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Sensitivity of a standard Land Use Cover Change Cellular Automata 

Model to resample input Land Use Cover maps 

Input data is one of the main sources of uncertainty in Land Use Cover Change 

(LUCC) modelling. Research has focused on the sensitivity of LUCC models to 

the spatial resolution of Land Use Cover (LUC) maps. However, little attention has 

been paid to the way that spatial resolution is changed. Both the spatial resolution 

and the resampling method change the modelled landscape composition and 

configuration. This may affect the way Cellular Automata LUCC models behave 

and, accordingly, the landscapes they simulate. This paper analyses the sensitivity 

of a standard LUCC model (Metronamica) to changes in the spatial resolution and 

resampling method of input LUC maps. Results prove how the model is more 

sensitive to changes in the spatial resolution than to variations of the resampling 

method. This last component has not much influence in the simulated landscape, 

although it alters the landscape composition. 

Keywords: uncertainty; Metronamica; majority rule; nearest neighbour; scale 
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1. Introduction 

Characterization of the uncertainty associated to any Land Use Cover Change (LUCC) 

model is a required step to increase the confidence in LUCC modelling exercises (Li and 

Wu 2006; Yeh and Li 2006). Only in this way audience and stakeholders can be totally 

aware of the limits and possibilities of these tools (Warmink et al. 2010). 

Studies comparing several LUC sources have revealed important disagreements 

between them (Bach et al. 2006; McCallum et al. 2006; Ran et al. 2010; García Martínez 

et al. 2015). Each source shows a different landscape and LUC dynamics. Thence, the 

modelling exercise is source specific. However, even when employing the same source, 

important variations are measured because of changes in the scale (Dietzel and Clarke 

2004; Chen and Pontius Jr. 2011; Kim 2013; Blanchard et al. 2015).  



Scale is a complex term that, according to Wu (2007), can refer to different 

dimensions (spatial, temporal, organizational hierarchies), types (instrinsic, observation, 

experimental, analysis/modelling and policy scale) and components (grain, extent, 

coverage, spacing, catographic scale). When talking about CA models and only focusing 

on the spatial dimension of the scale, authors mainly refer to the extent, neighbourhood 

type and size and spatial resolution (Fig. 1) (Ménard and Marceau 2005; Pan et al. 2010; 

Wu et al. 2019). There is wide research focusing on the sensitivity of CA models to 

changes in the last three elements of the scale (Ménard and Marceau 2005; Kocabas and 

Dragicevic 2006; Samat 2006; Zhao 2013; Morais Viana 2014; Altartouri et al. 2015; 

Hewitt and Díaz-Pacheco 2017). Fewer are the analyses that study the sensitivity of CA 

models to changes in the extent (Pan et al. 2010).  

Figure 1. Representation of the four components of the spatial dimension of the scale 

that we usually refer to in CA models. 

 

All studies usually agree on the sensitivity of CA models to changes in the spatial 

resolution, type and extent of the employed neighbourhood. Disagreement arises when 

choosing which is the element that introduces more variability, that is, bigger uncertainty. 

Morais Viana (2014) found her exercises more sensitive to the neighbourhood 



configuration than to the cell size. On the contrary, Ménard and Marceau (2005) found 

their exercises more sensitive to changes in the spatial resolution than to different 

neighbourhood configurations. Notwithstanding, most authors agree on the 

interdependence between cell size and spatial neighbourhood (Benenson 2007; Pan et al. 

2010; Altartouri et al. 2015). 

Depending on the study case, the spatial resolution of the exercise that showed 

the best performance was different (Samat 2006; Morais Viana 2014; Hewitt and Díaz-

Pacheco 2017). Accordingly, no rules can be established when choosing the proper cell 

size (Chen and Pontius Jr. 2011). Depending on the pattern and complexity of the 

modelled landscape, among other criteria, one or another resolution will be more suitable 

(Ménard and Marceau 2005; Altartouri et al. 2015; Blanchard et al. 2015). 

Although some agreement has been achieved regarding that point, there is still a 

gap on the criteria we must follow to select the required resampling or rescaling method 

to vary that cell size. This is usually a required step given that the original spatial 

resolution of input maps does not commonly fit with the user desires or limitations. 

For categorical data, there are two main resampling methods commonly used and 

implemented in GIS software: nearest neighbour and majority rule (Fig. 2). The nearest 

neighbour (NN) method assigns to the new cell in the resampled raster the value of the 

cell in the original raster that is nearest to the centre of the new cell (ESRI). The majority 

rule (MR) method assigns to the new cell the most repeated value between those cells of 

the original raster that fall inside the new one (ESRI). Depending on the chosen method, 

the obtained landscape will be different (Díaz-Pacheco et al. 2018). 

