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ABSTRACT
Stimuli-responsive macromolecules display large conformational changes during their dynamics, sometimes switching between states. Such a
multi-stability is useful for the development of soft functional materials. Here, we introduce a mean-field dynamical density functional theory
for a model of responsive colloids to study the nonequilibrium dynamics of a colloidal dispersion in time-dependent external fields, with a
focus on the coupling of translational and conformational dynamics during their relaxation. Specifically, we consider soft Gaussian particles
with a bimodal size distribution between two confining walls with time-dependent (switching-on and off) external gravitational and osmotic
fields. We find a rich relaxation behavior of the systems in excellent agreement with particle-based Brownian dynamics computer simulations.
In particular, we find time-asymmetric relaxations of integrated observables (wall pressures, mean size, and liquid center-of-mass) for activa-
tion/deactivation of external potentials, respectively, which are tunable by the ratio of translational and conformational diffusion time scales.
Our work thus paves the way for studying the nonequilibrium relaxation dynamics of complex soft matter with multiple degrees of freedom
and hierarchical relaxations.
© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0221903

I. INTRODUCTION

Responsive systems have garnered considerable interest in
the realm of soft matter science due to their dynamic nature
and the ability to adapt to external stimuli.1 These systems, com-
prising responsive colloids and macromolecules, exhibit remark-
able adaptability, controlling their properties—such as the inter-
nal conformation of the particle,2–5 size,6–11 shape,8,12–19 charge
density,8,20 electric dipole,21 and orientation22–24—in response to
environmental changes. Such responsiveness, originating from their
internal degrees of freedom (DoFs), allows for a nuanced inter-
action with surrounding particles and external fields, leading to
significant alterations in their internal and collective dynamical
properties,1,10,21,25–33 even leading to multi-relaxation time scales.34

An important system of RCs is the one for which the par-
ticle size (that could represent the radius of gyration of a linear

polymer coil,6,35 or the diameter of a microgel particle8,36–42) is the
internal property that couples to the center of mass translational
degrees of freedom: particles not only move, but also are able to
swell/shrink in response to external stimuli such as changes in the
solvent pH, salt concentration, and temperature.43–47 In addition,
particle concentration can also provoke the squeezing of the parti-
cles, leading to interpenetration, deformation, and compression.48,49

Precise control over the interplay between size localization and
dynamics is paramount for achieving targeted functionality at spe-
cific locations and rates. Notable examples are the local modulation
of uptake and release kinetics in soft polymer-based nanocarri-
ers, such as microgels for local control of catalysis50–52 or drug
release.53–57

Our understanding of soft colloids has been significantly
enhanced through developments in equilibrium Density Functional
Theory (DFT), which has provided a solid framework for studying
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the structure and phase behavior of soft materials under exter-
nal potentials.58–62 Classical DFT has been successfully extended to
explicitly include varying particle size as a dynamic variable, describ-
ing how microscopic interactions and external potentials affect the
equilibrium properties of these systems and enabling the exploration
of size-dependent phenomena within polydisperse systems.6,63–65

Recently, we have demonstrated explicitly for a model of respon-
sive colloids (RC)s with size polydispersity7,9–11 how to employ DFT
functionals (in RC-DFT) to study and control the localization of the
(size) property in space by external fields.66,67 However, many inter-
esting behaviors of responsive systems occur out of equilibrium. The
dynamical nature of these systems is not only a testament to their
adaptability but also to their potential in real applications. In this
context, dynamical density functional theory (DDFT) serves as a
powerful tool for exploring non-equilibrium processes by model-
ing the time evolution of the particle density distribution, ρ(r, t),
driven by diffusive, overdamped Brownian dynamics in the pres-
ence of external fields and particle interactions.68–71 The theory can
also be modified to incorporate reactions or switching.72–75 Cru-
cially, it leverages the adiabatic approximation, assuming that the
correlations in a non-equilibrium state are akin to those in equilib-
rium.68 This theory adapts the equilibrium concepts of DFT to non-
equilibrium scenarios, predicting how responsive systems evolve
over time. In contrast to conventional polydisperse systems,63,64

internal degrees of freedom are also able to change during the
nonequilibrium process. A systematic study on the coupled dynam-
ics of translation and internal dynamics in the relaxation of a
colloidal system as well as the appropriate DDFT is still missing in
the literature.

In this work, we present an extension of classical DDFT to
responsive systems (denoted by RC-DDFT) that allows us to effi-
ciently investigate the dynamical relaxation in the presence of
coupled DoFs under applied external potentials. In particular, we
consider soft responsive colloids (RCs), for which the size of the
particles (σ) changes in response to the interactions with the rest
of particles or with an applied external potential. This external
potential depends on the position and also the size of the parti-
cle, i.e., uext(r, σ), making the colloidal system inhomogeneous in
terms of position and size. In addition to the external potential,
this system of responsive colloids also requires the knowledge of
the free energy landscape for the particle size, ψ(σ) = −kT ln p(σ)
(where p(σ) represents the parent size-distribution of a single RC),
which acts as an additional external potential controlling the size
fluctuations.11 Here, we focus on a system formed by bistable par-
ticles for which p(σ) is described by a generic Landau-like bimodal
size distribution76,77 so that the particle size fluctuates between two
states (big and small) separated by an energy barrier. This partic-
ular two-state behavior is relevant in the conformation of many
biological or functional macromolecules, such as folded/unfolded
or globule/coil transitions of proteins and polymers.5,31,78–82 For
this system, we analyze the time evolution of the one-body den-
sity profile, ρ(r, σ; t), after sudden activation/deactivation of the
external field, and explore the non-equilibrium transient dynamics
resulting from the interplay between structural relaxation and size
relaxation.

This paper is organized as follows: In Sec. II, we describe the
main statistical mechanics equations, discuss DFT, and generalize
its dynamical counterpart to deal with non-equilibrium systems

of responsive colloids under external potentials (RC-DDFT). We
also introduce in this section a mean field model for soft Gaussian
colloids with a bimodal distribution of states. Brownian dynamic
simulations of RCs are explained in Sec. III. Section IV presents
the results and discussion of the non-equilibrium dynamics of RCs
under the activation/deactivation non-equilibrium processes for two
representative external potentials: gravitation and osmotic. We spe-
cially focus on investigating the appearance of non-equilibrium
transient dynamics states that arise due to the interplay between
translational diffusion and particle swelling/shrinking. Finally, in
Sec. V, we present the main conclusions of our work.

