves in the excitatory population, indicating a potential

functional relationship. However, the emergence of δ waves in the inhibitory population does

not correlate with information transfer. To confirm this relationship beyond simple visual

Fig 8. Relation between β rhythms and information transfer in inhibitory neuron population. The figure only

illustrate regions where β rhythms dominate. (A, B) Color maps show clear regions of maximum of PSD for β rhythms

in Phase II.a, for both excitatory (A) and inhibitory (B) neuron populations. White regions correspond to other phases

(without dominant β waves) that were ignored. Panel (C) shows the maximum transfer of information (see colorbar

code on the right of panel D) between partitions of inhibitory neurons within the Phase II.a. Panel (D) illustrates the

transfer of information of the bipartition that maximize information transfer in the inhibitory group. Maximum

information transfer increases with increasing power of β waves in both neuron populations (region indicated by black

arrow), showing that in our system, β waves are related with information transfer between inter-neurons. Panels (A, C,

D) depict, however, that there are points where we see a high PSD in β, mainly in the excitatory population (red

arrow), that does not relate with an increase in transfer information. Dotted black horizontal line indicates the value of

τrec and range of μ used in Fig 9.

https://doi.org/10.1371/journal.pcbi.1012369.g008

PLOS COMPUTATIONAL BIOLOGY Information dynamics of in silico EEG Brain Waves

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012369 September 5, 2024 21 / 41

https://doi.org/10.1371/journal.pcbi.1012369.g008
https://doi.org/10.1371/journal.pcbi.1012369


inspection of Fig 10A and 10C, we examine the dispersion plot of maximum inhibitory and

excitatory δ power and maximum information transfer (colorbar code of plotted data points)

in Fig 10D. Here, we observe that in the meta-stable region, the maximum information trans-

fer between excitatory neurons indeed increases with the power of excitatory δ waves. While

inhibitory δ waves do not exhibit a clear relationship with excitatory information transfer,

unlike β waves, where we have seen that their emergence in both populations correlates with

inhibitory information transfer. These findings highlight the inherent complexity of wave

emergence and informational properties in neuronal populations.

Fig 9. Comparison of δ − β rhythms coexistence and emergence of dominant β rhythm shows different information

dynamics profile. Panels (A, B) depict maximum PSD in δ, θ, α and β bands and three information measures (Transfer,

Redundancy and Differentiation) within Phase II.a for fixed τrec� 180. (A) Excitatory and (B) Inhibitory neuron populations.

As observed in Fig 8, information transfer (blue × symbol data), but also Redundancy (green × symbol data) in inhibitory

group are maximum for the same μ that maximizes PSD for β rhythms in both populations (vertical dotted line in μ� 4.5). The

inhibitory differentiation (magenta × symbol data curve) increases considerable close to the discontinous transition between

phase II.b and III (see 7C bottom). Here, we observe the beginning of this behaviour, which are not related to emerging waves

in phase II.a. We also observe a first peak of PSD of β waves coexisting with slow waves—cf. panel (E) red PSD—that does not

relate with a peak in information transfer (vertical dotted line for μ� 1.8 in panel (B)). In this “waves coexistence” regime we

observe a relatively small peak in Redundancy in excitatory neurons but no information transfer (see green × symbol curve and

blue × symbol curve on panel (B)). Panels (C, D, E, F) illustrate the averaged membrane potential fluctuations and the

corresponding PSDs for a group of excitatory and inhibitory neuron populations for μ� 1.8 (panels C and E) and μ� 4.5

(panels D and F). The membrane fluctuations features are clearly different and, while in (C) we have a rhythm with multiple

frequency waves including slow and fast components (i.e. δ − β waves coexistence), in (D) we observe a clear dominant β
rhythm regime.

https://doi.org/10.1371/journal.pcbi.1012369.g009
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In summary, we observed an intriguing interplay between the existence of a dynamical

phase transition (in this case a discontinuous transition with meta-stability), a specific local

information dynamics mode (related with a maximum information transfer between excit-

atory neurons) and the emergence of a specific meso/macroscopic phenomenon (the genera-

tion of δ waves). Information dynamics provide then insights into the potential functions of

the system, while the occurrence of meta-stability is associated to the possibility of two distinct

neuronal activity states (up and down). Additionally, the emergence of specific waves, such as

δ waves, can serve as a macroscopic measure to experimentally identify this regime, allowing

us to test hypotheses and establish connections with neuroscience literature concerning the

functional significance of this δ brain rhythm.

Information storage as an ubiquitous phenomenon related to wave emergence and

coexistence. In Fig 11 we present the values of information storage in the phase II.a following

the storage measure defined in Eq (18). We observe that in the excitatory population, informa-

tion storage is ubiquitous to the coexistence of different rhythms (Fig 11A). Note, for example,

that for noise levels 1< μ< 4, where we identified the coexistence of α, θ, and β waves, we also

observe high values of information storage. However, the maximum storage values occur both

in the meta-stable region (where dominant δ waves were identified) and close to the LAI phase

transition where β waves dominate the spectrum (see Fig 6A). This suggests, in general, a rela-

tion between emerging waves in the excitatory neuron population and an increase of informa-

tion storage.