 

 



Figure 2. Graphic representation of Nearest Neighbour (NN) and Majority Rule (MR) 

resampling methods for an original raster of 30m resampled to 50 and 100m. 

 

Up to date, there is not any study that have addressed the influence of the selected 

resampling method in LUCC modelling practice. Díaz-Pacheco et al. (2018) compared 

resampled LULC maps with the original one. They concluded that the NN method 

produced the closest results to the original dataset. In addition, they, as well as 

Dendoncker et al. (2008), assessed the influence of the way vector data is rasterized 

(method and cell size) in the maps used as input for a modelling exercise. They focused 

on rasterization, but not on resampling. Neither any of the cited studies assessed the 

sensitivity of a LUCC model to those variations in input maps. 

For hydrological modelling, papers addressing the sensitivity of a model to 

different resampling methods and spatial resolutions of the input Digital Elevation Model 

(DEM) proved the important influence that these decisions play on the obtained results 

(Le Coz et al. 2009; Ficklin et al. 2015). Similar conclusions were obtained for the 

modelling of carbon dynamics when employing and resampling LUC maps (Zhao and 

Liu 2014). 



Through this paper, we aim to test the sensitivity of a LUCC model to resample 

input maps. We assume that maps produced through different resampling methods at 

different spatial resolutions generate different landscape compositions (quantity of cells 

of each category) and configurations (distribution of cells of a given category).  

For different landscape compositions and configurations, changes in the 

neighbourhood interactions are expected. Transition rules, that explicit these 

neighbourhood interactions, are one of the key components of most CA models 

(Altartouri et al. 2015). Therefore, cell size and resampling method may have a strong 

impact on the landscape simulated by these models. This paper aims to specify the extent 

of this influence and to set out, according to the obtained results, a guideline about the 

criteria we must follow to decide about the spatial resolution and resampling method of 

input LUC maps. 

To that end, the paper is structured as follows: first, we describe the study area we 

modelled. Second, we provide a short description of the materials and model employed, 

pointing out how the input LUC maps were resampled. Third, details of the model 

calibration and the way the sensitivity analysis was carried out are provided. Finally, we 

analyse and discuss the results in the next two sections. The conclusions summarize the 

main findings of this research. 

2. Study area 

The City of Cape Town (CCT) is the modelled area in this study (Fig. 3). After its 

constitution in 2000, it embraces the Cape Town metropolitan area (Wilkinson 2004). It 

is made of built-up surfaces, agricultural areas and an important series of natural assets. 

In this regard, 17.7% of the CCT is under protection (Rebelo et al. 2011). 

 



Figure 3. City of Cape Town location map. 

 

The urban footprint is mostly shaped by the Apartheid policy and its consequences (City 

of Cape Town 2018). The Group Areas Act of 1950 promoted the segregation of racial 

communities (Western 1997). New neighbourhoods were built in places further from the 

city centre and urban footprint to host Black Africans and Coloureds. With the creation 

of those new neighbourhoods, the city sprawled at fast speed following the infrastructure 

network (City of Cape Town 2018). However, lack of housing to host rural immigrants 

led to the emergence of informal housing (Wilkinson 2000; Town and Turok 2001).  

After the end of Apartheid regime, that trend has intensified. South Africa 

democratic government policy of housing has tried to grant a house to all those without a 

formal roof (Pieterse 2009). This has been only possible in those areas created to host 

black and coloured communities, which has promoted the city sprawl. In addition, despite 

those efforts, housing supply is still largely behind housing demands. Consequently, the 



number of population inhabiting informal houses has been steadily increasing (City of 

Cape Town 2012). 

According to those dynamics, three types of residential land uses may be 

differentiated in Cape Town: formal private developed housing; formal state subsidised 

housing (townships); and informal dwellings. They relate differently with industrial and 

commercial areas. Because of the Apartheid legacy, there is a dissociation between places 

to work and places to live in the case of low income communities: formal state subsidised 

housing and informal dwellings (City of Cape Town 2012). Activity concentrates in the 

north of the CCT and around the major interchanges on the transport network (Wilkinson 

2000). Although some policies have been implemented to overcome that polarization of 

activity, it still remains concentrated in a few activity centres (City of Cape Town 2012).  

3. Materials 

3.1 Land Use Cover (LUC) maps 

Two Land Use and Cover (LUC) maps for the years 1990 and 2013 were generated from 

the South African National Land Cover Dataset (SANLCD) (GeoTerra Image 2015a, b). 