II. THEORETICAL BACKGROUND
A. Theoretical modeling of responsive colloids (RCs)

In the following, we briefly recall the most basic statistical rela-
tions between distributions and averages for the RC model.11,67 As
common in the theory of liquids, we assume a (isotropic) distance-
dependent pair potential for the RC liquid. For RCs, however, the
particle–particle pair potential not only depends on the positions
ri and rj of both particles i and j, but also has an explicit depen-
dence on the size of both interacting particles, σi and σj, that is
u(∣ri − rj∣, σi, σj). The external potential can be expressed as
uext(ri, σi). Hence, the total potential energy of N responsive
particles can be expressed as

U =∑
i
ψ(σi) +

1
2∑i

∑
j≠i

u(∣ri − rj ∣, σi, σj) +∑
i

uext(ri, σi), (1)

where ψ is the energy landscape for the size σ of an isolated parti-
cle. The inhomogeneous properties of an RC fluid immersed in an
external potential are fully described by the particle density distribu-
tion, ρ(r, σ),11,67 defined in such a way that integration over the four
coordinates (three translational ones and the size) provides the total
number of particles in the system,

∫
V

dr∫ dσρ(r, σ) = N, (2)

so ρ(r, σ) is measured in units of length−4.
In the limit of very low particle concentrations and neg-

ligible external potential, the one-body density converges to
limρ0→0 limuext→0ρ(r, σ) = ρ0p(σ), where ρ0 = N/V is the bulk par-
ticle density and p(σ) is the so-called parent distribution, defined as
the size distribution of a single isolated responsive particle that does
not interact with external forces or with other particles, which is nor-
malized to unity, ∫ p(σ)dσ = 1. We can express p(σ) in terms of the
free energy landscape as

p(σ) = p0e−βψ(σ), (3)

where β = 1/(kBT) (T is the absolute temperature and kB is the
Boltzmann constant) and p0 is a constant prefactor to fulfill the
normalization of p(σ). For higher particle concentrations or in
the presence of external fields, the single-particle property distri-
bution will change: We denote by f(σ) = N(σ)/N the emergent
probability distribution, where N(σ)dσ is the number of particles
with an internal property within [σ, σ + dσ] in the system and N is
the total number of particles. In particular, in the absence of any
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external field, the one-body particle density may be expressed as
limuext→0ρ(r, σ) = ρ0 f (σ).

B. Dynamical density functional theory for RCs
1. Equilibrium DFT prerequisites

Let us recall first the treatment of the RC model in the frame-
work of equilibrium DFT. The inhomogeneous free energy func-
tional of a RC fluid immersed in the external potential uext(r, σ) is
given by11,63,67

F[ρ(r, σ)] = kBT ∫ dr∫ dσρ(r, σ)[ln (ρ(r, σ)Λ3
/p0) − 1]

+ ∫ dr∫ dσρ(r, σ)[uext(r, σ) + ψ(σ)] (4)

+ Fex[ρ(r, σ)],

where Λ = h/(2πmkBT)1/2 is the thermal wavelength. The first term
of Eq. (4) is the ideal gas free-energy functional. The second term
takes into account the interaction of the RC fluid with the external
potential. Note that ψ(σ) also plays the role of an external potential
for the particle size, i.e., it represents the energy cost implied in the
swelling/shrinking of each responsive colloid. Finally, the third con-
tribution is the excess free energy of the fluid that arises due to the
existence of particle–particle interactions.

The grand canonical potential energy functional of a RC
fluid is

Ω[ρ(r, σ)] = F[ρ(r, σ)] − μ0 ∫ dr∫ dσρ(r, σ), (5)

where μ0 is the (constant) chemical potential of the RC fluid.
The equilibrium density profile is the one that minimizes the
grand canonical functional, δΩ/δρ(r, σ) = 0. Applying this func-
tional differentiation to Eq. (5) with Eq. (4) and solving the resulting
Euler–Lagrange equation for the particle density ρ(r, σ), we find

ρ(r, σ) = q exp (−βψ(σ) − βuext(r, σ) − βμex(r, σ)), (6)

where μex(r, σ) is the excess chemical potential, given by the
functional differentiation of the excess free energy, μex(r, σ)
= δFex/δρ(r, σ), and q is a normalization constant that is obtained
by imposing conservation of the total number of particles, namely
Eq. (2). The solutions of Eqs. (6) and (2) lead to the equilibrium
position and size distribution ρeq(r, σ).

2. Dynamical DFT for a RC fluid
Under non-equilibrium conditions, the one-body density dis-

tribution becomes also time-dependent, ρ(r, σ; t). For the case of
responsive colloids, particles in the system do not only diffuse in the
space, but can also modify their size in response to external inter-
actions. To describe their dynamics, we make the assumption that
the property σ of each particle also follows an overdamped diffusive
dynamics. Following the prescription given in the work by Baul and
Dzubiella,9 we denote DT as the translational diffusion coefficient
and Dσ as the diffusion coefficient in the σ-space. It is important
to emphasize that DT depends in general on the particle size (as for
Stokes–Einstein), so DT(σ) is a function of σ.

The DDFT can be extended to RCs by defining a four-
dimensional vector x = (x, y, z, σ) ≡ (r, σ) and a four-dimensional

current J = (Jx, Jy, Jz , Jσ) ≡ (Jr, Jσ) (note that this current has
dimensions of length−3time−1). Analogously, we can write a
four-component nabla operator ∇x = (∂/∂x,∂/∂y,∂/∂z,∂/∂σ)
≡ (∇r,∇σ). The time evolution of the density profile is given by

∂ρ(x, t)
∂t

= −∇x ⋅ J(x, t) = −∇r ⋅ Jr −
∂Jσ
∂σ

. (7)

The components of the current J are

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Jr = −DT(σ)ρ(r, σ; t)∇r[βμ(r, σ; t)],

Jσ = −Dσρ(r, σ; t)
∂βμ(r, σ; t)

∂σ
,

(8)

where μ(r, σ;t) is the non-equilibrium chemical potential. In order
to calculate it, we make use of the adiabatic approximation and
assume that μ(r, σ; t) is given by the functional derivative of the
equilibrium free energy functional, μ = δF/δρ. Using Eq. (4), it
leads to66

μ(r, σ; t) = kBT ln (ρ(r, σ; t)Λ3
/p0) + uext(r, σ) + ψ(σ)

+ μex(r, σ; t), (9)

where μex = δFex/δρ. Equations (7)–(9) define the new generalized
dynamical density functional theory designed for responsive colloids
(RC-DDFT).

C. Mean-field responsive DDFT of soft Gaussian
responsive colloids confined in planar slits

Here, we specify our particular system of responsive colloids
and the corresponding excess free energy model for it to be used
in the RC-DDFT framework. In this work, we focus on systems
composed by soft interpenetrable RCs. We consider the following
size-dependent Gaussian-core pair potential for the particle–particle
interaction:

βu(∣r − r′∣, σ, σ′) = ε exp (−4∣r − r′∣2/(σ + σ′)2
), (10)

where ε > 0 is the (repulsive) interaction strength (in kBT units),
which we assume to be independent of the particle sizes. It represents
an estimate of the particle hardness: for small values of ε, colloids are
able to interpenetrate each other. On the contrary, large values of ε
correspond to harder colloids, for which the energy penalty of over-
lapping is very high. Here, (σ + σ′)/2 plays the role of the interaction
range. In fact, in this interaction model, σ represents the effective
diameter of each RC.