Fig 10. Relation between δ rhythm emergence in the meta-stable region and information transfer in excitatory

neuron population. Color maps in panels (A,B) show maximum PSD of δ rhythm in meta-stable region between II.a

and III for excitatory (A) and inhibitory (B) neuronal populations. Panel (C) shows the maximum transfer of

information between groups of excitatory neurons. White regions in panels (A-C) are part of the parameter space that

we are not taking into account in the present analysis, as they belong to other phases. Panel (D) depicts the information

transfer T of a bipartition that maximizes information transfer in excitatory populations. Maximum information

transfer increases with increasing power of the emerging δ waves in the excitatory population, while shows no clear

correlation with δ waves in inhibitory population.

https://doi.org/10.1371/journal.pcbi.1012369.g010
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On the other hand, the inspection of the Fig 11B shows that the inhibitory population

exhibits higher storage values only close to the LAI phase transition, with maximum storage

values occurring close to the meta-stable region, where we also observe the strongest PSD in β
band (see Fig 8B). The behavior of our storage measure in both neuronal population indicates

once more that inter-neurons dynamics have inherently distinct functional roles in the system

with respect to excitatory population dynamics. As a consequence, a rhythm generated in such

inhibitory neuronal population possess different functional properties with respect to the same

rhythm in the excitatory neuronal population. This fact impedes in practice to establish a sim-

ple, general connection between particular rhythms and circuit functions; we must at least dif-

ferentiate in which population the rhythms are being generated. We will elaborate further on

this point in the Discussion section.

High-frequency oscillations emerge in two opposing information dynamics regimes.

As shown previously, in phase II.b we observe the emergence of high-frequency oscillations

(HFOs) in the range (140 to 190 Hz). These rhythms exhibit two different regimes correspond-

ing to distinct regions: one where rhythms emerge in both neuronal populations with frequen-

cies around 170–190 Hz, and another where rhythms emerge only in the excitatory population

at lower frequencies (as shown in top panels of Fig 12. A detailed description of these rhythm

properties is provided in the S1 Appendix. We demonstrate that when HFOs emerge domi-

nantly in both populations, they exhibit greater amplitudes and the same frequency. In con-

trast, when they dominate only in the excitatory population, inhibitory oscillations have

higher frequencies but negligible amplitudes (see Figs E and F in S1 Appendix). The emer-

gence of HFOs cannot be explained solely by the high neuronal activity ρ present in this phase.

While the temporal variance of inhibitory activity ρI correlates with the emergence of γfast in

the excitatory population, the reverse is not true (see Fig G in S1 Appendix). These results sug-

gest that simply observing the statistics of a global order parameter cannot fully explain the

emergence of these rhythms, indicating a more complex underlying mechanism.

To deeper explore into the complexity observed in HFO emergence in our system, we

examine the information dynamics of the neuronal system in phase II.b. Initially, we calculate

Fig 11. Relation between information storage in excitatory and inhibitory neuron populations and rhythms

emergence. Information storage on phase II.a in (A) excitatory and (B) inhibitory neuronal groups. We observe higher

values of information storage in excitatory population in the meta-stable region where δ rhythms have their higher

PSD values (see Fig 10A), and also close to the LAI phase transition (see Fig 8A) where we observe the higher

maximum PSD in the β band (as shown previously in Fig 8). Additionally, we can see that information storage in

excitatory neurons seems to be an ubiquitous information dynamics for waves emergency in the region where we have

coexistence between α, θ and β rhythms (as shown when 1⪅ μ ⪅ 4 in Fig 6A), where also there is also an increase in

redundancy in excitatory neurons (see Fig 7B top). This indicates that, in phase II.a, high level of information storage

in excitatory neuronal population is related with both, a clear rhythm emergence with strong power (as occurs for δ
and β in the regions indicated) and coexistence of low frequency waves. Implications of this result will be discussed

later in the text.

https://doi.org/10.1371/journal.pcbi.1012369.g011
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the time-delayed mutual information (TDMI) for each neuron group (12E and 9I) across the

parameter space within the region of interest. The results, depicted in Fig 12, feature solid and

dashed black curves denoting regions where excitatory and inhibitory γfast dominate, respec-

tively (A and B top panels). We note that high values of TDMI in the excitatory neuron group

does not correlate with regions where excitatory γfast rhythms emerge (see bottom A panel).

Conversely, the area where inhibitory γfast waves prevail precisely corresponds to a zone of low

TDMI in the inhibitory population (blue region enclosed by the black dashed line at the bot-

tom of 12B). While other regions of low TDMI exist, they lie outside the domain of high excit-

atory activity ρE (phase II.b), rendering direct comparison with phase II.b inappropriate as

they pertain to generally lower neuronal activity levels.

