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Abstract  7 

The main objective of this research is to characterize and quantify the prevalent physical processes in 8 
the energy transformation of a regular wave train when it interacts with permeable and impermeable 9 
breakwaters. Two sources of experimental data are considered: (a) numerical experiments on an 10 
undefined impermeable rigid slope, using the numerical model (IH-2VOF), and (b) physical 11 
experiments on a non-overtoppable permeable breakwater with a cube armor layer and a porous core 12 
of finite width in a 2D wave flume. A revised dimensional analysis reveals that the relative water 13 
depth, h/L, and the incident wave steepness, H/L, at the toe of permeable and impermeable 14 
breakwaters are the key factors to define and optimize the experimental space (HI/L, h/L). Moreover, 15 
the product of (h/L)(HI/L) can be applied to identify the type of wave breaking and the domains of 16 
wave energy transformation, and to quantify the reflected and transmitted energy coefficients and the 17 
dissipation rate (KR

2, KT
2

, D*). Fitting an experimental curve (i.e. a sigmoid function) to the 18 
impermeable data, the slope is a plotting parameter. The same conclusion is obtained for a permeable 19 
breakwater; in addition the wave energy coefficients depend on the relative breakwater width B*/L, 20 
and the relative core grain size and D50,p/L, and armor unit diameter, Da/L. Because the range of the 21 
design factors spans several orders of magnitude, a log-transformation provides a well behaved 22 
experimental space [ln(h/L), ln(H/L)] which is likely of benefit to verify the wave breaker type and 23 
the related dissipation-reflection-transmission on slopes. Finally, this study shows that there is not a 24 
biunivocal relationship between the Iribarren number, Ir, and the type of breaker, the reflection and 25 
transmission coefficients and the bulk dissipation. Therefore, Iribarren’s number is not a sufficient 26 
similarity parameter for the analysis of wave breaking, and related flow characteristics on slopes. 27 
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1. Introduction  33 

The main function of breakwaters is to protect harbors and coastal structures from wave action. They 34 
are an important type of coastal and port infrastructure because of their functionality as well as their 35 
cost, design complexity, and environmental and socioeconomic impacts. The conception, design, and 36 
verification of a breakwater mainly depends on the slope of the sea bottom, water depth at the 37 
breakwater toe, h, and the characteristic values of incident waves H, T, q (height, period, and 38 
incidence angle). They also depend on the available materials, construction and repair techniques, 39 
and the consequences that ensue when and if objectives are not attained. The performance of the 40 
breakwater against wind waves is mainly determined by the slope on both sides of the breakwater, 41 
shape and weight of the unit pieces, number of armor layers, thickness and emplacement of the main 42 
layer/secondary layers and the width, crest elevation, and size of the core materials (ROM 0.0, 2001; 43 
ROM 1.1, 2019).  44 
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Battjes (1974) proposed using the Iribarren number (Iribarren and Nogales, 1949), 𝐼! =45 
tan(𝛼) )𝐻 𝐿⁄⁄ , as the dynamic similarity parameter to analyze wave train behavior on an indefinite 46 
impermeable flat slope, slope angle a, where L is the characteristic wavelength. He also conjectured 47 
that the value of Ir identified breaker type as spilling, plunging, collapsing, or surging (Iversen, 1952; 48 
Galvin, 1968). Furthermore, he anticipated its capacity to determine the phase difference and 49 
wavebreaking index, wave run-up and run-down, mean level, and the reflection and dissipation 50 
(absorption) of the waves on the breakwater slope. 51 

In the field of harbor and maritime structures (and also beach morphodynamics), the seminal work of 52 
Battjes (1974) led to research whose objective was to determine the transformation of incident energy 53 
when waves interacted with the breakwater by means of the reflected energy coefficient, KR

2, 54 
transmitted energy coefficient, KT

2, and the bulk dissipation rate, D*. Still another objective was to 55 
develop formulas for wave run-up, run-down, overtopping and stability of the main armor layer in 56 
the domain of interest, Ir > 1.5, as reflected in the following references, among others: Brunn and 57 
Günbak (1976); Losada and Giménez-Curto (1981); Seelig and Ahrens (1981); Allsop and Hiettrarchi 58 
(1989); Martin et al. (1999); Zanuttigh and Van der Meer (2008); Burcharth et al. (2010); Van der 59 
Meer (2011); Gómez-Martín and Medina (2014); Vílchez et al. (2016a).  60 

These studies show that in the domain, Ir  > 1.5, the Iribarren number reveals the general tendency of 61 
coefficients [KR

2, KT
2]. However, the values tend to scatter as the value of Ir increases, depending on 62 

the slope angle. Energy transmission at a non-overtopped breakwater is usually small, KT
2 < 0.15, but 63 

this information is necessary in order to evaluate the bulk dissipation at the structure. Nonetheless, 64 
there are relatively few articles on the calculation of wave dissipation and is still an open quention. 65 
Such studies include the following, among others: Seelig and Ahrens (1981); Kobayashi and 66 
Wurjanto (1992); Pérez-Romero et al. (2009); Van Gent et al. (2013); and Vílchez et al. (2016b). 67 

Forty years after Battjes (1974), physical experiments on breakwaters are still based on the working 68 
hypothesis that the Iribarren number is a dynamic similarity parameter between model and prototype, 69 
and that, generally speaking, the Iribarren number is the main variable in formulas that determine the 70 
wave energy transformation coefficients [KR

2, KT
2, D*] for a breakwater and related hydrodynamic 71 

performance. 72 

Over the last thirty years, research studies have questioned the dependence of KR
2 = f(Ir). Hughes and 73 

Fowler (1995), and Sutherland and O'Donoghue (1998) applied the parameter xm/L (where xm = 74 
h/𝑡𝑔(𝛼)) to also quantify the phase of the reflected wave train. Davidson et al. (1996) defined a 75 
reflection number that includes Ir and the characteristic diameter of the armor layer. Van der Meer 76 
(1988, 1992) incorporated a permeability parameter and fit the exponents of Ir by means of a multiple 77 
regression analysis. Benedicto (2004) analyzed wave reflection, depending on h/L and grain size. 78 
Finally, Vílchez et al. (2016a) modifies the Iribarren number to incorporate, grain diameter, and the 79 
width and depth of the breakwater core in a single parameter.  80 

The main objectives of this research were the following: (1) to collate the dependence of wave energy 81 
transformation processes (reflection, transmission, and bulk dissipation rate) with Iribarren number; 82 
(2) to apply dimensional analysis to the design of experiments for both a permeable and impermeable 83 
slope; and (3) to analyze the variability of the results and identify those characterized by the 84 
hydrodynamic performance of the breakwater. This study involved numerical experiments using an 85 
undefined, impermeable, rigid slope and the application of the IH-2VOF model (Lara et al., 2008). 86 
These were combined with laboratory experiments in the 2D flume of a non-overtoppable mound 87 
breakwater with a cube layer and porous core of finite width. Linear wave theory was applied to 88 
separate the incident, reflected, and transmitted time series of the data records of the vertical 89 
displacement of the free surface at different points in the experimental setup. The wave energy 90 
conservation equation was applied to obtain the bulk dissipation rate on the breakwater. 91 

The rest of this paper is organized as follows. Section 2 describes the theoretical background to 92 
understand the main aspects of the physical processes that intervene in the water-wave interaction 93 
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with the breakwater. Section 3 presents the experimental design, analysis and setups (numerical and 94 
physical) performed in this study and presented in terms of Ir. Section 4 presents the numerical and 95 
physical results obtained. The results are initially represented, depending on the Iribarren number, 96 
after which they are displayed, depending on the dimensionless quantities obtained when the 97 
dimensional analysis was applied. Section 5 discusses the results, evaluates their validity in reference 98 
to the hypothesis and the experimental desviation obtained. Section 6 presents the conclusions derived 99 
from this research. Finally, the revised dimensional analysis of this study is outlined in Appendix A. 100 