The Gaussian-core interaction model is a well-established
coarse-grained description of polymer solutions,83 as it has been
shown to accurately describe the interaction between two isolated
polymers immersed in a good solvent, for polymer of identical84

and different lengths,85 under both homogeneous and the inhomo-
geneous conditions.86 For different choices of the interaction para-
meters, one can obtain either a mixture exhibiting bulk fluid–fluid
(macro)phase separation70,87–89 similarly to polymer blends, or
alternatively, a mixture exhibiting microphase separation.90

We assume that ε = 2 (in kBT units) for the interparticle inter-
action strength. This value represents fairly well the soft repulsion
existing between linear polymers.86,88 The equilibrium properties

J. Chem. Phys. 161, 094902 (2024); doi: 10.1063/5.0221903 161, 094902-3

© Author(s) 2024

 25 Septem
ber 2024 08:07:06

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

of such soft Gaussian particles described by Eq. (10) are well rep-
resented by a weakly correlated mean-field fluid over a surpris-
ingly wide density and temperature range.86 This justifies the use
of the mean-field approximation for the excess free-energy of the
interacting RC fluid, given by

Fex =
1
2∬V

drdr′∬ dσdσ′ρ(r, σ)ρ(r′, σ′)u(∣r − r′∣, σ, σ′). (11)

This approximation has been successfully used to reproduce
the equilibrium and non-equilibrium properties of passive89,91 and
active switching Gaussian colloids.73–75

Performing the functional differentiation and introducing it
into Eq. (9) leads to the explicit expression for the non-equilibrium
chemical potential of a mean-field RC fluid,

μ(r, σ; t) = kBT ln (ρ(r, σ; t)Λ3
/p0) + uext(r, σ) + ψ(σ)

+ ∫ dr′ ∫ dσ′ρ(r′, σ′; t)u(∣r − r′∣, σ, σ′), (12)

which involves a convolution integral in the r coordinate.
In our work, we consider RC dispersions confined between two

parallel hard walls separated by a distance L and subjected to one-
dimensional external potentials, uext(z, σ), where z ∈ [0, L] is the
distance from the left wall. The rest of the coordinates are assumed to
run over the full range, x, y ∈] −∞,∞[(infinite slit) . In this case,
the density profiles are homogeneous in lateral directions and can be
expressed as ρ(r, σ; t) = ρ(z, σ; t), with the normalization

∫

L

0
dz∫ dσρ(z, σ; t) = N/S, (13)

where N/S is the prefixed number density per area S and the
normalization is valid for every time t.

Exploiting the planar symmetry to simplify the convolution
integral involved in Eq. (12), we find the following equation for the
non-equilibrium chemical potential:66

μ(z, σ; t) = kBT ln (ρ(z, σ; t)Λ3
/p0) + uext(z, σ) + ψ(σ)

+
πε
4 ∫

dσ′(σ + σ′)2
∫

L

0
dz′ρ(z′, σ′; t)e

− 4(z−z′)2

(σ+σ′)2 . (14)

In addition to the interparticle interaction potential, we need
to specify the parent distribution of the RC, p(σ). In this work, we
consider bistable particles, for which the size fluctuates between two
states of size σ1 and σ2, which can be referred to as small and big,
respectively. This implies considering a bimodal parent size distri-
bution, with both peaks centered around these two states. To model
this behavior, we choose a generic bimodal form using a symmetric
double-Gaussian function,

p(σ) =
p0

2
√

2πτ2
[exp(−

(σ − σ1)
2

2τ2 ) + exp(−
(σ − σ2)

2

2τ2 )] (15)

with σ1 = 0.63σ0 and σ2 = 1.37σ0 (σ0 represents a reference particle
size that will be used as a unit length for the rest of the sizes and dis-
tances). In order to avoid nonphysical negative values and extremely
large values of the particle size, the range of σ has been limited to be
σ ∈ [0.1σ0, 2σ0].

The parameter τ appearing in Eq. (15) provides the thickness
of the size distribution around both peaks and can be interpreted as
the particle softness (conversely, τ−1 represents the stiffness of the
RC). In this work, we use τ = 0.2σ0. With this choice, the free energy
barrier required to overcome to switch from one state to other is
Δψ ≈ 1kBT.

In our system, the σ-dependence of the translational diffusion
coefficient will be of the type of Stokes, DT(σ) = D0σ0/σ, where D0
is the diffusion coefficient of a particle of radius σ0. In addition, a
parameter α is introduced to control the ratio between σ-diffusion
and translational diffusion, Dσ = αD0. We also define our diffusion
time for either translation or size relaxation as τB = σ2

0/D0.
From ρ(z, σ; t) and integrating over the σ-coordinate, we obtain

the one-body number density distribution of the RC fluid in our
quasi-1D system, namely

ρ(z; t) = ∫ dσρ(z, σ; t). (16)

The position-dependent size distribution of the RC fluid at time
t and position r, f(r, σ; t), is obtained as66

f (r, σ; t) =
ρ(r, σ; t)
ρ(r; t)

. (17)

We analyze some representative integrated properties and
monitor their time evolution: The center of mass location of the RC
fluid is given by

⟨z(t)⟩ =
S
N∫

L

0
zdz∫ dσρ(z, σ; t). (18)

The mean size of the RC at position z is given by the normalized
first moment of the distribution,

⟨σ(z; t)⟩ =
1

ρ(z; t) ∫
dσρ(z, σ; t)σ. (19)

The (global) mean size of the RC is given by

⟨σ(t)⟩ =
S
N∫

L

0
dz∫ dσρ(z, σ; t)σ. (20)

In our work, we assume that the confining walls are ideal planar
hard walls. Thus, the colloids experience an infinite repulsion when
their center of mass is located at z = 0 and z = L, respectively. For
these ideal walls, the average (osmotic) pressure exerted on the left
and right walls is given, respectively, by61

Pleft(t) = ρ(0; t)kBT and Pright(t) = ρ(L; t)kBT. (21)

III. BROWNIAN DYNAMICS SIMULATIONS OF RCs
Brownian dynamics (BD) calculations are performed in the

framework of the RC model.11 The discretized form of the BD equa-
tions for the translational degrees of freedom and for the internal
property is given by

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ri(t + Δt) = ri(t) +
DT

kBT
F(i)T (t)Δt + ξT,

σi(t + Δt) = σi(t) +
Dσ

kBT
F(i)σ (t)Δt + ξσ ,

(22)
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FIG. 1. Representative snapshots of system configurations made of responsive
colloids obtained at different times from Brownian dynamics simulations. For t < 0,
the system is in equilibrium with hard walls on the left and on the right (solid
line). At t = 0, the system is perturbed by switching on ϕG (solid line) and relaxes
(for t > 0) before reaching the new equilibrium at t →∞ (solid line). The color
gradient from blue (small sizes) to red (large sizes) visualizes the magnitude of the
sizes of the colloids.

where Δt is the simulation time step. While F(i)T (t)
= −∇ri uext(σi, z; t) −∑N

j≠i∇ri u(ri − r j , σi, σ j) is the transla-
tional force acting on colloid i from both the external field
and the pairwise interactions with the other colloids, F(i)σ (t)
= −∇σiψ(σi) −∇σi uext(σi, z; t) −∑N

j≠i∇σi u(ri − r j , σi, σ j) is the
property force acting on colloid i resulting from its own free-energy
landscape ψ(σ) and its interaction with both the external field and
the pairwise interactions with the other colloids. Finally, ξT and
ξσ are random vector and random scalar, respectively. Both ξT
and ξσ are drawn from a normal distribution with zero mean and
variance ⟨ξT,αξT,β⟩ = 2DTΔtδαβ and ⟨ξ2

σ⟩ = 2DσΔt, respectively, with
α, β = x, y, z being the Cartesian components and δαβ being the
Kronecker delta function.