Lower TDMI indicates that the knowledge of a past state provides less information about

the future state and vice versa, making the system less predictable or more random. Con-

versely, identifying a clear region with lower TDMI that correlates with the dominant inhibi-

tory γfast frequency region suggests that, from an informational perspective, these rhythms

differ fundamentally from the lower frequency excitatory γfast. These findings imply that in

our system, higher frequency HFOs that emerge simultaneously and at the same frequency in

both neuronal populations exhibit poorer informational properties, and therefore, less func-

tional dynamics. To gain deeper insights, we will explore various information measures associ-

ated with excitatory and inhibitory γfast waves.

Excitatory γfast rhythms appear to be correlated with higher redundancy in inhibitory neu-

rons, alongside higher differentiated (see Fig 13C). High redundancy suggests greater robust-

ness to failures, while high differentiation implies specialization, indicating that each partition

carries distinct information and performs different operations. Together, these findings

Fig 12. Time-delayed mutual information and the emergence of fast γ rhythms. (Top) PSD peak frequency of

oscillations in excitatory (A) and inhibitory (B) neuron groups, where color opacity is directly proportional to the

power spectrum density. (Bottom) Time-delayed mutual information in (A) excitatory and (B) inhibitory neuron

groups. The solid black line indicates the region where high frequency excitatory oscillations γ emerge (see Fig 6A).

The dashed black line indicates the region where inhibitory fast γ oscillations with PSD>1 × 109 coexist with

excitatory oscillations with PSD>1 × 1011 (see Fig 6B). Panel (B) bottom depicts that there is a clear relationship

between lower mutual information and inhibitory fast γ oscillations. Lower mutual information indicates that the

system is less predictable, which means knowing pass states gives less information about the future of the system and

vice versa. Dotted and dashed-dotted black lines indicate the line of maximum variance of the inhibitory and

excitatory neuron states X, respectively.

https://doi.org/10.1371/journal.pcbi.1012369.g012
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suggest that, the dynamical regime dominated by excitatory γfast oscillations exhibits a better

capacity for robust, specialized computational tasks. On the other hand, there is a clear nega-

tive correlation between inhibitory γfast power and TDMI in inhibitory neurons (see Fig 14).

Notably, this crucial insights are attainable solely through the current information dynamics

Fig 13. Two different regimes of γfast rhythms are discriminated by the information dynamics. Regime 1 (left panels):

representative (μ,τrec) points in phase II.b, where γfast dominates only in excitatory (E) neuron population. Regime 2 (right

panels): representative (μ,τrec) points in phase II.b where γfast dominates in both E and inhibitory (I) populations. Panels (A,B)

depict the dispersion of the points (shown also in the insets) along the Differentiated information U in E neurons (x-axis) and

Redundant information R in I neurons (y-axis) plane, for Regime 1 (A) and 2 (B). The inset of Panel (A) shows the maximum

PSD of γfast band of E neuronal population in phase II.b, with exception of points corresponding to Regime 2 enclosed by a

dashed black line and also appearing in the inset of panel (B). Panels (C,D) shows mean and standard deviation of the information

measures values U in E and R in I obtained by grouping them into PSD intervals. The intervals are indicated in the discrete

colorbar code of panel (D). Regime 1 (A and C) shows that the points with high intensity of excitatory γfast oscillations also have

the highest U and R observed in the data. Regime 2 (B and D) shows less redundant information in the I population. Panel (C)

clearly shows that, in Regime 1, higher U and R are associated with dominant high frequency γ oscillations (PSD>1010).

However, panel (D) shows that, in Regime 2, there is almost no increase in redundant information as γfast band maximum PSD

increases. Spider graphs on top of panels (A,B) show, for each γfast regime, information dynamic diagrams for two points with

high values of maximum PSD in γfast band in the E neuronal population. The representative points were indicated with stars in

panels (A,B) and their insets. There, the star’s color indicates the maximum PSD of γfast in excitatory population following the

colormap code presented in the (A,B) panels.

https://doi.org/10.1371/journal.pcbi.1012369.g013

PLOS COMPUTATIONAL BIOLOGY Information dynamics of in silico EEG Brain Waves

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012369 September 5, 2024 26 / 41

https://doi.org/10.1371/journal.pcbi.1012369.g013
https://doi.org/10.1371/journal.pcbi.1012369


framework, rather than traditional approaches such as order parameter statistics or spectral

analysis of neuron membrane fluctuations.