2. Background  101 

The dissipation of a wave train on a breakwater slope is mainly caused by the generation, transport, 102 
and dissipation of turbulence during the following processes: (i) wave evolution and eventually 103 
wavebreaking on the free surface of the slope; (ii) interaction (circulation and friction) with the main 104 
armor layer; (iii) wave propagation through the secondary layers and porous core; and (iv) wave 105 
transmission leewards of the structure.  106 

Reflection-dissipation-transmission in a porous medium 107 

The theoretical formulation for the propagation of a regular or irregular wave train through a porous 108 
medium has been widely studied (Sollit and Cross, 1972; Dalrymple et al., 1991). Numerical and 109 
physical experiments have also been performed to address this topic (Pérez-Romero et al., 2009; 110 
Vílchez et al., 2016b). The Forchheimer equation is able to provide a reasonably accurate 111 
representation of the bulk resistance over the porous medium with coefficients that depend on the 112 
Reynolds and Keulegan-Carpenter numbers (Rep, KCp) (Van Gent, 1995; Pérez-Romero et al., 2009; 113 
Jensen et al., 2014a, b). 114 

In the last 20 years, there have been various studies on numerical predictions of wavebreaking on a 115 
smooth impermeable slope by means of different techniques (Christensen and Deigaard, 2001; Lara 116 
et al., 2006; Zhang and Liu, 2006; Madsen and Furham, 2008; Gíslason et al., 2009; Lakehal and 117 
Liovic, 2011). These results provide a detailed picture of the spatio-temporal evolution of the wave 118 
on the slope and help to clarify the origin of the variability and experimental scattering of the results 119 
obtained in physical experiments. In the interval, 1.5 < Ir < 3.5, four breaker types can be identified: 120 
weak plunging and strong plunging (Lakehal and Liovic, 2011) and weak bore and strong bore (Zhang 121 
and Liu, 2008).  122 

Furthermore, reflection and dissipation during shoaling and the eventual breaking of the wave on a 123 
slope with a permeable core do not have a theoretical model equivalent to the Forchheimer equation. 124 
Accordingly, most studies are based on numerical and physical experiments (Kobayashi and 125 
Wurjanto, 1992; Lara et al., 2008; Zanuttigh and Van der Meer, 2008; Ruju et al., 2014; Jensen et al., 126 
2014a, b; Vanneste and Troch, 2015; Vílchez et al., 2016a, b; Clavero et al., 2018). The following 127 
results are relevant to this study: 128 

1. The presence of a porous core is relevant to the hydrodynamic performance of the breakwater 129 
because it determines the phase lag between the incident and reflected wave trains and its impact 130 
on breaker type. 131 

2. The dimensions of the main armor layer and its unit pieces significantly influence the values of 132 
reflected energy dissipation as well as the dissipation rate. 133 

3. Design formulas for mound breakwaters are usually based on experimental data, whose scattering 134 
is usually maximum in the interval of Ir corresponding to the critical design conditions. These 135 
formulas are generally applied to calculate the transformation of incident energy, run-up and run-136 
down, and when applicable, the overtopping volume and the stability of the breakwater units. 137 

Model of hydrodynamic behavior 138 

When a wave train interacts with a breakwater, its behavior depends on the transformation process, 139 
which dominates the spatio-temporal evolution of the wave train that propagates onto the slope and 140 
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porous core. In the case of spilling breakers, the process is gradually dissipative and depends on the 141 
characteristics of the wave train at undefined depths, (H/L)0 and its shoaling at the slope. The shoaling 142 
depends on xm/L, where xm = h/tg(a) should be very small. In other words, reflection should be 143 
negligible on the slope as well as in the porous core. Spilling breakers and weak plunging breakers 144 
satisfy these conditions. If the wave train surges on the slope and propagates through the porous 145 
nucleus, the transformation process is essentially reflective. This process is described by the slope 146 
angle a, relative depth h/L, width B*/L and the relative diameters of the core, D50,p/L. Dissipation, 147 
which is small, occurs on the main armor layer (or the rough granular bed) as well as inside the 148 
breakwater core. The phase depends on xm/L and D50,p/L, B*/L, and determines the location of the 149 
nodes and anti-nodes of the wave.  150 

These modes of wave-train transformation and their related breaker types are the following: (i) 151 
dissipative mode typical of spilling breakers and weak plunging breakers; (ii) reflective mode for 152 
surging “breakers”; and (iii) transitional modes. In this work, three types of wave-train transformation 153 
and their corresponding breaker type, namely, strong plunging breakers, strong bores, and weak bores 154 
are identified as transitional modes. If wave reflection is not negligible (on the slope and in the core), 155 
the phase lag between the incident and reflected wave trains affects the location of the breaker point 156 
and determines the breaker type. If the amount of reflected energy and the dissipation rate are similar, 157 
the most probable breaker types are: strong plunging, strong bores or weak bores, depending on the 158 
place where most of the energy is reflected, namely, the breakwater slope or core, (Losada et al. 159 
2019). 160 

Turbulence processes in these three breaker types have multiple scales. Locally, turbulence 161 
generation and turbulence dissipation are not in equilibrium, and so the spatio-temporal evolution of 162 
the wave train has an intrinsic variability associated with the transport of the turbulent kinetic energy 163 
(TKE). The transition from one breaker type to another can be sudden or gradual, and the three can 164 
occur with different value pairs of HI/h and h/L, depending on the slope angle, a, and the 165 
characteristics of the main armor layer and the permeable core.  166 

The experimental design and the dimensional analysis carried out in this work are based on the 167 
background described in this section.  168 

3. Experimental design and setup 169 

This research study is based on the following: (a) numerical experiments, using the IH-2VOF model 170 
(Lara et al., 2008), on a mound breakwater with an undefined, impermeable, rigid slope; (b) physical 171 
experiments using a wave flume, on a mound breakwater with a non-overtoppable permeable constant 172 
slope, a cube armor layer and a porous core of constant finite width, B*, and grain size, D50,p. The 173 
flume bottom is horizontal and the water depth in the wave generation zone and in the flume up to 174 
the toe of the slope is constant, h.  175 
 176 
3.1 Physical tests 177 

The experimental tests were performed in the wave-current flume (23x0.65x1m) of the Andalusian 178 
Inter-University Institute for Earth System Research (IISTA) at the University of Granada. Figure 1 179 
shows a diagram of the physical model tested, namely, a permeable mound breakwater with a main 180 
armor layer consisting of two layers of cubes with a porous core. See Table 1 for more details 181 
regarding the geometrical configuration of the model. The water depth was kept constant and equal 182 
to h=0.4 m. 183 

Tests were performed in the wave flume with a VTI controller. The AwaSys software package was 184 
used to generate waves with the simultaneously active absorption of reflected waves. Regular waves 185 
were simulated and defined by a wave height, Htarget, and wave period Ttarget. Wavebreaking was only 186 
caused by wave-breakwater interaction, and the experiments were under non-overtopping and non-187 
damage conditions. Table 2 shows the target wave parameters run in each configuration. 188 
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189 
Figure 1. Diagram of the wave flume and location of wave gauges (dimensions in meters). 190 

.   191 

                                    Breakwater geometry                                                                Porous medium 

      Armor unit: cubes           Bb           𝜌!         cot(𝛼)       cot(𝛽)                   FMT          D50,p           Aeq               𝜌!            np 
                 (m)                       (m)       (tn/m3)                                                (m)          (m)            (m2)          (tn/m3)                                       

              l =0.033                  3Da        2.18           2           1.5                      0.55      0.012         0.2125         2.84        0.39 
       Deq =Da = 0.0409      

