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Abstract

This chapter offers a general overview of the available tools
and strategies for validating Land Use Cover (LUC) data—
specifically LUC maps—and Land Use Cover Change
Modelling (LUCCM) exercises. We give readers some
guidelines according to the type of maps they want to
validate: single LUC maps (Sect. 3), time series of LUC
maps (Sect. 4) or the results of LUCCM exercises
(Sect. 5). Despite the fact that some of the available
methods are applicable to all these maps, each type of
validation exercise has its own particularities which must
be taken into account. Each section of this chapter starts
with a brief introduction about the specific type of maps
(single, time series or modelling exercises) and the
reference data needed to validate them. We also present
the validation methods/functions and the corresponding
exercises developed in Part III of this book. To this end, we
address, in this order, the tools for validating Land
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Use Cover data based on basic and Multiple-Resolution
Cross-Tabulation (see chapter “Basic and Multiple-
Resolution Cross Tabulation to Validate Land Use Cover
Maps”), metrics based on the Cross-Tabulation matrix (see
chapter “Metrics Based on a Cross-Tabulation Matrix to
Validate Land Use Cover Maps”), Pontius Jr. methods
based on the Cross-Tabulation matrix (see chapter “Pontius
Jr. Methods Based on a Cross-Tabulation Matrix to
Validate Land Use Cover Maps”), validation practices
with soft maps produced by Land Use Cover models (see
chapter “Validation of Soft Maps Produced by a Land Use
Cover Change Model”), spatial metrics (see chapter
“Spatial Metrics to Validate Land Use Cover Maps”),
advanced pattern analysis (see chapter “Advanced Pattern
Analysis to Validate Land Use Cover Maps”) and
geographically weighted methods (see chapter “Geogra-
phically Weighted Methods to Validate Land Use Cover
Maps”).

Keywords

Land Use Cover ¢ Land Use Cover Change Modelling
exercises * Validation

1 Introduction

Validation is a required step prior to the effective use of any
Land Use Cover (LUC) dataset or of the results of a Land
Use Cover Change Modelling (LUCCM) exercise. We need
to understand to what extent these datasets and results are
uncertain in order to be able to assess the limits that these
uncertainties may impose on the conclusions of our analyses
and studies.

There are many methods, tools and strategies currently
available for validating LUC data and LUCCM exercises.
However, comprehensive guidelines providing users with
clear instructions and recommendations about how to carry
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out this validation are scarce. Olofsson et al. (2013, 2014)
review the validation of land change maps and offer a series
of recommendations as to how to perform a credible scien-
tific validation, accepting that other recommendations or
good practice guidelines could be equally valid and perhaps
even more so. Paegelow et al. (2014, 2018) propose a variety
of validation techniques and error analysis which can be
used to validate different LUCCM exercises.

In this chapter, we aim to provide readers with a general
overview of the available tools and strategies for validating
LUC data—specifically LUC maps—and LUCCM exer-
cises. We give readers different guidelines according to the
type of maps they want to validate: single LUC maps
(Sect. 3), time series of LUC maps (Sect. 4) and results of
LUCCM exercises (Sect. 5). Although some of the available
methods and tools can be applied to all these maps, each
type of validation exercise has its own specific aspects that
users must bear in mind. For example, the results of
LUCCM exercises include soft and hard LUC maps. The
hard outputs of a model—hard maps—are very similar to
input LUC maps, while the soft outputs—soft maps—are
continuous and ranked. We therefore also present some
validation methods that focus specifically on soft maps.

Before presenting these validation methods and functions,
it is important to make clear that visual inspection is an
essential part of any validation exercise. It can provide a
great deal of information about the uncertainties of the data
being evaluated, which are not detected by the quantitative
methods reviewed in this book. Visual inspection should be
conducted during all validation exercises, at the beginning,
at the end and throughout the entire process.

2 Validation Methods/Functions
and Exercises Presented in Part lll of This
Book

This chapter is intended as a presentation of Part III of this
book. Figure 1 shows the validation methods/functions and
the corresponding exercises presented in the chapters and
sections of Part III. With this in mind, in this chapter we
address, in this order: the available tools for validating Land
Use Cover data related with basic and Multiple Resolution
Cross-Tabulation (see chapter “Basic and Multiple-Resolu-
tion Cross Tabulation to Validate Land Use Cover Maps”),
metrics derived from the Cross-Tabulation matrix (see
chapter “Metrics Based on a Cross-Tabulation Matrix to
Validate Land Use Cover Maps”), methods proposed by
Pontius Jr. based on the Cross-Tabulation matrix (see
chapter “Pontius Jr. Methods Based on a Cross-Tabulation
Matrix to Validate Land Use Cover Maps”), validation
practices with soft maps produced by Land Use Cover
Change models (see chapter “Validation of Soft Maps
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Produced by a Land Use Cover Change Model”), spatial
metrics (see chapter “Spatial Metrics to Validate Land Use
Cover Maps”), advanced pattern analysis (see chapter
“Advanced Pattern Analysis to Validate Land Use Cover
Maps”) and geographically weighted methods (see chapter
“Geographically Weighted Methods to Validate Land Use
Cover Maps”).

The exercises presented in Part III have been applied
using the Quantum GIS (QGIS) software and R scripts. To
homogenize the exercises across the different chapters, they
have the same standard objectives: fo validate a map (t;)
against reference data/map (t;) (single LUC map); to vali-
date a series of maps with two or more time points (ty, t;,
t,...) (LUC maps series/ LUC changes); and, for results from
LUCCM exercise, to validate soft maps produced by the
model against a reference map of changes (to—t;) (soft LUC
maps), to validate a simulation (T;) against a reference map
(t;) (single LUC map - hard LUC maps) and fo validate
simulated changes (top — T;) against a reference map of
changes (ty — t;) (LUC maps series / LUC changes — hard
LUC maps). However, in certain specific cases, additions
have been made to these standard titles. In addition to the
applications of each method/function implemented in the
practical exercises in this book, the cells shaded in grey in
Fig. 1 indicate that the method has other potential applica-
tions that are not described here.