A third map for the yar 2002 was obtained by photointerpretation of historical satellite 

imagery. Figure 4 summarizes the processes followed to obtain the input LUC maps. 

The SANLCD is a dataset obtained from Landsat imagery with a spatial resolution 

of 30m. It is available for the years 1990 and 2013.  Its thematic resolution is 72 classes, 

which were simplified to only 15. Those classes whose detail was not needed for the 

purposes of our modelling exercise (simulating urban sprawl) were grouped. 

Additionally, we mapped four extra categories from auxiliary data because of their 

importance to better explain the modelling processes (Table 1). The Cape Town Airport 

was extracted from the National Topographic Map provided by the National Geo-Spatial 



Information (NGI) of South Africa. Cemeteries, military areas and informal settlements 

were mapped from spatial data provided by the City of Cape Town.  

Table 1. Legend of the LUC maps produced for this study. In italics are the categories 

we manually mapped from auxiliary data.  

Land use cover categories 

Vegetation areas 

Other cultivated areas 

Cultivated vine areas 

Rural residential 

Residential areas 

Urban township 

Urban informal 

Industrial areas 

Mixed urban / commercial 

Other built land 

Facilities 

Recreational areas 

Military areas 

Cementeries 

Mineral extraction sites 

No vegetation areas 

Wetlands 

Water bodies 

Airport 

 

Raw LUC maps were cross tabulated to obtain the areas of LUC change (AOC) for the 

period 1990-2013. These areas of change were further validated to rule the technical 

changes out. All AOC with a depth-of-edge no longer than the pixel size (30m) were 

discarded. We also eliminated those AOC whose land use or cover change we could not 

validate visually. Historical imagery provided by the City of Cape Town Council for the 

years 1988 and 2012 was used to this end. 

From the validated layer of AOC, we photointerpreted those changes happening 

between 1990 and 2002 from those happening between 2002 and 2013. Historical 

imagery for the year 2002 was the basis for this photointerpretation task. In the end, two 

layers of AOC (1990-2002; 2002-2013) were produced. 



To obtain the final LUC maps, the AOC layers were used as mask of the raw 1990 

LUC map to produce two LUC layers of changes. These were furtherly superimposed on 

the 2013 raw map.  

Figure 4. Flowchart of the procedure followed to obtain the input LUC maps of our 

analysis from the South African National Land Cover Dataset. 

 



3.2 Resampled maps 

The original maps at 30m were resampled at 50 and 100m (Fig. 5). These spatial 

resolutions reflect common practice in LUCC urban modelling (Santé et al. 2010; Van 

Vliet et al. 2016). In addition, they comply with the minimum level of detail that is 

required in the modelling of urban dynamics. Resolutions coarser than 100m would be 

far from the scale at which agents play and stakeholders work. 

Maps were resampled by means of two rasterization methods: nearest neighbour 

(NN) and majority rule (MR). They are the common methods employed when changing 

the resolution of categorical data. In addition, they are the methods usually implemented 

in standard and wide used GIS software like ArcGis (Díaz-Pacheco et al. 2018). 

Figure 5. Example area of the City of Cape Town at the original resolution of input LUC 

maps (30m) and resampled at 50 and 100m through NN and MR methods. Readers may 

found the full maps as supplementary material to the online version of this paper 

 



3.3 Land Use Cover Change (LUCC) model 

Metronamica (RIKS 2012) is a Cellular Automata (CA) constrained model built on the 

theory proposed by White and Engelen (1993, 1997) and White et al. (1997), over which 

relies an important part of the CA LUCC modelling practice (Santé et al. 2010). The 

model simulates all land uses at every time step based on four different factors 

(accessibility, neighbourhood, suitability and zoning) plus a random component that 

accounts for the uncertainty of human action. 

The model distinguishes between three types of classes: features, vacants and 

functions. Features are those categories that do not change through the simulation. 

Vacants are categories modelled passively. They are allocated after all function classes 

based on a suitability map and an inertia/conversion factor. Functions are modelled 

actively based on the combination of all above-mentioned factors (accessibility, 

neighbourhood, suitability, zoning and a random component). These factors define the 

transition potential of each cell to allocate every function. According to their demands, 

function classes allocate progressively in those cells with the highest potential. Vacant 

classes allocate next in the remaining cells following the same procedure. 

3.4 Model factors 

In addition to the LUC maps described above, we employed other spatial data from 

different sources to build the factors that drive the model behaviour in Metronamica. 

Details about these data, their sources and the factors for whose construction have been 

used can be checked in Table 2.   

Table 2. Data sources employed to build the factors that drive the model we set up.  