Table 1. Geometric parameters of the physical model: Bb is the width of the top of the breakwater; FMT is the porous 192 
medium height; Deq is the equivalent diameter of the main armor layer (the characteristic armor diameter Da), where the 193 
cube volume is equated to the volume of a sphere; Aeq is the area of the porous core per section unit below mean sea level 194 
(Vílchez et al., 2016a); 𝑐𝑜𝑡(𝛼) and 𝑐𝑜𝑡(𝛽) are the leeward and landward slopes of the breakwater, respectively; 𝜌!	is the 195 

density of the unit pieces; and np is the porosity of the core, according to CIRIA/CUR/CETMEF (2007). 196 

Four Iribarren numbers, Ir target were tested (see Table 2) in the domain of interest (Ir >1.5), following 197 
two ways of wave generation sequence: (1) Ir target,H, the wave height remained constant, whereas the  198 
wave period (Ttarget,H) varied; (2) Ir target,T, the wave period remained constant, whereas the wave height 199 
(Htarget,T) varied. Each test was repeated three times and 100 waves were simulated in each test. 200 

 201 

   Ir,target                                          2.30                         3.00                           3.70                             5.00 202 

 Ir target,H           Htarget  (m) 

                 Ttarget,H  (s) 

Ir target,T            Ttarget  (s) 

                  Htarget,T  (m) 

          [0.07 - 0.12]             [0.05 - 0.12]            [0.04 - 0.10]               [0.02 - 0.80] 

          [1.00 – 1.47]            [1.14 – 2.30]           [1.31 – 2.86]              [1.23 – 4.10] 

         [1.05 – 1.50]             [1.25 – 2.50]            [1.25 - 3.00]              [1.25 - 3.00] 

        [0.075 – 0.124]        [0.057 – 0.133]        [0.038 – 0.105]          [0.021 – 0.058] 

Table 2. Wave conditions tested in the laboratory (target values for the two ways of wave generation sequence). 203 

3.2 Numerical tests 204 

The IH-2VOF numerical model (Lara et al., 2008) was used to study a breakwater with a non-205 
overtoppable, impermeable, smooth slope with three leeward slope angles (cot 𝛼 = 	2, 3	and	10). For 206 
more details of the configuration of the model, see Table 3.  207 

The wave flume of the IISTA was reproduced in the numerical model with a 2D domain. The 208 
numerical set-up was the same used and calibrated in Vílchez et al. (2016b), formed by a uniform 209 
grid on the y-axis with a grid cell size of 0.5 cm, and horizontally (on the x-axis) grid with three 210 
regions: (i) a center region, 5 m long, containing the breakwater section with the finest resolution and 211 
a cell size of 1 cm; two regions (ii) at the beginning and (iii) at the rear of the numerical wave flow 212 
with a cell size of 2 cm. A mesh sensitivity analysis was performed to assess the computational costs 213 
and the accuracy of the results. The total number of cells in the numerical domain was 1304 × 162. 214 
Active wave absorption was used at the generation boundary, and the dissipative ramp at the end of 215 
the flume was reproduced with a porous medium.  216 

 217 
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                          Breakwater geometry                                                                  Wave conditions                                                    

 Armor +core          Bb       cot(𝛼)     cot(𝛽)       FMT                   h              Ttarget                             Ir,target 

                               0.5 m         2           -          0.75 m            0.4 m        [1-2.2] s                  [2.3, 3.0, 3.5, 4, 5] 

 Impermeable         0.5 m          3           -          0.65 m           0.35 m       [1-2.2] s         [1.5, 1.8, 2.3, 3.0, 3.5, 4.0, 5.0] 

                               0.5 m        10          -          0.65 m           0.35 m       [1-2.2] s         [0.5, 1.5, 1.8, 2.3, 3.0, 3.5, 4.0] 

Table 3. Wave parameters and geometric configuration of the breakwater in the numerical model. 218 

Regular waves were simulated by setting T and varying H to cover the Iribarren domain (Ir >1.5). 219 
Two water depths were tested: (1) h=0.35 m, the same as in Moraes (1970); and (2) h=0.4 m, the 220 
same as in the physical model (see Table 3). To complete the study of breakwater performance, some 221 
cases were simulated in domain Ir < 1.5 with a slope of 1:10. 222 

3.3 Time series analysis and evaluation of the bulk dissipation 223 

The incident and reflected wave trains were separated by applying Baquerizo (1995), (based on 224 
Mansard and Funke´s (1987) three-gauge method), providing the magnitude and phase of the 225 
reflected wave train. The reflected and transmitted wave energy, ER, ET, and their respective reflection 226 
(KR

2 and phase φR) and transmission coefficients (KT
2), that is, the dependent quantities of the 227 

dimensional analalysis (Appendix A), were obtained by applying power spectral analysis. KR
2 and φR 228 

were calculated with the data measured by gauges G1, G2 and G3 (see Fig. 1). The transmission 229 
coefficient (KT

2) was computed with the data measured with gauge G5. Gauge G4, located at the toe 230 
of the structure (x = 0), provided the total wave height at the toe of the breakwater (due to the 231 
interaction of the incident and reflected wave trains). For the numerical setup, wave gauges were 232 
placed in the numerical model at the same location as the ones used in the physical experiments.  233 

The dependent quantities satisfy the energy conservation equation in a finite control volume (CV) 234 
with a unit width and constant depth that includes the breakwater, (positive inflow, negative outflow 235 
and dissipation flow) 236 

    FI -FR -FT - D´* = 0                                                              (1) 237 

Where 𝐹" = 𝐶#,"𝐸" = (1 8)⁄ 𝜌𝑔𝐶#,"𝐻"%; i= I, R, T represents the mean energy flow of the incident, 238 
reflected, and transmitted wave trains, respectively; 𝜌	is the water density; and Cg,i is the group 239 
celerity of the energy propagation. D´* is the mean bulk dissipation, due to wavebreaking on the 240 
slope, and where applicable, wave interaction with the main armor layer and propagation through the 241 
porous core. 242 

4. Results    243 

This section presents the results of the wave transformation coefficients [𝐾&%, 𝐾'%, D*] for the two 244 
configurations: (impermeable and permeable) non-overtoppable mound breakwater.  245 

4.1 Iribarren number as a breakwater similarity parameter  246 

4.1.1 Impermeable and non-overtoppable slope 247 

Figure 2 represents the numerical results of KR
2 and D* against the Iribarren number, nine target values 248 

(Fig. 2 a1,b1), and three slopes, [1/10 ≤tan(𝛼) ≤ 1/2] (Fig. 2 a2, b2). The behavior of the data is 249 
similar to Battjes (1974) (his Figure 2 with data from Moraes, 1970). The left panels of Figure 2 250 
provide the values of Ir,target for each experiment, which were generated by fixing T and varying H. 251 
The x-axis shows the experimental Iribarren number, Ir,I, calculated with incident wave height HI. The 252 
bulk dissipation, D*, against Ir mimics the reflected energy coefficient, KR

2. Moreover, the blue bands 253 
indicate the confidence interval (5%-95%) of the values thus calculated for each chosen Ir,target.  254 
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255 
Figure 2. Impermeable and non-overtoppable slope. Experimental numerical results (IH-2VOF) of the transformation of 256 
incident waves against the experimental Iribarren number (Ir,I): (a) modulus of the reflected energy coefficient (𝐾"#) y (b) 257 

simulated bulk wave dissipation, numerically simulated  according to, (a1, b1) Ir,target; (a2, b2) slope angle. The blue 258 
bands represent the confidence intervals of 5%-95% for each Ir,I, target value. 259 