Simulations were performed using the same geometry and
potential parameters as the ones used in RC-DDFT. To avoid non-
vanishing, non-physical negative values, and extremely large values
of the colloid size, the range of σ was limited to [0.1, 2]σ0 by sim-
ply rejecting (Monte Carlo like) moves that would lead to σ < 0.1σ0
or σ > 2σ0. The same procedure was used to respect the hard walls.
Starting with an equilibrium configuration made of 432 respon-
sive colloids [see Fig. 1(a)], the system was perturbed by either
abruptly switching on or off the applied external potential, prior to a
relaxation run of 30τB during which the system reached a new equi-
librium state [see Fig. 1(c)]. To obtain the time-dependent density,
ρ(z; t), and mean size, ⟨σ(t)⟩, Nrun = 4000 independent runs were
performed. The density profile and the mean size were then averaged
over all configurations for a fixed time t.

IV. RESULTS AND DISCUSSION
For our non-equilibrium relaxation study, our methodology

consists in applying an external potential,

uext(z; σ; t) = uwalls(z) + ϕ(z, σ; t), (23)

where uwalls accounts for the confinement effects and ϕ rep-
resents an additional external interaction such as osmotic or

gravitational potentials, defined further below. In particular, the wall
potential is

uwalls(z) =
⎧⎪⎪
⎨
⎪⎪⎩

0 for 0 ≤ z ≤ L,

∞ for z < 0 or z > L.
(24)

We initiate our system at equilibrium and consider two time-
dependent protocols. In the first one, the external potential ϕ is
absent for t < 0 and is activated for t > 0 (switch on) to observe the
ensuing relaxation toward the new equilibrium state (reached in the
limit t →∞) (cf. Fig. 1 as a representative illustration). In the second
protocol, we follow the inverse process: the field is already activated
for t < 0, and it is switched off for t > 0. A comparison between both
procedures will allow us to examine whether the system shows a dif-
ferent relaxation dynamics during the switching on and switching
off processes.

This bidirectional exploration is conducted for two external
potentials, namely gravitational (ϕG) and osmotic (ϕO) potentials:

(i) The gravitational external potential is linear in “height” z and
reads as

ϕG(z) = Az for 0 ≤ z ≤ L, (25)

with βAσ0 = 1. Note that the gravitational potential is just
a function of position z, not of size. Still, density inhomo-
geneities will also affect the compressible particle sizes and
their distributions in time and space. A relatively quick activa-
tion of this external field can be experimentally implemented
in several ways. For instance, the system could be confined
within a very narrow cell that is suddenly rotated to align with
the gravitational field. Alternatively, the cell can be vigorously
shaken to ensure a homogeneous distribution of particles
before aligning with the gravitational field. In a zero-G air-
plane experiments, a gravitational field would in principle be
also switched off and on.

(ii) The osmotic potential, ϕO(z, σ), is given by

ϕO(z, σ) = Bzσ3 for 0 ≤ z ≤ L, (26)

where βBσ4
0 = 1. This equation introduces a dependence on

particle size through the σ3-volume term, aiming to repli-
cate the volumetric effects exerted by the osmotic pressure
that arises when the colloidal particles are immersed in a
suspension of certain cosolutes whose concentration varies
spatially with a constant gradient. As such, σ3 represents the
volume excluded by each colloid to the cosolute molecules
within this gradient.6,11 Indeed, if we denote with ρc(z) the
cosolute concentration at a distance z from the left wall,
the osmotic pressure is Π(z) = kBT[ρc(0) − ρc(z)]. For a
constant negative concentration gradient, ρc(0) − ρc(z) = Cz
(C > 0). The osmotic potential for a spherical colloid that
excludes a volume V = πσ3

/6 thus reads as ϕO(z, σ) = Π(z)V
= Bzσ3, where B = (π/6)CkBT > 0.

To validate the theoretical predictions of our extended DDFT,
they are compared with BD simulation results. Through this com-
parison, we analyze macroscopic quantities such as the mean posi-
tion ⟨z(t)⟩, the mean size ⟨σ(t)⟩, and the pressure exerted on
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the hard walls. Moreover, we delve into a parametric study focus-
ing on the interplay between spatial relaxation and size relax-
ation times, governed by the parameter α = Dσ/D0: For α < 1, the
swelling/deswelling of the responsive colloid is slower than the
translational diffusion, which means that the change of particle size
happens retarded to the structural relation. The opposite occurs
for α > 1. This dissimilar time relaxation is expected to lead to
transient dynamic states, tunable by α, which will be explored in
Sec. IV D.

Figure 1 provides a representative illustration of the activation
protocol for the particular case of the gravitational external poten-
tial. Big and small particles are depicted as red and blue spheres,
respectively. The rest of the intermediate sizes are represented by
a continuous graduation of colors between red and blue. At time
t < 0 (left panel), the responsive system is in the equilibrium state,
confined between two planar hard walls. After activation of the
external field (central panel) at t = 0, particles dynamically relax in
the new potential field and migrate toward the left to lower the exter-
nal potential energy. Their sizes are also affected by the changes in
the local particle concentration. For t →∞ (right panel), the sys-
tem finally reaches the final equilibrium state in the presence of the
external potential, with a very different profile and size distribution
compared to the original state.

A. Gravitational potential
We start analyzing the relaxation dynamics of a responsive

colloidal system immersed in the gravitational external potential

given by Eq. (25) under the two protocols (switching on and
off). For this case, we select α = 0.1 and N/S = 1.2σ−2

0 . Figure 2
depicts the time evolution of the mean local density (ρ(z; t))
and local mean size (⟨σ(z; t)⟩) from t = 0 to 3τB at Δt = 0.5τB
intervals. Panels (a) and (c) show the results following the
activation (“switch on”) of the gravitational field, while panels
(b) and (d) depict the outcomes subsequent to its deactivation
(“switch off”).

The analysis of ρ(z), depicted in Figs. 2(a) and 2(b), reveals
a significant alignment between the BD and RC-DDFT methods
throughout the dynamic process. These panels also indicate that
the system has reached nearly the final equilibrium state already for
t ≈ 3τB. Conversely, the evaluation of ⟨σ(z; t)⟩ in Figs. 2(c) and 2(d)
demonstrates a consistent conformity between the methods, albeit
with notable differences, particularly a consistent disparity of ∼5%
throughout the dynamic sequence. This deviation in ⟨σ(z; t)⟩ arises
not only in this confined geometry but also in bulk systems (without
external potentials and walls). We attribute this small discrepancy
to the (adiabatic92 and/or mean-field) approximations employed in
RC-DDFT. To facilitate a clearer comparison with simulations by
eye, the magnitude of the RC-DDFT values of ⟨σ(z; t)⟩ in Fig. 2 has
been rescaled by a factor of 1.05.