3 Validation of Single Land Use Cover Maps

The validation of single LUC maps is the most widespread
practice of all those addressed in this book. Foody (2002)
concludes that there is no single universally acceptable
measure of accuracy but rather a variety of indices, each
sensitive to different features. Creating a single, all-purpose
measure of classification accuracy would therefore seem an
almost impossible goal. However, accuracy assessment must
follow certain guidelines and principles in order to guarantee
scientifically defensible assessment of map accuracy (Steh-
man 1999; Stehman and Czaplewski 1998).

Users have been validating their maps since the advent
of digital remote sensing and the first classifications of
digital imagery, as a means of assessing to what extent the
classified images resemble the real LUC on the ground.
Now, several decades later, the validation of single LUC
maps is a very common practice, and although new meth-
ods and tools have been developed over the years, the
original ones remain popular. These are based above all on
the comparison of the assessed LUC map with reference
datasets through cross-tabulation (Foody 2002; Strahler
et al. 2006). In recent years, the use of pattern analysis and
other validation methods has become increasingly
common.
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1 Titles of exercises included in the cormesponding sections.
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Fig. 1 Validation methods/functions and corresponding exercises presented in Part IIT of this book for single LUC maps, LUC maps series/LUC
changes and LUCCM exercises. The grey cells highlight the possible applications of each method/function

The reference datasets for validating single LUC maps
may be obtained from different sources of LUC data. These
can be classified into two main groups: ground samples and
reference LUC maps. However, in the validation exercises,
other reference spatial data can also be used, such as the raw
imagery used in the classification process or the soft maps
obtained as a result.

The ground samples collected through field surveys pro-
vide highly accurate, detailed data. However, this informa-
tion is very expensive to obtain and fieldwork is not an option
when working with large study areas. This is why most ref-
erence LUC samples are obtained by photointerpretation or
classification of satellite imagery. The data obtained via
photointerpretation must be of higher quality that the data
being validated. This usually involves careful interpretation
of a set of samples using imagery with a higher spatial res-
olution than the images used to create the map. Another
option is photointerpretation of the same imagery used to
obtain the dataset, applying a different workflow and methods
or techniques that guarantee better quality.

Those using these methods to obtain LUC samples for
validation purposes should provide information about their
accuracy or uncertainty. When obtaining reference data by
field surveys or photointerpretation, users must take partic-
ular care when selecting the sampling strategy they will
apply during the collection of this information, as it can have
an important impact on the results of the validation exercise

and on their validity (see chapter “Visualization and Com-
munication of LUC Data”).

LUC maps can also be validated against other LUC maps.
In these cases, the reference LUC map must have a higher
spatial resolution and greater detail that the map being
assessed. They must also be of proven quality, i.e. maps or
datasets with verified accuracy and uncertainty. Although
less precise, validation exercises carried out by comparing
the evaluated map with other LUC maps are quick and very
cheap, hence their popularity. This also allows a wider set of
methods and techniques to be used compared to the possi-
bilities offered by reference datasets other than maps.

Users can also validate their LUC maps against additional
sources of information other than reference datasets, in order
to characterize the maps in more detail and gain a clearer
picture of their uncertainty. Such sources include raw ima-
gery, which is often used in the classification process, or the
soft maps obtained from it, which are used to assess the
characteristics of the pixels that make up each class. Raw
imagery can be used to evaluate the reflectance value for all
the pixels belonging to a particular class and how close it is
to the reference reflectance value used in the classification
process. When available, users can also compare each cat-
egory pixel with soft maps showing the percentage of each
pixel belonging to each of the LUC categories under con-
sideration. Similar insights into the accuracy of LUC maps
can be obtained by comparing them with continuous LUC
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data (reference data), such as the Vegetation Continuous
Fields (VCF) products.

If we focus on validation tools (Fig. 1), the agreement
between the reference data/map (t;) and the LUC map under
evaluation (t;)—the two maps should have the same date
t;—can be assessed using the cross-tabulation matrix' (see
Sect. 1 in chapter “Basic and Multiple-Resolution Cross
Tabulation to Validate Land Use Cover Maps™ ). This is also
referred to in the literature as the confusion or error matrix,
or as the contingency table. Cross tabulation is usually the
first step in any validation exercise, as the raw matrix pro-
vides plenty of information regarding the spatial agreement
between the LUC map being validated and the reference
dataset.

In some cases, the level of agreement may vary at dif-
ferent levels of spatial detail. For example, when spatially
aggregated and simplified, the LUC map being evaluated
may show more agreement with the reference dataset. The
choice of spatial resolution is therefore a source of uncer-
tainty. To account for this uncertainty, we can cross-tabulate
the assessed and reference datasets at multiple spatial res-
olutions (see Sect.2 in chapter “Basic and
Multiple-Resolution Cross Tabulation to Validate Land Use
Cover Maps”™), i.e. the original resolution and other coarser
ones.

Different metrics are calculated from the confusion matrix
(see chapters “Metrics Based on a Cross-Tabulation Matrix
to Validate Land Use Cover Maps” and “Pontius Jr. Meth-
ods Based on a Cross-Tabulation Matrix to Validate Land
Use Cover Maps”). These metrics summarize the agreement
between reference and validated datasets in a single value
and are therefore very easy to interpret. As a result, they
have been widely used in LUC validation.