For the three slopes, 𝐾&% disposition depends on the slope angle. Scattering decreases as the slope 260 
decreases, and increases when Ir,I is in interval [2.2 ≤ Ir,I ≤ 4.2]. As can be observed, the variability of 261 
each slope angle in each interval (blue band) is significant with slight changes in the value of Ir,I. This 262 
variation mainly stems from small variations in the incident wave height HI. Nevertheless, “local” 263 
scattering (for Ir,I intervals) does not decrease when the set of wave trains corresponding to a value of 264 
Ir,target was repeated. 265 

Figure 3 represents KR
2 and D* against the incident wave steepness, HI/L. It is observed that the 266 

numerical data are better ordered and the dispersion is slightly less compared to Iribarren number. 267 
However, the variability is still significant, in particular for higher values of the wave reflection 268 
coefficient. For example, for a given value of HI/L=2.5 ∙ 10(%, the reflected energy coefficients are 269 
in interval 0.42< KR

2< 0.9 for the slope 1:2. 270 

 271 
Figure 3. Impermeable and non-overtoppable slope. Experimental numerical results (IH-2VOF) of the transformation of 272 

incident waves against the incident wave steepness (HI/L): (a) modulus of the reflected energy coefficient (𝐾"#) y (b) 273 
simulated bulk wave dissipation, numerically simulated  according to the slope angle.  274 
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4.1.2 Permeable with a main armor layer and non-overtoppable slope 275 

Figure 4 presents the physical experimental results of  𝐾&%, 𝐾'%	and D*, against Ir,I (inside the domain 276 
Ir ≥ 1.5), obtained from the permeable slope of 1:2.  Ir,target values were set either by maintaining H 277 
constant and varying T, or by maintaining T constant and varying H, (Fig. 4a). The calculation of the 278 
real value Ir,I is based on the incident wave height HI, which was obtained by separating the incident 279 
and reflected wave trains (Section 3.3). These experiments also determined KT

2, (Fig. 4c). The 280 
transmitted energy is one order of magnitude lower than the reflected energy. The energy 281 
conservation equation is applied to obtain the bulk dissipation D* (Fig. 4b). 282 

Experimental scattering increases with Ir,I in the interval [2.2 ≤ Ir,I ≤ 4.2].  The experimental scatter 283 
of each interval (blue band) is significant with slight changes in the value of Ir,I. This variation is 284 
mainly due to small variations in the incident wave height HI and interaction with the reflected wave 285 
train, (modulus and phase). The same value of the Iribarren number can have different energy 286 
transformation modes and, consequently, different potential breaker types. Local scattering (for 287 
intervals de Ir,I) does not decrease when the experiment for a given value of Ir,target is repeated. 288 

Present results, for permeable and impermeable slopes as well, show that the transformation of 289 
incident energy on an undefined slope roughly depends on Ir. Nevertheless, they also raise questions 290 
regarding the application of the Iribarren number as a relevant parameter, to quantify the energy 291 
transformation modes and, consequently, the potential breaker types.  292 

293 
Figure 4. Permeable with a main armor layer and non-overtoppable slope. Results of the physical experiments (IISTA-294 
UGR) on incident wave transformation against the experimental Iribarren number l(Ir,I): (a) modulus of the reflected 295 

energy coefficient (𝐾"#), (b) bulk wave dissipation y (c) modulus of the transmitted energy coefficient (𝐾$#) according to 296 
the Ir,target. The blue band represents the confidence level (5%-95%) for each Ir,I, target value. 297 

4.2 An alternative breakwater similarity parameter: 𝜒 =(h/L)(HI/L) 298 

This section presents the same physical and numerical data of Figures 2, 3 and 4 against the non-299 
dimensional parameter (h/L)(HI/L), derived from the reformulation of the dimensional analysis 300 
(Appendix A). 301 

4.2.1 Impermeable and non-overtoppable slope 302 

Figure 5 represents KR
2, against the product of relative wave steepness, HI/L, and relative depth, h/L, 303 

As in Figures 2 and 3, the slope is also identified. The x-axis is represented on a semi-logarithmic 304 
scale to facilitate the visualization of the data. The values are separated, depending on the slope. For 305 
a given value of (h/L)(HI/L) the experimental scattering becomes greater as the slope angle increases.  306 
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307 
Figure 5. Impermeable and non-overtoppable slope. Experimental numerical results (IH-2VOF) of the incident wave 308 

energy transformation against (h/L)(HI/L): (a) modulus of the reflected energy coefficient (𝐾"# -Eq. 3- Appendix A); (b) 309 
bulk wave dissipation (D*-Eq. 4- Appendix A) depending on the slope angle. The solid lines represent the sigmoid curves 310 

(Eq. 2) fit to each slope (see Table 4 for the fit parameters) and the dash lines represent the choosen limit values for 311 
fitting the curves. 312 

4.2.2 Permeable with a main armor layer and non-overtoppable slope 313 

Figures 6a, 6b, and 6c represent the values of KR
2, D* and KT

2, respectively, against the product of the 314 
relative wave steepness and the relative width on the x-axis at a semi-logarithmic scale. For purposes 315 
of comparison, the figures also represent the experimental data numerically obtained for the same 1:2 316 
slope. For the permeable slope, the vertical dispersion of KR

2 is greater in the interval 5∙10-4 < 317 
(h/L)(HI/L) < 3∙10-3, which differs from the interval of greatest dispersion for the impermeable slope. 318 
The horizontal dispersion (same value of the energy coefficient) is possibly due to the different mode 319 
of energy transformation and the potential associated breaker types. Figure 7 shows the same 320 
information as Figure 6, but this time, the values of the relative characteristic width of the breakwater 321 
are identified. 322 
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Figure 6. Physical results (circles - IISTA-UGR) and numerical results of the slope 1:2 	(triangles - IH-2VOF) for the 325 
incident wave transformation against (h/L)(HI/L): (a) modulus of the reflected energy coefficient (𝐾"# -Eq. 5- Appendix A), 326 

(b) bulk wave dissipation (D*-Eq. 7- Appendix A) and (c) modulus of the transmitted energy coefficient (𝐾$# -Eq. 6- 327 
Appendix A). The solid lines represent the sigmoid curves (Eq. 2) with the best fit to the experimental data 𝐾$# and D*. The 328 

fit parameters are shown in Table 4 and the dash lines represent the choosen limit values for fitting the curves. 329 

In all cases, the energy transmitted is very small, and thus the increase in KR
2 is mostly compensated 330 

by the decrease in dissipated energy D* (Figs. 6 and 7). The vertical scale of the figure highlights the 331 
fact that the data of KT

2 cluster, based on the relative width (or relative diameter) of the breakwater. 332 
Its value increases when there is a decrease in B*/L, (or D50,p/L) as well as its growth rate. This 333 
behavior is also observed in KR

2 (and consequently in D*), especially when the reflected energy is 334 
very small and energy dissipation is the dominant process (Figs. 7b and 7b). Given that D50,p and B* 335 
are constant and become dimensionless with the wavelength, the experimental scatter of KR

2, D* and 336 
KT

2, for D50,p/L L is equivalent as for B*/L in Figure 6. 337 

338 
Figure 7. Physical results (IISTA-UGR) of the incident wave transformation against (h/L)(HI/L): (a) modulus of the 339 

reflected energy coefficient (𝐾"# -Eq. 5- Appendix A), (b) bulk wave dissipation (D*-Eq. 7- Appendix A) and (c) modulus of 340 
the transmitted energy coefficient (𝐾$# -Eq. 6- Appendix A) according to intervals of values of B*/L. The dotted line marks 341 

the limit of D50,p/L where	𝐾"# > 0.5 y D*>0.9. 342 

5. Discussion  343 

This section discusses the aspects of the function fitted to the data and the experimental deviation 344 
technique that could have influenced or conditioned the results presented in Section 3. 345 