Data Source 
Factors where they have 

been used 

Raw land use maps 
South African National Land Cover Dataset 

(Department of Environmental Affairs) 
Suitability / Zoning 

Road and rail infrastructure Topographic Data (NGI, Department of Rural 

Development and Land Reform) 

Accessibility / Suitability 

Water bodies Accessibility 



Activity centres Economic Areas Management Programme (ECAMP) Accessibility 

Median land economic 

value per suburb 

Freehold residential property valuations (median 

values) (City of Cape Town) 
Suitability 

Slope Digital elevation model 10m (City of Cape Town) Suitability 

Zoning map Integrated zoning land parcel (City of Cape Town) Suitability / Zoning 

Protected areas 

(conservation) 

South African Protected Areas Database (SAPAD) 

(Department of Environmental Affairs) 
Zoning 

4. Methods 

4.1 Model calibration and validation 

We set up five modelling exercises, one for each series of input maps (section 3.2). An 

initial exercise was calibrated at the original resolution of input maps (30m). Then, four 

extra exercises, one for each pair of resampled input maps, were further calibrated based 

on those initial parameters.  

Calibration was in all cases manual, as defined by Van Vliet et al. (2016). 

Demands were manually introduced from measured changes by each pair of input maps. 

Residential areas, urban informal, urban township and industrial areas were the function 

categories. They lead the urban sprawling process we want to simulate. Vegetation areas, 

other cultivated areas, cultivated vine areas and rural residential were the vacant 

categories. Urban areas sprawl on the basis of these uses. 

An initial calibration was made in each case for the period 1990-2002. Next, this 

calibration was improved in a trial and error basis according to the information given by 

the following indices: Kappa (Cohen 1960), Kappa simulation (KSim) (Van Vliet et al. 

2011), Fuzzy Kappa Simulation (FKSim) (Van Vliet et al. 2013a), Figure of Merit (FOM) 

(Pontius Jr. et al. 2008) and the clumpiness spatial metric (McGarigal et al. 2015). The 

simulated landscape was also evaluated through visual inspection and compared to a 

random benchmark to assess its goodness. Once we achieved the best possible simulation, 

each model was validated against reference data for the year 2013. 



4.2 Sensitivity analysis 

The calibrated exercises were compared qualitatively and quantitatively through the 

methods described below. Differences between calibrations allow to see how the model 

behaviour changes because of the different input maps. Differences between simulations 

explicit how those input maps affect the modelled landscape. 

To compare calibrations, we examined the calibrated parameters and processing 

time of each exercise. In addition, we calculated the Pearson correlation coefficient 

(Pearson 1895) between the reference LUC map of each modelled category and its 

corresponding factors for the year 2002.  

Simulated landscapes were compared visually and quantitatively in terms of 

allocation, quantity and pattern (dis)agreement. Quantity and allocation (dis)agreements 

were calculated through the matrix proposed by Pontius Jr. (2018). Quantity disagreement 

refers to the different number of cells that make up a category in a pair of input maps. 

Allocation disagreement refers to the cells of the same class allocated in different 

positions in a pair of input maps.  

Pattern disagreement was assessed by means of a series of spatial metrics 

calculated through the software Fragstats. From all spatial metrics calculated, we selected 

the two that better describe the different pattern simulated by each exercise: number of 

patches and largest patch index. The first refers to the number of patches that make up a 

category in a LUC map, and the second to the size of the largest patch in a LUC map with 

respect to its total area. 

Kappa (K), Kappa Simulation (KS), Fuzzy Kappa Simulation (FKS) and the 

Figure of Merit (FOM) were also employed as a reference to assess the similarity between 

each simulation and its corresponding reference map. K expresses the agreement between 

two maps, corrected for the agreement expected by chance (Cohen 1960). KS expresses 

the agreement between changes of two maps with respect to a third one, corrected for the 



agreement expected by chance (Van Vliet et al. 2011). FKS expresses the same agreement 

but accounting for the degree of spatial mismatch (Van Vliet et al. 2013a). FOM expresses 

the spatial overlapping between simulated and reference changes, meaning 0% perfect 

disagreement and 100% perfect agreement (Pontius Jr. et al. 2008). 

5. Results 

5.1 Model calibration 

The spatial resolution affects the processing time the model needs to perform the 

simulation. and the explanatory power of the factors. On the contrary, the resampling 

method employed to obtain the maps does not show a meaningful influence in any of 

those aspects. 

Finer spatial resolutions exponentially increase the processing time of the model. 