With regard to integrated information in both excitatory and inhibitory groups, we

observed that points of maximum excitatory γfast power exhibit lower integrated information

levels (Fig 15A), although some exceptions are noted. Conversely, while inhibitory γfast does

not appear to be related to the level of integrated information in the excitatory group, it exhib-

its a clear correlation with lower values of integrated information in the inhibitory group (Fig

15B). The clear association between high frequency oscillations in the inhibitory group and

reduced integrated information supports the observation of lower TDMI, as integrated infor-

mation contributes to the TDMI measure. This behavior agrees with our interpretation that

Fig 14. Emergence of γfast rhythms in I groups and information dynamics. Colors indicate the level of maximum

power density in the γfast band. The data points in (A) correspond to points of high activity ρI of the inhibitory

population (region II.b) as shown in the inset (C) of the figure. The scatter plot of differentiated (U) and redundant

(R) information in inhibitory groups, respectively, shows that the points of highest intensity of inhibitory fast γ
oscillations have the lowest U and R observed in the data. These points are those where excitatory and inhibitory

oscillations coexist (see Fig 13F). (B) By grouping data in power spectrum density (PSD) intervals and computing the

mean and standard deviation of time-delayed mutual information (TDMI), we observe a clear inverse relation between

inhibitory oscillations amplitude and mutual information. The black dashed lines in (B) are the averaged TDMI of all

data.

https://doi.org/10.1371/journal.pcbi.1012369.g014

Fig 15. Emergence of γfast rhythms and the integrated information. The data points correspond to the high activity

ρI of the inhibitory population (region II.b) as in Figs 13 and 14. The scatter plot of these points shows the values of the

integrated information (FR) in the excitatory and inhibitory groups at each point. The colors indicate the maximum

power density level in the (A) excitatory and (B) inhibitory γfast band. Points with high power for γfast appear to

concentrate in regions of lower integrated information in inhibitory groups.

https://doi.org/10.1371/journal.pcbi.1012369.g015
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inhibitory γfast waves in our system emerge in more random dynamical regimes, where inter-

neurons may be less capable of sustaining higher levels of information processing.

Discussion

Model choices and network topological details

The neuronal network model considered in this work follows a specific topology, consistent

with approaches established in previous literature. However, the main findings regarding the

phase diagram and wave emergence are robust to modifications of this topology. For instance,

introducing random connections between excitatory-inhibitory (E-I) and inhibitory-excit-

atory (I-E) neurons by reconnecting links with a probability p does not alter the observed

phase transitions and rhythms, as demonstrated in [24]. However, the emergence of γ waves is

sensitive to local topological details, resulting in variations in the exact regions of the phase

diagram where these rhythms emerge and in their frequency power. This sensitivity is

expected, as γ waves are closely associated with local circuit dynamics [74–76]; therefore, their

emergence depends on specific local connectivity details.

With regard to model parameter choices, as outlined in the Methods section, this model

offers a considerable number of parameters that can be explored as control parameters for its

dynamics. However, compared to compartmental detailed Hodgkin-Huxley-like conductance

models, the number of parameters here is considerably smaller. The selection of values for

parameters such as membrane time constants and maximum amplitudes was informed by pre-

vious literature on this model [22–24] and allows to reproduce in silico actual EEG data fea-

tures, which simplified our task by providing prior knowledge of relevant parameters and their

ranges. Nonetheless, further exploration of the impact of other parameters on system dynam-

ics, such as the maximum amplitudes of synaptic currents between neurons or the proportion

of synaptic resources released at each spike, could be the focus of future works.

In our system, the fact of not considering external inputs on the inhibitory neurons desig-

nates them the role of interneurons. Through feedback with excitatory neurons, interneurons

are responsible for locally controlling neuronal circuits activity, and for processing and trans-

ferring information in neuronal circuits [72, 77]. The literature more often assumes that

greater diversity in the type of neurons induces a large complexity of the information flow of

the neuronal circuit, and at least two types of neurons, parvalbumin (PV) and somatostatin

(SST), are often considered to explore this complexity [78]. However, it is surprising to see

that even dough in this model all interneurons are the same, a high complex behavior already

emerges, as we have observed in the information dynamics (see Fig 7 bottom in phase II.a).

This complexity arises primarily due to the introduction of short-term synaptic plasticity, a

simple homeostatic mechanism that generates heterogeneity in coupling strength between

neurons, facilitating a complex interplay between excitation and inhibition. This conclusion is

supported by the observation that when this homeostatic mechanism is disabled (τrec� 0), no

complex pattern in the information dynamics is observed, regardless of the noise level μ
considered.

In summary, even though our model considers a very specific topology and many of its

dynamical parameters were fixed at specific values, this apparent fine-tuning is not problem-

atic. Previous literature demonstrates the robustness of the main properties of this model for

topology modifications and different parameter values. Therefore, since the emergence of

rhythms and the different dynamical phases observed are robust, we are pretty sure that our

conclusions regarding the information dynamics related to phase transitions and rhythms

emergence are also robust, at least for this specific model. Exploring the information dynamics
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related to phase transitions and rhythms emergence in different neuronal network models will

be the focus of future research.