5.1 Sigmoid curves and domains of wave energy transformation   346 

The sigmoid curve is chosen to fit the experimental results according to 𝜒 =	(h/L)(HI/L), since it is 347 
successfully to describe various physical phenomena in fluid mechanics, heat transfer and chemical 348 
engineering (Churchill and Usagi, 1972; Sivanesapillai et al., 2014; Vílchez et al., 2016a),  349 

                                     𝑋(𝜒) = (𝑋) − 𝑋*) D1 + F
+
,%
G
-%
H
()
+ 𝑋*; 						𝜒 > 0                                     (2) 350 

where X(𝜒) = [𝐾&%, 𝐾'%, D*] is the physical entity and X0, X1 are the choosen limit values of X(𝜒) for 351 
fitting the curves for a small and large values of the independent dimensionless variable 352 
𝜒=(h/L)(HI/L). It describes a uniform transition between the limit values with a blending coefficient, 353 
𝛾+,	and a parameter of the process inherent to the sigmoid shape, a𝜒.  354 
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Table 4 gathers the parameters of the sigmoid functions fitted to the impermeable and permeable 355 
experimental results (Section 4). The sigmoid parameters (Table 4) show that the sigmoid shape, a𝜒, 356 
is specific for each slope angle tested. 357 

  Mound breakwater                           Sigmoid function                                                     Fit parameters                                                    

                                      𝐾!" = (𝐾!#" − 𝐾!$" ) 31 + 6
(&/()(*!/()

+"
7
,"
8
-#

+ 𝐾!$"             𝐾!$" 												𝐾!#"            𝑎.											𝛾. 

                                                          tan 𝛼 = 1/2                                                0               1           0.005        1.8 

   Impermeable                                  tan 𝛼 = 1/3                                                0               1           0.002        2.1 

                                                          tan 𝛼 = 1/10                                             0.001       0.4         0.00012      1.5 
 

   Permeable                                      tan 𝛼 = 1/2	                                               0.03         0.65       0.0008       2.1 

Table 4. Parameters for the sigmoid curves (Eq.2) fitted to the experimental data 𝐾"#	𝑎𝑛𝑑	𝐷∗. Since 𝐾$#	values are an 358 
order of magnitude lower than 𝐾"# values, the sigmoid curve are not fitted.  359 

For practical engineering purposes, it is advisable to identify at least three domains of incident wave 360 
behavior according to (h/L)(HI/L) values and the shape of the sigmoid curve. Hence, the threshold 361 
values that limit the domains of energy transformation are specific for each slope of the breakwater 362 
tested.  363 

For an impermeable breakwater with slope 1:2,  364 

• Reflective domain, {KR
2 ≥ 0.9}: (h/L)(HI/L) < 1.1∙10-3;  365 

• Dissipative domain, {D* ≥ 0.9}: (h/L)(HI/L) > 1.1∙10-2;  366 
• Transitional domain, {0.1 < KR

2 < 0.9}: 1.1∙10-3< (h/L)(HI/L) <1.1∙10-2 367 

For a permeable breakwater with a constant slope 1:2 and a core with a B*/L and D50,p/L,  368 

• Reflective domain, {KR
2 ≥ 0.5}: (h/L)(HI/L) < 4.5∙10-4, with [D50,p/L ≤ 0.0015, B*/L≤ 0.10] 369 

• Dissipative domain, {D* ≥ 0.9}: (h/L)(HI/L) > 2∙10-3, with [D50,p/L > 0.0035; B*/L> 0.20] 370 
• Transitional domain, {0.1 < KR

2 < 0.5, 0.5 < D* < 0.9}: 5∙10-4< (h/L)(HI/L) <2.5∙10-3, with 371 
[0.0015<D50,p/L ≤ 0.0035; 0.10<B*/L≤0.20]. 372 

The reflected energy and the energy dissipation rate are almost equal (or are in equilibrium) when 373 
[KR

2 ≈ 0.5; D*≈ 0.5]. This state can exist whenever (h/L)(HI/L) ≈ 4∙10-4, D50,p/L ≈ 0.0015, B*/L ≈ 0.10. 374 
The boundaries of these domains can change with the type of unit piece, the number of layers and 375 
configuration of the main armor layer, and definitively with the slope angle. Finally, the variability 376 
of the relative armor diameter and the number of layers is analyzed in Clavero et al. (2018).  377 

5.2 Experimental deviation  378 

The experimental deviation may come from two sources: (1) experimental scattering from the 379 
generation, analysis and separation methods used, and (2) experimental scattering from the physical 380 
processes. The wave generation and separation method is analyzed in the Supplementary Material 381 
provided with the paper. From the discussion and results shown in the Supplementary Material, we 382 
can assert that the experimental technique and method of analysis in themselves are not sufficient to 383 
explain the variability of the experimental values. The deviation is located in certain intervals of the 384 
value of Ir, as well as of (h/L)(HI/L). 385 

5.2.1 Impermeable and non-overtoppable slope 386 

Figure 8 represents the fit of a sigmoid curve to the experimental values of KR
2 of the 1:2 impermeable 387 

slope against Ir,I  and (h/L)(HI/L) (Fig. 8a.1 and 7a.2), as well as the residual values that fit a t-Student 388 
(Fig. 8b.1 and b.2). In (Fig. 8a.2), the experimental data alignment satisfactorily identifies the 389 
transitional domain, dissipative domain, and reflective domain: [1.1 ∙10-3 <(h/L)(HI/L) < 8 ∙10-3], 390 
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[(h/L)(HI/L)≥10-2], [(h/L)(HI/L) ≤10-3], respectively. The distribution of the residual values evidence 391 
that the deviation of the KR

2 values, in absolute terms, is small in the dissipative domain in both 392 
representations. However, the scatter increases in the transitional domain and in the reflective domain 393 
in the Ir representation. The latter is also applicable to the dissipation rate D* values. 394 

Figure 8a.2 shows that if (h/L)(HI/L) < 2.8∙10-3, the reflection increases and the dissipation rate 395 
decreases, and that the breaker type evolves from a strong bore to strong plunging breaker. In contrast, 396 
if the product (h/L)(HI/L) > 2.8∙10-3, wave reflection decreases, dissipation increases, and the breaker 397 
type evolves from a strong plunging breaker to a strong bore and perhaps a weak bore. 398 

Hence, in the domains in which either reflection or dissipation is dominant, the variability of the 399 
energy transformation mode and of the breaker type is delimited. Then, the values of KR

2 and D* do 400 
not change significantly with (h/L)(HI/L), contrary to what happens in the transitional zone. In the 401 
reflective domain, the type of wavebreaking remains practically constant. However, in the dissipative 402 
domain, if the slope and relative depth remain constant, the type of wave breaking also depends on 403 
wave steepness. In contrast, if h and L simultaneously increase, Ir also increases, and the breaker type 404 
evolves from a weak plunging to a strong plunging. If h and L simultaneously decrease, Ir also 405 
decreases and the breaker type evolves from a strong plunging to a weak plunging (Fig. 8a.2). 406 

407 
Figure 8. (a) Fit of the sigmoid curve to the experimental values of KR

2 for the impermeable 1:2 slope against the 408 
experimental Iribarren number (Ir,I)  and the product of relative depth and  steepness (h/L)(HI/L). (b) Values of the 409 

deviation obtained from the residual values: experimental value less the theoretical value calculated by the sigmoid curve. 410 
The number jwb (j=1:5) identifies the wave breaker types on the slope: 1wb – surging, 2wb – weak bore, 3wb – strong bore, 411 