The most common metrics are the accuracy assessment
statistics (see Sect. 5 in chapter “Metrics Based on a
Cross-Tabulation Matrix to Validate Land Use Cover
Maps”) and the Kappa Indices (see Sect. 3 in chapter
“Metrics Based on a Cross-Tabulation Matrix to Validate
Land Use Cover Maps”). The accuracy assessment statistics
are standard metrics that provide information about the
similarity between two georeferenced data. They are
obtained from the cross-tabulation matrix and enable the
extraction of specific information contained in the matrix.
They include, among others, the overall, producer’s and
user’s accuracy metrics. They are usually supplied with the
cross-tabulation matrix, providing extra information in
addition to that provided by the matrix itself (e.g. category
area adjusted by the error level, confidence intervals...).

" The methods/functions presented in the corresponding chapters in
Part III of this book are highlighted in bold.

M. T. Camacho Olmedo et al.

Of all these metrics, the most commonly used in valida-
tion exercises is probably Overall accuracy. There has been
great debate in the literature about the threshold above which
the Overall accuracy of a map can be considered acceptable.
The 85% threshold proposed by Anderson (1971) was the
common reference for many years and continues to be
applied by a lot of users nowadays (Wulder et al. 2006;
Foody 2008). However, there is no specific accuracy
threshold regarded as valid for all study cases and datasets.
The acceptable level of accuracy will depend on the intended
application of the dataset and the characteristics of the area
being mapped. As regards different scales and spatial reso-
lution, we cannot compare the accuracy of global or
supra-national LUC maps with that of regional and local
ones, which are not subject to the same level of simplifica-
tion or abstraction as the global or supra-national maps.

The overall accuracy metric does not provide information
about the accuracy at which each category on the LUC map
is mapped. Important differences are often identified in terms
of the relative accuracy of the different categories.
Mixed LUC categories do not usually show the same
accuracy as spectrally pure categories. At high levels of
thematic detail, very similar LUC categories can be easily
confused and will, therefore, have lower levels of accuracy.
Users must take these differences at the category level into
account and report the accuracy values for each category.
The general approach for agreement between maps at
global and stratum level may be useful to this end (see
Sect. 4 in chapter “Metrics Based on a Cross-Tabulation
Matrix to Validate Land Use Cover Maps”). Some authors
talk specifically about Overall and Individual Spatial
Agreement, proposing different metrics for these purposes
(Yang et al. 2017; Islam et al. 2019) (see Areal and spatial
agreement metrics in Sect. 2 in chapter “Metrics Based on
a Cross-Tabulation Matrix to Validate Land Use Cover
Maps™).

It is also important to remember that the accuracy of a
LUC map is not usually the same across the entire mapped
area and considerable spatial variations are possible. The
bigger the area being mapped, the more likely it is for there
to be spatial differences in accuracy levels across the mapped
area. The cross-tabulation matrix does not provide infor-
mation about these spatial differences. When mapping large
study areas made up of different, clearly distinguishable
regions, each region can be validated independently, pro-
ducing a specific cross-tabulation matrix in each case. The
global analysis would cover the entire map, while specific
areas of the map (e.g. a region, a municipality...) could also
be analysed at the stratum level.

Overall Accuracy is highly correlated with the Kappa
Index (Olofsson et al. 2014), which explains why both
metrics provide similar information. One difference is that
Kappa takes into account the agreement expected by chance,



Validation of Land Use Cover Maps: A Guideline

a factor that is not considered in Overall Accuracy. The
Kappa Index (see Sect. 3 in chapter “Metrics Based on a
Cross-Tabulation Matrix to Validate Land Use Cover
Maps”) has been criticized by a range of authors, who claim
that it can sometimes be misleading (Pontius and Millones
2011; Olofsson et al. 2014). Moreover, standard indices such
as overall, producer’s and user’s accuracy have the advan-
tage that they can be interpreted as measures of the proba-
bility of encountering pixels, patches, etc. that have been
allocated to the correct category (Stehman 1997).

The methods mentioned above do not employ fuzzy logic
and, instead, apply a binary logic when calculating agree-
ment, i.e. the two elements agree or don’t agree. Partial
agreements are not considered. However, there are some
tools for calculating map agreement that incorporate fuzzy
logic, such as the Fuzzy Kappa or the Fuzzy Kappa Simu-
lation (Woodcock and Gopal 2000).

Other metrics, similar to Kappa, have also been proposed.
Usually they aim to outperform Kappa and correct some of
its associated problems. These include, among others, the
F-Score (Pérez-Hoyos et al. 2020), Scott’s pi statistic (Gwet
2002) and Krippendorff’s o-coefficient (Kerr et al. 2015).
These metrics are not widely used and they provide similar
information to Kappa, which is why we do not recommend
that they be used in a standard LUC validation exercise.

Extensive research by Pontius Jr. has given rise to other
metrics based on the cross-tabulation matrix which can be
used to validate a single LUC map against a reference map
(see chapter “Pontius Jr. Methods Based on a Cross-Tabu-
lation Matrix to Validate Land Use Cover Maps”). Quantity
& allocation disagreement (see Sect. 3 in chapter “Pontius
Jr. Methods Based on a Cross-Tabulation Matrix to Validate
Land Use Cover Maps”) (Pontius and Millones 2011)
compares the agreement between maps regarding the pro-
portions allocated to the different categories and regarding
the way they are allocated, i.e. differences in the quantities
allocated to each category and differences in their location.
These metrics complement the cross-tabulation table, so
enabling users to take full advantage of the information it
provides. Quantity and Allocation disagreement is a very
good method for validating a single map against a reference
map (Garcia-Alvarez and Camacho Olmedo 2017).