In the initial stage (t = 0) of the activation state, depicted in
Fig. 2(a), we observe a nearly flat density profile, ρ(z), with the
exception of regions near the walls where particle adsorption effects
become prominent. This accumulation near the hard walls occurs
because particles are pushed from the bulk to the walls due to the

FIG. 2. Time evolution of the density ρ(z; t) and size ⟨σ(z; t)⟩ of the RCs in the gravitational field, ϕG(z), plotted at different times ranging from t = 0 (dark blue) to 3τB
(yellow), with a time interval of Δt = 0.5τB. The lines represent the theoretical predictions obtained with RC-DDFT, whereas the symbols correspond to BD simulations.
Panels (a) and (c) show, respectively, the local density [ρ(z; t)] and the local mean size (⟨σ(z; t)⟩) obtained when the external potential is switched on for t > 0. Similarly,
panels (b) and (d) show the same quantities, but for the deactivation process (“switched off”). In this case, the magnitude of ⟨σ(z; t)⟩ obtained via RC-DDFT is rescaled by
a factor of 1.05 for a clearer comparison. All calculations are performed considering α = 0.1 and a surface density N/S = 1.2σ−2

0 .
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interparticle repulsive interactions. In addition, the local mean size,
⟨σ(z)⟩, as shown in Fig. 2(c), exhibits an intriguing behavior near the
wall. Typically, in the bulk, the mean size is expected to decrease as
ρ increases.9 However, near the walls, an increase in ⟨σ⟩ is observed
as ρ increases, a phenomenon also noted in equilibrium configura-
tions.66 This behavior can be explained by the conditions faced by
colloids near a hard boundary. Unlike in the bulk, where colloids
are fully surrounded by other particles, being near a wall reduces
the number of neighboring particles by roughly a factor of two. This
reduction in surrounding particles diminishes the overall repulsive
forces acting on the colloids, allowing them to expand. This effect
arises from the application of ideal hard walls in our model. Here,
the centers of mass of the colloids can approach the walls located
at z = 0 and z = L without encountering any repulsive interaction.
However, in a more realistic scenario, the deformation of the soft
particles near the wall introduces an additional distance-dependent
repulsive force that should be incorporated into the model, such as
the effective wall–particle repulsion observed in self-avoiding linear
polymer chains in a good solvent near a hard wall.84,93 Accounting
for this additional contribution to uwalls would result in a reduc-
tion in the particle size when colloids are in the close vicinity
of one of the walls,66 competing with the observed trends in the
current model.

Upon activation of the gravitational field ϕG(z) at time t > 0,
the system is subjected to a reordering as particles migrate toward
the region with a lower external field, located on the left side of the
slit. This process, depicted in the dynamic sequence in Figs. 2(a) and
2(c), is not instantaneous; thus, we plot the density and mean size
at various times to capture the evolution. It is interesting to remark
the strong change of ⟨σ(z)⟩ during the first stages of the evolution
(0.5τB), compared to the evolution of ρ(z; t). Given that α = 0.1
implies that size diffusion should be significantly slower than spa-
tial diffusion, the observed rapid change in size must be necessarily
caused by Stokes-type diffusion, DT ∼ 1/σ: Smaller particles, having
a higher diffusion coefficient, move faster toward the left, leaving
behind larger particles and thus increasing the average size on the
right side of the system. In addition, a decrease in density favors
more expanded states for the particles.

The system keeps evolving, and we illustrate these dynamics
only up to 3τB because the changes become exceedingly slow there-
after. By 10τB, the system reaches a state indistinguishable from the
equilibrium state achieved under the gravitational field. In this final
equilibrium state, which is also the starting point for the deactivation
process [Figs. 2(b) and 2(d)], the density ρ decays from the left wall.
In an ideal, non-interacting system, this decay would be purely expo-
nential. However, due to the existent repulsive interactions between
colloids, the actual final equilibrium density profile departs from
this ideal behavior. Excluding the near-wall effects previously dis-
cussed, regions with higher particle concentration correspond to
smaller mean sizes, indicating compression due to increased density.
Interestingly, near the right wall, where ρ is nearly zero, the mean
size is maximal and very close to one, suggesting negligible inter-
particle interactions as the size distribution aligns with the parent
distribution, p(σ). The complete dynamics of the activation process
depicted in Fig. 1 are illustrated through representative snapshots
obtained from Brownian Dynamics (BD) simulations, capturing the
initial, intermediate, and final states. As depicted, upon activation of

ϕG(z), responsive particles undergo noticeable diffusion toward the
left wall. This results in compression, leading to a significant local-
ization effect in particle size when compared to the less compressed
region near the right wall.

Additional results obtained using RC-DDFT with a unimodal
size distribution (i.e., with only a single peak) are presented in
Sec. S1 of the supplementary material. We find that, although the
results are qualitatively similar, the single-peak distribution limits
the variability in particle size, except under extreme compression
conditions. In contrast, a bimodal size distribution allows the parti-
cle size to switch between large and small under compression or the
application of an external field, thereby emphasizing the observed
changes, especially in ⟨σ(z; t)⟩. However, we demonstrate that the
dynamic behavior of the bimodal parent distribution can be repli-
cated using a broader unimodal distribution with a larger softness
parameter.

Figures 2(b) and 2(d) show again ρ(z; t) and ⟨σ(z; t)⟩ for
the deactivation process, respectively. In this case, we find that
the migration toward the new equilibrium state is not symmetri-
cal compared to the activation process. During activation, particle
movement is driven by the external gravitational force, whereas
upon deactivation, particle movement is driven by the gradient of
concentration, which pushes the particle from the more dense region
(left) to the more dilute one (right). This asymmetry results in differ-
ing dynamics between activation and deactivation phases, with the
gravitational field’s application appearing to accelerate the dynamic
process as it will be discussed later.

We can obtain a clearer description of the nonequilibrium
dynamics by examining the position-dependent size distribution
obtained via RC-DDFT, f(r, σ; t), as defined in Eq. (17). Figure 3
shows three snapshots of this distribution upon activation of the
gravitational field. Initially, at t = 0, there is a higher concentration
of large particles near the wall compared to the bulk, as previously
described. Over time, f(r, σ; t) evolves at each position, increas-
ing the proportion of large particles where the density decreases
and increasing the proportion of small particles in more crowded
regions. At final equilibrium, the distribution at z = 6σ0 is almost
identical to p(σ). This is due to the very low density at that point,
ρ(6σ0,∞) ≈ 0, which implies very weak interparticle interactions
and, consequently, no compression. Moving toward the other wall
(L = 0), f(r, σ; t) transitions to a new distribution where almost all
responsive colloids are in the small state.

Additional results performed with a larger surface density of
colloids are shown in Sec. S2 of the supplementary material in order
to exemplify even larger crowding effects.