4wb – strong plunging, 5wb – weak plunging. 412 

5.2.2 Permeable with a main armor layer and non-overtoppable slope 413 

If the breakwater is permeable, the relation between Ir and the energy transformation modes and 414 
breaker type deteriorates significantly since other processes come into play, namely the reflection and 415 
dissipation associated with the dimensionless variables (D50,p/L, B*/L, Da/L, nlDa/L). Figure 9 416 
represents the value pairs, (Ir,I, xm/L), (Ir,I, B*/L), which were tested in this research with a 1:2 slope 417 
angle. The results showed that a wide range of values of xm/L and B*/L corresponded to one value of 418 
Ir,I. 419 

A comparison of these results to those of the impermeable breakwater with the same slope angle 420 
highlighted significant changes in the performance of the permeable breakwater (Fig. 10). The 421 
reflected energy decreased throughout the experimental interval, in other words, in all the modes of 422 
incident energy transformation and wavebreaking. The domains shifted towards lower values of 423 
(h/L)(HI/L), and the variation curves of KR

2, KT
2 and D* depend on both (h/L)(HI/L) and B*/L (and 424 
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D50,p/L, Da/L).  Figure 10 shows the fit of a sigmoid curve to the experimental values of KR
2 for the 425 

1:2 permeable slope angle against Ir,I  and(h/L)(HI/L) (Fig. 10a), as well as the residual values that fit 426 
a Student-t model ( Fig. 10b). When the relative depth is incorporated on the x-axis (Fig. 10a.2), the 427 
alignment of the experimental data provides a reasonably good identification of the transitional 428 
domain [5∙10-4< (h/L)(HI/L) <3∙10-3], reflective domain [(h/L)(HI/L) ≥3∙10-3], and dissipative domain 429 
[(h/L)(HI/L) ≤4∙10-4]. Furthermore, it is visually evident, and confirmed by the residual distribution, 430 
that the deviation of the KR

2 and D* values is more pronounced in the transitional domain. The 431 
evolution of the modes of energy transformation and breaker type depends on the values of B*/L (and 432 
D50,p/L, Da/L) with specific trajectories (see Fig. 7). 433 

 434 

 435 
 Figure 9. Experimental physical values (IISTA-UGR) of (a) xm/L, (b) B*/L, against the experimental Iribarren number 436 

(Ir,I), clustered according to the Ir target  tested in the laboratory.  437 

  438 
Figure 10. (a) Fit of the sigmoid curve to experimental values of KR

2 for a 1:2 permeable slope angle, against the 439 
experimental Iribarren number (Ir,I)  and the product of the relative depth and wave steepness (h/L)(HI/L) according to 440 

intervals of values of B*/L. (b) Values of the residual deviation: experimental value minus the theoretical value calculated 441 
with the sigmoid curve. The number jwb (j=1:5) identifies the wave breaker types on the slope: 1wb – surging, 2wb – weak 442 

bore, 3wb – strong bore, 4wb – strong plunging, 5wb – weak plunging.  443 
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The application of the modified Iribarren number, 𝐼!∗ = (𝐴EF/𝐿%)/)𝐻G!HI/𝐿 (Clavero et al., 2018; 444 
Díaz-Carrasco et al., 2018) significantly corrects this behavior of the Iribarren number; being Htrms 445 
the total root-mean-square wave height at the toe of the breakwater. The domains can thus be 446 
identified since the deviation decreases in the transitional domain and the reflective domain, whereas 447 
it increases in the dissipative domain. In other words, 𝐼!∗ improves prediction when the transformation 448 
processes in the core, particularly in the case of reflection, dominate those on the slope. Nevertheless, 449 
this representation does not permit the identification of the possible breaker types in each domain. 450 

5.3 Wave transformation similarity and the log-transformation of the experimental space 451 

In a real breakwater located in intermediate/shallow waters (e.g., h = 10 m, T = 10 s, H = 5 m, 5 < B* 452 
(m) < 10 and 0.10 < D50,p (m) < 0.25 ), Re,p > 105, fully turbulent regime), it is improbable that all of 453 
the regime changes observed in the laboratory will occur. For the values of [KR

2, KT
2, D*] obtained in 454 

a model to be representative of the prototype values, besides complying with the Froude scale, the 455 
dissipation-reflection-transmission processes of the wave train in the core should be similar to those 456 
of the prototype. One way to verify this condition is to select the two dimensionless quantities, B*/L, 457 
D50,p/L in order to satisfy the model-prototype equivalent hypothesis of Lorentz (Pérez-Romero et al., 458 
2009; Vílchez et al., 2016) in each run of H and T. 459 

Figure 11a represents the space [ln(h/L), ln(HI/L), B*/L (or D50,p/L)] of the experimental values 460 
obtained in the laboratory. Figure 11b represents the space [ln(h/L), ln(HI/L] of the experimental 461 
values with slope angle 1:2 obtained in the numerical model. The tendency and the wavebreaking 462 
bands are identified, as well the isolines of the constant product (h/L)(HI/L). It is observed that there 463 
is not a biunivocal relationship between Ir and the type of breaker. Figure 11 facilitates the creation 464 
of a suitable experimental design in the laboratory, since it includes the information needed to fulfill 465 
the prototype-model equivalent hypothesis of Lorentz (B*/L, D50,p/L). Additonally, Figure 11 466 
identifies combinations of H and T that delimit the three intervals of the energy transformation modes 467 
for any mound breakwater typology. 468 

6. Conclusions  469 

The main objective of this research is to characterize and quantify the prevalent physical processes in 470 
the energy transformation of a regular wave train while interacting with permeable or impermeable 471 
breakwaters. Two sources of experimental data are considered: (a) numerical experiments on an 472 
undefined impermeable rigid slope with the numerical model (IH-2VOF), and (b) physical 473 
experiments on a non-overtoppable permeable breakwater with a cube armor layer and a porous core 474 
of finite width in a 2D wave flume. Simultaneously, the dependence of wave energy transformation 475 
processes (reflection, transmission, and dissipation) with Iribarren number is collated and its role as 476 
surf similarity parameter is discussed. The following conclusions can be derived from this study: 477 

(1) Applying dimensional analysis to the wave interaction with non-overtoppable, impermeable 478 
slopes, the relationship between the reflected energy coefficient, KR

2, and the product of the 479 
relative water depth, h/L, and wave steepness at the toe of the slope, HI/L, is deduced. The wave 480 
energy conservation equation enables to extent this result to the wave dissipation, D*. The slope 481 
angle is a parameter of the problem since it cannot be expressed in terms of the dimensional base. 482 

(2) Similarly, in the case of permeable slopes with a main armor layer and a porous core, in addition 483 
to (h/L)(HI/L), the reflection and transmitted coefficients, [KR

2, KT
2], depend on D50,p/L, B*/L, 484 

Da/L, nlDa/L. Again, the slope angle is a parameter, and the wave energy conservation equation 485 
enables the calculation of the bulk wave dissipation, D*. 486 

(3) Plotting [KR
2, KT

2, D*] against (h/L)(HI/L) three wave energy transformation domains are easily 487 
defined: dissipative, transitional and reflective. In each of them a set of most probable breaker 488 
types can be identified. 489 

(4) In the transitional domain, different combinations of wave energy transformation mode and 490 
breaker type can occur with a constant Iribarren number: there is not a biunivocal relationship 491 
between Ir and (i) the type of breaker, (ii) the reflection and transmission coefficients and (iii) 492 
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the bulk dissipation. Therefore, at least in the transitional domain, Iribarren´s number is not a 493 
sufficient similarity parameter for the analysis of wave breaking, and related flow characteristics 494 
on slopes. 495 
 496 