Phase transitions and information dynamics

As we observe through information dynamic analysis of the phase diagram, some information

measures are clearly sensible to the existence of phase transitions. A concise summary of these

observations is provided below:

• Redundancy, information transfer and storage in the excitatory population have peak values

in the discontinuous transition between phase II.a and III, in the metastable region.

• Differentiation in inhibitory population shows a peak in the discontinous transition from

phase II.b to phase III.

• Integrated information in excitatory population have a peak in the continuous phase transi-

tion between I and III, and also in the LAI phase transition between II.a and II.b.

These observations are not surprising, as informational tools like mutual information have

demonstrated to be useful in detecting [79, 80] and understanding phase transitions in both

low and high-dimensional systems [81]. It’s worth noting that a peak in any of our information

measures also corresponds to a peak in time-delayed mutual information, as they are compo-

nents of it. However, what is intriguing is that continuous and discontinuous phase transitions

in different neuronal populations exhibit peaks in different information modes. This suggests

that, from an informational perspective, they represent fundamentally distinct phenomena.

One of the most intriguing findings from our study is the maximization of excitatory inte-

grated information during the LAI phase transition. This phenomenon may be linked to the

influence of critical or quasi-critical regimes [82–84] on information dynamics. Previous

research has shown that critical regimes are associated with the maximization of integrated

information in simpler models, such as the Ising model [85, 86] and the Kuramoto model [37,

87]. However, in these models, the peak of F is typically associated with a clear second-order

phase transition. In contrast, in our case, we observe a closer association with an LAI phase

transition and the emergence of a quasi-critical behavior, which is influenced by factors like

the presence of inhibition and homeostatic mechanisms, such as short-term plasticity. This

transition can be viewed as a disrupted second-order transition, similar to what occurs in

sparse neuronal networks when inhibitory elements are present [71].

Another interesting phenomenon that reinforces the idea of FR as an indicator of critical

behaviour is the observed time scale invariance in FR for the two decades of time delay τ
explored. This could be related to large time correlations in neuronal activity. Large time cor-

relations are expected in systems close or in a critical state [88]. Therefore, FR, being sensitive

to the phase transition, could also be sensitive to large time scale correlations.

Moreover, FR possesses a crucial additional feature as a critical behavior indicator. It suc-

cessfully detected both the continuous (second-order between phase I and III) and the LAI

phase transition (between II.a and II.b) even when measured over a small sample of neurons

(only 12 neurons). Conversely, other common criticality identifiers, such as the existence of

power laws in the size and duration of neuronal avalanches, could not be accurately measured

in such a small population. Therefore, FR emerges as a potent tool for studying criticality in

actual neuronal networks and experimental data.

Finally, it’s worth mentioning thatFR was proposed as a universal indicator of complexity

[37]. Concurrently, critical phenomena, such as avalanches following power-law distributions,

have been associated with the maximization of complexity in actual neuronal systems [89].
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Now, our results demonstrate that a well-defined second-order phase transition and an exact

critical point are not necessary to maximize integrated information. Instead, it appears that a

“relaxed” phase transition, exemplified by the LAI phase transition, is sufficient to exhibit

complexity associated with criticality. In this context, our findings could contribute to advanc-

ing the critical brain hypothesis. A proper characterization of this LAI phase like transition

and it’s relation with integrated information would be the scope of future work.

Rhythms, informational properties, and functions

Through our analysis of information dynamics across the phase diagram, we identified some

clear relationships between certain informational properties and rhythms emergence in excit-

atory and inhibitory neuronal populations. We summarize these as follows:

• δ rhythms in the excitatory neuronal population are related to the maximization of informa-

tion transfer in this population (see Fig 10), as well as to information storage (see Fig 11A).

• The coexistence of θ, α, and β rhythms shows a relation to information storage (see Fig 11A).

• Dominant β rhythms in both populations are related to the maximization of information

transfer in the inhibitory population (see Fig 8C) and high information storage (see Fig 11).

• β and γLow rhythms in the inhibitory population are related to higher integrated information

(see Fig 7A bottom) and information storage (see Fig 11B) in phase II.a.

• Dominant γfast rhythms emerging only in the excitatory population show a relation to high

redundancy in the inhibitory population while maintaining differentiation in the excitatory

population (see Fig 13).

• The emergence of γfast rhythms in both neuronal populations shows poor informational

properties in the inhibitory population, with generally low mutual information (see Fig 14).

• γfast rhythms are related to lower integrated information levels in inhibitory neurons (see

Fig 15).

In relation to low-frequency waves, mainly δ rhythms, we observe high information storage

and information transfer, primarily in the excitatory population, within parameter space

regions where these rhythms dominate. This indicates potential functional roles associated

with the dynamics that originate such rhythms. Functions commonly associated with δ
rhythms include memory consolidation and deep NREM sleep [90], a fact which agrees with

the high information storage regimes we found. A previous study found a strong correlation

between the power spectra of δ rhythms (0.95–2 Hz) and active information storage (AIS) in

the prefrontal cortex using an interesting and novel spectrally-resolved measure [91]. Our

results are consistent with these experimental observations. However, we focus on microscopic

scale neuronal activity (neuronal raster plots) in a relatively simple in silico neuronal medium,

whereas the cited study examines local field potential (a mesoscopic measure) in the cortical

layers of ferrets. The agreement between our finding and experimental results indicates that

the relationship between low-frequency waves and information storage is likely a robust multi-

scale phenomenon.