B. Osmotic potential
Next, we turn to examine the dynamics of the RC fluid when

the osmotic potential is activated and deactivated [Eq. (26)]. This
external potential varies linearly with z, akin to gravitational force,
but its pronounced σ3-dependency gives rise to a markedly distinct
qualitative dynamic behavior. Figures 4(a) and 4(c) illustrate the
mean particle density and mean size within the planar slit during the
activation process, respectively, while Figs. 4(b) and 4(d) delineate
the same quantities during deactivation. We maintain α = 0.1 and
N/S = 1.2σ−2

0 .
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FIG. 3. Snapshots of f(z, σ; t) at three different times obtained after activation of the gravitational field at t > 0 using RC-DDFT. Calculations are performed considering
α = 0.1, N/S = 1.2σ−2

0 , and τ/σ0 = 0.2.

FIG. 4. Time evolution of the RCs in the osmotic field, ϕO(z, σ), plotted at different times ranging from t = 0 (dark blue) to 3τB (yellow), with a time interval of Δt = 0.5τB. The
solid lines represent the theoretical predictions obtained with RC-DDFT, whereas the symbols correspond to BD simulations. The dashed lines depict the final equilibrium.
Panels (a) and (c) show, respectively, the local density (ρ(z; t)) and the local mean size (⟨σ(z; t)⟩) obtained when the external potential is switched on for t > 0. Similarly,
panels (b) and (d) show the same quantities, but for the deactivation process. All calculations are performed considering α = 0.1 and a surface density N/S = 1.2σ−2

0 .

Upon activation of ϕO(z, σ), particles tend to migrate globally
toward the left, mitigating the energy contribution induced by the
external potential, expressed as ∫ ρϕOdzdσ. Analogous to gravita-
tional effects, this results in a notable increase in particle density near
the left wall over time.

However, ⟨σ(z; t)⟩ exhibits a contrasting behavior, with larger
particle sizes accompanying high-density regions, as depicted in
Fig. 4(c). This occurs despite the compression near the left wall.
This phenomenon can be elucidated by the strong dependence of
ϕO(z, σ) on σ: the energetic penalty for larger colloids near the right
wall prompts smaller colloids to prevail in that region. In addition,

⟨σ(z; t)⟩ experiences a rapid decline in early stages of evolution
(t < 0.5τB), not attributable to RC shrinkage, given that calcula-
tions are conducted with a deswelling diffusion 10 times smaller than
spatial diffusion. This effect stems from the migration of larger col-
loids toward the left wall, propelled by the applied external force,
fext = −dϕO/dz = −Aσ3.

A distinct dynamical behavior emerges upon deactivating the
osmotic potential. Remarkably, convergence is achieved within
3τB in both scenarios. However, activating the osmotic poten-
tial leads to markedly faster dynamics compared to its deactiva-
tion. This acceleration is particularly pronounced when examin-
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ing the size distribution, with temporal profiles nearly coinciding
after just t ≈ τB.

Furthermore, a transient behavior is observed upon activation
of ϕO(z, σ). Indeed, after activation, there is a rapid migration of
colloids toward the left wall, resulting in a significant concentration
increase at very short times in this region. Concurrently, the mean
particle size of colloids near the left wall initially increases, followed
by a decay over longer times. This clearly indicates that particles first
move to the left and then decreases their size. Conversely, deactivat-
ing ϕO(z, σ) yields the opposite trend, with ρ and σ increasing on the
left and decreasing on the right until equilibrium is attained.

In both scenarios (activation and deactivation), the comparison
between theoretical predictions from RC-DDFT and BD simulations
demonstrates very good agreement.

C. Macroscopic analysis
To validate the agreement between RC-DDFT and BD beyond

the local density and size profiles, we examine three interesting
macroscopic, integrated quantities. These quantities not only offer
insights into the global behavior of the system but also facilitate
a comparison of the time scales on which dynamical processes
occur. The quantities of interest are the center of mass position ⟨z⟩
of the suspension [Eq. (18)], the global mean particle size ⟨σ(t)⟩

[Eq. (20)], and the pressures exerted by the RC fluid on the left
and right hard walls, given by Pleft(t) and Pright(t) [Eq. (21)],
respectively.

The time evolution of these quantities is illustrated in
Fig. 5 for α = 0.1 and N/S = 1.2σ−2

0 . Each panel presents results
obtained from RC-DDFT for activated (solid lines) and deacti-
vated (dashed lines) gravitational and osmotic external potentials,
distinguished by orange and blue lines, respectively. The corre-
sponding BD simulations are represented by squared and circled
symbols. A remarkable congruence between macroscopic quanti-
ties is derived from both RC-DDFT and BD, not only in shape but
also in indicative time scales (the values of ⟨σ(z; t)⟩ obtained via
RC-DDFT for the gravitational cases have been rescaled here, too,
by a factor of 1.05 for a clearer comparison with the simulation
data).

The analysis of these curves reveals several features of the relax-
ation process. Primarily, it is evident that relaxation during the
activation of the external field is consistently faster than during deac-
tivation. We attribute this behavior to the supplementary driving
force induced by the activated external potential, intensifying the
motion of confined colloids. Conversely, during the deactivation
process, this external force is absent, so colloids rely solely on dif-
fusion for movement, thereby leading to a slower evolution toward
equilibrium.

FIG. 5. Time evolution of (a) the center of mass position (⟨z(t)⟩), (b) the mean particle size of the system (⟨σ(t)⟩), with gravitational RC-DDFT data multiplied by 1.05 for
a better comparison with simulations, and (c) the pressure applied by the fluid on the left wall (Pleft(t)) and (d) on the right wall (Pright(t)), obtained for the activation (solid
lines) and deactivation (dashed lines) processes. The orange and blue colors represent the results for the gravitational and osmotic potentials, respectively. The lines denote
the RC-DDFT predictions, whereas the symbols denote the BD simulations. In all cases, α = 0.1 and surface density N/S = 1.2σ−2

0 .
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TABLE I. Relaxation times obtained by fitting Eq. (27) to mean size, ⟨σ(t)⟩, and
mean position, ⟨z(t)⟩, predicted by RC-DDFT during the activation (on) and deacti-
vation (off) of the external potentials, ϕG(z) and ϕO(z, σ). The corresponding times
for BD simulations are shown within the parentheses.

τ ϕG (on) ϕG (off) ϕO (on) ϕO (off)

⟨z⟩ τ1 0.90 (0.91) 1.38 (1.47) 0.24 (0.25) 1.33 (1.46)
τ2 1.97 (1.95) 1.38 (1.47) 1.23 (1.23) 1.33 (1.46)

⟨σ⟩ τ1 1.08 (1.15) 0.61 (0.72) 0.30 (0.31) 0.28 (0.27)
τ2 1.69 (1.83) 1.50 (1.55) 1.20 (1.42) 1.48 (1.61)

With our system’s inherent two degrees of freedom, we employ
a double exponential function to fit these macroscopic quantities,
facilitating the extraction of time scales,

ψ(t) = A1e−t/τ1 + A2e−t/τ2 + c, (27)

being ψ(t) = {⟨z(t)⟩, ⟨σ(t)⟩}. The relaxation times, τ1 and τ2,
obtained from these fits, are summarized in Table I, presenting
a comparison of the time scales predicted by RC-DDFT and
observed through BD (between parentheses) under the scenarios
studied.