Users can also specifically assess the pattern of the map
they want to validate to find out how much its pattern
coincides with that of the reference map. Pattern agreement
can be assessed using Spatial metrics (see Sect. 1 in chapter
“Spatial Metrics to Validate Land Use Cover Maps™) and the
Map Curves method (see Sect. 1 in chapter “Advanced
Pattern Analysis to Validate Land Use Cover Maps”). Spa-
tial metrics allow us to characterize different aspects of the
map’s pattern in detail, such as its fragmentation, the pro-
portion allocated to each category, the complexity of the
patches... (Botequilha et al. 2006; Forman 1995). Initially
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developed within the field of landscape ecology, these
metrics are also widely used for characterizing the pattern of
categorical maps. For its part, Mapcurves (Hargrove et al.
2006) provides a single value summarizing the pattern
agreement between two maps. In both cases, we should
always compare maps drawn at the same spatial and the-
matic resolution, as any changes in resolution would
severely alter the pattern of the map, so rendering the
comparison uninformative.

Geographic weighting methods (GWR) (see chapter
“Geographically Weighted Methods to Validate Land Use
Cover Maps”™) can also be used to study the spatial distri-
bution of LUC accuracy measures. The overall, user’s and
producer’s accuracy metrics mentioned above are derived
from the cross-tabulation matrix and are therefore not spatial
metrics, i.e. they provide overall information for the entire
area, without assessing the spatial distribution of error and
accuracy. The application of Overall, user’s and pro-
ducer’s accuracy metrics through GWR (see Sect. | in
chapter “Geographically Weighted Methods to Validate
Land Use Cover Maps™”) can help the user to assess the
suitability of the LUC data and to observe local variations in
accuracy and error on the map (Comber 2013). In some
cases, local assessments may be necessary because they can
uncover possible clusters of errors in the LUC data. By
adapting logistic Geographically Weighted Regression
(GWR) (Brunsdon et al. 1996), the spatial variations in
Boolean LUC (classified data) and fuzzy LUC (reference
data) can be modelled, providing maps that show the dis-
tribution of the overall, user’s and producer’s accuracy
metrics.

4 Validation of Land Use Cover Maps
Series/Land Use Cover Changes

There is no common practice or set of methods for validating
or evaluating the uncertainty of a LUC map series with two
or more time points (to, t;, to...). Most of the exercises for the
validation of LUC data only refer to single LUC maps,
without focusing specifically on the LUC change studied
through a series of LUC maps.

One of the facets that users most demand from LUC data
is the ability to study and display LUC changes over time.
We therefore need methods and tools to assess the uncer-
tainty of the changes that are measured from LUC maps. It is
worth noting that the individual accuracy of two LUC maps
involved in a post-classification comparison offers few clues
as to the accuracy of change, because the relation between
the errors in the two maps is unknown. As pointed out by
Olofsson et al. (2013), even when both maps are highly
accurate, it is possible that the change map accuracy will be
low and the estimated change area strongly biased.
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One of the main limitations when it comes to validating
LUC changes and LUC map series is the lack of reference
data. We could obtain reference datasets via photointerpre-
tation or field surveys. However, it is difficult to guess where
the LUC changes will take place, as they may happen at
different places and with different intensities and patterns
over space and time. In addition, there is a clear lack of LUC
map series showing accurate, validated LUC change that
could be used as reference data. Another option would be to
validate the LUC changes against other types of reference
data. This could be done for example by comparing the LUC
changes measured over a time series of LUC maps against
the difference in reflectance between two satellite images for
the same time period. This is because when LUC change
takes place, there is a significant change in the reflectance
value registered by the satellite capturing the images.

Nevertheless, as commented earlier, the most common
situation is that there are no reference datasets available. In
these cases, the uncertainty of the LUC map series must be
assessed by evaluating the consistency and the logic of the
measured LUC change. The tools and techniques recom-
mended here provide a great deal of information to the user.
However, the final interpretation of the measured LUC
change will be subjective, based on the user’s expertise and
understanding of the study area. In this situation, visual
inspection can be very useful for quickly understanding
many of the uncertainties in the time series of LUC maps
that cannot be measured using quantitative metrics. This is
why we recommend visual inspection as a first essential step
prior to the validation of any LUC map or LUC modelling
exercise.

Users must be aware that LUC change usually represents
a very small portion of the mapped area. For a specific, not
very large landscape, we would only expect a few features to
change over a short period of time. In addition, the same area
would not normally be expected to be affected by various
successive changes. On the contrary, when an area changes,
the new land use or cover tends to remain unchanged over
time. In addition, there are some LUC transitions that make
less sense than others. For example, one would not expect an
artificial area to change to vegetation or agricultural land.
These general assumptions may be adapted in line with the
particular characteristics of the study area and also within the
context of each element being analysed.

The same validation techniques reviewed above for single
LUC maps (Sect. 3) can also be applied when comparing
measured and reference changes or just for evaluating the
consistency and logic of measured LUC change. However,
some tools are specific to time series (Fig. 1).

The cross-tabulation matrix (see Sect. 1 in chapter
“Basic and Multiple-Resolution Cross Tabulation to Vali-
date Land Use Cover Maps”) is the tool that provides most
information about the change happening between two LUC
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maps. For a time series, we can compare each pair of LUC
maps to find out the changes that take place at each date and
the area they cover, for the map as a whole and at category
level. We can summarize the main processes of change in
our study area, such as, for example, the artificialization or
deforestation rates for each time period. This gives us an
overview of the change that has taken place over our map
series and makes it easier to interpret some of the incon-
sistencies in measured change. Some authors also propose
making a summary of all the transitions taking place, asso-
ciating some of them with a default degree of uncertainty
(Goémez et al. 2016; Hao and Gen-Suo 2014). For example, a
transition from artificial surfaces to agricultural areas is not
expected and could therefore be assigned a high degree of
uncertainty.