Additionally, δ waves are also linked to working memory [53], which is compatible with

both information storage and information transfer. However, we could not link the low-fre-

quency oscillations in the inhibitory population to any specific information dynamics mode.

This may be due to the lower power of the emerging δ rhythms in the inhibitory population

(PSD maxima less than 5 × 1010) compared to those emerging in the excitatory neuron popula-

tion (with maxima PSD more than 4 × 1011), as shown in Fig A in S1 Appendix. This suggests
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that, as inhibitory δ waves are not a dominant phenomenon in any region of parameter space

explored, it is difficult to relate them to specific informational properties.

In phase II.a, β rhythms exhibit the clearest dominance both in the extent of the parameter

space area where they emerge and in their frequency power. These waves show a strong corre-

lation with informational properties such as information transfer between inhibitory neurons

and information storage in the excitatory population. The properties related to β emergence

suggest strong functional capabilities for the system, as storage, transfer, and processing of

information are key components of working memory [92]. In the literature, in fact, working

memory is commonly associated with β waves [54], particularly in relation to linguistic tasks

[93] and verbal information storage [94]. Finding that the emergence of dominant β waves in

our simple model is related to informational properties similar to those reported in cognitive

and behavioral neuroscience literature, is an intriguing fact which deserves further

investigation.

In the integrated information FR phase diagram for inhibitory neurons (see Fig 7A bot-

tom), we observed that, in phase II.a, the region where β and γLow rhythms emerge exhibits

higher integrated information. This suggests that the network in this region of parameter

space relies on the whole system rather than its parts (synergy) to define its time evolution.

Synergistic regimes in a neuronal system are typically associated with higher-order and com-

plex cognitive functions [26, 95]. Concurrently, β and γ waves have historically been linked to

“mental activity” [96]. Functions commonly attributed to these rhythms include focusing,

action-selection network functions, decision making, and motor planning—activities that

require heightened states of awareness [96, 97].

Related to phase II.b and the emergence of γfast rhythms, in the region of high inhibitory

redundancy, dominant oscillations have a frequency of around 145 Hz (see Fig 12A top and

Fig F in S1 Appendix). This frequency falls within the γ frequency range, which is often associ-

ated with information processing in neuronal circuits [76]. Although the precise cognitive

functions and mechanisms of these oscillations remain subjects of debate [51], the information

dynamics properties observed in our study—excitatory differentiation combined with higher

interneuron redundancy—suggest that, in this regime, our model is better suited for robust

parallel information processing, akin to what is expected in biological neuronal networks.

Higher frequencies (>250 Hz) are more often associated with pathological brain activity

[12, 18], with some exceptions. In our model, the γfast frequencies that exhibit less functional

information dynamics are around 190 Hz (see Fig 12B top and Fig F in S1 Appendix), closer to

the upper limits typically associated with physiological high-frequency oscillations. Therefore,

this result is in agreement with the common understanding related to HFOs: higher frequen-

cies are more frequently linked to pathological states, or in our case, to more random interneu-

ron dynamics.

Our results are especially intriguing because the system we are studying here is, a priori, too

simple and not particularly designed (fine-tuned) to capture any specific properties of actual

biological neuronal networks. Even more intriguing is the fact that the region where excitatory

and inhibitory γfast oscillations coexist and share the same frequency—almost 200 Hz—is also

the region of phase II.b where mutual information is minimal (as shown in Figs 13 and 14).

This suggests that this “synchronization” of excitatory and inhibitory population frequencies is

related to a disruption in information flow in the inhibitory population, making the dynamics

of this population more unpredictable or random, which is what we hypothesize could be asso-

ciated to pathological HFOs.

Throughout our results, we observe that the relationship between emerging rhythms and

informational properties depends on the neuronal population in question. It is well known

that different neuronal populations have distinct dynamical properties and functional roles
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[98, 99]. Therefore, it is expected that excitatory and inhibitory groups of neurons, with their

different individual dynamics—including, e.g., synaptic receptors operating at different time

scales—will exhibit different informational properties when functioning as a group. Moreover,

recent experimental results show that even the same neuronal group can perform different

primitive computations (e.g., carrying, storing, transferring information) depending on the

dynamical regime [100]. Similarly, our results demonstrate that excitatory and inhibitory pop-

ulations can exhibit a wide range of informational properties depending on dynamical

parameters.