In every scenario, we observe two distinct time scales that are
similar within each potential and across both RC-DDFT and BD
analyses. This similarity suggests that the complex dynamics of the
system are influenced by the interaction between translational and
size diffusion processes. The differences in the shapes of macro-
scopic quantities for various potentials, as shown in Fig. 5, likely

arise from the differing impacts of these time scales. The close match
between macroscopic quantities obtained from BD simulations and
those predicted by RC-DDFT highlights the effectiveness of the
RC-DDFT extension in accurately capturing the dynamics of the
system. This concordance further supports the use of RC-DDFT for
additional studies.

As summarized in Table I, the relaxation time for ⟨z(t)⟩ when
ϕO is switched on (0.24τB) and off (1.33τB) or the relaxation time
for ⟨σ(t)⟩ when ϕG is switched on (1.08τB) and off (0.61τB) is a
clear signature of irreversible relaxation pathway. In addition, the
difference in relaxation time for ⟨z(t)⟩ when switching on ϕO and
ϕG reveals that the nature of the perturbation has an important effect
on the relaxation process (see Fig. 5).

D. Competition of time scales: The α-study
Having evaluated the effects of the activation and deactiva-

tion processes of the external field, we now focus on the assessment
of the influence of the time scale ratio, α = Dσ/D0, on the non-
equilibrium relaxation dynamics of our confined system of soft RCs.
As mentioned earlier, α modulates the interplay between size dif-
fusion and translational diffusion. For such a study, we select the
osmotic external potential and consider only the activation process.
Figure 6 shows the time evolution of ρ(z; t) and ⟨σ(z; t)⟩ for α = 1
[panels (a) and (c)] and α = 0.01 [panels (b) and (d)], representing
two limiting dynamic conditions for which the σ-diffusion is very
fast and very slow compared to the translational diffusion. Please
note that even though for α = 1 spatial and swelling diffusion times
are on comparable scales, the colloids need to travel a distance of

FIG. 6. RC-DDFT results for the time evolution of the system’s structure for the osmotic field, ϕO, being switched on at time t = 0 for various values of the time scale parameter
α. The dashed lines depict the final equilibrium. (a), (b) Local density, ρ(z), and (c), (d) local mean size, ⟨σ(z)⟩, at different times ranging from 0 τB (blue) to 3 τB (yellow)
with a time interval of 0.5 τB. The surface density is N/S = 1.2σ−2

0 . The inset in (b) shows the time evolution of the density ρ and the mean size ⟨σ⟩ on the left wall.
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the order of 6σ0 (the distance between both walls) to reach spa-
tial equilibrium, whereas particle sizes only need to vary by about
0.74σ0 (the separation between the peaks of p(σ)) to achieve equilib-
rium, which is almost 10 times smaller. Therefore, α ≈ 0.1 represents
the appropriate value that separates “slow” vs “fast” size response
in our system when compared to translation. Note that the final
equilibrium state (for t →∞) is depicted as a black dashed line in
each plot. The particle surface concentration is fixed in all cases to
N/S = 1.2σ−2

0 . Considering the close alignment between RC-DDFT
and BD observed in Secs. IV A–IV C, we only depict the results
obtained with RC-DDFT.

For α = 1, the particle size rapidly adjusts to the new envi-
ronmental conditions during the initial relaxation stage, and the
system approaches full structural equilibrium within 3τB. Decreas-
ing α to 0.01 results in a slower response of particle size to the
activation of the external potential. As observed, the time evolu-
tion in this case is so slow that the system does not reach the final
equilibrium state within the plotted t ≤ 3τB. Notably, in this small-
α regime, our findings reveal the presence of a transient dynamic
state in the early dynamics: initially, particles accumulate on the
left wall for t < 3τB, followed by a subsequent decrease in concen-
tration toward the final equilibrium state for t > 3τB. This dynamic
non-monotonic behavior is clearly depicted in the inset of Fig. 6(b),
illustrating the time dependence of the particle density in contact
with the left hard wall, ρ(z = 0; t), which exhibits a maximum at
t ≈ 3τB. A similar trend is observed for the mean size of colloids
in contact with the left wall (⟨σ(z = 0; t)⟩), initially increasing with
time before eventually decreasing again [see again the inset of
Fig. 6(b)]. In the inset, we can also clearly see the relaxation to
equilibrium for long times.

It is important to highlight that this transient dynamic state
observed at intermediate times arises directly from the disparity in
time scales between translation and swelling, evident for α = 0.01
and absent for α = 1. Initially, colloids diffuse toward the left under
the external field without altering their size, which evolves 100 times
slower. The observed increase in ⟨σ(z = 0; t)⟩ is primarily attributed
to the selective motion of larger colloids driven by the applied
external force fext = −dϕO/dz = −Aσ3. Over longer time scales, com-
pression effects lead to a gradual (slower) reduction in particle
size, consequently inducing a decrease in ρ(z = 0; t) until the new
equilibrium state is attained. In essence, this observation signifies
a transition from translationally driven to size-driven relaxation
dynamics as α decreases from 1 to 0.01, a characteristic exclusive to
responsive colloids.

This rich interplay between structural and size relaxation is fur-
ther illustrated in Figs. 7(a) and 7(b), which explore, respectively,
the impact of α on the center of mass position (⟨z(t)⟩) and on the
mean particle size (⟨σ(t)⟩) across a wide range of α values from
0.01 to 2. In cases where α < 0.04, a non-monotonic curve with a
pronounced minimum appears in ⟨z(t)⟩, signifying that respon-
sive colloids initially migrate toward the left wall due to the applied
external force before subsequently reversing direction due to grad-
ual size reduction. Conversely, for α > 0.25, the opposing trend is
found: the particle size undergoes a rapid reduction attributed to the
compression induced by the osmotic field during the initial stages of
evolution, yet the colloids have not traversed the necessary distance
to achieve structural relaxation. For longer times, the progressive
redistribution of colloids toward the left wall through spatial diffu-

FIG. 7. Time evolution of (a) the center of mass position (⟨z(t)⟩) and (b) the
mean size of the colloids (⟨σ(t)⟩) predicted by RC-DDFT (symbols) during the
activation of the osmotic external potential, obtained for different values of α from
0.01 to 2. The solid lines are the result of the fitting of the data using Eq. (27). In
all cases, N/S = 1.2σ−2

0 .

sion allows ⟨σ(t)⟩ to exhibit a slight increase, driven by the swelling
of colloids near z = 0.

This transient behavior observed for dissimilar values of DT
and Dσ becomes evident in Fig. 8, where ⟨z(t)⟩ is plotted against
⟨σ(t)⟩ for different values of α, from 0.01 to 3. Indeed, for α = 0.01,
we find that ⟨z(t)⟩ shows a non-monotonic behavior induced by
the slow σ-response, leading to a minimum in the curve. Con-
versely, for α = 3, the curve depicts a shoulder on the left, indicating
the non-monotonicity of the center of mass location caused by
the slow translational diffusion. These phenomena controlled by
α demonstrate the dynamic competition between translational and
size diffusion. At very low or high α values, the dynamics of mean
size and position appear closely coupled, depicting a scenario where
one aspect of the system’s behavior must “wait” for the other to
stabilize.