Multi-resolution cross-tabulation (see Sect. 2 in chapter
“Basic and Multiple-Resolution Cross Tabulation to Vali-
date Land Use Cover Maps”) offers a means of checking
whether some of the errors, inconsistencies or uncertainties
we detect at the original resolution are not detected at coarser
resolutions. When this happens, the errors and inconsisten-
cies probably arise due to the level of detail at which the
dataset was created.

The cross-tabulation matrix is an excellent source of
information, which we can easily summarize using other
tools and metrics. As commented in Sect. 3, Areal and
spatial agreement metrics (see Sect. 2 in chapter “Metrics
Based on a Cross-Tabulation Matrix to Validate Land Use
Cover Maps”) and Kappa Indices (see Sect. 3 in chapter
“Metrics Based on a Cross-Tabulation Matrix to Validate
Land Use Cover Maps”) are used to assess the agreement
between two maps. Despite their limitations, these metrics
can be used to chart, in a generic way, the persistence or
changes between two dates. If two maps in a series undergo
the normal rate of change that we associate with any land-
scape, the differences between them should be slight, which
means that the Kappa and agreement metrics should reflect
high levels of coincidence between the maps being
compared.

The Agreement between maps at global and stratum
level (see Sect. 4 in chapter “Metrics Based on a
Cross-Tabulation Matrix to Validate Land Use Cover
Maps”) analysis could provide additional specific informa-
tion about the agreement in a time series of LUC maps at
whole map level, or for a given stratum, i.e. a smaller area or
a specific LUC category. Accuracy assessment statistics
can also be calculated for a LUC map series, either globally
(see Sect. 5 in chapter “Metrics Based on a Cross-Tabulation
Matrix to Validate Land Use Cover Maps”) or locally
(Sect. 1 in chapter “Geographically Weighted Methods to
Validate Land Use Cover Maps”). For example, when the
LUC map series is obtained using a base map that is pro-
gressively updated, the first stage is to validate the base map
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of the series using the same procedure described earlier for
validating single LUC maps. Once this has been done, we
can validate the changes against a reference dataset of
changes through cross-tabulation, obtaining from the
resulting table the overall, producer’s and user’s accuracy
metrics. Pouliot and Latifovic (2013) coined the term Update
Accuracy (UA) to refer to the accuracy of the measured
changes. They refer to the accuracy of the base map as the
Base Map Accuracy (BMA). They also propose a metric
called Time Series Accuracy (TSA) as the mean accuracy of
all the LUC maps that make up the series, individually
validated through a specific reference LUC dataset for each
case.

Change statistics (see Sect. 1 in chapter “Metrics Based
on a Cross-Tabulation Matrix to Validate Land Use Cover
Maps”) (FAO 1995; Puyravaud 2003) are widely used to
assess land use and cover changes. These indices measure,
for example, relative change or rates of change and allow us
to compare the change between regions of different sizes.
These indices can be complemented by the change matrix
obtained from cross-tabulation. They are calculated from the
map series itself, rather than from the cross-tabulation
matrix.

Robert Gilmore Pontius Jr. has made major contributions
to the family of validation techniques based on the
cross-tabulation matrix (chapter “Pontius Jr. Methods Based
on a Cross-Tabulation Matrix to Validate Land Use Cover
Maps”). The LUCC budget (see Sect. 2 in chapter “Pontius
Jr. Methods Based on a Cross-Tabulation Matrix to Validate
Land Use Cover Maps”) (Pontius et al. 2004) provides more
information about the changes that take place between pairs
of maps. It differentiates between net and gross changes,
therefore, allowing us to gain a clearer understanding of the
transitions and swaps between categories, providing useful
additional information to identify category confusion over
time. Category confusion arises when the same area is
mapped as different, albeit similar, categories at different
points in time, when no change has actually taken place.

Quantity and allocation disagreement (see Sect. 3 in
chapter “Pontius Jr. Methods Based on a Cross-Tabulation
Matrix to Validate Land Use Cover Maps™) show, at overall
and category level, differences between pairs of maps in
terms of category proportions due to the different allocation
of the categories. Few changes are expected in a time series
of maps. This means that quantity and allocation disagree-
ment should be low and should centre on the most dynamic
categories.

The number of incidents and states (see Sect. 5 in
chapter “Pontius Jr. Methods Based on a Cross-Tabulation
Matrix to Validate Land Use Cover Maps”) (Pontius et al.
2017) also provides information that can help identify errors.
This technique allows us to identify those areas that are more
dynamic than expected, i.e. those that change a lot over a
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short period of time, always transitioning between the same
categories. Intensity analysis (see Sect. 6 in chapter “Pon-
tius Jr. Methods Based on a Cross-Tabulation Matrix to
Validate Land Use Cover Maps”) (Aldwaik and Pontius
2012) compares the rates of LUC change between periods,
categories, and transitions. Based on the assumption that a
category or area is expected to change at similar levels of
intensity over time, this analysis enables us to identify those
categories that do not comply with this assumption. The
Flow matrix (see Sect. 7 in chapter “Pontius Jr. Methods
Based on a Cross-Tabulation Matrix to Validate Land Use
Cover Maps”) (Runfola and Pontius 2013) measures the
instability of annual land use change over different time
intervals, so as to identify anomalies relative to the amount
of change over the whole time series.