 497 

 498 
 Figure 11: Experimental space [ln(h/L), ln(HI/L)] of (a) the laboratory tests with a slope angle 1:2 according to ranges 499 

of values of the monomial B*/L (colors); (b) the numerical tests with a slope angle 1:2 and wavebreaking bands 500 
represented by colors. In both figures the tendency of the wavebreaking is marked with solid blue arrows and the 501 

following domains were also identified: (1) reflective domain; (2) dissipative domain; and (3) transitional domain. 502 
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(5) A sigmoid function of the variable (h/L)(HI/L) fits reasonable well the experimental results [KR
2, 503 

KT
2, D*], for impermeable as well as for permeable slopes. A poor fit is obtained when the 504 

Iribarren number taken the independent variable. These conclusions are confirmed by the 505 
representation of the residual error between the experimental data and the fitted curve. 506 

(6) Because the range of the design factors spans several orders of magnitude, the log-transformation 507 
of the experimental space [ln(h/L), ln(H/L)] is likely benefit to elaborate a suitable experimental 508 
design in laboratory, which allows verifying the wave breaker type and the related dissipation-509 
reflection-transmission on slopes. 510 
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Appendix A. Wave-mound breakwater interaction: dimensional analysis 519 

A.1 Problem definition 520 

Dimensional analysis involves four stages: (1) identification of a complete set of n independent 521 
quantities; (2) selection of a complete subset of k dimensionally independent quantities; (3) definition 522 
of (n-k) independent quantities, based on the power products of the k quantities selected; (4) 523 
application of the Õ theorem to express dependent quantities as a function of the (n-k) independent 524 
quantities.  525 

Impermeable and non-overtoppable slope 526 

The complete set of independent variables that participate in the transformation of the wave train on 527 
an impermeable slope consists of the following: (i) slope angle, a;(ii) water depth, h; (iii) incident 528 
wave height, HI; (iv) wave period, TZ, (or wave length, L); (v) gravity acceleration, g,; (vi) dynamic 529 
viscosity,  𝜇;  and water density, 𝜌. The effect of the surface tension and water compressibility is 530 
negligible. Excluding a, 531 

X = f(h, 𝜌, µ, g, HI, L)           532 
X = (X1, X2) = (HR, 𝑋*,&)                                                              533 
where X denotes the set of dependent variables, the wave height and the phase of the reflected wave 534 
train. 𝑋*,& is the distance measured from the toe of the slope to the location of the point reflector of 535 
the reflected wave train.                                                    536 

Accordingly, {𝜌, g, L} are selected as the complete subset of the dimensionally independent quantities 537 
(k=3). The remaining variables of the set and the dependent quantities (i.e. characteristics of the 538 
reflected wave train) can be expressed as power products of this dimensional base, (n-k) = 3, to obtain 539 
the similarity equation 540 

X* = [HR/L, 𝑋*,& 𝐿⁄ ] = f1(h/L, HI/L, Re,w) 541 

When the kinematic viscosity is represented by n =µ/𝜌, the third dimensionless variable, Re,w ≈ Uch 542 
/n, is a Reynolds number, whose value should be sufficiently high for the regime to be regarded as 543 
fully developed turbulence. Uc is a characteristic velocity, in general the maximum, of the oscillatory 544 
movement in the water column (Keulegan and Carpenter, 1958). 545 
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The slope angle, a, is not included since it is a dimensionless quantity, and thus can not be expressed 546 
in terms of the base. Since dimensional analysis cannot provide information about the way that wave 547 
transformation depends on the slope angle, n-k = 3. For the same reason, it is not possible to include 548 
𝜙& and consider the distance 𝑋*,& , is considered, which like  HR is a quantity of the first kind. 549 

Sutherland and O´Donoghue (1998) experimentally verified that the reflection phase 𝜙& depends on 550 
h/L and the slope angle. They proposed that it should be related to the dimensionless variable xm/L, 551 
where xm is the horizontal distance of the slope from the toe to the cut with the surface of the sea at 552 
rest. Thus, alternatively, xm/L can be included in the complete set of independent variables, then n = 553 
7 and (n-k) = 4,  554 

X = f(h, xm, 𝜌, µ, g, HI, L)                                                               555 

X* = [HR/L, 𝑋*,& 𝐿⁄ ] = f1(h/L, xm/L, HI/L, Re,w) 556 

In this work, for clarity of exposition, the slope angle has been chosen to use as an “identificative 557 
parameter” of the results, instead of incorporating xm/L in the function. Recall that, by definition 558 
𝑥H 𝐿 = (1 tan(𝛼)⁄ )(ℎ 𝐿⁄ )⁄ . 559 

The total energy of the incident and reflected wave trains are derived quantities that are expressed as 560 
follows:  561 

EI/(𝜌gL) = (1/8)HI
2;   ER/(𝜌gL) = (1/8)HR

2 562 

KR
2 = HR

2/ HI
2  = ER/EI; 	𝜙& ∝ 𝑋*,& 𝐿⁄  563 

Finally, the dependent quantity (reflected energy coefficient and phase of the reflected wave train) 564 
are:  565 

                         [KR
2, J'(

K
 ] =ΨL(h/L, HI/L)                                                     (3)                                                                566 

Although the function Y is undetermined, its form is similar for all possible slope angles. Finally, the 567 
dissipation rate for the mean incident energy flow, which is a dimensionless variable of the second 568 
kind, is calculated as follows (Eq. 1), 569 

           D* = 1 - ΨL(h/L, HI/L)                                                                   (4) 570 

Permeable with a main armor layer and non-overtoppable slope  571 

The difference in performance in this permeable breakwater and in the impermeable slope stems from 572 
the additional dissipative regimes: (1) in the main armor layer, and (2) during wave propagation in 573 
the porous medium (see Section 2). Hence, for this permeable breakwater, the complete set of 574 
independent variables participating in the transformation of the wave train, is considerably larger than 575 
in the case of an impermeable slope. Again, excluding a and 𝛽, the seaward and landward slope 576 
angles, respectively 577 

(X1,X2) = f(h, 𝜌, µ, g, HI, L, D50,p, B*, Da, e)                                                               578 

Where B* is a characteristic width of the granular core of uniform size, D50,p; Da is the equivalent 579 
diameter of the type and shape of the unit piece of the main armor layer, positioned with a specific 580 
placement criterion; e represents its thickness, which can be expressed in terms of the equivalent 581 
diameter of the unit piece (e = 𝑛M	Da), where 𝑛M	is a real number; (X1, X2) are the two dependent 582 
variables, which in this case are the statistical or spectral descriptors of the wave height and reflected 583 
wave train, [HR or (m0,R)1/2, 𝑋*,& ], and of the transmitted wave train, [HT or (m0,T)1/2, 	𝑋*,' ], 584 
respectively. Generally, 𝑋*,' ,	is the distance measured from the toe of leeward slope to the location 585 
of the point transmitter of the transmitted wave train. Alternatively, it had be possible to include xm,s 586 
and xm,l, seaward and landward horizontal length of the slope, respectively. 587 
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In the same way as for the impermeable slope, {𝜌, g, L} are selected as the complete subset of 588 
dimensionally independent quantities (k=3). The remaining variables of the set and the dependent 589 
variable, can be expressed as the power product of this dimensional base, (n-k) = 7, (similarity 590 
equation),  591 