However, there is a significant implication of these results: the notion that neuronal popula-

tion rhythms can be straightforwardly related to neuronal functions is challenged. Our find-

ings indicate that such rhythms cannot be robustly associated to specific functions without

first identifying the neuronal population source of the rhythms. While it is possible to disen-

tangle subpopulational sources of signals in mesoscopic data such as local field potentials

[101], this is not the case for macroscopic signals such as EEG recordings. Therefore, our

results suggest an upper bound to the degree of specificity with which one can relate function

and macroscopic neuronal rhythms.

To some extent, these results help to understand why, even within specific brain regions,

the same waves could be associated with a variety of functions [102]. For example, β waves are

related to sensorimotor control and motor preparation, but also to top-down attention and

working memory allocation [54]. Our results suggest that this could be a consequence of dif-

ferent populations operating in different information dynamics regimes while exhibiting the

same collective oscillations.

It’s important to clarify that none of our results should be considered conclusive regarding

the relationship between information dynamics and rhythms emergence. This is because we

explored a specific model that, as common sense dictates, cannot be considered a universal

description of neuronal systems. However, two key points merit attention. First, we were able,

from a microscopic model, to identify specific modes of information dynamics, such as peaks

in information transfer, storage, or differentiated information, that correlate with the emer-

gence of specific rhythms at meso/macroscopic scale. Second, these modes appear to align well

with the functional properties typically associated with these rhythms in the neuroscience liter-

ature. This finding is, at the very least, intriguing and warrants further exploration in experi-

mental data and more detailed microscopic models.

Limitations of our analysis from an experimental perspective

Among the various relationships we observed in silico between emerging rhythms and infor-

mation dynamics, we consider the most relevant to be related to high-frequency oscillations

(HFOs) and the distinction between pathological and physiological HFOs. While different

strategies have been proposed to distinguish between pathological and physiological HFOs

[21], to our knowledge, no existing references have explicitly related pathological waves with

less rich information dynamics. Some previous works often use entropy-based time series

analysis in combination with machine learning approaches [103, 104] to identify epileptic fea-

tures in EEG data, trying to avoid using HFO characteristics as biomarkers. Other works have

achieved the same performance as with HFO-based markers [105], while others have shown

high performance for this task but were retracted due to data manipulation [106]. Other

attempts, also related to signal entropy, propose using EEG complexity measures, first finding

a relation between seizures and signal complexity decrease, associated with neuronal activity

synchronization [107]. However, more recent findings suggest that seizures could be related to

an early increase in signal complexity [108], exemplifying the challenges in clearly defining
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pathological biomarkers for seizures. In this context, we consider that informational

approaches are still poorly explored in the literature.

Our results related to HFOs leads us to propose the following hypothesis: pathological

HFOs, typically associated with epileptic seizures, will exhibit less rich information dynamics

characterized by a decrease in mutual information between different parts of the neuronal net-

work. In contrast, physiological HFOs maintain high mutual information along with high dif-

ferentiation and redundancy.

To test this hypothesis in experiments, we propose two paths:

• Microscopic (high-resolution) data analysis: The first approach involves obtaining high spa-

tial and temporal resolution data of neuronal activity in regions where HFOs emerge, in

both pathological and physiological conditions. We would then apply the same analysis used

in our model to this data. For our model analysis, we utilized large time series (2 × 105 time

bins) of spike trains from a small group of neurons. Recent technical developments, such as

neuropixel probes, now allow access to large-scale single-cell resolution neuronal activity

[109]. However, acquiring data with such detailed resolution remains challenging from an

experimental standpoint. Also, limited data introduce difficulties in the robust estimation of

probability distributions and entropy’s measures [110].

• Mesoscopic/Macroscopic variable analysis: The second, more accessible path is to apply

information dynamics analysis directly to mesoscopic or macroscopic variables such as

local field potentials (LFP), electroencephalography (EEG), intracranial EEG (iEEG), and

magnetoencephalography (MEG), provided there is sufficient spatial resolution of the

brain region of interest [111]. Using available open data, we can explore other interesting

results found in our model in actual data. For instance, using iEEG time series from the

temporal lobe during a working memory task [112], we could test the relationship between

neuronal activity dominated by β waves and information storage and transfer in vivo. Posi-

tive results would establish a precedent for using our model as a valuable test bed to explore

the relationship between neuronal dynamics, information dynamics, neuronal waves, and

functions.

As commented previously, the information dynamics analysis of our model in the present

study, follows exclusively the first path. It is important to highlight that F-ID have not limita-

tions with respect to the type of variables used and it can be and was applied to both discrete

and continuous variables, including blood-oxygen-level-dependent imaging (BOLD) assum-

ing Gaussian random variables, as done in [26]. Therefore, we could have been follow the sec-

ond path performing our analysis directly over the averaged membrane potential of neuronal

groups. However, when dealing with continuous data, the probability distributions and mutual

information estimation are trickier and introduce more arbitrariness regarding the choice of

estimator methods and estimator parameter, which requires higher level of expertise. Com-

monly used methods based on k-nearest-neighbor (kNN) methods introduce bias and errors

that should be carefully considered [113, 114].