The fitting of the center of mass position and mean particle
size after activation of ϕO(z, σ) according to the double exponen-
tial function given by Eq. (27) yields relaxation times and prefactors
as a function of α, as shown in Fig. 9. This analysis confirms the pres-
ence of two distinct time scales, corresponding to translational and
size diffusion processes. We identify τ1 as the translational relaxation
time and τ2 as the size relaxation time, with A1 and A2 denoting
the corresponding prefactors for translational and size relaxation,
respectively. Figure 9(a) shows the behavior of τ1 and τ2 obtained
from fitting ⟨z(t)⟩. As observed, τ1 < τ2 for small α, as expected
for this α-regime. Conversely, for large enough α, we find that
τ1 > τ2. In this case, size relaxation is faster, and the ultimate relax-
ation of ⟨z(t)⟩ is governed by the translation of the colloids. The
crossover between these two dynamic regimes occurs at the crit-
ical value αc ≈ 0.044, where τ2 shows a discontinuity. The regime
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FIG. 8. Transition pathways: center of mass location ⟨z⟩ vs the mean particle size
⟨σ⟩ of the system during the relaxation process after activation of the osmotic
external potential, plotted for different values of α. The red point on the right-top
represents the initial equilibrium state (t = 0), whereas the one located on the
left-bottom corresponds to the emerging final equilibrium state (t →∞). Results
are obtained using RC-DDFT with N/S = 1.2σ−2

0 .

α > αc corresponds to normal relaxation, where translational relax-
ation predominates as the main mechanism controlling the location
of the system’s center of mass, and the sign of both prefactors A1
and A2 is positive, as depicted in Fig. 9(b). However, the regime
α < αc represents a situation where translational relaxation occurs
following a change in size, causing ⟨z(t)⟩ to be driven by size adjust-
ments. This regime is clearly identified because one of the prefactors,
in this case A2, takes negative values, leading to the previously
discussed non-monotonic dynamic behavior. The exact crossover
between times occurs when A2 = 0, indicated by a red vertical line
in Figs. 9(a) and 9(b)

Examining the behavior of τ1 and τ2 obtained by fitting ⟨σ(t)⟩,
as depicted in Fig. 9(c), we observe a similar dynamic pattern: relax-
ation toward equilibrium is dominated by size adjustments (τ1 < τ2)

when α is small and by translational diffusion (τ1 > τ2) for larger
values of α. In this second regime, colloids first adjust their size
to the initial structure and later, as the system restructures due to
the external field, they readjust their size. As seen in Fig. 9(d), this
second regime is characterized by negative values of A1, leading to
transient states, where colloids initially shrink and then swell due
to their spatial reallocation in a second stage. The crossover between
both regimes occurs at αc ≈ 0.3. The difference between the αc values
reported for ⟨z(t)⟩ and ⟨σ(t)⟩ arises from the greater distance that
responsive colloids need to travel to reach equilibrium compared to
the range of size variation.

V. CONCLUDING REMARKS
In this work, we have developed and combined a dynamic

density-functional theory (RC-DDFT) framework and Brownian
dynamics (BD) simulations to investigate the full time-dependent
non-equilibrium relaxation dynamics of confined systems of soft
responsive colloids (RCs) after the activation/deactivation of exter-
nal potentials. In contrast to conventional models of soft colloids,
in our model, the size dynamics of the colloids is explicitly resolved
and the influence of its relaxation behavior and time scale on the full
system’s dynamics could be explored for the first time. The results
showed a complex interplay between the translational diffusion
and the particle swelling/shrinking dynamics, leading to interest-
ing non-equilibrium structuring as well as non-monotonic transient
behaviors when the typical spatial and size relaxation time scales are

FIG. 9. Relaxation times, τi , and prefactors, Ai , as a function of α. They are obtained by fitting ⟨z(t)⟩ [panels (a) and (b)] and ⟨σ(t)⟩ [panels (c) and (d)] predicted by
RC-DDFT to Eq. (27), during the activation process of the osmotic external potential, for N/S = 1.2σ−2

0 . The vertical lines show the crossover between τ1 and τ2, which
happens if one of the prefactors, A1 or A2, is zero. The data correspond to the structural time evolution shown in Fig. 7.
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very different. We also demonstrated that the modification of intrin-
sic time scales of the system leads to tunable macroscopic relaxation
times and pathways in systems with many relaxing degrees of free-
dom. The excellent agreement between DDFT and BD showed
that DDFT can also be faithfully used to study the nonequilibrium
behavior of soft, weakly correlated colloids with additional internal
degrees of freedom, if the systems are not too slaved by dissipative
mechanisms.92 Hence, our study constitutes a big step forward for
the modeling and description of the full nonequilibrium structuring
of soft complex fluids.

In the future, it would be interesting to extend the RC-DDFT
method to responsive (intrinsically polydisperse) systems of stiffer
systems, e.g., microgels modeled by Hertzian potentials.7,39 For
these systems, we expect to find marked oscillations of the den-
sity profiles that will become strongly affected by particle stiffness.
In addition, the dynamical properties can lead to the formation
of interesting transient, e.g., highly structured while full nonequi-
librium regions that finally relax when the colloids adapt their
size to the new environmental conditions. These transients may
have interesting new properties. Finally, one could also envision
to add more internal degrees of freedom to the colloids with a
more complex hierarchy of time scales, or even add internal chem-
ical activity to the colloids, e.g., as used in catalytically active
nanoreactors where the bistable size response is crucial for complex
self-dynamics.94

SUPPLEMENTARY MATERIAL

Additional results obtained using RC-DDFT with a unimodal
parent size distribution are presented in Sec. S1 of the supplementary
material. The parent size distribution, p(σ), for bimodal and uni-
modal distributions with different softness parameters, τ/σ0 = 0.2
and 0.3, is plotted in Fig S1.1 of the supplementary material. The
time evolution of ρ(z; t) and ⟨σ(z; t)⟩ is plotted in Fig S1.2 of the
supplementary material, while the nonequilibrium relaxation of the
center of mass position is plotted in Fig. S1.3 of the supplementary
material for the considered unimodal parent size distribution. Fur-
thermore, additional results performed with a larger surface density
of colloids and a bimodal parent size distribution are presented
in Sec. S2 of the supplementary material in order to exemplify
even larger crowding effects. RC-DDFT results for the time evo-
lution of the system’s structure for the osmotic field, ϕO, being
switched on at time t = 0 for various values of the time scale para-
meter α are plotted in Fig. S2.1 of the supplementary material, while
the time evolution of the center of mass position ⟨z(t)⟩ and the
mean size of the colloids ⟨σ(z; t)⟩ is plotted in Fig. S2.2 of the
supplementary material.
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