X1
* = [HR/L, 𝑋*,& 𝐿⁄ ] = f1(h/L, HI/L, D50,p/L, B*/L, Da/L, ReDa, Re,p) 592 

X2
* = [HT/L, 𝑋*,' 𝐿⁄ ] = f2(h/L, HI/L, D50,p/L, B*/L, Da/L, ReDa, Re,p)  593 

The similarity equations incorporate four new dimensionless variables: Da/L, and Re,Da the relative 594 
armor diameter and an armor Reynolds number. They respectively govern the turbulence regime on 595 
the slope due to the breaking and interaction of the wave train with the main armor layer, mainly 596 
dissipation (Clavero et al., 2018). Like the forces inside the core, the force regimes in the armor layer 597 
are determined in function of Re,Da and Re,Da/KCa, where KCa ≈ HI/Da is the armor Keulegan-Carpenter 598 
number. Re,Da is a reformulation of Re,w, and was identified in the case of the impermeable slope. The 599 
grain Reynolds number, Re,p characterizes the hydrodynamic regime inside the core (Burcharth and 600 
Andersen, 1995). The dimensionless quantities D50,p/L and Aeq/L2 ≈ (ℎ 𝐿⁄ ) (𝐵∗ 𝐿⁄ )  govern the 601 
dissipation of the flow (Pérez-Romero et al., 2009), and the reflection and phase inside the porous 602 
core (Vílchez et al., 2016a), respectively. 603 

The total energy of the incident, reflected, and transmitted wave trains are derived dimensionless 604 
quantities of the first kind, which are expressed as follows:  605 

EI/(𝜌gL) = (1/8)HI
2;  ER/(𝜌gL) = (1/8)HR

2;  ET/(𝜌gL) = (1/8)HT
2 606 

KT
2 = HT

2/ HI
2  = ET/EI;  𝜙' ∝ 𝑋*,' 𝐿⁄  607 

Finally, the dependent quantity (reflected and transmitted energy coefficient and phase of the 608 
reflected and transmitted wave train) are,  609 

       [KR
2 , J'(

K
 ] = ΨL(h/L, HI/L, D50,p/L, B*/L, Da/L, ReDa, Re,p)                              (5) 610 

       [KT
2 , J')

K
 ]  = ΨN(h/L, HI/L, D50,p/L, B*/L, Da/L, ReDa, Re,p)                                         (6) 611 

where, despite the fact that functions (YR,YT) are undetermined, their form is similar for the value 612 
pairs of the leeward and landward slope angles considered. Moreover, in order to apply the results to 613 
the scale of the prototype, the Reynolds number values of the layer, ReDa, and grain Re,p, should be 614 
sufficiently high so that the hydrodynamic regime of each run is totally turbulent in the water column, 615 
and inside the main layer and the core.  616 

Bulk dissipation includes the shoaling-associated dissipation, interaction with the main armor layer 617 
and the evolution of the wave profile, which would include eventual wave breaking, and the 618 
dissipation during the propagation and transmission of the wave train through the porous core. This 619 
bulk dissipation (D´*), a dimensionless quantity of the second kind, is determined on the basis of 620 
experimental results, solving the conservation energy equation:                                                         621 

    D* = D´*/(Cg EI)= 1- YR - YT                                                               (7)                                                             622 

Finally, it should be highlighted that even though the Re,w ReDa, and Re,p values exceed the threshold, 623 
this does not signify a reduction in the number of independent variables in the initial set. The 624 
similarity equation cannot be simplified, and since the dependence of the Reynolds numbers is 625 
implicit in the experimental results, and it cannot be ignored. 626 

A.2 Experimental design based on dimensional analysis 627 

The response of the dependent dimensionless quantities, [KR
2, J'(

K
, KT

2 , J')
K

] (first kind) are functions 628 
of the set of input/predictor dimensionless quantities, (Eq. 3, 5 and 6). In the case of the impermeable 629 
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slope, Y: Â2®Â3, whereas for the sloping breakwater with a porous core and a main armor layer, Y: 630 
Â2®Â5 (where Ân is the real space of n non-dimensional quantities). In all cases, wave generation 631 
were chosen based on two dimensionless quantities that characterize the incident wave train at the toe 632 
of the slope breakwater: the wave steepness, (HI/L), and relative depth, (h/L).  633 

 634 
Figure 12: Experimental value of the impermeable slope for each Ir target (symbols) and three slope angles (colors) 635 

numerically simulated in: (a) space [h/L, HI/L]; (b) log-transformation space [ln(h/L), ln(HI/L)]. Figure 12b shows the 636 
experimental limits for wave generation in the numerical model, wave breaking due to the water depth, and the non-637 

overtopping condition. 638 

Figure 12 represents the pairs of experimental values of the impermeable breakwater in space [h/L, 639 
HI/L] (Fig. 13a), and in the space [ln(h/L), ln(HI/L)] (Fig. 12b), after log-transformation. The 640 
corresponding values of the permeable porous breakwater are shown in Figure 13a. Figure 13b 641 
identifies two dimensionless quantities for this type of breakwater, [ln(B*/L), ln(D50,p/L)]. Though not 642 
shown in Figure 13, the breakwater slope is 1:2, a double layer of cube armor of diameter Da = 0.0409 643 
m. After the log-transformation, the dimensionless quantities may become more independent (fewer 644 
interactions), and facilitate (1) the selection of highly representative experimental results, (2) the 645 
optimization of the number of experiments and (3) the minimum number of repetitions in order to 646 
satisfactorily combine multivariate dimensional analysis with statistical analysis (Albrecht et al., 647 
2013).  648 

 649 

Figure 13. Experimental values of the permeable slope with a main layer and porous core: (a) space [ln(h/L), ln(HI/L)] 650 
for each Ir target tested; (b) log-transformed space [ln(B*/L), ln(h/L), ln(HI/L)], which uses different colors to show the 651 

value ranges of the monomial D50,p/L.  652 
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List of symbols 653 

Aeq Equivalent area of the porous medium below the water level 
B* Characterized width of the breakwater 
Bb Width of the top of the breakwater 
Cg Group celerity 
Cg,target Target value of the group celerity 
Ctarget Target value of the celerity 
D’* Mean bulk dissipation  
D* Wave energy dissipation rate 
D50,p Grain size 
Da Characteristic diameter of the main armor layer  
Deq Equivalent diameter of the main armor layer  
e Equivalent diameter  
EI Incident wave energy 
ER Reflected wave energy 
ET Transmitted wave energy 
Etarget Target value of the wave energy 
FI Mean energy flow of the incident wave train 
fI Inertial force 
fL Laminar force 
FMT Porous medium height  
FR Mean energy flow of the reflected wave train 
FT Mena energy flow of the transmitted wave train 
fT Turbulent force 
g Gravity acceleration  
h Water depth 
H Wave height 
HI Incident wave height 
HR Reflected wave height  
HT Transmitted wave height 
Htrms Total root-mean-square wave height 
Htarget Target value of wave height  
Ir Iribarren number 
Ir, target Target value of iribarren number 
jwb J=[1-6] identifies the breaker types 
KCp Keulegan-Carpenter number 
KR Modulus of the reflection coefficient 
KT Modulus of the transmission coefficient 
L Wave length 
Ltarget Target value of wave length 
m0 Zero-order momentum 
nl Real number 
np Core porosity 
Re,w Reynolds number 
ReDa Armor reynolds number 
Rep Granular reynolds number 
T Wave period 
Ttarget Target value of wave period 
TZ Mean wave period 
Tz,target Target value of the mean wave period 
Uc Characteristic velocity of the water column  
Up Characteristic seepage velocity 
X0,R Reflection dimensional phase 
X0,T Transmission dimensional phase 
xm Xm=h/tan(α) intersection of the mwl with the seaward slope of the breakwater 
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α Seawards slope angle 
β Leeward slope angle 
μ Dynamic viscosity 
ρ Water density 
ρs Unit piece density 
Ψ Represent the functional relationship  
q Incidence angle 
n Kinematic viscosity 

fR Reflection phase 
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