Despite the fact that in the last decade new techniques have been continually developed to

address the limitations and bias of continuous-variable mutual information estimation

methods [115, 116], we consider the development of discretization methods for continuous

variables, such as ordered patterns [117], a more efficient way of dealing with the above cited

limitations [118, 119]. In this case, information dynamics analysis could be applied to dis-

crete variables using simple discrete probability estimators, such as counting bins. This and

other questions related to continuous variables in our model will be addressed in a future

work.
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Conclusion

In this work, we have studied in depth and exhaustively from both dynamical and informa-

tional perspectives a neuronal network model to generate in silico EEG-like signals. This has

allowed us to expand our understanding of the mechanisms involved in the generation of such

signals and the complex emergent behavior associated with them. The dynamical approach

revealed different phase transitions, most of which were previously described in the literature

[23, 24]. However, in the present work, we also identified what appears to be a low-activity

intermediate (LAI) phase for both excitatory and inhibitory neuronal populations, with a tran-

sition to a high-activity phase, which was not previously reported in the aforementioned

works. Additionally, we have studied the main features of these phases and the complex inter-

play between excitatory (E) and inhibitory (I) neuron populations which is responsible for the

emergence of such phases.

More precisely, through spectral analysis of the averaged membrane potential of groups of

excitatory and inhibitory neurons, we identified the regions in the considered parameter space

—i.e. noise level μ and synaptic resource recovery time τrec—where different rhythms (δ, θ, α,

β and γ) emerge. More importantly, we find that: high frequency oscillations (HFO) emerge in

a phase diagram region of high neuronal activity characterized by μ> 7 and 100< τrec< 200

ms, which have not been explored in previous literature. On the other hand, low frequency

oscillations emerge mainly for a low level noise range (μ< 7), and specifically δ rhythms

emerge dominantly in a meta-stable region. We also reported here that middle frequency

rhythms, such as β and γLow, are clearly dominant with a strong frequency power close to the

LAI phase transition.

We identified, moreover, correlations between specific informational properties of excit-

atory and inhibitory neurons and emerging neuronal rhythms. We found, e.g., that the emer-

gence of δ rhythms is related to maximization of information transfer and storage in excitatory

neuronal populations, while β waves show a strong correlation with information transfer in

the inhibitory population, and both β and γLow rhythms are related with integrated informa-

tion in the inhibitory neuronal population. Additionally, the coexistence of α, θ and β rhythms

is related to higher redundant information and storage in the excitatory neuronal population.

The HFOs (γfast) shows two regimes with fundamentally different information dynamics:

one where both excitatory and inhibitory neuronal populations oscillate at the same high fre-

quency (approximately 190 Hz), and another where excitatory oscillations dominate at a lower

frequency of around 145 Hz and no relevant HFOs is observed in the inhibitory neuronal pop-

ulation. The first regime features higher inhibitory redundancy and maintains excitatory dif-

ferentiated information, suggesting suitability for information processing. In contrast, the

second regime, characterized by dominant HFOs in both populations, shows very low mutual

information in the inhibitory population, indicating a more random and less predictable sys-

tem behavior.

In general, we observe that dynamical regimes that have fundamentally different local infor-

mation dynamics properties in each neuronal population, could generate similar neuronal

rhythms at meso/macroscopic scale, suggesting that a straightforward and precise association

between rhythms and neuronal functions is not possible, unless the neuronal population

responsible for the rhythm can first be identified.

Although our model is simple, it could be very suitable to investigate some functional prop-

erties of actual neural systems, such as cortical dynamics. This is mainly due to the rich reper-

toire of emerging behaviors, both from the dynamical and from the information dynamics

perspective which allow us to obtain possible functional insights about the different observed

rhythms. The information dynamics measures used to describe local dynamics in combination
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with the more mesoscopic spectral measure of neuron membrane potential presents a surpris-

ingly coherent picture of informational properties related to neuronal rhythms and fundamen-

tal differences between emerging waves in excitatory and inhibitory populations, which could

be further investigated both in silico and in experiments.

One of the most intriguing results of the present work is the identification of two distinct

HFO regimes from the information dynamics perspective. Differentiating HFOs from experi-

mental data is crucial in the clinical diagnosis of epileptic seizures and the identification of epi-

leptogenic regions. Our model suggests that an informational dynamics approach could be

very useful to distinguish between physiological and pathological HFOs. Consequently, future

work will focus on testing the hypotheses derived from this study using experimental data

related to physiological and pathological HFOs and epileptic seizures.

Supporting information

S1 Appendix. Complementary results and discussion. Contains complementary results and

discussion presented in three sections: Power spectrum density across phase diagram, Phase

diagram and rhythms and Changes of information measures with increasing time delay.

(PDF)
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