From only 13 seconds of the 100m exercise to 3 minutes and 30 seconds of the 50m 

exercise. The 30m exercise also required 3 minutes and 30 seconds, but because the extent 

of the landscape was much smaller than in the other two cases. The model was not able 

to perform the simulation at the original landscape extent for the 30m maps. Therefore, 

landscape extent was cut off to the exact limits of the simulated area to avoid the model 

crash. Thus, despite the different extent, the simulated area was the same at the three 

resolutions. 

Explanatory power of factors varies because of the spatial resolution, but not as 

consequence of the resampling method followed. Factors at finer spatial resolutions relate 

more with the land uses than factors at coarser spatial resolutions (Table 3). 

 

 



Table 3. Correlation coefficient betweenn Transition Potential (TP) maps for each 

function category and its corresponding land use binary map, where 1 means presence of 

that category and 0 absence. TP maps are the result of the combination of the four factors 

of a modelling exercise and define the suitability of each cell to hold a land use category.  

 Residential areas Urban township Urban informal Industrial areas 

30m 0.88 0.86 0.68 0.90 

50m NN 0.87 0.83 0.24 0.81 

50m MR 0.87 0.83 0.22 0.82 

100m NN 0.86 0.80 0.02 0.75 

100m MR 0.86 0.80 0.02 0.76 

 

At the category level, these trends are very contrasted. Whereas the correlation between 

factors and land uses is similar for all spatial resolutions and resampling methods in the 

case of the residential areas’ category, it varies to a great extent in the case of the urban 

informal (Table 3). In this case, correlations vary much more because of the spatial 

resolution than because of the resampling method employed. 

From the four factors considered, neighbourhood is always the one that correlates 

the most with the land use maps. It is also the factor more affected by changes in the 

spatial resolution and resampling methods. Suitability shows some correlation with land 

use maps at the original resolution, but does not show any correlation at all at 50 and 100 

meters. The rest of factors do no show very different correlation coefficients between 

different resolutions and resampling methods. Readers may find the correlation 

coefficients disaggregated for each factor as supplementary material to the online version 

of this paper. 

Each exercise was manually calibrated on a trial error basis. Accordingly, 

parameters may be different depending on the considered exercise, so as to better fit the 

factors with the simulated landscape. Accessibility, suitability and zoning factor 

parameters are very similar between exercises at 30 and 50m of spatial resolution. Bigger 



differences may be pointed out between exercises at 100m of spatial resolution and the 

ones at 30 and 50m for these factors.  

Neighbourhood rules are more affected by changes in the spatial resolution and 

resampling method. The weight of attraction / repulsion rules between land uses varies in 

all cases, with a greater variation when changing the spatial resolution from 50m to 100m 

and, for the coarser resolution exercise, when changing the method used to resample the 

input maps. Although the weights change, the cell extent of neighbourhood influence 

does not change between simulations, always around a maximum of 6 cells of influence. 

This means a very different neighbourhood influence in meters when employing maps at 

different spatial resolutions: 180m (30m exercise), 300m (50m exercises) or 600m (100m 

exercises). 

5.2 Simulation 

According to Kappa indices and the Figure of Merit, global model performance was 

slightly better in exercises at 50m run with maps resampled through MR (Table 4). 

Exercises with maps at 100m perform better than the ones at the original resolution and 

also show the highest FKSim. This makes sense because of their coarser resolution, which 

increases the fuzzy radius over which hits are searched.  

Table 4. Kappa and Figure of Merit scores obtained for each of the calibrated modelling 

exercises. Figure of Merit (FOM), Kappa Simulation (Ksim), Fuzzy Kappa Simulation 

(FKsim) and Standard Kappa (Kappa) are provided globally. At the category level we 

only show the main metric: Ksim. Ksim and Kappa scores for all simulated classes may 

be found as supplementary material to the online version of this paper. 

 
Global Residential 

areas 

Urban 

township 

Urban 

informal 

Industrial 

areas 

 FOM Ksim Fksim Kappa Ksim Ksim Ksim Ksim 

30m 23.5% 0.36 0.38 0.96 0.40 0.48 0.25 0.20 

50m NN 24.5% 0.38 0.41 0.96 0.41 0.49 0.23 0.23 

50m MR 25.1% 0.40 0.43 0.96 0.43 0.50 0.15 0.29 



100m NN 23.3% 0.37 0.42 0.96 0.40 0.46 0.18 0.23 

100m MR 24.9% 0.39 0.44 0.96 0.41 0.50 0.18 0.27 

 

Differences of model performance between spatial resolutions and resampling methods 

may be pointed out at the category level. Residential areas, urban township and industrial 

areas show the same pattern of behaviour than the global one: performance is the best at 

50m and in exercises run with maps resampled through MR. However, the simulation of 

urban informal is the best at the original resolution and decreases according to the level 

of generalization of the resampled maps: the coarser the resolution, the worse is the model 

performance; between resampling methods, MR leads to lower scores than NN, at least 

in maps resampled at 50m. 