Spatial metrics (see Sect. 1 in chapter “’) and Map
curves (see Sect. 1 in chapter “Advanced Pattern Analysis
to Validate Land Use Cover Maps”) enable us to charac-
terize the pattern of each LUC map in the series. We do not
expect the pattern of the map to vary significantly over the
time period being analysed. This means that only smooth
changes should be observed when comparing the spatial
metrics for each of the periods analysed.

Spatial metrics that specifically measure the areas that
change between pairs of maps may also be useful. In the
case of a pair of maps or a time series, the detection of
change on pattern borders (see Sect. 2 in chapter
“Advanced Pattern Analysis to Validate Land Use Cover
Maps”) (Paegelow et al. 2014) enables us to identify data
errors resulting from different data sources, different classi-
fiers or spectral responses. For example, the noise or error
shown by a time series of LUC maps often arises due to
border areas between categories being interpreted differently
each year. Users can specifically analyse the changes that
take place in these border patches, often elongated and less
than 1 or 2 pixels wide, so helping them to identify potential
errors. These patches can also be characterized through the
calculation of spatial metrics.

5 Validation of Land Use Cover Change
Modelling Exercises

Validating a LUCC modelling exercise is a complex task. In
this case, we are not validating a single LUC map or a series
of LUC maps, but a model application made up of multiple
inputs, which interact to deliver new results. When validat-
ing LUCC modelling exercises, users tend to focus exclu-
sively on the validation of the model’s hard maps, i.e. maps
with a categorical legend similar to the input LUC maps
(Camacho Olmedo et al. 2018). These hard maps are the
main final output of any modelling exercise, but not the only
one. To properly validate a LUCC modelling exercise we
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should focus not only on the scenario generated by the
model, but also on the other outputs and inputs.

Given the nature of this book, we will be dealing
exclusively with the validation of LUC maps associated with
LUCC modelling exercises: input LUC maps, output soft
LUC maps and output hard LUC maps. Users must bear in
mind that other sources of data can be used in LUCC
modelling exercises and can be validated via complementary
methods.

Modellers can begin a modelling exercise by evaluating
the uncertainty of the input LUC maps used in the model and
their changes according to the guidelines set out in Sects. 3
and 4 above. This is because the quality of the input LUC
maps can have a significant effect on the performance of the
model. When setting up LUCC models, it is essential to
understand the changes that take place in the set of input and
reference maps. An assessment of the uncertainty of these
LUC changes is therefore vital for determining and charac-
terizing the uncertainty of the LUCC modelling exercise.

In the following subsections, we present the validation
tools for output LUC maps, i.e. the products obtained by the
model, differentiating between soft and hard LUC maps.

5.1 Soft LUC Maps

Soft LUC maps, also referred to as suitability, change
potential or change probability maps, are produced by the
model to express the propensity to change over space, that is,
the potential of each pixel to become a specific category in
the future (Camacho Olmedo et al. 2018). Modellers can
assess the internal behaviour and coherence of the model
they are building by comparing the model’s soft maps with
the maps of simulated changes. They can also find out to
what extent the changes simulated by the model coincide
with the areas of highest potential in the respective maps for
each modelled category. In addition, they can compare the
soft maps obtained by different models and assess their level
of agreement.

Soft LUC maps are usually validated against a reference
map of changes (t, — t;), and there are various methods for
carrying out this analysis (see chapter “Validation of Soft
Maps Produced by a Land Use Cover Change Model”). The
Pearson and Spearman correlation (see Sect. 1 in chapter
“Validation of Soft Maps Produced by a Land Use Cover
Change Model”) is appropriate for a quick assessment of the
soft map, by computing it against the map of observed
change (Bonham-Carter 1994; Camacho Olmedo et al.
2013). The Receiver Operating Characteristic (ROC) (see
Sect. 2 in chapter “Validation of Soft Maps Produced by a
Land Use Cover Change Model”) (Pontius and Parmentier
2014) is used to assess soft maps by comparing them with
the observed binary event map. A highly predictive model
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produces a soft map in which the highly ranked values
coincide with the actual event. In soft maps, the Difference
in Potential (DiP) proposed by Eastman et al. (2005) (see
Sect. 3 in in chapter “Validation of Soft Maps Produced by a
Land Use Cover Change Model”) compares the relative
weight of values allocated to changed areas, in other words
the difference between the mean potential in the areas of
change and the mean potential in the areas of no change
(Pérez-Vega et al. 2012).

In short, the previous three methods evaluate the rela-
tionship between the observed changed area and the soft
LUC map, assuming that a good model output allocates the
highest change probability values to the areas that did
actually change, and the lowest change probability values to
the areas that did not change. Unlike the previous methods,
the total uncertainty, quantity uncertainty and allocation
uncertainty indices (see Sect. 4 in chapter “Validation of
Soft Maps Produced by a Land Use Cover Change Model”)
(Kriiger and Lakes 2016) are not calculated against a refer-
ence map of changes, and instead estimate uncertainty by
adding together misses and false alarms based on soft pre-
diction score levels.

In addition to these specific indices for soft LUC maps,
validation can also be conducted after reclassifying the
original soft maps, so transforming continuous, ranked maps
(soft) into categorical maps (hard) (see Sects. 1 and 2 in
chapter “Basic and Multiple-Resolution Cross Tabulation to
Validate Land Use Cover Maps”). This preliminary step
enables most of the validation tools presented in this chapter
to be applied for this purpose.

5.2 Hard LUC Maps

The second output obtained by the model is the hard LUC
map. Also known as prospective LUC maps, these are
simulated LUC maps with an identical categorical legend to
the input LUC maps (Camacho Olmedo et al. 2018). The
hard maps must be validated in order to understand more
about the behaviour of the model and how well it simulates
changes. These maps provide a clearer picture of the char-
acteristics of the simulated changes and how they resemble
our reference data.

5.2.1 Single LUC Maps

The simulation (T;) can only be validated against a single
LUC map (t)) if both maps correspond to the same year. This
will also enable users to apply the panoply of tools presented
in Sect. 3. The Accuracy assessment statistics, computed
either globally (see Sect. 5 in chapter “Metrics Based on a
Cross-Tabulation Matrix to Validate Land Use Cover
Maps”) or locally (see Sect. 1 in chapter “Geographically
Weighted Methods to Validate Land Use Cover Maps”)
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could also be applied to validate the simulation against other
LUC data such as ground points.

In addition to this generic list of tools, some metrics are
specifically used for validating the hard LUC maps obtained
from LUCCM exercises. Allocation distance error (see
Sect. 3 in chapter “Advanced Pattern Analysis to Validate
Land Use Cover Maps”) (Paegelow et al. 2014) measures the
relevance of simulation errors by computing the distance
between a false positive (commission) and the closest object
in the reference map, considering the minimum distance or
the centroids of the area in question.

5.2.2 LUC Maps Series/LUC Changes

The most appropriate, most complete validation procedure
for hard maps must include three different maps: the simu-
lation (T;), a reference LUC map for the same year (t;) and
the base map over which the simulation is executed (ty). In
other words, if our modelling exercise starts in the year
2010, we will need a base map for 2010 to establish the
initial landscape on which the simulation will be calculated.
Then, if we run a simulation for the year 2020, we will also
need a reference map for 2020 in order to be able to com-
pare how well our model simulates change. By comparing
the simulation and the reference map we can understand to
what extent the simulation matches the reference data. The
changes that take place on the reference map and the sim-
ulation can be extracted by comparing them with the base
map. The changes extracted from the two maps can then be
compared so as to find out how well the simulated changes
agree with the changes that took place on the reference
maps.

There are many tools for validating and understanding the
errors and uncertainties of simulated changes. In fact, all the
methods and strategies explained in Sect. 4 can be applied in
LUCC modelling. In this case, however, the main purpose is
to achieve the best possible fit between the results of the
model and the reference data.

The majority of metrics are obtained from the
cross-tabulation matrix (see Sect. 1 in chapter “Basic and
Multiple-Resolution Cross Tabulation to Validate Land Use
Cover Maps”). The cross-tabulation matrix offers a detailed
picture of the changes that were simulated (by
cross-tabulating the simulation with the base map), the
changes we used as a reference (by cross-tabulating the
reference map with the base map) and the agreement and
disagreement between the simulation and the reference map
(by cross-tabulating the simulation with the reference map).
The cross-tabulation matrix can also be used to summarize
simulated and reference change in a series covering the main
processes of change (artificialization, deforestation...). This
enables us to quickly identify the changes that have taken
place in our simulation and to spot potential change patterns
that do not make sense.
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Cross tabulation can be carried out at multiple resolu-
tions (see Sect. 2 in chapter “Basic and Multiple-Resolution
Cross Tabulation to Validate Land Use Cover Maps”) (the
original and coarser ones), to find out at which resolution
there is the greatest agreement. Sometimes, the simulation
and the reference landscape do not agree on the details but
show high consistency at coarser scales. This implies that the
model is unable to simulate the precise location of the
changes, but it does simulate the main patterns of change
correctly.

Different metrics have been proposed for summarizing
the agreement between the simulation and the reference
maps that the cross-tabulation matrix shows in raw (see
chapter “Metrics Based on a Cross-Tabulation Matrix to
Validate Land Use Cover Maps™). The Areal and spatial
agreement metrics (see Sect. 2 in chapter “Metrics Based
on a Cross-Tabulation Matrix to Validate Land Use Cover
Maps”) could be applied to summarize the agreement
between two maps of changes, the simulated and the refer-
ence change maps, overall or per category. Kappa (see
Sect. 3 in chapter “Metrics Based on a Cross-Tabulation
Matrix to Validate Land Use Cover Maps”) also summarizes
the overall agreement between two maps. However, it has
been widely criticized because it assesses the similarity
between the simulation and the reference map, but does not
distinguish between the areas that change between the two
dates and those that do not. Therefore, in maps that simulate
permanence correctly, the Kappa metric will be high.
Accordingly, we only recommend Kappa for assessing how
well permanence is simulated, and it should not be used for a
detailed assessment of the accuracy of simulated changes.
The Kappa Simulation proposed by Van Vliet et al. (2011)
takes the standard Kappa flaws regarding LUCC modelling
into account. It focuses on the agreement between the
changes in the simulation and the changes in the reference
map with regard to the initial map used as a base for the
simulation.

The Agreement between maps at global and stratum
level (see Sect. 4 in chapter “Metrics Based on a
Cross-Tabulation Matrix to Validate Land Use Cover
Maps”) analysis can assess for a specific LUC transition, for
example, whether the agreement between an observed (ref-
erence map) and a simulated transition varies or not for
several distance classes resulting from a driver (e.g. distance
to roads). Other metrics, such as change statistics (see
Sect. 1 in chapter “Metrics Based on a Cross-Tabulation
Matrix to Validate Land Use Cover Maps”), are widely used
for characterizing the simulated changes, providing extra
information that may be helpful for their validation.