Simulations obtained from maps at the same spatial resolution but resampled 

through different methods show the highest agreement between simulated changes (Table 

5). More than 7 of each 10 ha that change are simulated in the same location when only 

the resampling method is changed. When changing the spatial resolution, this agreement 

is much lower, without meaningful differences because of the resampling method 

employed.  

Resampling the maps through a different method does make a difference in the 

simulated quantities of change (Table 5). Whereas simulated quantities show a 

significative difference when using maps resampled through MR, simulations run with 

maps resampled through NN do not show meaningful differences respect to the quantities 

simulated in the exercise run with maps at the original resolution. 

Table 5. Quantity and allocation (dis)agreement between simulated changes. Simulated 

changes are compared in pairs: first changes simulated from maps at the same spatial 

resolution but through different resampling methods (Nearest Neighbour, NN; Majority 

Rule, MR) and then from maps simulated at different spatial resolutions and through 



different methods. Result at the category level may be found as supplementary material 

to the online version of this paper. 

 Agreement 
Quantity 

disagreement 

Allocation 

disagreement 

50m NN vs 50 MR 74.52 5.74 19.75 

100m NN vs 100 MR 72.86 5.38 21.76 

100m NN vs 50 NN 49.59 0.46 49.95 

100m MR vs 50 MR 51.63 0.43 47.94 

50m NN vs 30m 62.12 0.32 37.56 

50m MR vs 30m 60.39 5.55 34.07 

100m NN vs 30m 42.81 0.45 56.74 

100m MR vs 30m 42.81 4.37 52.82 

 

The simulated pattern is visually very similar independent of the spatial resolution and 

resampling method. No visual important differences are observed between simulations 

run with maps at different spatial resolutions and obtained through different resampling 

methods (Fig. 6). However, when making this analysis in detail, spatial metrics inform us 

about some differences between simulations.  

Figure 6. Simulated changes in exercises using maps at different spatial resolutions (30, 

50 and 100m) and obtained through different resampling methods for an example area of 

the City of Cape Town. Readers may find the full simulations for all the modelling area 

as supplementary material to the online version of this paper. 

 



The fragmentation of input maps is always lower at coarser spatial resolutions and in 

maps resampled through MR (Table 6). After the simulation, the map´s fragmentation 

(number of patches) varies more at finer resolutions and, to a lesser extent, when using 

NN resample. The map comes usually more compact because of the action of the CA 

model component, with then finer resolutions maps and the ones obtained through NN 

being relatively more affected by this behaviour.  

Some differences may be pointed out between categories. Urban residential 

fragmentation increases at finer resolutions and decreases in simulations at 100m. The 

other three function categories always come more compact. Urban informal is the class 

more affected by this compactness effect, given it is the category with the input pattern 

more fragmented. In this regard, most of the changes simulated for urban informal 

allocate next to the largest patch of urban informal, especially in the exercises at finer 

resolutions, as the LPI metric shows (Table 6). 

Table 6. Spatial metrics of the input and simulated maps at different spatial resolutions 

and obtained through different resampling methods: Nearest Neighbour (NN) and 

Majority Rule (MR). Values of the metrics refer to a standard scale where 100 means the 

value of the metric in the input map (2002) at the original resolution (30m). Values above 

or below 100 mean a value bigger or smaller than the one used as reference. E.g. the 

number of patches of the simulation of the exercise calibrated at 30m of spatial resolution 

is 11% bigger than the number of patches of the LUC map at 30m for the year 2002. 

Readers may found all calculated metrics, standardized and with their original values, in 

the supplementary material attached to the online version of this paper. 

 Number of patches Largest Patch Index 

 Residential Township Informal Industrial Residential Township Informal Industrial 

Input LUC maps (2002) 

30m O 100 100 100 100 100 100 100 100 

50m NN 86 84 78 92 32 32 38 31 

50m MR 60 60 38 71 38 33 37 33 

100m NN 58 61 47 72 39 35 36 30 

100m MR 48 50 31 60 41 69 31 31 

Simulated LUC maps (2002) 



30m O 111 84 79 92 103 105 289 101 

50m NN 89 74 57 86 33 33 96 32 

50m MR 66 59 30 68 39 33 101 33 

100m NN 53 54 39 69 43 78 75 30 

100m MR 44 47 25 58 45 78 56 31 

 

6. Discussion 

Resampling the input maps of a modelling exercise impacts the calibration of a LUCC 

model and the landscape it simulates. In our study case, this impact was mostly driven by 

the spatial resolution, with little variations because of changes in the resampling method 

employed. 

Section 6.1 addresses the impact of the chosen resampling method on the 

modelling exercise. Section 6.2 specifically focuses on the impact of changes in the 

spatial resolution. The effects of the interaction between the spatial resolution and 

resampling method are not further discussed in any section as the impact of the 

resampling method was similar at the two spatial resolutions considered. Thence, we do 

not expect it to be dependent on the cell size. 

6.1 The impact of the resampling method on the model calibration and 

simulation 

Modelling exercises at the same spatial resolution but run with maps obtained through 

different resampling methods were very similar, with only slight differences between 

them. The most important change refers to the different neighbourhood rules defined in 

each case, which however did not end in meaningful differences between simulations. 

Performance of exercises run with maps obtained through the MR method was 

usually better. However, the pattern is simpler in maps resampled through this method 

compared to the ones resampled through the NN method. In this regard, NN resampling 

preserves the original pattern of the resampled map and do not alter meaningfully the 



proportions of the map’s categories. MR resampling simplifies the pattern and alter these 

proportions. In fact, quantity disagreement between simulations was bigger because of 

the resampling method employed than because of changes in the spatial resolution. 

However, focusing on the simulated pattern, the one modelled through exercises run with 

MR maps fitted better with the pattern of the reference maps than the one modelled 

through exercises run with NN maps, as we will see in the next section. 

According to Hall et al. (2014), MR resampling favours the dominant classes over 

the rare ones. They recommend to choose NN resampling when rare categories are 

important to explain the processes of change and MR resampling if dominant categories 

are the most important ones for that purpose. Oyana et al. (2014) make similar 

appreciations when assessing the impact of the spatial resolution and resampling method 

in LUC change analysis for other resampling schemes, including the MR one. 

Accordingly, the selection of the resampling method, together with the selection of the 

proper spatial resolution, must agree with the landscape properties (Le Coz et al. 2009).  

When choosing between one or another resampling method, the modeller must 

strike a balance between model performance, adequacy of the simulated pattern and 

realism. In our case, model performance was only a bit better for the exercises with maps 

obtained through the MR method. Explanatory power of factors was almost the same in 

both cases. On the contrary, differences were detected between simulations obtained with 

MR and NN maps in terms of pattern and realism. Consequently, NN maps are preferred.  

MR maps should be chosen in those cases when the simplification that this 

resampling method introduces in the rasterized landscape comes with significative 

changes in the model performance, which was not our case. Notwithstanding, previous 

studies analysing maps at several spatial resolutions and obtained through diverse 



resampling methods have proved important differences between maps because of these 

decisions (He et al. 2002; Christman 2010; Díaz-Pacheco et al. 2018). 

6.2 The impact of the spatial resolution on the model calibration and simulation 

Most of the detected differences between calibrations and simulated landscapes were 

caused by the spatial resolution. It is one of the main drivers behind the computer 

requirements a model needs. In addition, together with the resampling method employed, 

affects the composition and configuration of the rasterized landscape. 

At finer resolutions, models need to handle more information, which increases 

their computing needs. This may make the model crash or slow down its performance. 

Our application did not work at the original resolution and extent. Kim and Batty (2011) 

reported the crash of the model SLEUTH when setting up an application at 50m. Van 

Vliet et al. (2013b) and Jantz and Goetz (2005) resampled their input maps at 500m and 

45m respectively to fit them with the model requirements. On the other hand, when the 

model performance is slower, calibration on a trial and error basis is more difficult. Also 

the engagement of audience and stakeholder in model calibrations if it takes a long time 

to run (Van Delden et al. 2011). Nonetheless, modellers may work with simpler models 

to this end. 

Changes in the spatial resolution deeply affect the landscape configuration, as 

proved by Fassnacht et al. (2006), Ozdogan and Woodcock (2006) or Dendoncker et al. 

(2007), among others. Changes in the landscape composition are less significative, being 

the resampling method more important to this end.  

LUCC models usually try to fit the simulated landscape to the one used as 

reference (Mas et al. 2014; National Research Council 2014). The more different is the 

reference landscape to be simulated, the more likely is that the model parameters will 

vary to a greater extent. Different to the resampling method, the spatial resolution 



substantially changed our reference landscapes configurations. That is why, in our case, 

model parameters and simulated pattern varied much more because of the spatial 

resolution than because of the resampling method employed. 