Pontius proposes several metrics for validating simulated
change (see chapter “Pontius Jr. Methods Based on a Cross
Tabulation Matrix to Validate Land Use Cover Maps”).
Some of them can also be used to validate time series of
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LUC maps and were therefore described in Sect. 2. The
LUCC budget (see Sect. 2 in chapter “Pontius Jr. Methods
Based on a Cross Tabulation Matrix to Validate Land Use
Cover Maps”) technique helps users to understand the
changes that take place between the simulation and the base
map and between the reference and the base maps. This tool
calculates the gross and net changes, overall and per cate-
gory, as well as the category swaps, in both the simulated
and the reference landscapes. This enables us to assess in
detail whether the changes we simulated are similar to the
changes that take place on the reference maps and follow the
same trends.

Quantity & allocation disagreement (see Sect. 3 in
chapter “Pontius Jr. Methods Based on a Cross Tabulation
Matrix to Validate Land Use Cover Maps”) differentiates, at
an overall level and per category, between the (dis)agree-
ment between two maps in terms of the proportion of the
map occupied by each category (quantities) and the (dis)
agreement due to the allocation of the categories in the
same/different places on the map (allocation). It is therefore
useful for assessing how much of the disagreement is due to
the way the model simulates quantities and how much is due
to its incorrect allocation of categories. By making the
analysis at the category level, it also allows us to assess
where (i.e. in which categories) the errors and uncertainties
arise.

If a chronological series of simulations (more than
two-time points) is available, Incidents and States (see
Sect. 5 in chapter “Pontius Jr. Methods Based on a Cross
Tabulation Matrix to Validate Land Use Cover Maps” may
also be employed. This metric helps identify pixels that
follow illogical transition patterns, with changes at succes-
sive time intervals between the same pair of categories (e.g.
from agricultural to urban fabric and then back to
agricultural).

Intensity analysis (see Sect. 6 in chapter “Pontius Jr.
Methods Based on a Cross Tabulation Matrix to Validate
Land Use Cover Maps”) compares the different intensities of
change per category in simulations and reference maps over
at least three points in time. In this way we can assess
whether our model correctly simulated the change trend
displayed by the reference data. The flow matrix (see
Sect. 7 in chapter “Pontius Jr. Methods Based on a Cross
Tabulation Matrix to Validate Land Use Cover Maps™)
could also be applied to validate simulated changes in a
generic way, assessing the stability and instability of the real
and simulated changes over time.

The Null model (Pontius and Malanson 2005) (see
Sect. 1 in chapter “Pontius Jr. Methods Based on a Cross
Tabulation Matrix to Validate Land Use Cover Maps”)
compares the agreement between the base map for the
simulation and the reference map versus the agreement
between the simulation and the reference map. If the former
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is higher than the latter, our modelling exercise could be
judged to have performed poorly, in that the accuracy of the
obtained simulation is lower than that for a reference map in
which no change takes place. This assertion may be clarified
by using other validation tools to obtain a clearer under-
standing of the logic and pattern of the simulated change.
The null model is also a valuable tool for evaluating how
well the model simulates permanence.

The Figure of Merit (Pontius et al. 2008) and comple-
mentary Producer’s and User’s accuracy, (see Sect. 4 in
chapter “Pontius Jr. Methods Based on a Cross Tabulation
Matrix to Validate Land Use Cover Maps”) also measure the
agreement between simulated changes and changes in the
reference map. The Figure of Merit technique is recom-
mended when trying to assess the model’s ability to correctly
simulate change. The different components of the Figure of
Merit can be used to discover whether the model estimates
more or less change than the reference map. It is also highly
recommended for evaluating the congruence of model out-
puts and model robustness. This is a form of validation that
evaluates the agreement between simulations obtained using
different models or using the same model parametrized in
different ways (Paegelow et al. 2014; Camacho Olmedo
et al. 2015).

None of the above tools assesses the accuracy of the
pattern of LUC change in the simulation. This aspect is
important because even if the quantities simulated are wrong
and the categories are not allocated in the same positions as
in the reference maps, the pattern of LUC change may have
been simulated correctly. Pattern can be validated using
Spatial metrics (see Sect. 1 in chapter “Spatial Metrics to
Validate Land Use Cover Maps”) and the Map Curves (see
Sect. 1 in chapter “Advanced Pattern Analysis to Validate
Land Use Cover Maps”) method, which compare the pattern
of the simulation with the pattern of the reference landscape.

Spatial metrics characterize many different elements of
the landscape: fragmentation, shape complexity, category
proportions, diversity.... They can be calculated specifically
for the simulated and reference changes, so allowing users to
identify the specific pattern characteristics of the features
that changed during the simulation period. In this way we
can understand the size and shape of the simulated changes,
inferring from this information how logical or uncertain they
may be.

The MapCurves method gives a summary figure for the
pattern agreement between two maps, and is therefore much
easier to interpret. However, it does not provide all the
complex detail that can be revealed by applying the different
spatial metrics.

We can also analyse the changes that take place on the
borders of existing patches and the changes that result in the
appearance of new patches. This distinction may be useful
for identifying errors or inconsistencies. The detection of
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change on pattern borders (see Sect. 2 in chapter
“Advanced Pattern Analysis to Validate Land Use Cover
Maps™) enables us to evaluate and identify errors in the
simulations, which may be due to different parameters being
applied in the model allocation procedure, such as, for
example, the use of a contiguity filter. The Allocation dis-
tance error (see Sect. 3 in chapter “Advanced Pattern
Analysis to Validate Land Use Cover Maps”) calculates the
distance between wrongly simulated patches and reference
patches, so as to gain a better picture of how well the patches
are simulated. In this sense, a model that wrongly allocates
change close to areas that actually change on the ground
would be considered to have performed better than a model
that allocates them further away.
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