Variation in model parameters do not have to be the same at all resolutions, neither 

for all categories. Whereas at some resolutions, the landscape configuration keeps similar 

(scale domain), once a scale threshold is exceeded, landscape configuration or properties 

change meaningfully (Ménard and Marceau 2005). Consequently, its processes and 

dynamics must be explained by different parameters. In our analysis, at 30 and 50m of 

resolution, exercises were calibrated through similar parameters. At 100m, we crossed 

the scale threshold that changed the landscape properties. Accordingly, at that resolution, 

model parameters were much different. 

At the category level, each category has a specific pattern and, therefore, is 

differently affected by variations in the spatial resolution. For our analysis, at 30 and 50m 

the urban informal pattern of change is partially explained by the contiguity of new urban 

informal to previous developments of the same use, with this factor being much more 

important at the finest resolution. At 100m, this factor does not explain the new urban 

informal growth. Thus, when choosing the correct spatial resolution, we must not only 

consider the sensitivity of the global landscape to this change, but also how each category 

is individually affected by it. 

Despite of the different spatial resolutions, all exercises considered similar 

neighbourhoods’ extents in terms of cells: 6 cells of maximum neighbourhood influence. 

This means that the neighbourhood extent in meters is very different depending on the 

spatial resolution of the exercise: from a maximum of 180m in the exercise at the original 

resolution of input maps (30m) to 600m in the exercises run with maps at 100m. 

Accordingly, we can confirm one of the hypotheses laid out by Díaz-Pacheco et al. 



(2018), who checked the same behaviour for another application: “cell is more important 

than the actual distance (in meters) in the calculation of the neighbourhood effect”. Thus, 

although neighbourhood influence in CA models may be generally explained by real 

interactions between land uses in terms of distances, when detailing this influence, the 

way the simulated landscape is conceptualized through a raster plays a key role. 

The simulated pattern is not very different between exercises at different spatial 

resolutions. In all cases, the landscape comes more compact because of the action of the 

CA model component. One of the main rules that usually drives its behaviour is the self-

attraction of the class actively modelled. Accordingly, the simulated changes always tend 

to fill existing patches or put some of them together, making its shape more compact.  

When compared to the reference landscape, the exercises at finer resolutions are 

the ones that simulate a more different landscape. The CA compactness logic previously 

explained fits better with more generalized maps than with the ones more fragmented. 

That is why the pattern of simulated changes is more similar to the pattern of reference 

changes in the exercises at coarser resolutions and with maps resampled through MR. 

In addition, changes usually take place as a group of pixels at fine resolutions, 

whereas they are just made up of a few pixels in maps at coarser resolutions. Thence, 

simulation of the correct pattern is usually easier at coarser resolutions, as checked by 

Díaz-Pacheco et al. (2018) in a modelling exercise for Madrid (Spain). In that case, the 

coarser pixel size fit better with the size of cadastral parcels in this city and, accordingly, 

with its urbanization pattern. In this regard, cadastral parcels are usually the unit over 

which change operates in urban environments. 

When choosing the proper spatial resolution, the modeler must strike a balance 

between model performance, computing needs of the model, desired pattern and realism. 

Exercises at 30 and 50m provided a similar pattern and realism. On the other hand, 



exercises at 100m, although very fast, got a less realistic pattern, very compacted. In all 

cases, model performance was very similar. Accordingly, 50m is the optimum resolution 

according to our criteria, because it deeply lightened the computing resources that the 

model demanded while producing an adequate pattern and degree of realism. However, 

the best resolution will be different for each case study, according to the properties of the 

modelled landscape (Ozdogan and Woodcock 2006). 

7. Conclusions 

This study has revealed how, for our study case, the modelling exercise was not very 

sensitive to the method employed to resample input Land Use Cover Maps. Calibration 

parameters and computational requirements were much more different because of 

changes in the spatial resolution. However, in all cases, the obtained simulations were 

similar. Differences in calibration parameters, but not in simulated patterns and changes, 

prove that user intervention is behind the similarity of simulated landscapes. Accordingly, 

manual calibration may be considered a good tool to deal with the sensitivity of Land Use 

Cover Change models to changes in the spatial resolution and, to a lesser extent, 

resampling method. 

Studies like this one aid to understand the way users must analyse the sensitivity 

of their exercises to key decisions like the spatial resolution and resampling method. They 

may be also used as a reference for those exercises with similar landscape characteristics. 

However, they will never be able to provide a unique answer to the problem. In this 

regard, there is not a unique and universal answer to aid in the selection of the proper 

spatial resolution and resampling method. These decisions are case dependent. Users 

must be fully aware of these uncertainties and their complexity when calibrating their 

models. Depending on the balance between model performance, simulated pattern, 



realism and audience needs, one or another resolution and resampling method must be 

selected in each case. 
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